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Competition, imitation, and R&D productivity in a

growth model with sector-specific patent protection∗

Malte Mosel†

Abstract

Recent empirical studies suggest a need for a flexible patent regime responding to industry

characteristics. In practice, sector-specific modifications of patent strength already exist but

lack theoretical foundation. This paper intends to make up for this neglect by scrutinizing

in what direction industry characteristics influence optimal patent strength. It is found that

patents ought to be weaker, the more intense competition, the higher R&D productivity, and

the more intricate reverse engineering are. Unlike similar step-by-step innovation models of

economic growth, the model assumes Cournot competition and introduces an empirically sub-

stantiated measure of sector differences in the ability to catch up with the technological leader.

It is found that for most empirically plausible cases the familiar inverted-U between patent

length and growth carries over to the Cournot set-up.
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1 Introduction

Do stronger or weaker patent rights foster economic growth? Over the last decade numerous studies

have dealt with that very question, but results were rather ambiguous or inconclusive.1 Recent

empirical findings suggest a possible explanation for this inconclusiveness by finding vast industry

differences in how patent protection influences innovation and growth.2 Moser (2005), e.g., finds

that countries without patent protection historically specialized on industries for which patents are

less important, while innovative activity in countries with patent laws was more diversified. Hence,

stronger or weaker patent protection does not necessarily imply higher or lower R&D investments

in general. Instead, as changes of a cross-industry uniform patent protection alter the direction of

technological change, they induce more innovation in one type of industry at the expense of another.

An optimization of aggregate innovation and growth, therefore, implies the necessity to differentiate

patent protection according to each industry’s characteristics.

In practice, sector-specific modifications of that kind have already been implemented but lack

theoretical foundation. In 1992 the European Union introduced supplementary protection certifi-

cates, which provide an up to five-year additional protection to pharmaceuticals and plant protection

products after the corresponding patents expire (Regulation (EEC) No. 1768/92). Their purpose is

to compensate for the loss of effective patent term due to regulatory delays in the launch of new prod-

ucts. Recently, the EU issued a regulation according to which pediatric drugs receive a six-month

extension to the maximum supplementary protection term (Regulation (EC) No. 1901/2006). In

the US, a similar pediatric exclusivity came into force with the FDA Modernization Act of 1997

(section 505 (A)) in order to incentivize pediatric studies prior to approval of a new drug. In eco-

nomic patent literature, however, surprisingly little effort has been made to theoretically develop a

flexible patent regime responding to industry needs.

The goal of this paper is to make up for this neglect. Based on empirically and theoretically

substantiated measures of industry-specific characteristics, it will be scrutinized in what direction

these measures influence optimal patent strength. It is found that patent protection of a sector ought

to be weaker, the more intense its product market competition, the higher its R&D productivity,

and the more intricate reverse engineering are. Moreover, the model shows that, given a basic

specification similar to previous Schumpeterian growth models with Bertrand competition3, the

familiar inverted-U relation between patent length and growth carries over to a Cournot set-up. The

basic specification is extended by accounting for an empirically based measure of sector differences

in the ability to technologically catch up with the leader. It is found that, except in sectors with

fairly easy imitation, most empirically plausible cases still exhibit the inverted-U relation.

The model builds upon similar step-by-step innovation models by Aghion et al. (2001), Ace-

moglu/Akcigit (2008) and Acemoglu (2009), chapter 14.4., but instead of Bertrand competition, it
1 See, e.g., Branstetter/Sakakibara (2001), Falvey et al. (2006), Qian (2007), Lerner (2009), Mokyr (2009).
2 See Arora et al. (2003), Moser (2005), Bessen/Hunt (2007), and Gans et al. (2008). Earlier studies corroborate

these industry differences: see, e.g., Taylor/Silberston (1973), Mansfield (1986) and Arundel/Kabla (1998).
3 See, e.g., Aghion et al. (2001) and Mukoyama (2003).
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assumes competition in quantities à la Cournot. In order to ensure comparability, the approach

follows Aghion et al. (2001) regarding how to model product market competition, but, as Ace-

moglu/Akcigit (2008), it introduces flexible patent strength.

The idea behind a flexible patent regime in general is that the extent of protection is conditional

on parameters influencing the patent office’s necessity to compensate innovators. The goal is to

minimize over- and under-compensations. Under-compensations undercut incentives to innovate

and lower society’s innovation rate, while over-compensations lead to more invention profits than

socially optimal. Ideally, patent protection would be tailored to each innovation depending on R&D

costs and profits accruing without governmental intervention, so that the inventor would exactly

break even. However, a differentiation of patent policy to such a high degree seems practically

inapplicable, since patent offices would not only need to determine an idea’s patentability itself but

also the degree of that patentability. The former, which basically constitutes the current system,

already comprises considerable implementation costs and, due to information asymmetry between

inventor and patent office, uncertainty. An implementation of the latter appears to be illusory.

Do efforts in favor of a flexible patent regime have to end at this point? Not necessarily. But

patent authorities are in need of additional information in order to be able to, at least, approximate

the optimally differentiated strength of protection. Whether this approximation is related to the

ideal case of individual protection for every single invention or whether it needs to be aggregated on

a firm, industry or even country level depends on the availability of the additional information. With

regard to the nature of this information, two reasons come to mind for why the model presented

here focuses on the sector level. Firstly, as the patent office’s goal is to optimize the innovator’s

compensation, the additional knowledge ought to contain information about innovation incentives,

i.e., the trade-off between R&D costs and the capability to generate profits in order to break

even. Especially the latter comprises market parameters (e.g., the degree of competition) which

are inherently obtained on a sectoral level. Secondly, even though some of the parameters, which

determine innovation incentives, are considered to be firm or innovation specific (e.g., a firm’s

capability to reverse engineer), the mentioned empirical studies imply that such information is

already available or is comparatively easy to obtain at sectoral level. Therefore, it is appropriate

to base theoretical considerations about flexible patent policy upon these kinds of studies, and, to

that effect, differentiate the strength of protection sector-specifically.

The model is most closely related to Acemoglu/Akcigit (2008). They build on a similar step-

by-step innovation model but use a different variable to determine flexible patent strength: the

technological gap between leader and laggard. Due to the so-called trickle-down effect they find

it optimal to provide stronger exclusive rights to technologically more advanced innovators, since

more protection not only provides higher incentives to the leader, but, via the prospect of becoming

technological leader himself, it also encourages the laggard to invent.

The model also relates to patent literature, which assumes asymmetric information on cost and

value of innovations and suggests a differentiated patent strength to incite inventors to reveal infor-
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mation. Cornelli/Schankerman (1999) propose to use renewal fees to differentiate optimal patent

lives according to R&D productivity. Since they consider productivity to be a good approxima-

tion for innovation value, they suggest that more productive innovators ought to receive patents

with longer lives. Scotchmer (1999) uses a similar model but distinguishes between R&D costs

and innovation value. Given that costs increase at least proportionately to the quality of inno-

vation, Scotchmer finds a menu of patents with flexible length to be optimal. Yet in contrast to

Cornelli/Schankerman (1999), she also identifies circumstances in which a uniform patent regime

can be optimal. Hopenhayn et al. (2006) reach similar conclusions regarding the optimality of a

patent menu but, in tradition of the patent design literature4, suggest flexible patent breadth while

holding patent length fixed. As the present model, they analyze optimal patent policy considering

the cumulative nature of innovations. However, their approach, as well as the previously mentioned,

advocates a differentiation of patent strength on firm or project level. The paper presented here

primarily differs from hitherto existing models of flexible patent policy inasmuch as it proposes a

sector-specific differentiation. To the best of my knowledge, no other paper suggests flexible patent

strength based on industry differences coming to light in numerous empirical studies.

Moreover, while the mentioned models each focus on only one parameter which determines

flexible patent strength5, this approach accounts for three parameters: R&D productivity, reverse

engineering capability, and the degree of product market competition. As described above, the

first one has been used to differentiate patent strength in previous models of flexible patent policy.

The last two proved to be relevant for innovation incentives in empirical studies. Mansfield et al.

(1981), e.g., discover sector-specific differences in imitation costs and the ability to reverse engineer,

while Prasad (2008) finds that the prediction of an inverted-U relation between competition and

innovation by Aghion et al. (2005) varies significantly depending on industry characteristics.

The benefit of taking three parameters into account instead of one is twofold. Firstly, it enables

us to compare their implications on flexible patent protection in an integrating framework. Secondly,

since patent policy aims at compensating innovators and more than one parameter affects the

necessity and the extent of governmental intervention to do that, the idea is to take on a broader

perspective on an inventor’s research incentives. O’Donoghue, Scotchmer and Thisse aptly state

" [...] that the effectiveness of patent law in supporting research is seriously impeded by

the fact that it does not refer to costs or market structure in how patent protection is

circumscribed." 6

The paper presented here intends to make a contribution to the rectification of this shortcoming. An

innovating firm’s R&D decision comprises a trade-off between R&D costs and potential benefits from

advancing one technology step, both depending on an interplay of the above-mentioned parameters.

To give an example, knowledge about an innovation’s market power is only useful together with
4 See, e.g., Gilbert/Shapiro (1990), Klemperer (1990), and Denicolo (1996).
5 That is with the exception of Scotchmer (1999), who models productivity and quality of R&D separately.
6 O’Donoghue et al. (1998), p. 25.
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information about the length of the market power’s existence, because even a monopoly is useless,

if it only exists for an infinitesimal short period. The market power’s existence, in turn, depends on

the rival’s ability to reverse engineer and to technologically catch up to the leader. For this reason,

the model utilizes the three parameters to answer the following questions regarding the decision to

innovate: i) How resource-consuming is the innovation?; ii) how much return can be expected from

it?; and iii) how long will the innovation yield profit for?

The model takes advantage of the fact that R&D productivity can be seen as a measure for R&D

costs, since it quantifies how productive a unit researcher is. It uses R&D productivity to tackle

question i) and to approximate the necessity to compensate innovators using patents. I find that

an increment in sector-specific R&D productivity corresponds to weaker optimal patent protection

for that sector, because it leads to a stronger increase in incentives to innovate than in incentives

to imitate. This, in turn, results from the fact that profits from gaining technological lead always

exceed profits from catching up, and a higher productivity simply scales up this difference. Hence,

in sectors with a high productivity, the threat of losing the technological lead (relative to innovation

profits) as well as the necessity to compensate innovators via patents is relatively low. This result

seems intuitive but contradicts previous findings by Cornelli/Schankerman (1999) indicating that

more productive inventors should be granted longer protection in order to tilt their R&D effort

towards large inventions.

Furthermore, the degree of product market competition is used to evaluate question ii), since

it influences an industry’s natural ability to compensate innovators. I find that more intense com-

petition corresponds to a weaker optimal patent protection. This seems counterintuitive but is

due to the fact that more competition increases incentives to escape it by outperforming the rivals

technologically. Since a sector’s naturally inherent research incentives are higher once it exhibits

less market concentration, the necessity to compensate innovators via patent protection diminishes.

Finally, question iii) will be dealt with by accounting for the laggard’s ability to reverse engineer,

since an innovator in a sector in which it is comparatively easy to imitate is under higher pressure to

break even. Using inter-industry differences in the imitator’s R&D productivity, the model suggests

that a decline in the sector-specific relation of imitation costs to innovation costs, i.e., more efficient

reverse engineering, calls for higher patent protection. Since the threat of losing the technological

lead rises with less costly imitation, the necessity to protect innovators using IPR policy increases.

The paper is organized as follows. The basic framework of the underlying step-by-step innovation

model is presented in Section 2. This includes a brief discussion of the intuition behind a main

driving force of innovation in this kind of models: incremental profits. Besides, distinctive features

of Cournot competition and the described sector-specificity will be outlined and compared to similar

models assuming Bertrand. Section 3 deals with the intuitive analysis and numerical calibration of

how variations in sector-specific parameters induce changes in the optimal (i.e., growth-maximizing)

amount of patent protection. Thereby, it gives an idea of the potential gains of a flexible patent

regime on industry level. Section 4 concludes the paper.
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2 The basic framework

2.1 Consumer behavior

Consider a continuous-time economy which is populated by a continuum of infinitely-lived consumers

(normalized to 1). The representative household has additively separable intertemporal preferences

given by the lifetime utility function

U0 ≡
∫ ∞

0
e−ρt [ln c(t)− LS(t)] dt , (1)

where ρ is the subjective discount rate, c(t) is consumption at date t and LS(t) denotes the labor

supplied. According to this preference specification, labor supply is infinitely elastic, so that the

wage rate w(t) is exogenous and can be normalized to 1 for all t.7 Consequently, the subjective

discount rate ρ equals the interest rate r(t) and expenditure in each sector j at time t can be chosen

as the numeraire, so that pAj(t)xAj(t) + pBj(t)xBj(t) = 1.8

Consumer goods are provided by a continuum of industries indexed by j ∈ [0, 1], so consumption

equals aggregate output Y (t) given by

ln c(t) = ln Y (t) =
∫ 1

0
lnXj(t) dj , (2)

where Xj(t) is the consumer good output of industry j. Each industry exhibits a duopolistic market

structure. Industry output Xj(t) consists of two varieties xAj(t) and xBj(t) produced by firms A

and B. Following Aghion et al. (2001) we have that

Xj(t) = [xAj(t)αj + xBj(t)αj ]
1
αj , (3)

where αj ∈ (0, 1] indicates the substitutability of one variety using the other.9 The index j refers to

the fact that α can differ from sector to sector, which is an important feature for the sector-specific

differentiation of patent policy analyzed below.

