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Abstract

This paper analyzes house price data belonging to three hierarchical levels of spatial units.
House selling prices with associated individual attributes (the elementary level-1) are grouped
within municipalities (level-2), which form districts (level-3), which are themselves nested in
counties (level-4). Additionally to individual attributes, explanatory covariates with possibly
nonlinear effects are available on two of these spatial resolutions. We apply a multilevel ver-
sion of structured additive regression (STAR) models to regress house prices on individual
attributes and locational neighborhood characteristics in a four level hierarchical model. In
multilevel STAR models the regression coefficients of a particular nonlinear term may them-
selves obey a regression model with structured additive predictor. The framework thus allows
to incorporate nonlinear covariate effects and time trends, smooth spatial effects and complex
interactions at every level of the hierarchy of the multilevel model. Moreover we are able to
decompose the spatial heterogeneity effect and investigate its magnitude at different spatial
resolutions allowing for improved predictive quality even in the case of unobserved spatial
units. Statistical inference is fully Bayesian and based on highly efficient Markov chain Monte
Carlo simulation techniques that take advantage of the hierarchical structure in the data.

Keywords: Bayesian hierarchical models, hedonic pricing models, multilevel models,

MCMC, P-splines

1 Introduction

In economics, housing is usually treated as a heterogeneous good, defined by a bundle of utility-
bearing characteristics, such as structural (physical) characteristics, like floor space area, con-
structional condition, age etc., and neighborhood (locational) characteristics, like the proximity
to places of work, the social composition of the neighborhood etc. A housing transaction can
therefore be considered as a tied sale of a set of these characteristics. One way to address this
situation are hedonic pricing models, where the price of a housing unit is decomposed into implicit
prices of the characteristics which are estimated in a regression analysis of price against charac-
teristics. Originally developed for automobiles by Court (1939), the foundations of hedonic price
theory have been developed by Lancaster (1966), focusing on the demand side of the market, and
Rosen (1974), focusing on the interaction of bid and offer functions. Another often cited reference
is Griliches (1971). Reviews of hedonic price theory in a real estate context are provided e.g. in
Follain and Jimenez (1985), Sheppard (1999) and Malpezzi (2003).

Typically, residential properties belong to several levels of spatial (administrative) units, which
turns the hedonic pricing model into a multilevel or hierarchical regression problem (see
e.g. Goldstein 2003 and Gelman and Hill 2007). In our case, house selling prices with associ-
ated individual attributes (the elementary level-1) are grouped in municipalities (level-2), which
form districts (level-3), which are themselves nested in counties (level-4). Available neighborhood
covariates on either of these spatial resolutions that might be important for predicting house prices
should be accounted for, and it is furthermore reasonable to assume that unmeasured neighborhood
characteristics such as local policy and infrastructure affect individual house prices.

Another major problem in hedonic price modeling is that economic theory does not provide clear
guidance concerning the functional form of the dependence of price on characteristics, which
suggests that hedonic pricing models should allow for nonlinearity in the price functions (see
e.g. Wallace 1996 or Ekeland et al. 2004). The most commonly used specification to address
this problem is the semi-log form (see e.g. Malpezzi 2003 or Sirmans et al. 2005), but this only
seems to mitigate the problem of possible nonlinear relationships to some extent. Therefore,
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Anglin and Gencay (1996) or Martins-Filho and Bin (2005) demand the use of semi- or nonpara-
metric specifications for this situation. Other examples of semi- and nonparametric approaches for
real estate can be found e.g. in Mason and Quigley (1996), Pace (1998) or Bontemps et al. (2008).

A particularly broad and rich framework for semiparametric modeling is provided by gener-
alized structured additive regression (STAR) models introduced in Fahrmeir et al. (2004) and
Brezger and Lang (2006). In STAR-models, continuous covariates are modeled as P(enalized)-
splines as introduced by Eilers and Marx (1996), see also Wood (2006). Furthermore, random
effects for spatial indexes, smooth functions of two dimensional surfaces and (spatially) varying
coefficient terms may also be estimated using this methodology.

In this paper we apply a multilevel version of STAR models recently developed in Lang et al. (2010)
for modeling the dependence of house prices on structural and locational house characteristics. In
multilevel STAR models the regression coefficients of nonlinear terms may obey another regression
model with structured additive predictor. In that sense, the model is composed of a hierarchy of
complex structured additive regression models.

We use a dataset of 3231 owner-occupied single family homes in Austria to estimate a multilevel
STAR model of the form (a more detailed description will be given in sections 2 and 3):

level-1: lnpqm = f1,1(area) + . . . + f1,q1
(age) + x′γ + fspat1(s1) + ε1

level-2: fspat1(s1) = f2,1(purchase power) + . . . + f2,q2
(education) + fspat2(s2) + ε2

level-3: fspat2(s2) = f3,1(price index) + fspat3(s3) + ε3

level-4: fspat3(s3) = γ0 + ε4.

(1)

The top level equation is a STAR-model for logged home sales prices per square meter, lnpqm,
with possibly nonlinear effects f1,1, . . . , f1,q1

of continuous structural house characteristics such as
the floor space (area) or the age of the building (age) and the usual linear part x′γ (e.g. dummy
variables for the condition and equipment of the house). While most studies examine the effects
of these characteristics on the log of total prices, our rationale to examine the effects on logged
prices per sq. m. is that effects of structural and locational covariates are typically proportional to
the size of the house, whereas models based on the (log)-house price a priori assume a fixed effect
of characteristics independent of the house size. In statistical terminology we implicitly assume an
interaction between floor space and the remaining house characteristics. Spatial heterogeneity is
modeled through the spatial random effect fspat1(s1) of municipalities s1, which is further decom-
posed into a district and county level effect (spatial indexes s2 and s3). At levels 2 and 3 further
possibly nonlinear effects f2,1, . . . , f2,q2

and f3,1 of locational characteristics are included.

Our approach for hedonic house price modeling has the following key features:

• The hierarchical structure of the data is exploited for sophisticated modeling of spatial het-
erogeneity of house prices. In this way we are able to decompose the spatial heterogeneity
effect and investigate its magnitude at different spatial resolutions.

• At each level of the hierarchy, nonlinear covariate effects can be incorporated using P-splines.
This provides the advantage of an economic interpretation of spatial heterogeneity on the one
hand and considerable improvement of predictions into spatial units without any observations
but with known neighborhood characteristics.

• The hierarchical structure of the spatial effect furthermore allows for improved predictive qual-
ity, particularly in the case of missing spatial units. For instance, prediction for a new house
located in a municipality with no observations is greatly enhanced by borrowing strength
from the level-2 covariate effects and the level-3 and level-4 spatial effects.

