
Heinen, Florian; Willert, Juliane

Working Paper

Monitoring a change in persistence of a long range
dependent time series

Diskussionsbeitrag, No. 479

Provided in Cooperation with:
School of Economics and Management, University of Hannover

Suggested Citation: Heinen, Florian; Willert, Juliane (2011) : Monitoring a change in persistence of
a long range dependent time series, Diskussionsbeitrag, No. 479, Leibniz Universität Hannover,
Wirtschaftswissenschaftliche Fakultät, Hannover

This Version is available at:
https://hdl.handle.net/10419/73135

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/73135
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Monitoring a change in persistence of a long range
dependent time series∗

Florian Heinen1, Juliane Willert

Institute of Statistics, Faculty of Economics and Management,

Leibniz University of Hannover, D-30167 Hannover, Germany

Abstract

We consider the detection of a change in persistence of a long range dependent time

series. The usual approach is to use one-shot tests to detect a change in persistence a

posteriori in a historical data set. However, as breaks can occur at any given time and

data arrives steadily it is desirable to detect a change in persistence as soon as possible.

We propose the use of a MOSUM type test which allows sequential application whenever

new data arrives. We derive the asymptotic distribution of the test statistic and prove

consistency. We further study the finite sample behavior of the test and provide an

empirical application.

JEL-Numbers: C12, C22

Keywords: Change in persistence · Long range dependency · MOSUM test

1 Introduction

The assumption of structural stability of an econometric model is a major issue in time

series econometrics. If the parameter estimates stem from an unstable relationship they

are not meaningful and additionally inference can be biased and forecasts yield inac-

curate results (see e.g. Hansen (2001), Andrews and Fair (1988), Ghysel et al. (1997),

Garcia and Perron (1996) or Clements and Hendry (1998)). In reaction to these findings

a large amount of literature emerged that incorporated structural change in the infer-

ence techniques or analyzes forecasting subject to structural change more closely (see
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e.g. Perron (1989), Zivot and Andrews (1992) or Pesaran and Timmermann (2005)).

Recently the possibility of a change in persistence, i.e. a change in the memory struc-

ture of the time series as a special case of structural instability, has become object of

study (see e.g. Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), Banerjee et al.

(1992), Leybourne et al. (2003) or Leybourne et al. (2007)). This work has been placed

within the I(0) vs. I(1), or vice versa, framework where the focus lies on short memory

time series with an exponentially decaying autocorrelation structure.

However, since the seminal papers of Granger and Joyeux (1980) and Hosking (1981),

long memory time series have become widely used in economics to model highly per-

sistent time series as diverse as inflation rates or realized volatility (see e.g. Hassler

and Wolters (1995) and Corsi et al. (2008)). Baillie (1996) provides an overview about

various applications of long memory time series in economics.

Despite these facts little work has been done to test for a change in persistence in long

range dependent time series. Notable exceptions are Beran and Terrin (1996), Ray and

Tsay (2002), Sibbertsen and Kruse (2009) or Yamaguchi (2011). These test belong to

the class of so-called ”one-shot” tests (see Chu et al. (1996, p. 1045)), i.e. tests that are

applied a posteriori to detect a structural break within a historical data set.

Because breaks can occur at any given time and also new data arrives steadily it is desir-

able for the applied econometrician to detect a change in persistence as soon as possible.

This leads to a sequential testing problem (see Siegmund (1985) for an overview). As the

usual ”one-shot” tests work with constant critical values they cannot be applied sequen-

tially given that the true null of no change would eventually be rejected with probability

one (see Robbins (1970)). Starting with Bauer and Hackl (1978) a strand of literature

has emerged that studies monitoring procedures that allow to detect structural change

whenever new data arrives. Important contributions on this field are Chu et al. (1995),

Kuan and Hornik (1995), Chu et al. (1996), Leisch et al. (2000), Altissimo and Corradi

(2003), Zeileis et al. (2005), Andreou and Ghysels (2006) and Hsu (2007). These papers

contribute to the literature on monitoring structural stability on different levels ranging

from theoretical contributions to detecting structural change in the conditional mean or

the conditional variance or comparing different types of rejection regions for the null.