Due to the logarithm in the utility function, which implies that in equilibrium consumers spend

the same amount in each industry, the demand function will take the same form in each industry.

So it is sufficient to derive the demand for one industry which is considered exemplary. Given (2)
7 This follows Aghion et al. (2001) and Mukoyama (2003). For similar models with inelastic labor supply see

Aghion et al. (1997) and Acemoglu (2009), ch. 14.4. This assumption does not change the intuition behind the
variations of profits w.r.t. competition and technology gap. Yet, when labor supply is inelastic, the endogeneity
of wages leads to less drastic reactions of profits to variations in those parameters. E.g., more rivalry leads to a
higher output, resulting in a higher demand for workers. Unlike infinitely elastic labor supply, inelastic supply
causes wages to increase, which lowers profits and incentives to innovate. Thus, given the results below, inelastic
supply would smooth the reaction to parameter variations quantitively, albeit qualitative effects are identical.

8 To see that, optimize the Hamiltonian H̃(t, c, A, LS , ν) = ln c(t)−LS(t)+ ν(t)[w(t)LS(t)+ r(t)A(t)− p(t) c(t)] .
This yields 1

c(t)
= ν(t) p(t), ν(t)r(t) = ρν(t) − ν̇ and 1 = w(t) ν(t) as the FOCs. Solving for ν(t) gives us

ν(t) = 1
w(t)

= 1
p(t) c(t)

, which implies that the numeraire chosen corresponds to w(t) = 1. Since ν = 1 always
holds, ν̇ becomes zero, resulting in r(t) = ρ.

9 Instead of assuming only one type of good, alternatively, Xj(t) can be interpreted as intermediate goods used
to produce one final consumer good Y (t). In that case, (2) would be the Cobb-Douglas production function for
this good. Given a normalized final good’s price (py(t) = 1), both approaches yield the same results.
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and (3) we maximize (1) subject to the above given budget constraint. This yields

pAj(t) =
xBj(t)αj−1

xAj(t)αj + xBj(t)αj
and pBj(t) =

xAj(t)αj−1

xAj(t)αj + xBj(t)αj
, (4)

which is the (inverse) demand for consumer goods varieties.

2.2 Producer behavior

Unlike previous models of this type, which assume Bertrand competition, in this model firms com-

pete in quantities à la Cournot. Which type of oligopolistic competition is more realistic depends

on whether price or quantity is the decisive action parameter. Cournot is more appropriate in the

case of more protracted manufacturing processes, which imply a bigger time-lag between decision

on production volumes and delivery of the goods. Besides, Kreps/Scheinkman (1983) show in a two

stage model that Bertrand competition yields Cournot results, if preceded by simultaneous decisions

about production capacities in the first stage.

Each firm i in industry j produces its variety of the consumption good at time t using labor

Lij(t) and the firm-specific production knowledge Aij(t), so that

xij(t) = Aij(t)Lij(t) , (5)

where i ∈ {A,B}. The two suppliers differ regarding their endogenously determined technology

level, which pins down the productivity of a unit labor employed in production. Both firms can

invest in R&D, which stochastically leads to innovations. Each innovation manifests itself by raising

the investing firm’s technology level by one discrete standardized step γ > 1. Technology of a firm

i, whose R&D efforts succeded kij times, therefore, can be written as Aij(t) = γkij(t). This can be

interpreted as the amount of consumer goods that one unit of labor can produce, or, put differently,

γ−kij(t) units of labor are required for production of one unit output. Hence, marginal cost of

producing consumer good j for firm i at time t is mij(t) = γ−kij(t)w(t). The technological leader

in each industry will be denoted by i and the laggard by −i, so that mij(t) ≤ m−ij(t).

Since in a duopolistic market a firm’s profit maximizing quantities not only depend on its own

marginal costs but also on those of the rival, it is useful to simplify the ratio of marginal costs to
mij(t)
m−ij(t)

= γ−kij(t) w(t)

γ−k−ij(t) w(t)
= γ−nj(t), where i,−i ∈ {A,B} and i 6= −i. nj(t) = kij(t) − k−ij(t) is the

technology gap between leader and laggard, measured by the number of steps γ the leader is ahead.

Hence, if there is a technology gap in industry j, the ratio of marginal costs is always smaller than

1 and the leader has a cost advantage, whose size positively correlates with the gap. In case of

nj(t) = 0, the industry exhibits neck-to-neck competition, and the ratio equals one.

In spite of uncertainty in the R&D-process, each firm’s objective is to maximize expected profits,

because every consumer holds a balanced portfolio of shares of all firms. Using the demand functions

above, the profit function to be maximized is πij(t) = xij(t)
αj

xij(t)
αj+x−ij(t)

αj −mij(t)xij(t), where i,−i ∈
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{A,B} and i 6= −i. The first-order conditions are

mij(t) =
αjxij(t)αj−1 x−ij(t)αj

(xij(t)αj + x−ij(t)αj )2
and m−ij(t) =

αjx−ij(t)αj−1 xij(t)αj

(xij(t)αj + x−ij(t)αj )2
. (6)

Using this expression, we can write the duopolists’ reaction function as mij(t)
m−ij(t)

= x−ij(t)
xij(t)

. Combining

this with (6) yields the profit maximizing outputs

xij(t) =
αj

mij(t)

(
mij(t)
m−ij(t)

)αj
(

1 +
(
mij(t)
m−ij(t)

)αj)2 and x−ij(t) =
αj

m−ij(t)

(
m−ij(t)
mij(t)

)αj
(

1 +
(
m−ij(t)
mij(t)

)αj)2 . (7)

Finally, using these expressions and (4), we can express the leader’s and laggard’s profits in industry

j at time t conditional on the technology gap nj(t) and the substitutability measure αj :

πij(t) =
1 + (1− αj)

(
γ−nj(t)

)αj[
1 +

(
γ−nj(t)

)αj]2 and π−ij(t) =
1 + (1− αj)

(
γnj(t)

)αj[
1 +

(
γnj(t)

)αj]2 . (8)

For the sake of completeness, the market prices of the consumer goods’ varieties are

pij(t) =
mij(t)
αj

[
1 +

(
m−ij(t)
mij(t)

)αj]
and p−ij(t) =

m−ij(t)
αj

[
1 +

(
mij(t)
m−ij(t)

)αj]
. (9)

In spite of well-known limitations of this understanding, the industry-specific parameter αj can

be used as an indicator of the degree of product market competition.10 This interpretation follows

Aghion et al. (2001), who state that, "although α is ostensibly a taste parameter, we think of it

as proxying the absence of institutional, legal or regulatory impediments to entering directly into a

rival firm’s market [...]. Under this interpretation α reflects in particular the influence of anti-trust

policy."11 Since αj mathematically captures the extent to which one variety is able to generate a

utility similar to the other, it can be interpreted as a measure to what degree both varieties belong

to the same market and, therewith, engage in direct competition. The mentioned impediments to

enter a rival’s market (e.g., due to a more or less efficient anti-trust policy) influence the resemblence

of both varieties with regard to the utility they generate. Thus an efficient anti-trust policy, which

induces a high degree of competition, corresponds to the case where αj is close to 1. By contrast,

the absence of an efficient anti-trust policy corresponds to the case in which αj is close to 0, since,

then, the varieties do not generate a similar utility and cannot substitute one another. Aghion et al.

(2001) substantiate this interpretation by additionally pointing out that αj corresponds to standard

measures of competition, particularly the price cost margin.12 To ensure comparability and due to

quite intricate alternatives, I will henceforth refer to αj as the degree of competition.

The profit function (8) plays a crucial role in the model. As in every Schumpeterian growth

model it determines the benefits of technologically outperforming the rivals. In step-by-step models
10 Regarding the limitations of this approach see Königer/Licandro (2004) and Boone et al. (2007).
11 See Aghion et al. (2001), p. 471.
12 See Aghion et al. (2001), p. 472. A related measure (share of profits in value added) is used by Nickell (1996).
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Figure 1: Profits as a function of competition αj and technological gap nj (γ = 1.1).

of endogenous growth the profit function is particularly important, because the potential innovator

weighs ex-post research profits against its ex-ante revenue. So in contrast to leap-frogging models,

where R&D is always done by an outsider firm, what determines research incentives in this model is

not the overall research profit but the difference between postinnovation and preinnovation profits

and its behavior with respect to the technological gap. These incremental profits are crucial for

R&D incentives of both, technological leader and laggard. It is, therefore, worth taking a closer

look at the characteristics of the profit function πij = πij(αj , nj(t), t) illustrated in figure 1.

The shape of the curve in figure 1 is in line with the well-known fact that oligopolistic competition

à la Cournot exhibits less extreme behavior than Bertrand price competition. While at αj = 1 and in

neck-to-neck state (nj(t) = 0) price competition would yield a zero-profit situation (see Aghion et al.

(2001)), Cournot ensures profits for both firms (πij(1, 0, t) = 0.25). The reason is the more long-term

character of competition in quantities mentioned above, due to which producers are not able to react

as flexible to the competitor’s supply as in the course of price competition. In the other extreme case

of αj → 0, in which both varieties are complementary goods, the industry exhibits no product market

competition. Consequently, the extent to which both producers differ technologically becomes

irrelevant for the profits, so that both firms’ profits will be lim
αj→0

πij(αj , nj(t), t) = 0.5 regardless

of their R&D effort. Besides, in a Cournot oligopoly even the technologically less advanced firm is

able to realize profits to a certain degree. Only a very large technological gap causes the laggard’s

profits to asymptotically become zero, while the leader’s profits increase asymptotically to 1, so

that lim
n→−∞

π−ij(αj , nj(t), t) = 0 and lim
n→∞

πij(αj , nj(t), t) = 1.

Figure 1 shows that, as αj increases, the leader-laggard difference in profits becomes increasingly

sharp, and the relationship between technological lead and profits assumes the shape of a logistic
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function. This is an important feature regarding the discussion of optimal patent protection below,

because incremental (not total) profits are the main driving force of innovation incentives in this

model. A logistic shaped function exhibits an inflection point which separates the convex part

of the function (small nj(t)) from the concave part (high nj(t)). This implies that a leader with

a large technological advantage has relatively little incentives to innovate, because the difference

between preinnovative and postinnovative profits is small for high nj(t). By contrast, given a small

productivity difference between technological leader and laggard, the logistic function exhibits a

steep slope, and the potential R&D benefits for an innovator are high. Figure 2 illustrates the

logistic behavior of the profit function w.r.t. nj(t) for the most distinct case of αj = 1.
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Figure 2: Profits as a function of the technological gap nj (αj = 1, γ = 1.1).

Finally, it can be shown formally, that total industry profits are lower in neck-to-neck competition

than if one firm has a cost advantage, i.e., πij(αj , nj(t), t)+π−ij(αj ,−nj(t), t) > 2 ·π±ij(αj , 0, t). To

see this, remember that for negative nj(t) the profit function is convex. If the inflection point of the

logistic is ninflection > 0, the function still exhibits a convex behavior at neck-to-neck competition

nj(t) = 0 (see figure 2). This would connote that an innovator trying to escape the neck-to-neck state

would raise his profits by a higher margin than his technological lead would lower the rival’s profits,

i.e., ∂πij(·)
∂nj(t)

|nj(t)=n + ∂π−ij(·)
∂nj(t)

|nj(t)=−n > 0 or expressed differently πij(αj , nj(t), t) − πij(αj , 0, t) >

π−ij(αj , 0, t) − π−ij(αj ,−nj(t), t). So in order to show that (8) exhibits the lowest total industry

profits if firms are neck-to-neck, we need to prove that ninflection > 0.