Statistical inference is fully Bayesian and based on highly efficient Markov chain Monte Carlo
(MCMC) simulation techniques that take advantage of the hierarchical structure in the data. The
methodology allows for very fast computations with several ten-thousand iterations within a few
minutes. We use an implementation of multilevel STAR models in the open source software package
BayesX for estimation.

The remainder of this article is structured as follows: In the next section 2 the working data set
is described. Section 3 presents multilevel STAR models in the context of hedonic regression for
house prices. Results are presented in section 4, and the final section draws some conclusions.
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2 Data description and model specification

We have a dataset of owner-occupied single-family homes in Austria at our disposal which exhibits
a quite typical structure for real estate data:

• The set of explanatory variables consists of covariates characterizing the house, namely the
size, age, year of sale, quality and equipment of the building, which we call structural at-
tributes/covariates.

• Individual observations are linked to municipality codes, which allows association with co-
variates accounting for sociodemographic, economic and neighborhood attributes. Following
e.g. Can (1998), we will call these neighborhood attributes/covariates.

2.1 Structural attributes

The dataset containing dated house prices together with the housing attributes has been collected
in order to estimate the value of the collateral for mortgages by the UniCredit Bank Austria AG
from October 1997 to September 2009. Two slightly different instructions for data collection have
been employed, which is why the structural covariates affected thereof are encoded accordingly
(see table 3 in appendix A for a detailed description). We use continuous variables measuring the
size and age as well as the time of sale, and categorical variables that describe the quality of the
house. We expect the following directions of the effects:

• Continuous covariates/attributes: As we regress the structural covariates on logged prices
per sq. m., a decreasing effect of the floor size of the building due to decreasing marginal
returns of additional floor size (area) and an increasing effect of the size of the plot it is
built on (area plot) can be assumed. The age of the building (age), which is calculated
as the difference between the year of valuation and the year of construction (i.e., the age
at the time of sale), reflects depreciation over time and should therefore have a decreasing
effect. The time index (time index, the year of purchase of the house) can be considered as
the remaining unexplained temporal heterogeneity and is a measure for the quality adjusted
development of house prices over time.

• Categorical covariates/attributes: A good condition of the house (cond house), a high quality
of the heating system (heat) and of the bathroom and toilets (bath) should have an increasing
effect on house prices. Furthermore, the existence of an attic (attic dum), a terrace (terr dum)
and a garage (garage, further separated into good and bad quality) should rise house prices.

2.2 Spatial resolutions and neighborhood attributes

The hierarchical structure of the hedonic pricing model is displayed graphically in figure 1. House
prices with structural attributes are nested within 3 spatial resolutions and hence associated with
the respective neighborhood attributes, which we use on the most detailed level available. We
use various socioeconomic and -demographic attributes as well as measures of proximity to work
and metropolitan areas, obtained from the sources described in table 4 in appendix A, to explain
spatial variation in house prices per sq. m.

Level-1 is the individual level, on which house prices and housing attributes are measured (see
subsection 2.1). In total, 3231 observations are available on the individual level after validation.

Level-2 is the municipal level. Observations are available in 946 of the 2379 Austrian municipal-
ities. On level-2, we employ the following covariates:

• Socioeconomic / -demographic characteristics of the neighborhood: On the one hand, we use
the purchase power index (pp ind), the average level of education, indicated by the share
of academics (educ), which both reflect disposable income and should therefore affect prices
positively. On the other hand, we use an age index (age ind), constructed as a population-
weighted mean of 20 age cohorts, which measures the average age of inhabitants. A high
population age index, reflecting excess of age, serves as a proxy for structural weakness and
should have a negative effect on house prices.
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Figure 1: Levels of hierarchy and distribution of observations. [a] The 9 counties of Austria with
associated names (level-4) and surrounding countries (small picture). [b] Number of observations
(level-1) per municipality (level-2); municipalities without observations are left hollow, the shade
of municipalities becomes darker as the number of observations increases; additionally shown are
the district (level-3) with thin lines and county borders (level-4) with thick lines.

• Measures of proximity to work and metropolitan areas: Urban economic theory states
that commuting to centers of economic activity gives rise to a location rent, which is
why a high commuter index (comm), i.e. many employees commuting from the munici-
pality, should tend to affect prices negatively. For an overview of urban economics see
e.g. DiPasquale and Wheaton (1996). However, close proximity to these centers also pro-
vides certain disamenities, as the local infrastructure tends to match the needs of residential
use worse. Therefore, the effect of a low commuter index is unclear. Furthermore, as a mea-
sure of centrality, we employ population density (dens). In densely populated areas, land
becomes more valuable, which is why we expect a positive effect of this covariate.

Level-3 is the district level. Individual observations are available on 109 of 121 districts, only
the inner districts of Vienna are missing. As each of these districts has neighboring units, spatial
effects can be regularized using the neighborhood structure. On this level, an externally provided
home price index indicating the neighboring house price level, wko ind, is available.

Level-4 is the county level (9 counties); we do not employ any further explanatory covariates on
this level.

A more detailed description of the covariates used at the various levels together with summary
statistics is given in table 4 in appendix A.

3 Methodology

3.1 Hierarchical STAR models

Suppose that observations (yi, zi,xi), i = 1, . . . , n, are given, where yi is a continuous response
variable, and zi = (zi1, . . . , ziq)

′ and xi = (xi1, . . . , xip)
′ are vectors of covariates. For the variables

in z possibly nonlinear effects are assumed whereas the variables in x are modeled in the usual
linear way. The components of z are not necessarily continuous covariates. A component may also
indicate a time scale, a cluster- or a spatial index (e.g. municipality, district or county) a certain
observation pertains to. Moreover, the components of z may be two- or even three dimensional
in order to model interactions between covariates. We assume an additive decomposition of the
effects of zij (and xij) and obtain the model

yi = f1(zi1) + . . . + fq(ziq) + x′

iγ + εi. (2)

Here, f1, . . . , fq are nonlinear functions of the covariates zi and x′

iγ is the usual linear part of the
model. The errors εi are assumed to be mutually independent Gaussian with mean 0 and variance
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σ2, i.e. εi ∼ N(0, σ2).

The nonlinear effects in (2) are modeled by a basis functions approach, i.e. a particular function f
of covariate z is approximated by a linear combination of basis or indicator functions

f(z) =

K∑
k=1

βkBk(z). (3)

The Bk’s are known basis functions and β = (β1, . . . , βK)′ is a vector of unknown regression
coefficients to be estimated. Defining the n × K design matrix Z with elements Z[i, k] = Bk(zi),
the vector f = (f(z1), . . . , f(zn))′ of function evaluations can be written in matrix notation as
f = Zβ. Accordingly, we obtain

y = η + ε = Z1β1 + . . . + Zqβq + Xγ + ε, (4)

where y = (y1, . . . , yn)′, η = (η1, . . . , ηn)′ and ε ∼ N(0, σ2I).