In this paper we use a monitoring approach based on moving sums of residuals and place

it into a long memory framework. We develop a procedure to detect an increase in per-

sistence for the case that the process becomes non-stationary. This is important because

an increase in persistence implies a loss of controllability for important macroeconomic

time series such as inflation rate or the European overnight rate (EONIA) (see Sibbert-

sen and Kruse (2009) and Hassler and Nautz (2008)). Further, a change in persistence

also affects forecast accuracy in long memory time series (see Heinen et al. (2009)).

The rest of the paper is organized as follows: In section 2 we describe the test procedure
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we use and develop the asymptotic behavior. We further discuss and motivate different

forms of boundary functions for the test. In section 3 we undertake a simulation study

to asses the finite sample performance of the monitoring test. Section 4 contains an em-

pirical application before section 5 concludes. All proofs are collected in the appendix

A.

2 Monitoring a change in persistence

We assume that the data generating process follows an ARFIMA(p,d,q) process as

proposed by Granger and Joyeux (1980)

Φ(L)(1−L)dyt = Θ(L)εt, with εt
iid
∼ (0,σ2) and t = 1,2, . . . ,T . (1)

The differencing parameter d can take fractional values but is assumed to be |d| < 1
2.

Thus the process yt is in the stationary region (see e.g. Beran (1995)).

Bauer and Hackl (1978) propose the use of moving sums of cumulated residuals (MO-

SUM) to detect parameter changes in regression models. These tests are further inves-

tigated by Chu et al. (1995).

We are interested in detecting a change in persistence, i.e. a change in the fractional

differencing parameter d, in the monitoring period T +1 up to [Tτ], τ > 1. Where [·]
denotes the integer part of its argument.

In particular, we test the null of no change in persistence, i.e. d = d0 within the moni-

toring period where |d0| < 1
2, against the alternative of an increase in persistence. More

formally we test the null that

H0 : dℓ = d0, ℓ = T +1, . . . , [Tτ] , (2)

against the alternative that at some point in the monitoring period the persistence

increases and 1
2 < dℓ <

3
2. Thus we test whether the process stays in the stationary

region throughout the whole monitoring period or changes into the non-stationary region

with an infinite variance at some point in the monitoring period. For the period from

t = 1, . . . ,T we follow Chu et al. (1996) and make the ”noncontamination” assumption

that

dt = d0, t = 1, . . . ,T ,

with |d0| < 1
2. Consider for simplicity the case of an ARFIMA(0,d,0) process.

Let êt be an ARFIMA(0,d,0) process as in (1) and σ̂2
= T−1∑T

i=1 ê2
i a consistent estimator

of σ2. Based on a moving sum of residuals obtained from a fixed window size [Th],
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0< h ≤ 1, the prototypical MOSUM test reads

MS T,h,d = max
T+1≤k≤[Tτ]

σ−1T−
1
2−d

∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=k−[T h]+1

êi−
[Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣
∣

, (3)

for each value k in the monitoring period T +1 through [Tτ].

The next theorem gives the asymptotic behavior of the test statistic in (3) if yt follows

a long range dependent process as in (1) and (2).

Theorem 1. Assume the process yt follows an ARFIMA(0,d,0) process as in (1) with

|d| < 1
2. Then, as T →∞, we have for MS T,h,d in (3) that

MS T,h,d⇒
1
σ

max
t∈[1,τ]

∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,

where BB0(t,d) denotes a fractional Brownian Bridge depending on fractional Brownian

motion with parameter d. ⇒ denotes weak convergence on a function space.

Under the alternative of a break in persistence the test is consistent.

The limiting distribution thus depends on the increments of a fractional Brownian bridge

which in turn depends on the differencing parameter d of the data generating process.

Therefore the asymptotic critical values of MS T,h,d are determined by the boundary

crossing probabilities of the increments of a fractional Brownian bridge:

P {MS T,h,d ≤ b
}

= P
{∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ≤ b
}

. (4)

The use of the test statistic in (3) is beneficial because the sequential application of

usual CUSUM tests as in Sibbertsen and Kruse (2009) with constant critical values will

eventually reject a correct null of no change in persistence with probability one (see

Robbins (1970)).