Proposition 1. Given two firms competing à la Cournot in an industry j, whose profit function

follows (8), incremental profits of a firm i leaving neck-to-neck state are strictly greater than in-

cremental profits of a catching up firm −i, i.e., πij(αj , nj(t), t) − πij(αj , 0, t) > π−ij(αj , 0, t) −

π−ij(αj ,−nj(t), t) for all αj ∈ (0, 1], all nj(t) ∈ N and i,−i ∈ {A,B} with i 6= −i.

Proof. See Appendix A.1.
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It follows, that even though the innovator experiences the highest increase in incremental profits

at ninflection, total industry profits are lowest and, therefore, exhibit the highest potential increase

via innovation, if firms compete neck to neck. This property, which Aghion et al. (2001) show

for a profit function resulting from Bertrand competition, carries over to the Cournot set-up.13 It

enables us to reason in the following that neck-to-neck R&D investments are strictly greater than

R&D investments by the laggard. This, in turn, is an important prerequisite for the analysis of the

optimal patent strength’s behavior to changes in sector-specific variables in section 3.

2.3 R&D and patent protection

The model does not allow for entry in R&D, so each industry’s R&D sector comprises two duopolists.

Both conduct research in order to advance technologically and lower their marginal costs for pro-

duction. Each industry can either be in neck-to-neck state, where the technological gap is zero,

or in leader-laggard state. Following Aghion et al. (1997), Mukoyama (2003), and Aghion et al.

(2005), I restrict the maximum permissable lead to one step. This assumption implies that, if the

leader innovates, the laggard automatically catches up by one step, as technology older than one

step becomes common knowledge. Consequently, a leader does not further invest in research.14

For now, both firms exhibit identical R&D costs regardless of being leader or laggard.15 Innova-

tions occur stochastically and follow a memoryless Poisson process, whose arrival rate is determined

by investments in R&D (in units of labor). More specifically, we focus on the case in which the

innovation possibilities frontier for a firm i in industry j is ϕij(t) =
√

2βj Rij(t), where ϕij(t) is the

flow rate of innovation, βj > 0 is the R&D productivity in industry j, and Rij(t) is the number of

workers employed in research by firm i in industry j.16 Consequently, R&D costs in units of labor

is the inverse of the R&D production function times wage, i.e., w(t)G(ϕij(t)), where

G(ϕij(t)) =
1

2βj
(ϕij(t))2 . (10)

(10) enables us to simplify the first derivative of G(ϕij(t)) w.r.t. ϕij(t) to ∂ G(ϕij(t))
∂ ϕij(t)

= 1
βj
ϕij(t).

This will turn out to be useful regarding the derivation of R&D intensities, because it makes sure

that the optimal neck-to-neck R&D intensity is independent of the optimal laggard’s intensity.

13 See Proposition 1c) in Aghion et al. (2001), p. 472.
14 This one-step lead assumption has no distortionary impact on the results, if the parameter specification of profits

and R&D costs is such that the leader is not able to break even when introducing self-replacing innovations (see
Mukoyama (2003), p. 369). Aghion et al. (2001) give an example for a specification that fulfills this no
self-replacement condition: large innovations. Given α > 0, for large γ even a one-step lead is sufficient to
raise return on innovation to almost maximum level. This leaves relatively little potential to further augment
profits by making additional effort to expand the technological frontier. However, even if the no self-replacement
requirement is not met, the one-step lead assumption turns out to be a useful, albeit not particularly precise
approximation of the intuition behind the following results, as it enables us to derive optimal R&D intensities
analytically. Aghion et al. (2001) show that the main results regarding the behavior of g∗ to changes of patent
length carry over to the self-replacement case of small innovations. So considering the fact, that the qualitative
implications behind (8) remain unchanged, the lack of precision seems a little price to pay for simplicity.

15 This assumption will be lifted in section 3.4, where we take a closer look at variations in the ease of imitation.
16 See also Budd et al. (1993), Aghion et al. (1997), Aghion et al. (2005), who use a similar R&D specification.
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The basic model includes two alternative ways for the laggard to catch up with the leader. Firstly,

we assume a patent regime that, if enforced perfectly, leaves inventing around as the only possibility

to draw level with the leader. I.e., if the patent never expires, the imitator has to achieve the same

technological level by means of a variation of the leader’s idea. The variation has to be large enough

not to violate the existing patent but, still, technologically serve the purpose of reducing production

costs of consumer goods at the same rate as the patented idea. This specification, explicitly used in

Acemoglu/Akcigit (2008) and Acemoglu (2009), implies a standardized scope of patent protection,

i.e., patent breadth, which defines the technical bandwidth of protection, is neither zero nor infinitely

high. If it were the latter, it would be impossible to invent around and it would make no sense for the

laggard to invest in research. If it were the former, patent length would become virtually ineffective,

since an infinitesimal technical variation of the imitation compared to the patented product would

be enough not to violate the patent. Secondly, we allow for the possibility that patents expire at

a Poisson rate hj , where hj > 0 and the index j indicates the possibility of an industry-specific

differentiation of patent length, discussed below. If expiration occurs, the imitator can copy the

idea without having to invest additional time and effort in inventing around.

2.4 Steady State Equilibrium

2.4.1 Markov Perfect Equilibrium

Following Acemoglu (2009), the next step is to derive optimal R&D intensities, where we denote

ϕ0j(t) as the R&D decision of a neck-to-neck firm, ϕ1j(t) of the leader and ϕ−1j(t) of the laggard.

We further denote µ0j(t) as the probability that an industry is in neck-to-neck state and µ1j(t) as

the probability that an industry’s technology gap equals one (leader-laggard state). In equilibrium,

the optimal R&D intensities in the dynamic problem setting under consideration require being

optimal responses to each other, given the history of the state variable to be subgame perfect.

Yet, in accordance with Aghion et al. (2001), Acemoglu/Akcigit (2008) and Acemoglu (2009),

we can further simplify by focussing on symmetric stationary Markov Perfect Equilibria, as the

including Markov strategies only depend on the payoff-relevant state of the game (each firm’s current

technological state) and not on its historic values.

The list of decisions a firm±i has to make can be expressed byD±n(t) ≡ dϕ±nj(t), x±ij(t), p±ij(t)c,

where i ∈ {A,B} and nj(t) ∈ {0, 1}. Futhermore, D indicates the whole sequence of decisions of

firms at every state, so D(t) ≡ {D1(t),D0(t),D−1(t)}. An allocation is given by time paths of

decisions of firms, [D(t)]∞t=0, by the time path of the interest rate [r(t)]∞t=0, and by the time paths

of each industry’s probability distribution regarding technology gaps [µnj(t)]∞t=0.17 The Markov

Perfect Equlibrium is represented by time paths [D∗(t), r∗(t), Y ∗(t)]∞t=0 such that

17 This set up follows the similar step-by-step growth model with Bertrand competition by Acemoglu (2009), section
14.4.2. As in the Bertrand model, here a further notational simplification is used: Although the sequences
[p∗±ij(t)]

∞
t=0 and [x∗±ij(t)]

∞
t=0 are stochastic (since they include k±ij(t) via m±ij(t)), we ignore their stochastic

nature, because it has no effect on the analysis and the rest of the objects are not stochastic.
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a) [p∗±ij(t)]
∞
t=0 and [x∗±ij(t)]

∞
t=0 implied by [D∗(t)]∞t=0 satisfy (7) and (9),

b) R&D policies [ϕ∗(t)]∞t=0 maximize the expected profits of the respective firms taking ag-

gregate output [Y ∗(t)]∞t=0, interest rate [r∗(t)]∞t=0 and the optimal R&D investment choices

of the rival firm [ϕ∗(t)]∞t=0 as given,

c) aggregate output [Y ∗(t)]∞t=0 is given by (2), and

d) the stock market clears at all times given [r∗(t)]∞t=0.

The stock market channels consumer savings to R&D projects by valuating each innovation

according to the expected discounted profits it generates. The associated risk can be neglected

since households hold a balanced portfolio of shares of all firms. Because one of the two firms will

surely be the next innovator, this diversification leads to the fact that there is no risk premium.

Shareholders receive two kinds of returns on assets: firstly, in form of dividends, which in the current

context corresponds to profits given by (8), and secondly, in form of an appreciation in firm value,

that the innovator experiences due to a change in the state variable (technological level). The

stock market will be in equilibrium, if the asset pays out the required rate of return r(t) = ρ. The

corresponding no-arbitrage condition for the stock market implies an annuity given by the following

Hamilton-Jacobi-Bellman Equation (in stationary form, as we analyze the steady-state):

r(t)Vn(t)− V̇n(t) = max
ϕnj(t)

〈[πnj(t)− G(ϕnj(t))] + ϕnj(t) [Vn+1(t)− Vn(t)]

−(ϕ−nj(t) + hj) [Vn(t)− V0(t)]〉 , (11)

where n ∈ {0, 1}. Vn(t) is the value of a firm with lead n, and V̇n(t) is the change of this value

with respect to time.18 (11) is also refered to as the no-arbitrage asset value equation. The return

on investment on the right hand side comprises the profits minus R&D cost, the increase in the

firm’s value due to innovation weighted by the probability that it succeeds, and the decrease in the

firm’s value due to the rival’s innovation weighted by the probability that the rival succeeds. The

expression plays a crucial role in the following derivation of steady-state R&D decisions.

2.4.2 Steady-state R&D decisions

Since in steady-state the aggregate growth rate g∗ of the economy, as well as profits, industry

structure, and R&D intensities are constant over time, we can drop their time subscript in the

following calculations.19 In order to derive the steady-state R&D intensities, we use the above

18 Note that in a model specification, in which consumers’ saving behavior follows a standard Euler Equation
(g =

˙c(t)
c(t)

= r(t) − ρ), V̇n grows at the same rate as consumption. Since here r(t) = ρ, there is no saving
additional to the rate of time depreciation, so V̇n = 0. Both yield the same annuity ρ Vn paid to the investors.

19 The reason for this stationarity is that those variables, as opposed to output, prices and marginal costs, only
depend on the technology gap nj , but not on the constantly expanding technology level of the respective firm,
kij(t). Consequently, profits π1j , π0j , π−1j , industry structure µ1j , µ0j , value functions V1j , V0j , V−1j , and R&D
intensities ϕ0j , ϕ−1j are stationary in steady state.
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given no-arbitrage asset value equation, (11), and the fact that r = ρ to write the leader’s value

function

ρ V1j = π1j − (ϕ̃−1j + hj) [V1j − V0j ] , (12)

the neck-to-neck firms’ value function

ρ V0j =
[
π0j −

(ϕ0j)2

2βj

]
+ ϕ0j [V1j − V0j ]− ϕ̃0j [V0j − V−1j ] , (13)

and the following firm’s value function

ρ V−1j =
[
π−1j −

(ϕ−1j)2

2βj

]
+ (ϕ−1j + hj) [V0j − V−1j ] , (14)

where ∼ denotes all variables chosen by the rival firm. Based on these functions, we can derive the

profit maximizing amount of labor employed in research by taking the first derivative with respect

to the steady-state R&D intensities for each firm respectively. Note that, due to the one-step lead

assumption, the optimal research level of the leading firm is zero. The first order conditions are

ϕ0j

βj
= (V1j − V0j) (15)

for a neck-to-neck firm, and
ϕ−1j

βj
= (V0j − V−1j) (16)

for the laggard. Expressions (12) to (16) suffice for being able to derive the profit maximizing R&D

intensities of both firms. Starting with the neck-to-neck firms’ first order condition, we can use

(12) and (13) to rewrite (15) to ρ ϕ0j

βj
= π1j − (ϕ̃−1j + hj)

ϕ0j

βj
−
[
π0j − (ϕ0j)

2

2βj
+ (ϕ0j)

2

βj
− ϕ̃0j

ϕ−1j

βj

]
.

Rearranging this expression yields the profit maximizing R&D intensity of a neck-to-neck firm:

ϕ0j = −(ρ+ hj) +
√

(ρ+ hj)
2 + 2βj (π1j − π0j) . (17)

Similarly, we can derive the profit maximizing R&D intensity of the laggard, which yields

ϕ−1j = −(ρ+ hj + ϕ0j) +
√

(ρ+ hj + ϕ0j)2 + 2βj (π0j − π−1j) + (ϕ0j)2 . (18)

Equations (17) and (18) are (along with the growth rate) the main equations in this model. On

the one hand, they include R&D incentives determining parameters, which in section 3 determine

flexible patent scope. R&D productivity βj enters the expressions directly, while the degree of

competition αj enters both equations via incremental profits. On the other hand, the expressions

capture the effects imposed by patent protection on the firm’s R&D-behavior. The neck-to-neck

R&D intensity decreases with a lower patent protection, i.e., an increase in hj results in a strict

decrease of ϕ0j . This fact reflects the disincentive effect of a mitigation of patent strength. It

manifests itself in the rather intuitive result that the sooner the technological lead will be taken
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away from a firm, the less this firm is apt to invest in achieving the lead in the first place.