In this paper we apply a hierarchical version of STAR models, i.e. the regression coefficients βj

of a term fj may themselves obey a regression model with structured additive predictor. More
specifically, we obtain

βj = ηj + εj = Zj1βj1 + . . . + Zjqj
βjqj

+ Xjγj + εj , (5)

where the terms Zj1βj1, . . . ,Zjqj
βjqj

correspond to additional nonlinear functions fj1, . . . , fjqj
,

Xjγj comprises additional linear effects, and εj ∼ N(0, τ2
j I) is a vector of i.i.d. Gaussian errors.

A third or fourth level in the hierarchy is possible by assuming that the second level regression
parameters βjl, l = 1, . . . , qj , obey again a STAR model. In that sense, the model is composed of
a hierarchy of complex structured additive regression models.

Typically, the compound prior (5) is used if a covariate zj ∈ {1, . . . , K} is a unit- or cluster
index and zij indicates the cluster observation i pertains to. Then the design matrix Zj is a
n×K incidence matrix with Zj [i, k] = 1 if the i-th observation belongs to cluster k and zero else.
The K × 1 parameter vector βj is the vector of regression parameters, i.e. the k-th element in β

corresponds to the regression coefficient of the k-th cluster. Using the compound prior (5) we obtain
an additive decomposition of the cluster specific effect. The covariates zjl, l = 1, . . . , qj , in (5) are
cluster specific covariates with possible nonlinear cluster effect. By allowing a full STAR predictor
(as in the level-1 equation), a rather complex decomposition of the cluster effect βj including
interactions is possible. A special case arises if cluster specific covariates are not available. Then
the prior for βj collapses to βj = εj ∼ N(0, τ2

j I) and we obtain a simple i.i.d. Gaussian cluster

specific random effect with variance parameter τ2
j .

In the model described in section 1 we distinguish four levels: Single family homes (level-1) belong
to municipalities (level-2), which are nested in districts (level-3), which are themselves nested
in counties (level-4). Now the model sketched in (1) can be written as the following four level
hierarchical STAR model:

level-1: lnpqm = f1(area) + f2(areaplot) + f3(age) + f4(time index )+
f5(muni) + Xγ + ε

= Z1β1 + Z2β2 + Z3β3 + Z4β4 + Z5β5 + Xγ + ε

level-2: β5 = f5,1(pp ind) + f5,2(ln educ) + f5,3(age ind) + f5,4(comm)+
f5,5(ln den) + f5,6(dist) + ε5

= Z5,1β5,1 + Z5,2β5,2 + Z5,3β5,3 + Z5,4β5,4+
Z5,5β5,5 + Z5,6β5,6 + ε5

level-3: β5,6 = f5,6,1(wko ind) + fmrf
5,6,2(dist) + f5,6,3(county) + ε5,6

= Z5,6,1β5,6,1 + Z5,6,2β5,6,2 + Z5,6,3β5,6,3 + ε5,6,

level-4: β5,6,3 = 1γ0 + ε5,6,3.

(6)

On all levels, for continuous covariates possibly nonlinear functions f1, f2, . . . modeled by P-splines
(see subsection 3.2) are assumed. The categorical covariates on level-1, describing the quality and
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condition of the house, are encoded as dummy variables and subsumed in the design matrix X
with estimated parameters γ.

The level-1 equation contains an uncorrelated random municipality effect (muni), controlling for
unordered spatial heterogeneity. This municipality-specific heterogeneity is modeled through the
level-2 equation. Two of the covariates on this level enter the equation logarithmically (denoted by
the prefix ”ln ”), namely the share of academics and the population density. The reason for this
is that the distributions of these covariates are strongly positively skewed, which results in volatile
estimation results on the natural scale.

The municipality random effect is further decomposed into a district and county level effect (levels
3 and 4). District specific spatial heterogeneity is modeled through the correlated spatial effect
dist in the level-3 equation by Markov random fields (see the next subsection). We denote this
by the superscript ”mrf ”. Spatial heterogeneity beyond what can be explained on the district
level is modeled through a county specific spatial effect (county). For technical reasons the global
intercept γ0 is included on the lowest county level-4.

The fact that we take the logs of house prices per square meter results in a special form for the
(conditional) mean of house prices. Assuming Gaussian errors for lnpqm results in log-normally
distributed prices per square meter pqm and the conditional mean of the total house price p changes
multiplicatively with changes in values of covariates, and proportionally to the floor area of the
house:

E(p) = area × exp(η + σ2/2)

= area × exp(f1(z1)) . . . exp(fq(zq)) exp(γ0) exp(γ1x1) . . . exp(γpxp) exp(σ2/2).

Therefore, if for example covariate x1 changes by one unit, the predictor η changes by the factor
exp(γ1) and expected total prices change by the factor area× exp(γ1). So the change in expected
prices is proportional to the floor area of the house. Turning to the nonlinear effects, let f(z1) be
the nonlinear effect of the covariate z1, and let df(z1) = f(z1 + 1) − f(z1). Then

exp(f(z1 + 1)) = exp(f(z1 + 1) − f(z1) + f(z1)) = exp(f(z1)) exp(df(z1)),

so the expected total house price changes by the factor area× exp(df(z1)). As f(.) is a nonlinear
function, the changes differ over the range of z1 and are again proportional to the size of the house.

3.2 Priors for the regression coefficient

In a frequentist setting, overfitting of a particular function f = Zβ is avoided by defining a
roughness penalty on the regression coefficients, see for instance Belitz and Lang (2008). The
standard are quadratic penalties of the form λβ′Kβ where K is a K × K penalty matrix. The
penalty depends on the smoothing parameter λ that governs the amount of smoothness imposed
on the function f .

In a Bayesian framework a standard smoothness prior is a (possibly improper) Gaussian prior of
the form

p(β|τ2) ∝

(
1

τ2

)rk(K)/2

exp

(
−

1

2τ2
β′Kβ

)
· I(Aβ = 0), (7)

where I(·) is the indicator function. The key components of the prior are the penalty matrix K,
the variance parameter τ2 and the constraint Aβ = 0.

The structure of the penalty or prior precision matrix K depends on the covariate type and on our
prior assumptions about smoothness of f . Typically the penalty matrix in our examples is rank
deficient, i.e. rk(K) < K, resulting in a partially improper prior.