Generally, every strictly increasing function b(t) = zq(t) could serve as a boundary func-

tion where z is some suitable scaling factor and q(t) is some monotonically increasing

function in time. However if the boundary function grows too slowly the monitoring

test will commit the type one error almost surely as it will detect a break in persistence

with probability one. On the contrary if the boundary grows too quickly the test will

loose power because a break in persistence cannot be detected anymore. For the short

memory case a variety of different boundary functions have been proposed (see Andreou

and Ghysels (2006, p. 92) for an overview). In particular Altissimo and Corradi (2003)

derive a boundary function based on the almost sure asymptotically uniform equicon-

tinuity of the Brownian bridge obtaining an almost sure boundary function. This is

convenient because it gives the rate of convergence with which the sequence of functions

- 4-



converges to a relatively compact set in the sense of an Arzelà-Ascoli theorem (see e.g.

Davidson (1994, p. 335)). This provides useful information as we are interested in the

behavior of the limiting distribution independently of the test statistic. We also derive

almost sure results similar to the ones obtained by Altissimo and Corradi (2003) which

are collected in the next theorem.

Theorem 2. Let BB0(t,d) = B(t,d)− tB(1,d) be a fractional Brownian bridge. Then,

d−1
T |BB0(t,d)| is almost surely asymptotically uniform equicontinuous in t ∈ [0,1]. With

dT ≔
√

2T 2d+1 log log(T ).

The use of this theorem is that it provides the rate with which the increment of the frac-

tional brownian bridge becomes asymptotically uniform equicontinuous. In the proof

this derived to be
√

2loglog(T ). Hence, if we use this growth rate for the boundary

function we will obtain a slowly growing function and therefore detect a change in per-

sistence but at the same time this function is independent of the long memory parameter

under the null d0.

Different forms of the boundary function are possible. For example one could use the

boundary function

b1(t) = z
√

2t log2(t) , (5)

where log2(t) ≔ log(log(t)). This boundary function is based on the law of iterated

logarithm and is motivated by the fastest detection of change because it grows as slowly

as possible. From theorem 2 we deduce the boundary function

b2(t) = z
√

2log2(t) . (6)

Because both boundary functions rely on the square root of a logarithm one needs to

find a way to deal with values ≤ log(1) to ensure real valued boundaries. One way of

doing so is to define

log′2(t)≔






1, if t ≤ exp(1)

loglog(t), if t > exp(1),

similar to Leisch et al. (2000). Another way which avoids the constant behavior of the

boundary function at the beginning of the monitoring period is to define

log′′2 (t)≔






t, if t ≤ exp(1)

loglog(t), if t > exp(1).
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Formally this leads to four possible boundary functions

b3(t) = z
√

2t log′2(t) (7)

b4(t) = z
√

2t log′′2 (t) (8)

b5(t) = z
√

2log′2(t) (9)

b6(t) = z
√

2log′′2 (t) . (10)

One could think of different boundary functions such as functions that are dependent

on the long memory parameter under the null to account for the gradually increasing

variance of the process. However, unreported simulations showed that such a boundary

function does not perform satisfactorily and we therefore restrict ourselves to the above

boundary functions.

3 Monte Carlo evidence

We start by providing some Monte Carlo evidence on the small sample behavior of the

usual MOSUM test as considered in Leisch et al. (2000) under long range dependence.

Table 1 shows some of the simulation results.

τ = 4 τ = 6 τ = 8

d h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1

0.1 66.22 57.26 51.08 70.04 62.80 53.72 72.52 67.12 57.02

0.2 98.06 96.38 91.90 99.28 97.94 94.90 99.76 98.98 96.86

0.3 99.96 99.90 99.64 100.00 100.00 99.96 100.00 100.00 99.96

0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 1: Empirical size of the fluctuation test by Leisch et al. (2000) [in %] for T = 250 and
α = 5%.

As expected the generalized fluctuation test does not keep its size. Even if the long

memory is only moderately present the test does not allow a secure conclusion whether

a change in persistence is present or not because the boundary functions are too narrow.