Regarding the impact of a change in hj on imitation, the picture is less clear-cut. Solely taking

a look at (18) for the impact of an ease of patent strength on imitation yields the counter-intuitive

result, that lower patent protection strictly reduces imitation. However, considering that catching

up occurs via inventing around (ϕ−1j) and via the expiration of the leader’s patents (hj), a reduction

of imitative research turns out to be a logical reaction to the fact, that catching up with the leader

has been alleviated without having to invest more ressources in inventing around.

2.4.3 Steady-state industry structure and growth rate

In order to obtain the growth rate, it turns out to be useful to derive the structure of each indus-

try, i.e., each industry’s probability of being in neck-to-neck and leader-laggard state respectively,

denoted by µnj , where 0 < µnj < 1. Since nj ∈ {0, 1}, we can write µ0j + µ1j = 1. The probability

distribution of technology gaps depends on optimal R&D intensities (17) and (18), because a higher

intensity in one technological state makes an industry less likely to remain in that state. For exam-

ple, if neck-to-neck competition in an industry is very intense, firms will try to achieve an advantage

over their rival as soon as possible and invest in R&D to escape competition. Consequently, the

probability for that industry to be in neck-to-neck is relatively small.

Since µnj itself is stationary, the probability of going into the state of gap nj must equal the

probability of leaving that state. For the neck-to-neck state this yields µ1j (ϕ−1j + hj) = 2µ0j ϕ0j .

Aside from the laggard’s R&D intensity, the left hand side contains the flow rate of patent expiration,

as both are alternative ways of catching up with the leader. The right hand side represents the flow

out of the neck-to-neck state and includes two times the profit maximizing R&D levels, because

both firms simultaneously try to become the next leader. Since µ1j = 1− µ0j , it follows that

µ0j =
ϕ−1j + hj

2ϕ0j + ϕ−1j + hj
. (19)

The sector’s probability of finding itself in neck-to-neck state equals the share of the arrival rate of

(inventing around) imitations plus the Poisson hazard rate of patent expiration in the total arrival

rate of any firm advancing by one technological step. Similarly, we can write

µ1j =
2ϕ0j

2ϕ0j + ϕ−1j + hj
. (20)

Using these expressions, we can derive the steady-state growth rate. In a similar model, Aghion

et al. (2001) use the fact that aggregate output equals ln Y =
∫ 1

0 lnXj dj (see (2)). Each industry’s

output Xj grows according to its innovations, whose occurrence follows an i.i.d. stochastic process.

Aghion et al. (2001), thus, assume that the aggregate steady-state growth rate g∗ = Ẏ = d lnY
dt and

the growth rate of each industry asymptotically are the same in the long run, i.e., g∗ = lim
∆t→∞

∆ lnXj
∆t .

In contrast to that, in this model one sector’s growth rate cannot be considered representative

for aggregate growth, since here we analyze inter-industry differences by assuming substantially
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different parameters constituting the market situation in each sector. Consequently, while the

above specification implies that g∗ = lim
∆t→∞

∆ lnX1+∆ lnX2+...+∆ lnXj
j∆t = lim

∆t→∞
j∆ lnXj
j∆t as industry

outputs expand symmetrically in the long run, the aggregate growth rate under the assumption

of sector-specific differences is g∗ = lim
∆t→∞

∫ 1
0 ∆ lnXj dj

j∆t . In order to maximize aggregate growth we,

therefore, need to take variations in sector characteristics into account and maximize each sector’s

growth rate given by the following Proposition.

Proposition 2. Let an industry be characterized by its degree of competition αj, its R&D produc-

tivity βj, and the sector-specific strength of patent protection hj. Given the firm’s profits in this

industry follow (8), their R&D decisions follow (17) and (18), and the industry’s probability of

exhibiting technology gap nj is given by (19) and (20), then the sector-specific growth rate is

g∗j =
[

2ϕ0j (ϕ−1j + hj)
2ϕ0j + ϕ−1j + hj

]
ln γ . (21)

Proof. See Appendix A.2.

A sector’s output grows with each step a neck-to-neck firm advances technologically. This occurs

at a probability determined by the optimal R&D intensity of neck-to-neck firms, ϕ0j . Hence, at first

glance, it seems that the laggard’s R&D-intensity, ϕ−1j , is not relevant for growth. Yet imitation

exhibits an indirect growth effect via the probability that the sector is in neck-to-neck state, µ0j .

The higher the laggard’s propensity to catch up, the more likely the respective sector is in neck-to-

neck state. Consequently, imitation has positive influence on growth by bringing the industry back

into the state, in which both firms engage in innovative research.

A similar observation can be made with regard to the impact of changes in patent protection on

growth. While the described disincentive effect of lower patent protection on ϕ0j naturally results

in less growth, a relaxation of patent strength can have the opposite growth effect by increasing

the sector’s probability of being in neck-to-neck state. This so-called composition effect of patent

protection on growth can, depending on the strength of hj , mitigate or overcompensate the dis-

incentive effect. Growth hence exhibits an ambivalent reaction to changes in patent strength. In

order to show this ambivalence mathematically, it is useful to set up the following Proposition.

Proposition 3. Consider an industry j, in which R&D costs are given by (10), and optimal research

intensities are given by (17) and (18), where ρ > 0, βj > 0, and hj ≥ 0. Under the premise that

Proposition 1 holds true, it follows that a) ϕ0j > 0 and ϕ−1j > 0, and b) ϕ0j > ϕ−1j.

Proof. See Appendix A.3.

It follows from Proposition 3 that the growth rate given by Proposition 2 is strictly positive.

Besides, we can infer the ambivalent reaction of growth to changes of patent protection by show-

ing that
∂g∗j
∂hj

is strictly greater than zero for small hj and strictly smaller than zero for large hj .

This implies that increasing hj in a relatively strict patent regime yields a positive growth effect
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(disincentive effect < composition effect), while doing the same in a relatively weak regime yields a

negative growth effect (composition effect < disincentive effect). Aghion et al. (2001) show this for

a Bertrand oligopoly. Proposition 3 ensures that ϕ0j > ϕ−1j carries over to the Cournot set-up.

In Appendix A.4 I show that ∂ϕ0j

∂hj
= − ϕ0j

ϕ0j+ρ+hj
and ∂ϕ−1j

∂hj
= −

ϕ−1j+

(
ϕ0j

ϕ0j+ρ+hj

)
(ϕ0j−ϕ−1j)

ϕ−1j+ρ+hj+ϕ0j
. Since

ϕ0j > 0, ϕ−1j > 0 and ϕ0j > ϕ−1j , both expressions are strictly less than zero, so ∂ϕ0j

∂hj
< 0 and

∂ϕ−1j

∂hj
< 0. Using this, in Appendix A.5 it is shown that

∂g∗j
∂hj

=
2ϕ0j (ϕ−1j + hj) ln γ
(2ϕ0j + ϕ−1j + hj)2

[
ϕ−1j + hj

ϕ0j

(
∂ϕ0j

∂hj

)
+

2ϕ0j

ϕ−1j + hj

(
∂ϕ−1j

∂hj
+ 1
)]

. (22)

From this expression it can be infered that the growth rate’s reaction to changes in patent strength

is ambivalent (see Appendix A.6). Moreover, (22) is an important prerequisite for the analysis of

the behavior of optimal patent strength, which will be subject to the following section.

3 Differentiation of patent protection

3.1 Objectives, motivation, and benchmark values of the numerical calibration

Based on the framework in section 2, we can now address the question how sector-specific pa-

rameters can serve as independent variables determining the flexible component of a differentiated

patent regime, and, more specifically, how variations in their scale change the optimal (i.e., growth-

maximizing) patent strength. Recall from the introduction that the parameters determining the

variation of patent strength in this model are: R&D productivity βj , the degree of product market

competition αj , and the imitator’s capability to reverse engineer ιj (see 3.4). All three have an im-

pact on the innovator’s R&D-decision by influencing i) how resource-consuming is the innovation,

ii) how much return can be expected from it, and iii) how long will the innovation yield profit for.

They can, therefore, be used to approximate sector-specific differences in innovation incentives.

In order to find the growth-maximizing patent strength for each sector, the next step would be

to find the root of (22). The solution would be a function h∗j = h∗j (αj , βj , ιj), whose first derivative

w.r.t. any one of those three variables needs to be zero for uniform patent policy to be optimal,

while deviance from zero would indicate optimality of a sector-specific differentiation of patent

strength. However, finding the root of (22) requires solving a sextic equation, which according to

the Abel-Ruffini Theorem cannot be solved in radicals.20 In the following we, therefore, concentrate

on numerical calibrations in order to scrutinize the optimal sector-specific patent protection.

The numerical analysis aims not at providing a detailed calibration of the modeled economy.

Instead, its purpose is to highlight the growth rate’s reaction to changes in patent strength on the

one side, and the three sector differences determining variables on the other. I follow Mehra/Prescott

(1985), who find an average real return on S&P 500 firms between 1889 and 1978 of 6.98 %, and

set the annual discount rate to ρ = 0.07 throughout the calibration. The parameter specification
20 Regarding the Abel-Ruffini Theorem see King (1996). For the sextic equation itself please contact the author.
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will be geared to a benchmark case, in which patent length will be in accordance with the standard

TRIPs term of patent protection, hj,benchmark = 0.0521, and the extant parameters will be specified

so that the sector-specific growth rate in the benchmark case equals 2 %, which is consistent with

the average US GDP per capita growth from 1950 to 1994, reported by Jones (2005).22 This implies

αj,benchmark = 0.8, βj,benchmark = 5 and γbenchmark = 1.1.23 Depending on which of the three patent

differentiation determining variables is under consideration, I will check for robustness of the results

by gradually deviating from these benchmark values.

3.2 Sector-specific product market competition

Empirical findings on the impact of product market competition on innovation and growth are

mixed. While Blundell et al. (1995) find a negative correlation and, thereby, corroborate the

implications of basic Schumpeterian growth models (e.g., Aghion/Howitt (1992)), Nickell (1996)

and Blundell et al. (1999) find the opposite effect. In their seminal empirical paper Aghion et al.

(2005) integrate the opposing findings and empirically scrutinize an inverted-U relation between

competition and innovation. Subsequent studies, however, cannot fully substantiate the inverted-

U relation.24 Prasad (2008) explains this with the composition of industries in the underlying

data sets, as sector-specific characteristics have crucial impact on the inverted-U’s existence. By

testing the prediction of an inverted-U for several sectors separately, he finds a wide variation across

industries. The model presented here accounts for these sector differences by modelling the familiar

Schumpeterian effect and escape competition effect of competition on innovation depending on αj .25

How should a flexible optimal patent life react to changes in a sector’s product market compe-

tition? αj affects (17) and (18) via incremental profits of an innovator advancing one technological

step (π1j − π0j) and of an imitator catching up (π0j − π−1j). In figure 3 it becomes apparent that

incremental profits of neck-to-neck firms that innovate grow with αj , regardless of the size of in-

novations. Even for small γ, where profits decrease with αj (l.h.s. of figure 3), incremental profits

increase, because neck-to-neck profits decline with a higher rate than profits of the leader. Hence,

R&D-investments in neck-to-neck state are more worthwhile the higher the degree of competition,

because a firm can escape competition by innovating (escape competition effect). Consequently,

the fact that an industry’s naturally inherent research incentives are higher, when it exhibits more

intense competition, mitigates the necessity to compensate innovators via patent protection.

By contrast, the Schumpeterian effect implies that more competition destroys incentives to
21 Part II, sect. 5, art. 33 of the TRIPs Agreement stipulates a patent length not less than 20 years. Since we set

ρ = 0.07, a standardized time intervall corresponds to one year. Thus, 20 years of expiration implies hj = 0.05.
22 See Jones (2005), p. 1091, who finds an average growth rate of 1.95 %.
23 The latter value lies within the parameter range used in numerical calibrations of similar models: e.g. Aghion

et al. (2001) set innovation size to γ = 1.135; Mukoyama (2003) gives an example in which γ = 1.09; Ace-
moglu/Akcigit (2008) choose γ = 1.05 and, then, check the robustness of the results with γ = 1.01 and γ = 1.2.