The amount of smoothness is governed by the variance parameter τ2. A conjugate inverse Gamma
prior is employed for τ2 (as well as for the overall variance parameter σ2), i.e. τ2 ∼ IG(a, b) with
small values such as a = b = 0.001 for the hyperparameters a and b resulting in an uninformative
prior on the log scale. The smoothing parameter λ of the frequentist approach and the variance
parameter τ2 are connected by λ = σ2/τ2.
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The term I(Aβ = 0) imposes required identifiability constraints on the parameter vector. A
straightforward choice is A = (1, . . . , 1), i.e. the regression coefficients are centered around zero.
A better choice in terms of interpretability and mixing of the resulting Markov chains is to use
a weighted average of regression coefficients, i.e. A = (c1, . . . , cK). As a standard we use ck =∑n

i=1 Bk(zi) resulting in the more natural constraint
∑n

i=1 f(zi) = 0.

Particular examples for nonlinear terms in our application are P-splines for modeling nonlinear
effects of continuous covariates and Gaussian Markov random fields for modeling smooth spatial
effects. Further examples not employed in this paper can be found in Brezger and Lang (2006).

P-splines

For P-splines the design matrix Z consists of B-spline basis functions evaluated at the observations.
The penalty is given by

K∑
k=d+1

(
Δdβk

)2
= β′D′Dβ = β′Kβ, (8)

were Δd is the difference operator of order d and D is the corresponding difference matrix. The
default for d in most implementations is d = 2. For more details on Bayesian P-splines see
Lang and Brezger (2004).

Markov random fields

The correlated district specific heterogeneity effect fmrf
5,6,2(dist) in equation (6) is modeled by Markov

random fields (MRF). Suppose that z ∈ {1, . . . , K} is the indicator for the district in which a house
is located. MRFs define one parameter for every discrete geographical unit (districts in our case),
i.e. f(z) = βz , and are defined via the conditional distributions of βz given the parameters βz′ of
neighboring sites z′. Typically sites are assumed to be neighbors if they share a common boundary.
We denote the set of neighbors of site z by N(z). MRFs assume that the conditional distribution
of βz given neighboring sites z′ ∈ N(z) is Gaussian with

z | z′, z′ �= z ∼ N

⎛
⎝ 1

|N(z)|

∑
z′∈N(z)

β′

z,
τ2

|N(z)|

⎞
⎠ ,

where |N(z)| denotes the number of neighbors of site z.

The joint (prior) distribution of β is of the form (7) with penalty matrix K given by

K[z, z′] =

⎧⎨
⎩

−1 z �= z′, z′ ∈ N(z),
0 z �= z′, z′ �∈ N(z)
|N(z)| z = z′.

(9)

If a Markov random field is used in the level-1 equation the design matrix Z is a 0/1 incidence
matrix whose entry in the i-th row and k-th column is 1 if the i-th observed house is located in
district k and 0 else. In our application the MRF is specified in the level-3 equation to model
smooth district specific heterogeneity. In this case the design matrix is the identity matrix, i.e.
Z5,6,2 = I.

3.3 Sketch of MCMC Inference

In the following, we will sketch a Gibbs sampler for models with Gaussian errors. For the sake of
simplicity we restrict the presentation to a two level hierarchical model with one level-2 equation
for the regression coefficients of the first term Z1β1. That is, the level-1 equation is y = η + ε as
in (4). The level-2 equation is of the form (5) with j = 1.

The parameters are updated in blocks where each vector of regression coefficients βj (β1l in a second
level of the hierarchy) of a particular term is updated in one (possibly large) block followed by
updating the regression coefficients γ, γ1 of linear effects and the variance components τ2

j , τ2
1l, σ2.

The next subsection sketches updates of regression coefficients βj , β1l of nonlinear terms. Updates
of the remaining parameters are straightforward. Full details can be found in Lang et al. (2010).
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Full conditionals for regression coefficients of nonlinear terms

The full conditionals for the regression coefficients β1 with the compound prior (5) and the coef-
ficients βj , j = 2, . . . , q, β1l, l = 1, . . . , q1 with the basic prior (7) are all multivariate Gaussian.

The respective posterior precision Σ−1 and mean μ is given by

Σ−1 = 1
σ2

(
Z′

1WZ1 + σ2

τ2

1

I
)

, Σ−1μ = 1
σ2 Z

′

1Wr + 1
τ2

1

η1, (β1),

Σ−1 = 1
σ2

(
Z′

jWZj + σ2

τ2

j

Kj

)
, Σ−1μ = 1

σ2 Z
′

jWr, (βj),

Σ−1 = 1
τ2

1

(
Z′

1lZ1l +
τ2

1

τ2

1l

K1l

)
, Σ−1μ = 1

τ2

1

Z′

1l r1, (β1l),

(10)

where r is the current partial residual and r1 is the “partial residual” of the level-2 equation. More
precisely, r1 = β1 − η̃1 and η̃1 is the predictor of the level-2 equation excluding the current effect
of z1l.

MCMC updates of the regression coefficients takes advantage of the following key features:

Sparsity: Design matrices Zj ,Z1l and penalty matrices Kj ,K1l and with it cross products
Z′

jWZj ,Z
′

1lZ1l and posterior precision matrices in (10) are often sparse. The sparsity can be
exploited for highly efficient computation of cross products, Cholesky decompositions of posterior
precision matrices and for fast solving of relevant linear equation systems.

Reduced complexity in the second or third stage of the hierarchy: Updating the regression coeffi-
cients β1l, l = 1, . . . , q1, in the second (or third) level is done conditionally on the parameter vector
β1. This facilitates updating the parameters for two reasons. First the number of “observations”
in the level-2 equation is equal to the length of the vector β1 and therefore much less than the
actual number of observations n. Second the full conditionals for β1l are Gaussian regardless of
the response distribution in the first level of the hierarchy.

Number of different observations smaller than sample size: In most cases the number mj of different
observations z(1), . . . , z(mj) in Zj (or m1l in Z1l in the level-2 equation) is much smaller than the
total number n of observations. For instance, the age of the house in our application has only 80
different values whereas there are more than 3000 individual observations. The fact that mj � n
may be utilized to considerably speed up computations of the cross products Z′

jWZj , Z′

1lZ1l,
the vectors Z′

jWr, Z′

1l r1 and finally the updated vectors of function evaluations fj = Zjβj ,
f1l = Z1lβ1l.

Full details of the MCMC techniques can be found in Lang et al. (2010).