In order to assess the finite sample performance of the monitoring procedure described in

section 2 we consider different values for the long memory parameter d = 0.1,0.2,0.3,0.4,

the monitoring window h = 0.25,0.5,0.75,1 and the out-of-sample monitoring period

τ = 2,4,6,8,10. We also consider different sample sizes of T = 200,250,300 and the

different boundary functions bi(t), for i = 3, . . . ,6, from (7) to (10) for the simulations.

The number of Monte Carlo repetitions is set to M = 10000and the levels of significance
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are set to α = 1%,5%,10%.1

Boundary function b3(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 6.86 7.10 8.59 6.26 6.95 9.03 7.07 6.97 8.60

0.2 6.77 6.80 8.73 6.47 6.56 8.52 5.75 6.82 8.97

0.3 5.68 7.12 9.76 6.16 7.08 9.54 6.21 7.08 10.24

0.4 10.77 12.29 16.43 9.96 12.82 16.18 10.07 12.24 16.09

Table 2: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

Table 2 shows the size results for the boundary function motivated by the law of iter-

ated logarithm. Using this boundary we obtain a procedure that is generally oversized.

This overrejection of the correct null becomes more severe as the degree of persistence

increases and/or the monitoring window h increases.

Table 3 displays the respective results based on the almost sure results from theorem

2. These results are more promising compared to the ones of boundary b3(t) as the

nominal size level is better adhered to. Looking at the dependencies between the size,

the long memory parameter d, the monitoring window h and the monitoring period τ we

see that a moderate window size of h = 0.5 or h = 0.75 is generally preferable regardless

of the monitoring period τ. If the persistence increases a reduced window size of h = 0.5

yields the most accurate size results. Reducing the window size even further to h = 0.25,

however, leads to overrejection again as unreported results show.

As the boundary function b6(t) is only a slight modification of boundary function b5(t)

the same argument as above applies to the results in table 4. The only difference is that

the test overrejects somewhat when using boundary function b6(t).

Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.55 7.02 7.09 7.12 6.16 6.69 7.30 6.56 6.29

0.2 6.76 5.85 6.56 6.64 5.85 5.60 5.90 5.66 5.23

0.3 5.15 4.87 4.87 5.08 4.28 4.29 5.16 3.89 3.92

0.4 5.61 5.10 5.78 4.86 4.12 4.28 4.32 3.63 3.89

Table 3: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

1Some of the results here and in the sequel are unreported to save space but can be obtained from the
authors on request.
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Boundary function b6(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.00 7.52 8.65 6.75 6.71 8.42 7.34 7.05 7.59

0.2 7.13 6.92 8.60 6.69 6.31 7.33 6.02 6.20 6.70

0.3 6.12 6.96 8.94 5.96 5.86 7.26 5.84 5.58 6.49

0.4 10.26 11.22 13.96 8.39 9.61 10.83 7.67 8.06 9.53

Table 4: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

The size results for the α = 10% level are unreported but show the same general behav-

ior of the previously discussed results. However, in this setting it becomes even more

obvious that the boundary function b5(t) yields the best performance over all considered

settings.

Generally the size distortions are minor and acceptable and also comparable to the short

memory case as reported in Leisch et al. (2000).

In an empirical setting the long memory parameter d0 is unknown and has to be es-

timated. We therefore conduct the size experiment again but this time using an esti-

mated d0. Generally every consistent estimation method is applicable but estimators

that converge faster than the asymptotic distribution to the true value of d0 are prefer-

able. One such estimator is the approximate maximum likelihood estimator proposed

by Beran (1995) which is
√

T consistent. Another popular method to estimate d0 is the

log-periodogram regression (see Geweke and Porter-Hudak (1983)). The rate of conver-

gence of this estimator is
√

m where m is the number of frequencies used. The estimator

is consistent as long as (m log(m))/n→ 0 as m,n→∞, with n being the sample size (see

Hurvich et al. (1998)). In our simulations we use this estimator with T 4/5 frequencies.

The results are reported for the α = 5% level in table 5.

Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 8.68 7.62 8.50 8.62 7.14 7.48 7.72 7.20 6.42

0.2 7.12 6.62 6.02 7.44 6.08 5.82 6.36 5.86 5.42

0.3 5.74 4.98 5.26 5.14 4.28 4.40 4.26 4.24 4.04

0.4 5.36 4.86 5.38 4.32 4.36 4.34 3.74 3.42 4.04

Table 5: Empirical size of the monitoring procedure with estimated d0.