24 See, e.g., Poldahl/Tingvall (2006) and Prasad (2008).
25 See regarding the effects Aghion et al. (2001), Mukoyama (2003), and Aghion et al. (2005). Note that, compared

to the latter, this model tends to marginalize the Schumpeterian effect. This is because, firstly, in a Cournot
dyopoly the laggard’s incremental profits are less likely to drop with an increase in αj , and, secondly, unlike
Aghion et al. (2005), changes in αj are assumed to affect not only π0j , but π1j and π−1j as well.
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Figure 3: Neck-to-neck, leader and laggard profits’ reaction to changes in αj (left: γ = 1.2, right: γ = 25).

innovate. This becomes apparent by taking a closer look at the laggard’s incremental profits for

large γ and their ambivalent reaction to an increase of αj (r.h.s. of figure 3). While for small αj

π0j−π−1j rise with an increase of αj , for high αj they begin to fall again. The latter aspect induces

imitative research to decline (Schumpeterian effect). The ambivalence only becomes apparent for

high γ, because, unlike Bertrand, in the Cournot set-up the laggard still generates profits, if γ is

small. Only if γ is large, he finds himself in a zero-profit situation, even when αj is not close to 1.

What does this imply with regard to flexible patent length? In Appendix B.1 it is shown that

∂(π1j − π0j)
∂αj

>
∂(π0j − π−1j)

∂αj
(23)

for all αj ∈ (0, 1]. It follows that the discrepancy between innovating and catching up incremental

profits increases with more intense competition. Again, the implication for optimal patent strength

is that more competition corresponds to less protection, since the threat of losing the technological

edge over the rival and, to that extent, the necessity to compensate the innovator diminishes.

Larger R&D incentives for leader and laggard when competition is more intense and, more

importantly, the increasing gap between those incentives also influence optimal R&D intensities.

Variations of (17) and (18) with competition are induced solely by changes of incremental profits.

Consequently, since according to Proposition 3b) ϕ0j > ϕ−1j , (23) implies that

∂ϕ0j

∂αj
>
∂ϕ−1j

∂αj
(24)

for any αj ∈ (0, 1] and γ > 1. Expression (24) has crucial impact on the composition of growth rate

(21) inasmuch as it induces that components of the latter react differently to changes in αj . The

fact that the relation of imitative to innovate research falls with more intense competition, mitigates

the composition effect. This, in turn, suggests a higher need to weaken patent protection, since a

high neck-to-neck R&D-intensity is useless without imitation.
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What can we infer from the analysis so far with regard to the growth rate’s reaction on variations

of product market competition? All three theoretical implications of changes in αj derived up to

this point suggest that a more intense competition corresponds to a lower optimal patent strength.

The next step is to carry out a numerical calibration to test these deliberations. As it turns out, the

benchmark case, which is shown in figure 4, corroborates the intuitive results derived before (see

Result 2). Besides, it renders possible to substantiate the ambivalence of the growth rate’s reaction

to changes in patent strength (see Result 1).
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Figure 4: The growth rate’s reaction to changes in patent length and product market competition αj in the
benchmark case (γ = 1.1, ρ = 0.07, βj = 5).

Result 1. Given identical R&D costs for leader and laggard, the ambivalent reaction of growth to

changes in patent length, shown in Appendix A.6, takes the form of an inverted-U relationship.

In Appendices B.2 and B.3 it is shown that this result is robust to numerous variations in parameter

specifications over the given range of values for each parameter. Hence, we can infer that the familiar

inverted-U relationship between growth and patent protection, inter alia established by similar step-

by-step models with Bertrand competition26, carries over to a Cournot set-up. Result 1 is consistent

with empirical findings of Comanor (1967) and Qian (2007).27 Moreover, since the inverted-U’s

maximum represents the growth-maximizing patent strength, this characteristic relation between

growth and patent protection implies that the calibration yields an unambiguous solution for the

optimal (differentiated) patent strength within a realistic parameter range.

26 See, e.g., Aghion et al. (2001) and Mukoyama (2003), where the latter uses a slightly different interpretation of
the relevant parameter. In a related theoretical model Horowitz/Lai (1996) find an inverted-U relation between
patent length and innovation, resulting from two opposing effects similar to the ones present in this model.

27 Comanor (1967) observes that too high and too low technical entry barriers impair research incentives. Qian
(2007) finds the existence of an optimal patent level above which stronger protection discourages innovation.
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Result 2. Given a duopolistic sector j, whose growth rate follows (21), an increase in the sector-

specific degree of product market competition implies an according adaptation of optimal patent

protection in the form of shorter differentiated patent lives and vice versa.

This result, also, is robust to numerous variations of parameter values (see Appendix B.2).

3.3 Sector-specfic R&D productivity

The idea of flexible patent length according to a sector’s R&D productivity can be traced back to

the seminal work of Nordhaus (1969). Based on a simple model trading off dynamic efficiency and

static inefficiency of patents, the model implies that, under the assumption of a concave welfare

function, a higher productivity corresponds to a shorter optimal patent life. Using a similar but more

elaborated model, Cornelli/Schankerman (1999) reach the opposite conclusion. They assume large

technology steps to be of socially higher value than many small steps, because significant inventions

are more likely to generate positive externalities and the related products obtain a lower elasticity

of demand. Due to the resulting convex welfare function, they find that more productive inventors

should be granted longer protection in order to tilt their R&D effort towards large inventions.

In contrast to these welfare models, the approach presented here accounts for sequential in-

novations and, thereby, focuses on dynamic efficiency and its trade off between innovation and

imitation. The model also differs from the previous inasmuch as it explicitly models the firms’

competitive behavior, instead of assuming a given relation between R&D output and profits. Un-

der this specification it contradicts the result of Cornelli/Schankerman (1999) and reestablishes the

rather intuitive implication of the Nordhaus model. A sector-specific patent regime depending on

an industry’s level of R&D costs ought to grant greater protection to those sectors, which require

more intense research to take a technological step forward. Since the level of R&D costs can be

approximated by a measure for how productive a researcher in one sector is compared to another,

we utilize a sector’s average R&D productivity to determine its optimal patent strength.

As opposed to product market competition, R&D productivity βj has direct impact on (17) and

(18) by rescaling incremental profits of neck-to-neck and catching up firms. According to (10), a

higher productivity leads to a lower need for researchers to achieve a given flow rate of innovation

and, to that extent, lower R&D costs. Put differently, a higher productivity implies that the same

amount of workers employed in research potentially generates an innovation sooner, so that higher

profits accrue to the innovating firm. It becomes apparent that a higher βj yields stronger incentives

to innovate and, therewith, higher optimal research intensities of neck-to-neck and following firms.

The extent to which ϕ0j and ϕ−1j react to changes in R&D productivity differs, however. This

follows from Proposition 1. Since incremental profits of neck-to-neck firms are always greater than

incremental profits of laggard firms, scaling up both also scales up this difference, so that

∂ϕ0j

∂βj
>
∂ϕ−1j

∂βj
. (25)
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As a consequence, by altering the relation between imitative and innovative research, changes

in R&D productivity have crucial impact on growth and optimal patent strength. For instance, a

higher sector-specific productivity induces a stronger increase in innovative R&D incentives than

in the propensity to imitate. Hence, the sector under consideration is less likely to be in neck-to-

neck and the composition effect on growth declines. It follows, that optimal (differentiated) patent

strength decreases with higher βj , since more imitation is needed in order to increase the probability

to be in neck-to-neck state and to benefit from the increased innovation incentives in that state.

An alternative way to think of it is to consider the interpretation of βj as a measure for R&D

costs. An average research project in an industry, that exhibits a smaller βj , is more expensive than

average projects in sectors with a higher productivity. That is why in the latter kind of sectors the

necessity for patent authorities to intervene and compensate innovators is lower than in the former

kind of sectors. A flexible patent regime adjusting the strength of protection according to R&D

productivity should grant more protection to sectors with costlier R&D.
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Figure 5: The growth rate’s reaction to changes in patent length and R&D productivity βj in the benchmark
case (γ = 1.1, ρ = 0.07, αj = 0.8).

The numerical analysis of the reaction of optimal patent strength to changes in sector-specific

R&D productivity corroborates this reasoning. Figure 5 illustrates that, similar to the case of

product market competition, the maxima of the inverted-U relationship correspond to higher h∗j ,

the higher sector-specific R&D productivity βj is. Hence, we can state

Result 3. Given a duopolistic sector j, whose growth rate follows (21), an increase in the sector-

specific R&D productivity implies an according adaptation of optimal patent protection in the form

of shorter differentiated patent lives and vice versa.

This result is robust to numerous variations of parameter values (see Appendix B.3).
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3.4 Sector-specific imitation costs

The necessity for governmental intervention to compensate innovators via patent policy originates

from the well-known problem that imitation impairs the innovating firm’s ability to cover its R&D

expenses. However, inter-industry differences regarding the technical complexity of products imply

that sectors may also differ with respect to the capability to reverse engineer the state-of-the-

art technology. The pace of imitation, in turn, determines how long the leader is able to accrue

monopoly profits. Inter-industry differences, therefore, have an impact on a market’s natural ability

to compensate innovators and, to that extent, on the necessity of patent protection.

Note that costly innovations are not necessarily costly to imitate. If the correlation between

innovative and imitative costs were close to one, a higher necessity to compensate innovators would

always coincide with a higher naturally inherent capability of the market to do that. In this case

a uniform patent protection might be appropriate, since the need for governmental intervention

would not fluctuate with the sector-specific differences in the technical complexity of products. Yet

empirical evidence suggests that the correlation between innovation and imitation costs differs from

sector to sector. While, for instance, literature and music can be copied without considerable costs,

imitating most products is more laborious. Mansfield et al. (1981) find that in chemical and drug

industries a vast majority of innovations (project size ≥ $ 1 million) imply imitation costs that are

larger than 60 % of innovation costs. In case of chemicals, for 38 % of new products imitation is even

more expensive than innovation itself, because the technological leader possesses highly specialized

R&D know-how, which is inaccessible to imitators. As opposed to that, in electronics and machinery

industries the majority of new products can be imitated at less than 60 % of innovation costs. Hence,

the threat of losing the technological lead in an industry varies from sector to sector.

Since the goal here is to differentiate patent strength according to a sector’s necessity to com-

pensate inventors beyond its natural capability to do so, I take the inter-industry differences in the

discrepancy between innovation and imitation costs found by Mansfield et al. (1981) into account.

In accordance with them, the decisive parameter used here is the amount of imitation costs in per-

cent of innovations costs. In the following, this imitation-innovation costs relation will be denoted

ιj . Considering the specific R&D costs function (10), it follows that Gj,innovator 6= Gj,imitator, where

Gj,imitator = ιj Gj,innovator. Hence, ιj rescales the R&D cost function (10) according to whether

leader or laggard conducts research. While the leader’s R&D costs remain unchanged to the previ-

ous specification of the model, the imitator’s R&D costs are now given by

G(ϕ−1j) =
ιj

2βj
(ϕ−1j)2 . (26)

This alternative specification has crucial repercussions on the optimal research intensities of

neck-to-neck and following firms ((17) and (18)). Based on (26), it becomes apparent that the

imitator’s first order condition becomes ιj
βj
ϕ−1j = (V0 − V−1). Moreover, in Appendix B.5 I show

that the optimal research intensity of a neck-to-neck firm becomes
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ϕ0j = −[ρ+ hj + ϕ−1j (1− ιj)] +
√

[ρ+ hj + ϕ−1j (1− ιj)]2 + 2βj (π1j − π0j) , (27)

and, similarly, the optimal research intensity of the firm trying to catch up becomes

ϕ−1j = −(ρ+ hj + ϕ0j) +

√
(ρ+ hj + ϕ0j)

2 +
2βj
ιj

(π0j − π−1j) +
1
ιj

(ϕ0j)2 . (28)

As opposed to the previous specification of the model, in which ιj = 1, the optimal neck-to-neck

intensity here depends on the laggard’s intensity. This is due to the fact that the special case, in

which the risk of losing the technological lead times the lost value equals the risk of becoming laggard

times the lost value, only applies when imitation and innovation costs are the same (ιj = 1). The

fact that ιj is now assumed to fluctuate sector-specifically complicates the solution of the model.

What is the intuition behind it? ιj directly enters the optimal laggard’s intensity by lowering

incremental profits (π0j − π−1j) and the term (ϕ0j)2. The former constitute the immediate profits

from imitation, while the latter term represents the additional firm value from having gained the

opportunity to potentially become the next leader.28 A higher ιj leads to a decline of both terms

and, to that extent, a decline of the optimal ϕ−1j , because both types of benefits come at a higher

price. In other words, since according to the imitator’s first order condition above, the marginal

cost of research must be equal to the value added, an increase in the imitator’s marginal costs causes

the same level of value added to correspond to a lower optimal research intensity. This yields the

following intuitive result for the direct effect of ιj on the laggard’s optimal research intensity: a

more complicated reverse engineering induces lower investments in imitative research.