3.4 Software

We use an implementation in the open source software package BayesX for the estimation of
hierarchical STAR models. BayesX is publicly available at

http://www.stat.uni-muenchen.de/ bayesx/bayesx.html,

see Brezger et al. (2005) and Brezger et al. (2009). The homepage of BayesX contains also a
number of tutorials. The following code fragment exemplifies the usage of BayesX in the context
of hierarchical STAR models:

dataset data_county;

data_county.infile using c:\data\counties.raw;

dataset data_dist;

data_dist.infile using c:\data\districts.raw;

data_dist.generate dist_mrf = dist;

dataset data_muni;

data_muni.infile using c:\data\municipalities.raw;

dataset data_homes;

data_homes.infile using c:\data\single_family_homes.raw;
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map map_dist.infile using c:\maps\districts.bnd;

mcmcreg hier_STAR;

hier_STAR.hregress

county = const, family=gaussian_re hlevel=2 iterations=32000 step=30 burnin=2000

using data_county;

hier_STAR.hregress

dist = wko_ind(pspline) + dist_mrf(spatial,map=map_dist) + county(hrandom),

family=gaussian_re hlevel=2 using data_dist;

hier_STAR.hregress

muni = pp_ind(pspline) + ... + ln_educ(pspline) + dist(hrandom),

family=gaussian_re hlevel=2 using data_muni;

hier_STAR.hregress

lnp_qm = area(pspline) + ... + age(pspline) + cellar_dum + ... + muni(hrandom),

hlevel=1 family=loggaussian using data_homes;

In a first step, dataset objects for each level have to be defined using the dataset command, and
the data is read from ASCII files. Note that duplicates with respect to the spatial indices have
to be dropped on levels 2, 3 and 4, and that the (continuous) covariates should be centered in
advance in order to further improve mixing.

Next, we create a map-object and read the geographical information of a boundary file for the
districts, districts.bnd. Based on the boundary information, the map-object automatically com-
putes the neighborhood structure of the districts. Note that in order to match the district infor-
mation with the map object on level-3, we generate a copy of the district code in the dataset object
data_dist which corresponds to the spatial index of the map.

We then define a mcmcreg-object and apply the method hregress to fit our hierarchical STAR
model. We have to set up the models for each level in reverse order, starting with the lowest level.

In three of the four hierarchical levels, we define P-splines with second order difference penalties
(pspline). On the individual level we also specify linear effects. For technical reasons, the global
intercept (const) is included on level-4. We have uncorrelated municipality, district and county
effects (hrandom) on levels 1 to 3. The spatial effect of the district furthermore consists of a
correlated part included in the district level equation (dist_mrf(spatial,map=map_dist)).

The option hlevel=1 distinguishes the level-1 equation from the lower level equations (hlevel=2).
As our response is logarithmically transformed, we define the family=loggaussian on level-1. On
the lower levels, the (pseudo) responses are Gaussian random effects (family=gaussian_re).

Finally, we define in the first equation the number of MCMC-iterations and the number of
burnin-iterations as well as the thinning parameter for the MCMC simulation, step.

4 Results

We now present the estimation results for the base model (6). The results are based on a final
MCMC run with 502000 iterations and a burn in period of only 2000 iterations. We stored every
500th iteration resulting in a sample of 1000 practically independent draws from the posterior.
Computing time for the MCMC sampler was approximately 30 minutes on a moderately modern
desktop computer (Intel core duo processor 2.8GHz). Note that no more than 32000 iterations are
typically enough in preliminary MCMC runs to obtain sufficiently exact estimation results. The
run time for these preliminary runs is only 110 seconds. The comparably large number of iterations
in the final run was used to be absolutely sure about the precision of estimates.

We first show in subsection 4.1 the effects of the continuous covariates on all levels (the linear effects
estimation results are presented in table 5 of appendix B). Next, we will describe the spatial effects
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in more detail (section 4.2). The last subsection 4.3 is devoted to model diagnostics and possible
improvements of the base model.

4.1 Continuous covariate effects

Structural covariates
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Figure 2: Effects of the continuous structural covariates of level-1. [a] Effect of the floor size area
(variable area); [b] Effect of the plot area (areaplot). [c] Effect of the age of the building (age);
[d] Effect of the time index (time index). Shown are the posterior mean estimates with pointwise
(dark grey) and simultaneous (light grey) 95% credible intervals.

Figure 2 shows the effects of the structural continuous covariates together with pointwise and
simultaneous 95% credible intervals, see Krivobokova et al. (2010) for their construction. In order
to get an impression of the magnitude of effects, we transform the functions to natural units (prices
in Euro per sq. m.), where all other covariates are held constant at mean level of attributes (we
call this the average effect). Since the effects are quite different in magnitude, we do not show
them on the same scale.

The effect of the floor area (variable area, panel [a]) is very pronounced, it covers a range of more
than 1100 Euro. However, the decreasing effect of additional floor area on prices per square meter
weakens as the floor area becomes larger.

In panel [b], the effect of the plot area (areaplot) is shown. We find that additional plot area
yields higher prices per square meter of floor area, although this effect becomes weaker as plot area
increases and levels off at around 1200 sq. m. House prices per sq. m. change by more than 350
Euro over the domain of plot area.

As the effect of the age of the building (panel [c] of figure 2) can be considered as the rate of
depreciation of single family homes, the initial increase up to an age of 3 years is not in line
with our expectations; we will come back to this issue in section 4.3. House prices then depreciate
nearly linearly until an age of about 50 years and stay constant afterwards. The age of the building
accounts for a variation of more than 380 Euro per sq. m.

The effect of the time index, shown in panel [d] of figure 2, shows the quality controlled development
of house prices over time. After a slight increase from 1997 to 2000, prices stay constant until 2003
and rise afterwards until 2008. In the last year of the observation period, prices slightly decrease.
Although this decrease is within wide confidence bands (due to the small number of observations
in 2009), this could be the result of the economic crisis of 2008/2009. In total, the time index
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accounts for variation in a range of around 260 Euro.

Neighborhood covariates
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Figure 3: Effects of the neighborhood covariates. First row: Effect of the purchase power index
(pp ind) [a] and the share of academics (educ) [b]. Second row: Effect of the age index (age ind)
[c] and the commuter index (comm) [d]. Third row: Effect of the log of population density (ln dens)
[e] and the house price index (wko ind) [f]. Shown are the posterior mean estimates with pointwise
(dark grey) and simultaneous (light grey) 95% credible intervals.

In figure 3, the neighborhood effects are displayed, again on a natural scale of prices per sq. m.,
together with pointwise and simultaneous 95% credible intervals. In the top row, the effect of the
purchase power index (pp ind) is displayed in panel [a]. While for low and high values of this index
the effect is negligible, there is a pronounced increase in house prices between 90 and 130 index
points. The total effect has a bandwidth of 355 Euro.

As noted in section 3.1, the share of academics (ln educ) enters the equation logarithmically, but is
also displayed in natural values in panel [b]. This effect is stronger on the peripheral range of this
covariate than in the interior, with a pronounced increase starting at a share of approximately 27%
(although within very wide credible intervals). The share of academics accounts for a variation of
nearly 690 Euro.