We observe small size distortions for smaller values of d0 and larger monitoring periods
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but generally the size is well kept even if we estimate the long memory parameter.

When the persistence changes from stationary to non-stationary the MOSUM test will

eventually detect this with probability one due to consistency (see theorem 1).2 There-

fore it is more interesting how fast a change in persistence can be detected.

To study the detection delay we consider breaks from the stationary region, namely

d0 = 0.1,0.2,0.3,0.4, to the non-stationary region, d1 = 0.6,0.7,0.8,0.9,1. The break oc-

curs within the monitoring period at t∗ =
[

ρτT
]

, where ρ = 0.3,0.5,0.7 and τ = 2,4,6,8,10

as above and [·] denotes the integer part of its argument. We use a sample size of T = 250

and the boundary functions bi(t), for i = 3, . . . ,6, from (7) to (10). As an example the

average detection delay for the α = 5% level for the boundary function b5(t) for different

breaks is displayed in tables 6, 7 and 8.

Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.33 43.40 37.23 77.61 63.15 49.58 91.34 72.67 56.20

0.2 79.23 63.41 54.45 112.58 95.82 81.91 126.86 112.28 95.50

0.3 112.44 92.12 76.31 144.79 137.08 122.53 158.95 156.00 148.96

0.4 133.96 118.80 99.73 150.59 158.25 151.10 157.33 172.92 172.75

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 57.89 46.73 38.50 91.25 71.51 57.13 116.31 90.09 69.96

0.2 94.31 72.12 59.49 149.92 118.26 98.78 186.03 152.03 127.12

0.3 160.65 109.40 86.93 222.47 183.72 152.57 265.43 240.25 210.58

0.4 225.64 167.07 121.51 272.32 258.26 214.56 293.90 309.68 282.91

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.52 41.29 32.36 96.13 71.78 56.47 124.22 94.77 72.26

0.2 98.55 69.55 55.80 167.16 124.39 104.44 217.05 169.95 138.28

0.3 190.16 111.91 85.96 282.65 204.74 165.30 339.06 276.86 231.03

0.4 315.36 192.13 126.20 380.04 315.26 239.72 419.28 396.05 320.28

Table 6: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.3.

Table 6 shows the results for the case of an early break within the monitoring period. As

one expects the detection is easier and therefore faster if the difference between d0 and

d1 is large. Consequently the detection delay is rather small if the persistence changes

from stationary, say d0 = 0.2, long memory to non-stationary, say d1 = 0.8, and even

2This has also been confirmed in unreported simulations.
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faster if the process becomes a unit root process after the break. In fact, the detection

delay for larger breaks is comparable with the short memory case (see table 3 in Leisch

et al. (2000)). This is encouraging given the well known slow rate of convergence in long

memory time series. Another result is that it is easier and faster to detect a change in

persistence if the width of the monitoring window [Th] is rather small. Detection delays

for values of h = 0.25 and h = 0.5 are generally smaller compared to larger values of h.

This is also in line with the findings of Leisch et al. (2000) for the short memory case.

It is well known also in related areas of the structural change literature (see e.g Pesaran

and Timmermann (2005) for results regarding forecasts under structural breaks) that

smaller windows of data are usually better to detect and deal with structural change.

The results for later breaks within the monitoring period are shown in tables 7 and 8.

The general conclusions from above remain valid but the detection delay becomes even

smaller if the breaks occurs later. This is also a similar behavior to the short memory

case reported in Leisch et al. (2000).

Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 44.55 35.39 28.67 65.85 54.45 43.62 74.23 60.25 48.20

0.2 65.49 55.62 47.31 89.16 82.66 72.46 96.55 91.89 81.20

0.3 85.56 78.49 68.26 110.59 112.02 106.93 118.37 123.46 118.71

0.4 89.62 92.35 84.78 99.62 115.70 117.50 95.06 110.72 125.06

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 51.01 35.76 29.86 88.67 68.46 52.90 113.94 87.37 67.87

0.2 88.44 64.41 51.54 141.47 116.89 98.79 172.76 150.65 129.69

0.3 143.60 108.29 82.25 190.48 174.08 152.71 223.04 217.80 204.48

0.4 169.54 153.31 114.90 204.31 218.35 201.99 225.85 250.99 241.94

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 36.59 24.66 16.15 87.80 65.26 47.83 122.35 90.52 67.80

0.2 86.31 58.32 41.59 158.73 120.80 99.18 204.27 169.67 140.36

0.3 174.06 106.13 74.87 242.96 201.27 163.20 289.19 264.62 229.60

0.4 235.73 181.23 121.38 287.28 279.41 231.81 303.02 332.77 302.43

Table 7: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.5.
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Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 28.02 24.45 18.84 39.55 35.59 30.44 41.95 38.81 31.69

0.2 39.24 38.55 33.06 53.02 52.25 50.44 54.65 53.90 52.27

0.3 45.85 53.02 50.46 61.29 69.01 69.73 50.52 60.77 69.68

0.4 27.52 44.96 50.19 21.71 38.06 52.93 -77.72 -86.60 -61.95

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 38.81 24.41 16.72 69.65 58.49 44.95 86.56 79.32 63.26

0.2 66.51 51.73 40.02 101.49 101.71 92.10 121.38 117.65 112.30

0.3 90.24 82.78 69.57 124.50 133.20 131.38 146.83 156.16 159.54

0.4 77.71 100.90 92.53 96.81 138.45 144.58 93.48 140.91 166.83

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 12.08 4.92 -5.71 68.34 50.98 33.94 99.05 76.97 55.14

0.2 63.08 37.87 20.33 120.52 103.78 87.11 155.37 142.54 128.07

0.3 104.40 85.53 57.51 163.12 161.03 145.76 188.54 197.29 196.56

0.4 110.33 132.11 96.32 139.56 185.50 185.40 148.29 215.15 222.53

Table 8: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.7.

4 Empirical Application

To illustrate the use of the monitoring approach we analyze monthly US price inflation

series from Stock and Watson (2005).3 In particular we consider the first difference of

the logarithmic implied price deflator for durable goods. This series has also been under

investigation from Cavaliere and Taylor (2008) who report a change in persistence from

I(0) to I(1). However, they did not consider the possibility of fractional integration in

the series although inflation related time series are likely to show long memory behavior

(see e.g. Hassler and Wolters (1995)). The sample spans from 01/1959 to 12/2003. The

series is depicted in figure 1.

3The data is available at Mark Watson’s website at: http://www.princeton.edu/∼mwatson/wp.html.
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Figure 1: First difference of logarithmic price deflator for durable goods.

To determine the value of the long memory parameter we use log-periodogram regression

as proposed by Geweke and Porter-Hudak (1983). The decision of how many frequencies

should be used in the regression is a trade-off between reducing the bias and reducing

the asymptotic variance. We use T 1/2 frequencies to deal with potential short memory

components in the data (see e.g. Agiakloglou et al. (1993)). For the whole sample this

yields an estimate of d̂ = 0.61. This value is highly significant as judged by its p-value

which is < 1e−03.

To test whether a change in persistence can be detected in the data we apply the CUSUM

of squares test for a change in persistence proposed by Sibbertsen and Kruse (2009) to

the whole sample. This leads to a test statistic of R = 0.0373which is significant at

the α = 5% level in favor of an increasing persistence. The estimated breakpoint is at

t∗ = 107which is 11/1967 (the dotted line in figure 1).

To use the monitoring approach we split the sample in an in-sample part ranging from

01/1959 to 12/1965 and leave the rest as monitoring period. This yields a τ ≈ 5. The

estimated d0 within the in-sample period is d̂0 = 0.23.

For the application of the MOSUM test we use the boundary function b5(t) and set h =

0.5. The first time the sequence of test statistics exceeds the α = 1% boundary function

is at t = 55 in the monitoring period. This is equivalent to an estimated breakpoint at

t∗ = 139 which is 06/1970 (the dashed line in figure 1). The first time the sequence of

test statistics exceeds the α = 5% and α = 10% boundary functions is only one period

earlier.
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The estimation of d1 in the monitoring period yields d̂1 = 0.68. Thus we can confirm

a change in persistence with high probability from stationary long memory to non-

stationary long memory.