In view of (27), it becomes apparent that ιj has direct impact on ϕ0j by reducing the threat of

imitation. Since in this specification of the model the imitation-innovation costs ratio may deviate

from 1, the term ϕ−1j (1−ιj) enters the equation before and under the square root. It represents the

difference in the threat of falling one step behind in a leader-laggard state (ϕ−1j (V1−V0) = ϕ−1j
ϕ0j

βj
)

compared to a neck-to-neck state (ϕ0j (V0 − V−1) = ϕ0j
ιj
βj
ϕ−1j). In case of ιj = 1 the threat of

falling one step behind is the same regardless in which state the sector is situated, because there

is no difference between innovation and imitation costs. If, however, ιj deviates from 1, it changes

the leading firm’s threat of being imitated relative to a neck-to-neck firm’s threat of falling behind.

Consequently, a higher ιj corresponds to a higher optimal research intensity of a neck-to-neck firm.

This is because the threat to imitate the leader decreases relative to the threat for a neck-to-neck

firm to fall behind, so that incentives to leave the neck-to-neck state increase.

Again, this reasoning only captures the direct effect of ιj on optimal R&D investment. Yet,

in both cases, direct and indirect effects of ιj on the optimal intensities go in the same direction.

According to (27), a higher ϕ−1j lowers optimal neck-to-neck intensity ϕ0j . Since the direct effect

28 The benefit from potentially becoming next leader is the probability of a successful innovation in neck-to-neck
state times the value added by innovating minus R&D costs: ϕ0j (V1−V0)− 1

2 βj
ϕ2

0j = 1
βj
ϕ2

0j− 1
2 βj

ϕ2
0j = 1

2 βj
ϕ2

0j .
From solving the FOC for ϕ−1j , 2βj cancels out and ιj enters the term, so that both terms go on the other side.
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Figure 6: The growth rate’s reaction to changes in patent length and sector-specific reverse engineering
capability ιj in the benchmark case (γ = 1.2, ρ = 0.04, αj = 1, βj = 1).

implies a high ϕ−1j when ιj is small, the indirect effect on ϕ0j corroborates the direct effect by

additionally leading to the fact that a small ιj corresponds to a small optimal neck-to-neck research

intensity. Similarly, the direction of the indirect effect of ιj on the laggard’s optimal intensity equals

the direct effect’s direction, since a higher ιj induces a higher ϕ0j which, in turn, lowers ϕ−1j .

What are the implications of a variation in ιj on optimal differentiated patent protection? In

a sector with relatively laborious reverse engineering, ϕ0j exceeds ϕ−1j , since a higher ιj lets ϕ0j

increase while ϕ−1j decreases. Recall from section 2.4.3 that such a sector does not necessarily grow

faster, because with a simultaneously lower ϕ−1j the sector is less probable to be situated in neck-

to-neck. It follows that in order to benefit from the neck-to-neck firms’ high propensity to invest in

R&D, it is essential to ease patent protection and, by this means, increase the pace of catching up

(composition effect). Hence, high ιj correspond to low optimal patent protection. Similarly, small

ιj imply a high optimal patent strength. This is due to the fact that easier imitation induces a

shorter technological lead, which impairs the innovator’s ability to break even.

Figure 6 illustrates how optimal patent strength varies with the sector-specific propensity to

imitate.29 It becomes apparent that, as opposed to previous specifications of the model, growth

does not exhibit an inverted-U relation with respect to hj in any case. This is due to the fact that

for small ιj the precondition for an inverted-U relation, ϕ0j > ϕ−1j (Proposition 3b), does not hold.

Since a decline in imitation costs increases the propensity to imitate and, beyond that, lowers the

propensity to innovate, for small ιj we have that ϕ−1j > ϕ0j . Moreover, as for ιj → 0 the imitation

costs become negligible, we have that lim
ιj→0

ϕ−1j =∞ and lim
ιj→0

ϕ0j = 0. As a consequence, the growth

rate tends to zero. Note that this is the fact even with maximal patent protection (hj = 0), because

29 Since the empirical results in Mansfield et al. (1981) imply 0.5 < ιj < 1.5 to be a realistic range for the
imitation-innovation costs relation, figure 6 and the figures in the Appendix focus on that range.
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patents only shield innovators from copying their idea, not from inventing around it. Since the

specification of patent protection in this model follows Aghion et al. (2001) and Acemoglu/Akcigit

(2008) by modelling patent length and implicitly assuming a standardized patent breadth, maximal

patent protection implies infinite patent length, while patent breadth remains unchanged. Hence,

patents in this model can only mitigate but not prevent the decomposition of innovation incentives

for extremely small ιj . Nevertheless, we can summarize the following result, which also is robust to

numerous variations of parameter values (see Appendix B.4).

Result 4. Given a duopolistic sector j, whose growth rate follows (21), a sector-specific increase in

the imitator’s ability to reverse engineer technologically superior products, i.e., a higher imitation-

innovation costs relation ιj, where ιj ∈ [0.5, 1.5], implies shorter optimal patent lives and vice versa.

4 Conclusion

This paper deals with a step-by-step innovation model of endogenous growth in a Cournot duopoly

set-up. In order to account for previous empirical findings on industry differences in the impact

and importance of patents, it is used to scrutinize how sector-specific parameters can be used

to determine the flexible component of a differentiated patent regime, and, more specifically, how

variations in their scale change the optimal (i.e., growth-maximizing) patent length. It is found that

patent protection of a sector ought to be weaker, the more intense its product market competition,

the higher its R&D productivity, and the more laborious imitation by a firm trying to catch up

are. In the latter case, the model resorts to the imitation-innovation costs relation, empirically

elicited by Mansfield et al. (1981), in order to account for the ease of imitation. It is found that

for most empirically plausible relations the inverted-U relation between patent length and growth,

carries over from Bertrand competition to the Cournot set-up. Only in sectors with inherently easy

imitation the composition effect disappears, so that it is optimal to grant maximum patent length.

The model takes a first step towards a theoretical basis for an assessment of industry-specific

modifications of patent length already implemented in practice (e.g., supplementary protection

certificates and pediatric exclusivity). Recall from the introduction that supplementary protection

certificates aim at compensating inventors in pharmaceutical and biotech industries for the loss of

effective patent term due to regulatory delays in the launch of new products. However, the fact,

that this concerns subsequent innovations as well, prolongs the opportunity to accrue profits and

casts the necessity for additional protection into doubt. Since the model proposes a differentiation

of patent length according to how much and how long the innovation yields profit, it accounts for

this dynamic aspect of the evaluation of supplementary protection certificates, and, to that extent,

can provide a theoretical basis for empirical studies on the necessity to grant them.

A common objection to previous propositions of a differentiated patent regime is that implemen-

tation costs will overcompensate the undoubtly existent social benefit of such a system. While for
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low aggregation levels (e.g., firm or project level) it seems difficult to remedy these concerns, three

reasons come to mind for why regarding a sector-specific differentiation they lack persuasive power.

Firstly, since, as mentioned before, the current system already comprises a specific protection for

some sectors, part of the corresponding implementation costs accrue anyway. Secondly, in contrast

to the firm or project level, an industry-specific differentiation does not require a reevaluation of

patent strength for every single application, which implies significantly less costs. Yet it, still, can

efficiently approximate differences in the necessity to compensate inventors, since parameters con-

stituting these differences either exhibit a sector-specific nature or, as numerous empirical studies

indicate, are comparatively easy to obtain on a sectoral level. Thirdly, the current country-specific

patent system includes implementation costs, that would not accrue under the proposed sector-

specific system. Even though WTO member countries under TRIPs agreed on a uniform patent

length, application, grant and litigation of patents usually fall under the jurisdiction of every mem-

ber country, each having to bear the corresponding costs. Within Europe, the European Patent

Convention (EPC) aims at lowering these costs by harmonizing patent applications and grants.

However, since the EPC does not include a joint judicial authority, litigations remain under each

country’s jurisdiction. Hence, a European patent is no single, centrally enforceable patent but

rather a bundle of patents with ambiguous legal certainty. The related costs could be avoided by a

transnational uniform system of a sector-specific differentiation, in which countries potentially co-

operate to scrutinize a sector’s optimal patent length. It follows that, only if implementation costs

of the proposed system exceed costs of the current one by a higher amount than its social benefit,

the above objection applies. The given reasons lead us to the conclusion that this is unlikely the

case. Nevertheless, the verification of this conclusion deserves further study.

Possible extensions of the model include a specification which accounts for the whole range

of patent design mechanisms besides patent length. The paper follows Aghion et al. (2001) and

Acemoglu/Akcigit (2008) by modelling patent length explicitly, while implicitly assuming a stan-

dardized patent breadth. Since the latter cannot be influenced by patent policy decisions in the

model, maximal patent protection cannot entirely shield innovators from imitation. Firms trying

to catch up can still imitate by inventing around the technological leader’s design. Because patent

breadth (leading or lagging) determines how much effort the inventing around implies, its consider-

ation enables us to model maximal patent protection to entirely shield innovators from imitation.

This might have interesting implications on optimal patent strength in a flexible regime.

Moreover, one might extend the model by additionally taking secrecy, lead time advantages, and

the use of complementary marketing and manufacturing capabilities as alternative means to protect

ideas from imitation into account. Empirical studies, such as Levin et al. (1987) and Cohen et al.

(2000), suggest that, most notably, secrecy is more important in this regard. Since patents include

a disclosure of technical details of an invention after a certain period of protection, simply keeping

a lid on the idea is an effective alternative to protect intellectual property. Accounting for it might

yield interesting results regarding optimal differentiated patent protection.
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Appendices

Appendix A (section 2)

A.1

Objective. Given (8), show that ninflection > 0.

Proof. At first, I take the second derivative of (8) with respect to nj and simplify to

∂2πij(αj , nj)
∂n2

j

=
α2
j lnγ

(
(γ−nj )3αj + 4αj (γ−nj )2αj − αj (γ−nj )3αj − αj (γ−nj )αj

)
(1 + (γ−nj )αj )4 .

The next step is to set this expression equal to zero and solve for ninflection. The resulting expression only

holds for 0 < αj < 1, since ln
(
−
√

3α2
j+1−2αj

αj−1

)
is not defined for αj = 1. Hence, again, I take the second

derivate of (8), but instead of solving for ninflection directly, I evaluate the expression at αj = 1 and, then,

solve for ninflection|αj=1. Consequently, the inflection point is given by

ninflection =

−
ln

(
−
√

3α2
j
+1−2αj

αj−1

)
αj lnγ

if 0 < αj < 1

ln2
lnγ if αj = 1

Since 0.5 <
(
−
√

3α2
j+1−2αj

αj−1

)
< 1, both expressions can be shown to be positive for any γ > 1 and for each

defined range of αj respectively. Note that for all γ > 1 and αj ∈ (0, 1] we have that ∂3π(·)
∂n3

j

∣∣∣
nj=ninflection

6= 0,

so the inflection points exist.

A.2

Objective. Show that the sector-specific growth rate of sector j equals g∗j =
[

2ϕ0j (ϕ−1j+hj)
2ϕ0j+ϕ−1j+hj

]
ln γ.

Proof. Without the one-step lead assumption, each industry j experiences a cycle, expressed by the sequence

{0, 1, ..., υ − 1, υ, 0} where υ ∈ N, so that lnXj grows at rate υ ln γ between the beginning and the end of

that cycle. υ can be interpreted as the number of technology steps the industry moved forward per cycle.

With the one-step lead assumption we have that υ = 1, so that for a long time interval we can write

∆ lnXj ≈ Vj (ln γ), where Vj is the number of cycles that industry j experiences within the time interval

under consideration. Plugging this into the growth rate of a sector j, g∗j = lim
∆t→∞

∆ lnXj
∆t , which follows from

the aggregate growth rate g∗ = lim
∆t→∞

j∆ lnXj
j∆t given in section 2.4.3, yields

g∗j = lim
∆t→∞

[
Vj
(
ln γ

∆t

)]
(29)

=
(

lim
∆t→∞

Vj
∆t

)
(ln γ)

= µ1j (ϕ−1j + hj) (ln γ) .