The effect of the age index (age ind, displayed in panel [c]) is nearly linear. The negative direction
of this effect could be interpreted as a decreasing attractiveness of municipalities that exhibit
an excess of age, which could be expected from our considerations in section 2.2. Prices per
sq. m. decrease by nearly 380 Euro or from the lowest to the highest age index.
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The effect of the commuter index comm, which indicates proximity to work, is displayed in panel
[d]. With a range of 146 Euro, the commuter index has the weakest effect of the continuous
covariates discussed here and is insignificant in the sense that simultaneous credible intervals cover
the average effect over the whole range of the covariate. Although no positive effect of closeness to
centers of economic activity is traceable, there are some interesting tendencies: The maximum lies
at 1.5, where there is a roughly equal number of commuters from and into the municipality, and
decreases afterwards. Considering that this index was constructed as a population-weighted mean
of 4 categories (where 0 denotes commuters into the municipality, 1 stands for non-commuters, 2
for commuters within the municipality and 3 into other municipalities), this means that, ceteris
paribus, the highest value can be obtained by municipalities neither dominated by commuters into
nor commuters out of the municipality.

The effect of population density ln dens, displayed in panel [e], shows a tendency toward higher
house prices in more densely populated areas, although it is not significant in a strict sense either.
This effect accounts for a variation of nearly 440 Euro per sq. m.

Finally, the externally provided house price index wko ind (the only covariate on level-3) is shown
in panel [f]. As expected, this effect is increasing, although for index values of more than 140 it
becomes weaker and more volatile. This index accounts for a variation of more than 310 Euro per
sq. m.

The deviance information criterion (DIC, Spiegelhalter et al. 2002) for the base model is 1564, see
also model no. 1 in table 1. Excluding the two “insignificant” variables comm and ln dens from
the base model yields a DIC of 1562 (model no. 2). A difference of only two units implies that
both models are not substantially different in terms of goodness of fit. We therefore keep both
variables in the model.

with outliers without outliers
No. Model Deviance DIC Deviance DIC

1 Base model 1229 1564 878 1215
2 Base model, insignificant 1185 1562 828 1219

covariates removed
3 Reference model 998 1661 614 1366
4 Additional dummy for Vienna 1228 1563 874 1214
5 Model with interaction terms 1158 1511 822 1180

Table 1: Unstandardized deviance and Deviance information criterion (DIC) for model specifica-
tions presented in this paper in the order of appearance. The last two columns provide results for
the re-estimated models without outliers as described in subsection 4.3

4.2 Spatial effects

The total amount of spatial heterogeneity is composed of spatial effects on municipal (level-2),
district (level-3) and county level (level-4). Continuous neighborhood effects explain spatial het-
erogeneity explicitly to a certain extent on two of these levels, we call this explained spatial het-
erogeneity. The remaining i.i.d. spatial random effects ε5, ε5,6 and ε5,6,3 as well as the correlated
district specific effect f5,6,2(dist) in (6) account for unexplained spatial heterogeneity.

Our focus in the presentation of the spatial effects is twofold. First, we analyze the distribution of
spatial heterogeneity over Austria. Second, we discuss the hierarchical decomposition of unexplained
spatial heterogeneity. For the sake of illustration, we compare the results of the base model (6) to
those of a model without any explanatory neighborhood covariates which we call reference model.

Distribution of spatial heterogeneity over Austria

Figure 4 visualizes the posterior mean of the spatial effect over Austria. Panels [a] and [b] compare
the base model to the reference model with respect to total spatial heterogeneity (explained plus
unexplained heterogeneity). In panel [c] we show the amount of unexplained spatial heterogeneity
in the base model, and we are going to compare it to total spatial heterogeneity in panel [a]. To get

12



Figure 4: Distribution of spatial heterogeneity (evaluated at the average effect). [a] Total spatial
heterogeneity in the reference model. [b] Total spatial heterogeneity in the base model (including
neighborhood covariate effects). [c] Remaining unexplained spatial heterogeneity in the base model
(scale differs from above).

a better intuition for the size of the spatial effects we present the same comparisons in the form
of kernel densities of the posterior means in figure 5. Panel [a] of this figure corresponds to panels
[a] and [b] in figure 4 and panel [b] to panels [a] and [c] in figure 4.

Interestingly, the distribution of total spatial heterogeneity is similar in the base model and the
reference model (panels [a] and [b] of figure 4). Also the size of the heterogeneity effect is compa-
rable (panel [a] of figure 5). This implies that the reference model is able to capture the missing
neighborhood covariate effects through the various correlated and uncorrelated random effects.
However, it is still worthwhile to include neighborhood covariates for several reasons:

• First of all the spatial pattern in the base model provides a more differentiated or “scat-
tered” picture of Austria than the reference model. Overall, the bandwidth of total spatial
heterogeneity for the base model is wider than for the reference model (2301 vs. 1595 Euro
per sq. m.). The reason for this is that spatial effects are modeled explicitly, strong hetero-
geneity may occur where neighborhood covariates have pronounced effects, while in a model
where there is only unexplained spatial heterogeneity the shrinkage property of random effect
estimators prevents this for small sample sizes in the respective region.

• Neighborhood covariates give spatial effects an economic interpretation and tend to produce
stronger heterogeneity if this is theoretically justified.

• The prediction for municipalities without observations borrows strength from both the non-
linear neighborhood effects and the level-3 and level-4 spatial effects. For observed munici-
palities, unexplained spatial effects adjust neighborhood covariate effects.
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Figure 5: [a] Kernel densities for total spatial heterogeneity of the base model (solid line) and the
reference model (dashed line). [b] Kernel densities for total spatial heterogeneity (solid line) and
unexplained spatial heterogeneity (dashed line) in the base model.

• The base model specification reduces the deviance information criterion DIC from 1660 in
the reference model to 1564, or by approximately 100 points, see models no. 1 and 3 in table
1.

Inspecting panels [a] and [c] of figure 4 and panel [b] of figure 5 shows that unexplained hetero-
geneity is reduced dramatically and only accounts for a variation of 505 Euro per sq. m., which is
22% of total heterogeneity in the base model.

Careful analysis of the distribution of unexplained heterogeneity sometimes exhibits interesting
patterns and provides suggestions for improving the models. Panel [c] of figure 4 shows that prices
are considerably below what can be explained with neighborhood covariates in Burgenland (far
east of Austria) and the adjacent parts of Styria as well as Carinthia (south of Austria). In the
west of Austria, i.e. parts of Salzburg, Tyrol and Vorarlberg, house prices are above what can be
explained with the covariates we have available, probably because these are the classical winter
tourism regions in Austria. Yet, the strongest positive effects can be found in the county Vienna,
a “spatial outlier”. This suggests modeling this effect explicitly. Extending the base model and
integrating a Vienna dummy in the level-4 equation we obtain a further reduction of unexplained
heterogeneity to a range of 407 Euro per sq. m. Although the Vienna dummy is highly significant,
the DIC of the improved model stays more or less constant (model no. 4 in table 1).