The last step uses the fact that the asymptotic frequency of cycles with υ steps, lim
∆t→∞

Vυ
∆t , in steady-state

underlies the stationarity condition that the flow out of a state must equal its inflow. Since the laggard is

always able to close the whole technological gap at once, the frequency of a cycle with υ steps equals the
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probability µ1j of being in leader-laggard state times the Poisson arrival rate of falling back into neck-to-neck,

i.e., (ϕ−1j + hj). Finally, using (20) we can rewrite the growth rate as

g∗j =
[

2ϕ0j (ϕ−1j + hj)
2ϕ0j + ϕ−1j + hj

]
ln γ . (21)

A.3

Objective. Under the premise that Proposition 1 holds and given that ρ > 0, βj > 0, and hj > 0, show

that for the optimal research intensities (17) and (18) holds true that a) ϕ0j > 0 and ϕ−1j > 0, and b)

ϕ0j > ϕ−1j .

Proof. I begin by proving a). From Proposition 1 and the fact that all parameters are positive, it follows that

the square roots in the optimal research intensities (17) and (18) are greater than zero. Even if (π1j − π0j)

and (π0j − π−1j) were not greater than but equal to zero, the positive squared part under the roots would

compensate the negative first part of the expressions. Consequently, we can infer ϕ0j > 0. Since we can

apply the same procedure to the optimal laggard intensity, we also have that ϕ−1j > 0.

In order to prove b), I use (15) and (16) to show that the optimal neck-to-neck R&D intensity is strictly

greater than the optimal laggard R&D intensity, if and only if the difference of leader and neck-to-neck firm

values is strictly greater than the difference of neck-to-neck and laggard firm values, so

ϕ0j > ϕ−1j ⇔ (V1j − V0j) > (V0j − V−1j) , (30)

Hence, we can prove b) by proving the term on the r.h.s. Using (12), (13) and (14), we can write

ρ (V1j − V0j) = π1j − π0j − (ϕ0j + ϕ−1j + hj) (V1j − V0j) + ϕ0j (V0j − V−1j) +
(ϕ0j)2

2βj
(31)

and

ρ (V0j − V−1j) = π0j − π−1j − (ϕ0j + ϕ−1j + hj) (V0j − V−1j) + ϕ0j (V1j − V0j)−
(ϕ0j)2

2βj
+

(ϕ−1j)2

2βj
. (32)

Substracting (32) from (31) and combining similar terms yields

[(V1j − V0j)− (V0j − V−1j)] (2ϕ0j + ϕ−1j + ρ+ hj)−
(ϕ0j)2

βj
+

(ϕ−1j)2

2βj
= π1j − 2π0j + π−1j . (33)

According to Proposition 1, the r.h.s. of (33) is strictly greater than zero. Using (15) and (16), we replace

ϕ0j by βj (V1j−V0j) and ϕ−1j by βj (V0j−V−1j). Moreover, for notational simplicity we set X = (V1j−V0j)

and Y = (V0j − V−1j). This yields

[X − Y] (2βj X + βj Y + ρ+ hj)− βj X 2 +
βj Y2

2
> 0

and respectively

βj X 2 + (ρ+ hj)X >
βj
2
Y2 + βj X Y + (ρ+ hj)Y . (34)
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Based on (34), we can prove by contradiction that X > Y must hold. Supposing X ≤ Y, (34) simplifies to

i) X = Y ⇒ βj X 2 + (ρ+ hj)X >
βj
2
X 2 + βj X 2 + (ρ+ hj)Y ⇔ 0 >

βj
2
X 2 → contradiction

ii) X < Y ⇒ βj X 2 + (ρ+ hj)X >
βj
2

(X + E)2 + βj X (X + E) + (ρ+ hj) (X + E)

⇔ 0 >
βj
2

(X + E)2 + βj X E + (ρ+ hj) E → contradiction

Because βj > 0, E > 0, X > 0, and since from a) we have that ϕ0j > 0, both expressions imply a

contradiction. Consequently, we can infer that X > Y and, therewith, using (15) and (16), ϕ0j > ϕ−1j .

A.4

Objective. Show that ∂ϕ0j
∂hj

= − ϕ0j
ϕ0j+ρ+hj

and ∂ϕ−1j
∂hj

= −
ϕ−1j+

(
ϕ0j

ϕ0j+ρ+hj

)
(ϕ0j−ϕ−1j)

ϕ−1j+ρ+hj+ϕ0j
.

Proof. From (17) the first derivative of ϕ0j with respect to hj is

∂ϕ0j

∂hj
= −1 +

ρ+ hj√
(ρ+ hj)

2 + 2βj (π1j − π0j)
=
ρ+ hj −

√
(ρ+ hj)

2 + 2βj (π1j − π0j)√
(ρ+ hj)

2 + 2βj (π1j − π0j)
,

which again using (17) becomes
∂ϕ0j

∂hj
= − ϕ0j

ϕ0j + ρ+ hj
. (35)

Since ϕ0j > 0, it becomes apparent that this expression is strictly less than zero, so ∂ϕ0j
∂hj

< 0. Moreover,

for large hj it tends to zero, so that lim
hj→∞

ϕ0j = 0. To see this, note that in (17) the expression under the

square root is always positive and strictly greater than the negative expression before the square root, since

incremental profits are always positive. Yet the latter terms fade into the background as hj becomes large,

so that the expression goes to zero. Consequently, we obtain lim
hj→∞

∂ϕ0j
∂hj

= 0.

Next, I take the first derivative of ϕ−1j with respect to hj . From (18) we get

∂ϕ−1j

∂hj
= −1− ∂ϕ0j

∂hj
+

(ρ+ hj + ϕ0j)
(

1 + ∂ϕ0j
∂hj

)
+ ϕ0j

∂ϕ0j
∂hj√

(ρ+ hj(τj) + ϕ0j)2 + 2βj (π0j − π−1j) + (ϕ0j)2
. (36)

For the sake of clarity, I set
√

(ρ+ hj(τj) + ϕ0j)2 + 2βj (π0j − π−1j) + (ϕ0j)2 =
√
ψ, so that again from

(18) we can write
√
ψ = ϕ−1j + ρ+ hj + ϕ0j . By also using (35), we can further simplify the expression to

∂ϕ−1j

∂hj
= −

√
ψ −
√
ψ
(

ϕ0j
ϕ0j+ρ+hj

)
− (ρ+ hj)− ϕ0j

(
− ϕ0j
ϕ0j+ρ+hj

)
√
ψ

= −
ϕ−1j + ϕ0j + ϕ0j

(
ϕ0j

ϕ0j+ρ+hj

)
−
√
ψ
(

ϕ0j
ϕ0j+ρ+hj

)
ϕ−1j + ρ+ hj + ϕ0j

= −
ϕ−1j +

(
ϕ0j

ϕ0j+ρ+hj

)
(ϕ0j − ϕ−1j)

ϕ−1j + ρ+ hj + ϕ0j
. (37)

Furthermore, analogue to above, it can be shown that lim
hj→∞

∂ϕ−1j
∂hj

= 0. This immediately follows from the

fact that lim
hj→∞

ϕ0j = 0 and lim
hj→∞

ϕ−1j = 0.
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A.5

Objective. Show that ∂g∗j
∂hj

= 2ϕ0j (ϕ−1j+hj) ln γ
(2ϕ0j+ϕ−1j+hj)2

[
ϕ−1j+hj
ϕ0j

(
∂ϕ0j
∂hj

)
+ 2ϕ0j

ϕ−1j+hj

(
∂ϕ−1j
∂hj

+ 1
)]

.

Proof. The first derivative of (21) is

∂g∗j
∂hj

=
2 ∂ϕ0j
∂hj

(ϕ−1j + hj) ln γ

2ϕ0j + ϕ−1j + hj
+

2ϕ0j ln γ

[
−∂ϕ0j

∂hj
+

(ρ+hj+ϕ0j)
(

1+
∂ϕ0j
∂hj

)
+ϕ0j

∂ϕ0j
∂hj√

(ρ+hj+ϕ0j)2+2 βj (π0j−π−1j)+(ϕ0j)2

]
2ϕ0j + ϕ−1j + hj

(38)

−
2ϕ0j (ϕ−1j + hj) ln γ

[
∂ϕ0j
∂hj

+
(ρ+hj+ϕ0j)

(
1+

∂ϕ0j
∂hj

)
+ϕ0j

∂ϕ0j
∂hj√

(ρ+hj+ϕ0j)2+2 βj (π0j−π−1j)+(ϕ0j)2

]
(2ϕ0j + ϕ−1j + hj)

2 .

We can use equations (35) and (37) to further simplify (38). Note the similarity of (36) and the complicated

expressions in the squared brackets in (38). Hence, we can utilize (37) (as a more manageable (36)) and

substitute the expressions in squared brackets by ∂ϕ−1j
∂hj

plus the respectively missing terms, so that

∂g∗j
∂hj

=
2 ∂ϕ0j
∂hj

(ϕ−1j + hj) ln γ

2ϕ0j + ϕ−1j + hj
+

2ϕ0j ln γ
[
∂ϕ−1j
∂hj

+ 1
]

2ϕ0j + ϕ−1j + hj
−

2ϕ0j (ϕ−1j + hj) ln γ
[
∂ϕ−1j
∂hj

+ 2 ∂ϕ0j
∂hj

+ 1
]

(2ϕ0j + ϕ−1j + hj)
2

=
2ϕ0j (ϕ−1j + hj) ln γ

2ϕ0j + ϕ−1j + hj

∂ϕ0j

∂hj

1
ϕ0j

+

(
∂ϕ−1j
∂hj

+ 1
)

ϕ−1j + hj
−

(
∂ϕ−1j
∂hj

+ 2 ∂ϕ0j
∂hj

+ 1
)

2ϕ0j + ϕ−1j + hj


=

2ϕ0j (ϕ−1j + hj) ln γ
(2ϕ0j + ϕ−1j + hj)2

[
ϕ−1j + hj

ϕ0j

(
∂ϕ0j

∂hj

)
+

2ϕ0j

ϕ−1j + hj

(
∂ϕ−1j

∂hj
+ 1
)]

.

A.6

Objective. Show that ceteris paribus the growth rate exhibits an ambivalent reaction to changes of hj .

Proof. Based on (22), it can be shown that ∂g∗j
∂hj

> 0 for small hj . Since the first term on the r.h.s. of (22)

is always positive, it is sufficient to scrutinize the sign of the second term on the r.h.s. (term in squared

brackets). So, using Proposition 3 and (35) and (37), it should be true that for small hj

ϕ−1j + hj
ϕ0j

(
− ϕ0j

ϕ0j + ρ+ hj

)
+

2ϕ0j

ϕ−1j + hj

1−
ϕ−1j +

(
ϕ0j

ϕ0j+ρ+hj

)
(ϕ0j − ϕ−1j)

ϕ−1j + ρ+ hj + ϕ0j

 > 0 .

Since we investigate the behavior of ∂g
∗
j

∂hj
for small hj , it is sufficient to show that the inequality is greater than

zero for hj = 0. The reason for this is that hj = 0 corresponds to a point compared to which the inflection

point of the inverted-U, constituting the ambivalent behavior of g∗j , is certainly on the right. Setting hj to

zero yields

2ϕ0j

ϕ−1j

(
(ϕ0j + ρ)2 − ϕ0j (ϕ0j − ϕ−1j)

(ϕ−1j + ϕ0j + ρ) (ϕ0j + ρ)

)
− ϕ−1j

ϕ0j + ρ
> 0

2ϕ0j

ϕ−1j

2ϕ0j ρ+ ρ2 + ϕ0j ϕ−1j

ϕ−1j ϕ0j + ϕ2
0j + 2ϕ0j ρ+ ϕ−1j ρ+ ρ2

>
ϕ−1j

ϕ0j + ρ

2ϕ0j

ϕ−1j

3ϕ0j ρ
2 + 2ϕ2

0j ρ+ ϕ2
0j ϕ−1j + ρ3 + ϕ0j ϕ−1j ρ

ϕ2
−1j ϕ0j + ϕ2

0j ϕ−1j + 2ϕ0j ϕ−1j ρ+ ϕ2
−1j ρ+ ϕ−1j ρ2

> 1 . (39)
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In the last line it becomes apparent, that ρ simply scales up the expression on the l.h.s. of (39). This is

due to the fact that 2ϕ0j
ϕ−1j

3ϕ0j ρ
2+2ϕ2

0j ρ+ϕ
2
0j ϕ−1j+ρ

3+ϕ0j ϕ−1j ρ

ϕ2
−1j ϕ0j+ϕ2

0j ϕ−1j+2ϕ0j ϕ−1j ρ+ϕ2
−1j ρ+ϕ−1j ρ2

> 0 immediately follows from ϕ0j > 0,

ϕ−1j > 0, and ρ ≥ 0. Consequently, if the inequality (39) holds for ρ = 0, then it must hold for ρ > 0

a fortiori. Again, we are able to reduce the expression by setting an exogenous parameter to zero, so that

ρ = 0. This yields
2ϕ3

0j ϕ−1j

ϕ3
−1j ϕ0j + ϕ2

0j ϕ
2
−1j

> 1 . (40)

If this inequality is true, ∂g
∗
j

∂hj
> 0 holds for hj = 0 under the condition that ϕ0j > ϕ−1j (Proposition 3).

We can prove this by contradiction, supposing that ϕ0j ≤ ϕ−1j . In this case (40) becomes

a) ϕ0j = ϕ−1j ⇒
2ϕ3

0j ϕ0j

ϕ3
0j ϕ0j + ϕ2

0j ϕ
2
0j

> 1 ⇔
2ϕ4

0j

2ϕ4
0j

> 1 ⇔ 1 > 1 → contradiction

b) ϕ0j < ϕ−1j ⇒
2ϕ3

0j (ϕ0j + ε)
(ϕ0j + ε)3 ϕ0j + ϕ2

0j (ϕ0j + ε)2
> 1 ⇔

2ϕ4
0j + 2ϕ3

0j ε

2ϕ4
0j + 5ϕ3

0j ε+ 4ϕ2
0j ε

2 + ϕ0j ε3
> 1

⇔ 2ϕ4
0j + 2ϕ3

0j ε > 2ϕ4
0j + 2ϕ3

0j ε+ Γ → contradiction

where Γ = 3ϕ3
0j ε+ 4ϕ2

0j ε
2 +ϕ0j ε

3 > 0. b) uses the fact that, if ϕ0j < ϕ−1j , there is an infinitesimal ε > 0

that can be added to ϕ0j in order to yield ϕ−1j , which implies that (ϕ0j + ε) = ϕ−1j . Since ϕ0j > 0 and

ε > 0, Γ must be strictly greater than zero, so the right hand side cannot be smaller than the left hand side.

Hence, we have established that ∂g∗j
∂hj

> 0, if hj is sufficiently small.

Finally, we can complete proving the ambivalence by showing that ∂g∗j
∂hj

< 0 for large hj . Using (22) and

inserting (35) and (37), we can write

2ϕ0j

ϕ−1j + hj

(
(ϕ0j + ρ+ hj)2 − ϕ0j (ϕ0j − ϕ−1j)

(ϕ−1j + ϕ0j + ρ+ hj) (ϕ0j + ρ+ hj)

)
− ϕ−1j + hj
ϕ0j + ρ+ hj

< 0

As before, we set ρ = 0 and simplify the expression to

2ϕ0j

ϕ−1j + hj

(
2ϕ0j hj + h2

j + ϕ0j ϕ−1j

(ϕ−1j + ϕ0j + hj) (ϕ0j + hj)

)
<
ϕ−1j + hj
ϕ0j + hj

. (41)

If the inequality holds for hj =∞, there is at least one hj for which the direction of the above unequal sign

is reversed and the ambivalence exists. Taking the limit of the right hand side of (41) yields

lim
hj→∞

ϕ−1j + hj
ϕ0j + hj

= 1 ,

since, as we have seen before, lim
hj→∞

ϕ0j = 0 and lim
hj→∞

ϕ−1j = 0. Taking the limit of the first term on the

left hand side gives us

lim
hj→∞

2ϕ0j

ϕ−1j + hj
= 0 ,

because the numerator tends to zero for large hj . This leaves us with enough information to confirm that

inequality (41) holds true, because we have 0 ·
(

2ϕ0j hj+h
2
j+ϕ0j ϕ−1j

(ϕ−1j+ϕ0j+hj) (ϕ0j+hj)

)
< 1. Consequently, we can state

that, while for small hj ,
∂g∗j
∂hj

> 0, for large hj we have ∂g∗j
∂hj

< 0. Changes in patent protection, therefore,

cause growth to exhibit an ambivalent reaction.
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Appendix B (section 3)

B.1

Objective. Show that ∂(π1j−π0j)
∂αj

>
∂(π0j−π−1j)

∂αj
.

Proof. According to (8), we can write the incremental profits as

π1j − π0j =
1 + (1− αj)

(
γ−1

)αj
[1 + (γ−1)αj ]2

−
(

1
2
− 1

4
αj

)

and

π0j − π−1j =
(

1
2
− 1

4

)
αj +

1 + (1− αj) (γ)αj

[1 + (γ)αj ]2
.

The first derivative of (π1j − π0j) w.r.t. αj is

∂(π1j − π0j)
∂αj

=
1
4

+
(1− αj) ( 1

γ )αj ln ( 1
γ )− ( 1

γ )αj[
1 + ( 1

γ )αj
]2 −

2
[
1 + (1− αj) ( 1

γ )2
]

( 1
γ )αj ln ( 1

γ )[
1 + ( 1

γ )αj
]3

which, for notational simplicity, we rewrite to ∂(π1j−π0j)
∂αj

= 1
4 +B(γ−1)−C(γ−1). Similarly, we take the first

derivative of (π0j − π−1j) w.r.t. αj , which yields

∂(π0j − π−1j)
∂αj

= −1
4
− (1− αj) (γ)αj ln (γ)− (γ)αj

[1 + (γ)αj ]2
+

2
[
1 + (1− αj) (γ)2

]
(γ)αj ln (γ)

[1 + (γ)αj ]3
.

Again, we simplify the following notations by rewriting to ∂(π0j−π−1j)
∂αj

= − 1
4 − B(γ) + C(γ).

Since γ is strictly greater than 1 and − ln( 1
γ ) > 0, it must be true that −C(γ−1) > C(γ). In order to

prove ∂(π1j−π0j)
∂αj

>
∂(π0j−π−1j)

∂αj
, we can, therefore, focus on showing that 1

4 + B(γ−1) > − 1
4 − B(γ). Due to

the fact that

lim
γ→1
B(γ−1) = −0.25 and lim

γ→∞
B(γ−1) = 0

and similarly

lim
γ→1
B(γ) = −0.25 and lim

γ→∞
B(γ) = 0 ,

and because B(γ−1) and B(γ) are always smaller than zero, it becomes apparent that for the given assumption

of γ > 1
1
4

+ B(γ−1) > 0 while − 1
4
− B(γ) < 0 .

Hence, we have shown that

∂(π1j − π0j)
∂αj

=
1
4

+ B(γ−1)− C(γ−1) >
∂(π0j − π−1j)

∂αj
= −1

4
− B(γ) + C(γ) ,

which concludes the proof.
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B.2

Objective. Show that Results 1 and 2 are robust to variations of the extant parameters (γ and βj).

Numerical Calibration. Besides the benchmark case of γbenchmark = 1.1, I will vary γ similarly to the calibra-

tion in Acemoglu/Akcigit (2008), where γ = 1.01, γ = 1.05 and γ = 1.2. Also, apart from βj,benchmark = 5,

I will check for robustness using βj = 0.1 and βj = 10. Note that since Mehra/Prescott (1985) found that

r(t) = 0.07, I fix ρ to that rate throughout the calibration.
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Note that I chose to keep the scale of hj fixed in order to ensure comparability, although in the cases where

βj = 0.1 Results 1 and 2 could be seen more easily by rescaling hj .

γ = 1.1 γ = 1.2
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It becomes apparent that the inverted-U relation between growth (Result 1) and the direction of its reaction

to changes in product market competition αj (Result 2) are robust to several parameter variations.
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B.3

Objective. Show that Results 1 and 3 are robust to variations of the extant parameters (γ and αj).

Numerical Calibration. Besides the benchmark case of γbenchmark = 1.1, I will vary γ similarly to the calibra-

tion in Acemoglu/Akcigit (2008), where γ = 1.01, γ = 1.05 and γ = 1.2. Also, apart from αj,benchmark = 0.8,

I will check for robustness using αj = 0.1 and αj = 1, since αj ∈ (0, 1]. As above, ρ = 0.07 throughout the

calibration.
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Note that, as above, I chose to keep the scale of hj fixed in order to ensure comparability, although in the

cases where αj = 0.1 Results 1 and 3 could be seen more easily by rescaling hj .
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It becomes apparent that the inverted-U relation between growth (Result 1) and the direction of its reaction

to changes in R&D productivity βj (Result 3) are robust to parameter variations.
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B.4

Objective. Show that Result 4 is robust to variations of the extant parameters (γ and αj).

Numerical Calibration. Besides the benchmark case of γbenchmark = 1.1, I will vary γ similarly to the calibra-

tion in Acemoglu/Akcigit (2008), where γ = 1.01, γ = 1.05 and γ = 1.2. Also, apart from αj,benchmark = 0.8,

I will check for robustness using αj = 0.1 and αj = 1, since αj ∈ (0, 1]. As above, ρ = 0.07 throughout the

calibration and βj will be fixed to 1.
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Note that, as above, I chose to keep the scale of hj fixed in order to ensure comparability, although in the

cases where αj = 0.1 Result 4 could be seen more easily by rescaling hj .
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It becomes apparent that the direction of the reaction of the growth rate’s maximum to changes in the

laggard’s reverse engineering capability ιj (Result 4) is robust to several parameter variations.
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B.5

Objective. Under the premise that the imitator’s R&D costs follow (26), show that the optimal research

intensity of a neck-to-neck firm is given by (27) and the optimal research intensity of a following firm is given

by (28).

Proof. Recall from section 2.4.2 that the leading firm’s value function is

ρ V1 = π1j − (ϕ̃−1j + hj) [V1 − V0] , (12)

and the neck-to-neck firms’ value function to

ρ V0 =
[
π0j −

(ϕ0j)2

2βj

]
+ ϕ0j [V1 − V0]− ϕ̃0j [V0 − V−1] . (13)

Due to (26) the catching-up firm’s value function changes to

ρ V−1 =
[
π−1j −

ιj
2βj

(ϕ−1j)2

]
+ (ϕ−1j + hj) [V0 − V−1] . (42)

While the first order condition of a neck-to-neck firms remains unchanged (see (15)), as shown in section

3.4, the laggard’s first order condition becomes

ιj
βj
ϕ−1j = (V0 − V−1) . (43)

Based on this, we can derive the laggard’s optimal research intensity. Using (43) and inserting (13) and

(42) we can write

ιj
βj
ϕ−1j =

1
ρ

[
π0j −

(ϕ0j)2

2βj
+ ϕ0j [V1 − V0]− ϕ̃0j [V0 − V−1]

]
−1
ρ

[
π−1j −

ιj
2βj

(ϕ−1j)2 + (ϕ−1j + hj) [V0 − V−1]
]
.

As in section 2.4.2 I proceed by using (15) and (43) in order to simplify to

ρ
ιj
βj
ϕ−1j = π0j −

(ϕ0j)2

2βj
+

(ϕ0j)2

βj
− ϕ̃0j

ιj
βj
ϕ−1j −

[
π−1j −

ιj
2βj

(ϕ−1j)2 + (ϕ−1j + hj)
ιj
βj
ϕ−1j

]
Rearranging this to

0 = (ϕ−1j)2 + 2ϕ−1j (ρ+ hj + ϕ0j)−
2βj
ιj

(π0j − π−1j)−
1
ιj

(ϕ0j)2

enables us to solve for the alternative profit maximizing R&D intensity of the laggard

ϕ−1j = −(ρ+ hj + ϕ0j) +

√
(ρ+ hj + ϕ0j)

2 +
2βj
ιj

(π0j − π−1j) +
1
ιj

(ϕ0j)2 .

Similarly, based on the neck-to-neck first order condition (15), we can use (12) and (13) to write

ϕ0j

βj
=

1
ρ

[π1j − (ϕ̃−1j + hj) [V1 − V0]]− 1
ρ

[
π0j −

(ϕ0j)2

2βj
+ ϕ0j [V1 − V0]− ϕ̃0j [V0 − V−1]

]
.
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Again, I utilize (15) and (43) to simplify to

ρ
ϕ0j

βj
= π1j − (ϕ̃−1j + hj)

ϕ0j

βj
−
[
π0j −

(ϕ0j)2

2βj
+

(ϕ0j)2

βj
− ϕ̃0j

ιj
βj
ϕ−1j

]
.

After rearranging this expression to

0 = (ϕ0j)2 + 2ϕ0j [ρ+ hj + ϕ−1j (1− ιj)]− 2βj (π1j − π0j) ,

we can solve for the alternative profit maximizing R&D intensity of a neck-to-neck firm

ϕ0j = −[ρ+ hj + ϕ−1j (1− ιj)] +
√

[ρ+ hj + ϕ−1j (1− ιj)]2 + 2βj (π1j − π0j) .

This concludes the proof and the Appendices.
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