Decomposition of unexplained spatial heterogeneity
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Figure 6: Decomposition of unexplained spatial heterogeneity on levels 2, 3 and 4 in the reference
model [a] and in the base model [b]. Shown are kernel density estimates of the respective random
effects.

Figure 6 shows the distribution of unexplained heterogeneity attributed to the municipality level-2
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(black dashed line), the district level-3 (where the uncorrelated random effect displayed as grey
solid line, the Markov random field as black solid line) and the county level-4 (grey dashed line)
for the reference model in panel [a] and the base model in panel [b].

On the municipality level the spatial effect ranges from 976 to 1513 Euro per sq. m. in the reference
model, a difference of 537 Euro per sq. m. between municipalities. Unexplained municipal effects
can be largely explained by the neighborhood covariates and reduced to a range of approximately
142 Euro per sq. m in the base model.

Unexplained heterogeneity on district level is split into a spatially correlated Markov random field
and an uncorrelated random district effect. While the latter is rather weak (in both models it has
a range of about 65 Euro per sq. m.), the effect of the Markov random field is very pronounced
in the reference model: It ranges from 899 to 1811 Euro per sq. m., accounting for more than
911 Euro in spatial variation. Again, integrating neighborhood covariates leads to a significant
reduction of unexplained spatial heterogeneity on this level, which ranges now from 1125 to 1299
Euro per sq. m.

On the county level, unexplained heterogeneity ranges from 928 to 1505 Euro per sq. m., accounting
for 578 Euro in variation in the reference model. If we model spatial heterogeneity explicitly, the
unexplained part is reduced to approximately 341 Euro per sq. m.

In summary, it can be stated that inclusion of the neighborhood covariates explains a great deal of
the spatial heterogeneity but a certain proportion remains unexplained, providing starting points
for further exploration.

4.3 Model Diagnostics and possible model improvements

In a Bayesian framework, systematic differences between the data and the estimated model can
be detected with the aid of posterior predictive checks as advocated in Gelman and Hill (2007).
Specifically, we compare the empirical distribution of logged house prices per sq. m. with the
simulated posterior distributions of house prices obtained from our base model. In panel [a] of
figure 7 we display the empirical distribution of logged prices per sq. m. (black line) together with
1000 replicated samples from the base model (grey lines). The samples are easily obtained as a by
product of the MCMC sampler. Panel [b] additionally displays a scatter plot of observed against
posterior mean predicted prices per sq. m.
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Figure 7: [a] kernel densities for the distribution of observed house prices (black line) vs. simulated
prices according to the base model (grey line), [b] scatter plot of observed vs. predicted log house
prices per sq. m.

The predictive checks in panel [a] indicate some misspecification as the simulated responses are
sampled in a wider range and are somewhat more concentrated around the mean. While the mean,
the standard deviation and most quantiles of the observed logged prices per sq. m. are well within
the range of the corresponding sampled model quantities, the extreme quantiles often fall outside
the range, see also table 2. This is also supported by panel [b] which shows that predictions tend
to be too high for many observations with very low observed logged price per sq. m.

Close inspection of the “problematic observations” shows that the corresponding houses are mostly
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Replicated Observed
Min Max

mean 7.10 7.15 7.12
std.dev. 0.40 0.44 0.42

min 5.07 5.94 6.22
1% quantile 6.04 6.23 6.27
5% quantile 6.37 6.48 6.42
25% quantile 6.80 6.87 6.81
50% quantile 7.10 7.16 7.13
75% quantile 7.38 7.45 7.43
95% quantile 7.76 7.87 7.81
99% quantile 8.02 8.20 8.01
max 8.26 9.10 8.28

Table 2: Mean, standard deviation and quantiles of simulated data from the base model vs. observed
data.

in a group with age less than three years. Recall that the age effect in panel [c] of figure 2 is not
in line with our expectations for buildings of an age of less than three years. Improved models are
obtained by the following steps:

• Remove outliers: The dataset contains a number of “new” houses with implausibly low
observed prices per sq. m. below 650 Euro (in total, 43 observations). The reason for these
low prices is that for some of the “new” houses the price might have been paid for only
partly or even undeveloped land. Removing the outliers results in the expected monotonically
decreasing age effect. Moreover, as the last column of table 1 shows, the deviance and with
it the DIC decreases dramatically for all model specifications.

• Include interactions with age: To find possible interactions with age we generated subsamples
for three different house age groups (age ≤ 2, 2 < age ≤ 9 and age > 9) and fitted separate
models to them. A careful comparison of the three submodels shows that there are two
main effects notably varying over these submodels, namely the effect of the plot area and
the effect of the time index. We therefore integrated interaction effects for the plot area with
age group 1 (≤ 2 years) and one for the time index with age groups 3 (> 9 years). Again
the DIC decreased remarkably by 50 units if outliers are not removed and still by 35 units if
outliers are additionally removed (model no. 5 in table 1)

5 Conclusions

This paper analyzes house prices using multilevel structured additive regression models. The
proposed modeling framework is particularly useful to model house prices as the models are able
to appropriately consider the typical hierarchical structure of the data. In our case, house selling
prices with associated individual attributes (level-1) are grouped in municipalities (level-2), which
form districts (level-3), which are themselves nested in counties (level-4). At each level of the
hierarchy multilevel STAR models allow to incorporate nonlinear effects of continuous covariates,
correlated spatial random effects as well as complex interactions. The hierarchical structure of the
model can also be utilized for highly efficient MCMC simulation schemes for Bayesian inference
allowing for several ten thousand iterations within one or two minutes. Model choice is based on
the deviance information criterion, simultaneous credible intervals and posterior predictive checks
to detect discrepancies between the data and the model.

Several directions for future research are conceivable: This paper primarily models the (conditional)
mean of the responses. In the context of hedonic house price regression joint modeling of the mean
and the variance as e.g. provided by Rigby and Stasinopoulos (2005) is of particular practical
interest. Models of this kind allow for more precise prediction intervals and with it more reliable
risk management. In a similar direction goes quantile regression, see Yue and Rue (2010) in the

16



context of our modeling framework. Finally, more automated model choice and variable selection
would be highly interesting. A promising approach for state space models, which are close to our
models, has been recently developed by Frühwirth-Schnatter and Wagner (2010).
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Appendix

A Description of Covariates

Continuous structural covariates
Name Description [unit] mean / min. / max. Exp. Eff.

area floor area (exc. cellar) [sq. meter] 135 / 44 / 495 +
area plot plot space [sq. meter] 742 / 80 / 2500 +

age age of building [years] 23 / 0 / 82 -
time index year of purchase [date] 2005 / 1997 / 2009 o

Categorical structural covariates
Name Description; categories

cond house condition of the house (6 categories);
method 1: 1 = (very) good (21.79%), 2 = medium (4.46%), 3 = bad
(59.49%); method 2: 4 = (very) good (7.92%), 5 = medium (4.55%), 6
= bad (1.80%)

heat quality of the heating system (8 categories);
method 1: 1 = (very) good (62.46%), 2 = medium (18.85%), 3 = bad
(4.43%); method 2: 4 = excellent (4.70%), 5 = very good (4.61%), 6 =
good (1.95%), 7 = medium (1.83%), 8 = bad (1.18%)

bath quality of the bathroom (7 categories);
method 1: 1 = (very) good (13.22%), 2 = medium (66.73%), 3 = bad
(5.79%); method 2: 4 = very good (7.95%), 5 = good (3.59%), 6 =
medium (1.98%), 7 = bad (0.74%)

garage quality/existence of a garage (3 categories);
1 = high (10.99%), 2 = medium/low (41.23%), 3 = no garage (47.79%)

marker discrimination between methods (2 categories);
0 = method 1 (85.73%), 1 = method 2 (14.27%)

cellar dum existence of a cellar (2 categories);
0 = no cellar (73.23%), 1 = cellar (26.77%)

attic dum existence of an attic (2 categories);
0 = no attic (55.87%), 1 = attic (44.13%)

terr dum existence of a terrace (2 categories);
0 = no terrace (58.40%), 1 = terrace (41.60%)

Table 3: Structural attributes of single family homes. The upper part describes continuous covari-
ates and assumptions about the directions of the effects (”+”: increasing, ”-”: decreasing and ”o”:
no strong assumptions), the lower part describes the categorical variables. Covariates cond house,
heat and bath have been collected by two different methods, which makes it necessary to distinguish
the respective effects for the two subsamples. Specifically, categories 1,2 and 3 of each of these
covariates come from method 1, while the rest of the categories (heat: 4 to 8, bath: 4 to 7 and
cond house: 4 to 6) stems from method 2. Furthermore, a marker discriminating between the two
methods of data collection is introduced.

The dataset providing the neighborhood covariates described in table 4 comes from three different
sources:

1. We use data from the Austrian Federal Bureau of Statistics (Statistics Austria) on municipal
level (2001), including age cohorts of inhabitants, level of education, and commuting.

2. Data on purchase power (pp ind) and population, both on municipal level and for the year
2009, come from Michael Bauer Research.

3. Finally, we use an external home price index as explanatory variables, the home price in-
dex published by the Austrian Federal Economic Chamber (Wirtschaftskammer Oesterreich,
WKO) on a district level (2008). We call this wko ind.

18



Level 2: Municipal
Name Description (year) [unit]; source; mean / min. / max. Exp. Eff.
pp ind purchase power index on municiptal level (2009) [n.a.]; +

source: Michael Bauer Research;
103.13 / 65.0 / 148.45

educ share of academics +
source: Austrian Federal Bureau of Statistics (2001) [n.a.];
15.26 / 3.72 / 40.79

age ind age index, calculated from 5-year age cohorts (2001) [years]; -
source: Austrian Federal Bureau of Statistics;
39.32 / 33.04 / 46.14

comm commuter index to/from municipality, calculated from categories: 0 =
commuting into the municipality, 1 = non-commuters, 2 = commuting
within the municipality, 3 = commuting to other municipalities (2001)
[n.a.];

o

source: Austrian Federal Bureau of Statistics;
1.82 / 0.66/ 2.76

dens population density (2001) [inhabitants / hectare]; +
source: Austrian Federal Bureau of Statistics;
5.46 / 0.04 / 128.65

Level 3: District
Name Description (year) [unit]; source; mean / min. / max. Exp. Eff.

wko ind WKO house price index, calculated as percentage of district-specific price
per sq. m. by Austrian average (2008) [n.a.];

+

source: Autrian Federal Economic Chamber;
100 / 48.01 / 187.6

Table 4: Neighborhood covariates on three levels with assumptions about the directions of the effects
(”+”: increasing, ”-”: decreasing and ”o”: no strong assumptions).

The variables provided by these different sources have been combined and aggregated for suitable
statistical analysis:

• Normalization (on hectares) in the case of population density (dens) and as a share of total
population with the share of academics (educ).

• Constructing indexes as weighted means over different categories, where the age index
(age ind) is a weighted mean of 20 age cohorts, and the commuter index (comm) is a popu-
lation weighted mean of 4 different commuting behaviors.
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B Linear Effects

Name cat. Post. Mean Std.-Dev. 95% CI
cond house
method 1

medium** -0.033 0.015 -0.003 0.049
bad 0.009 0.028 -0.045 0.062

method 2
very good*** 0.253 0.055 0.149 0.366
good*** 0.140 0.050 0.045 0.240

heat
method 1

medium* -0.026 0.015 -0.054 0.002
bad*** -0.117 0.030 -0.178 -0.059

method 2
very good* -0.069 0.038 -0.147 0.005
good -0.067 0.050 -0.162 0.035
medium** -0.114 0.056 -0.224 -0.006
bad* -0.125 0.065 -0.247 0.002

bath
method 1

(very) good*** 0.064 0.019 0.025 0.101
bad** -0.057 0.026 -0.108 -0.006

method 2
good -0.065 0.041 -0.148 0.010
medium -0.079 0.054 -0.188 0.029
bad** -0.154 0.074 -0.302 -0.004

garage
high*** 0.104 0.019 0.065 0.139
medium*** 0.052 0.013 0.027 0.076

marker -0.108 0.069 -0.234 0.0164
attic dum** -0.026 0.011 -0.049 -0.003
cellar dum*** 0.098 0.015 0.069 0.125
terr dum*** 0.059 0.013 0.033 0.083
constant*** 7.013 0.039 6.929 7.095

Table 5: Estimation results of linear effects in the base model. Shown are the posterior means with
standard deviations and 95% credible intervals. Significance is indicated as follows: * (significant
at a 10% level), ** (significant at a 5% level), *** (significant at a 1% level). The signs and sizes
of the effects are in line with expectations. Due to the logarithmic transformation of the response,
the estimated effect can be approximately interpreted as semi-elasticity, i.e. the percentage change
of price per sq. m. by the absolute change of the covariate, see Greene (2003).
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