Notably the detection delay is rather short and we obtain a fast indication of the change

in persistence from using the monitoring procedure.

5 Conclusion

Detecting a change in persistence as soon as possible is of paramount interest because

structural change affects the subsequent analysis of the data heavily. The usual approach

is to use one-shot tests to detect a change in persistence a posteriori. However, these tests

cannot be applied sequentially because a correct null of no change would eventually be

rejected with probability one. We propose a monitoring procedure based on moving sums

that allows to detect a change in the long memory parameter of a long range dependent

time series whenever new data arrives. By means of a Monte Carlo experiment we show

good size properties and also study the detection delay when a change in persistence

occurs. Depending on the width of the monitoring window and the difference between

the pre- and post-break long memory parameter the detection is rather fast. Smaller

monitoring windows generally prove more useful to detect a change in persistence early

and also larger differences between the long memory parameters are detected faster.

In an empirical illustration of the method we are able to confirm a change in persistence

from stationary to non-stationary long memory in an inflation time series.
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A Appendix

A.1 Proof of theorem 1

First, let k = [Tt] for each value in the monitoring period then write the test statistic as

MS T,h,d = max
T+1≤k≤[Tτ]

σ−1T−
1
2−d

∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=k−[T h]+1

êi−
[Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣
∣

= max
T+1≤[T t]≤[Tτ]

σ−1T−
1
2−d

∣
∣
∣
∣
∣
∣
∣

[T t]∑

i=1

êi−
[Tt]
T

T∑

i=1

êi−
[T t]−[T h]∑

i=1

êi+
[Tt] − [Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣

.

Then using the FCLT for fractionally integrated processes (see Sowell (1990) and David-

son and de Jong (2000)) and the continuous mapping theorem (CMT) we have

MS T,h,d ⇒ max
T+1≤[T t]≤[Tτ]

σ−1 |B(t,d)− tB(1,d)−B(t−h,d)+ (t−h)B(1,d)|

= max
T+1≤[T t]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)− [B(t−h,d)− (t−h)B(1,d)]

∣
∣
∣

= max
T+1≤[T t]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,

where BB0(t,d) denotes a fractional Brownian bridge.

To prove consistency we consider that at some point in the monitoring period, say k∗,

the persistence changes from stationary long memory with 0< d0 <
1
2 to non-stationary

long memory with 1
2 < d1 <

3
2 and then split the test statistic into its stationary and

non-stationary parts. We write the test statistic as

MS T,h,d0 = max
T+1≤k≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=k−[T h]+1

êi−
[Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣
∣

= max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

[rT ]∑

i=1

êi

︸︷︷︸

I

−
[rT ]−[hT ]∑

i=1

êi

︸     ︷︷     ︸

II

− [Th]
T

T∑

i=1

êi

︸︷︷︸

III

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where k = [rT ] for some r > 1. Part III only contains I(d0) variables due to the noncon-

tamination assumption.

We have to distinguish two cases:

(i) k∗ ≤ [rT ] − [Th] ⇒ in this case both I and II contain I(d1) variables

(ii) [rT ] − [Th] ≤ k∗ ≤ [rT ] ⇒ in this case only I contains I(d1) variables.
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Ad (i):

The case (i) is depicted in figure 2 where [rT ] is denoted by k1 and [rT ]− [Th] is denoted

by k0. The gray shaded area is the monitoring window.

T

in−sample out−of−sample

[T ⋅ τ]k* k0 k1

[T ⋅ h]

Figure 2: MOSUM case (i).

Write the test statistic as

MS T,h,d0 = max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

k∗∑

i=1

êi+

[rT ]∑

i=k∗+1

êi−
k∗∑

i=1

êi−
[rT ]−[hT ]∑

i=k∗+1

êi−
[hT ]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣

= max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

− [hT ]
T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣

+ max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣
∣

[rT ]∑

i=[rT ]−[hT ]

êi

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, the first part is I(d0) and is correctly standardized. Therefore, using the arguments

from above it converges to −hB(1,d0) which is the standard deviation of the fractional

Brownian motion. For the second part the standardization is obtained from d0 but the

variables are I(d1) and so the expression diverges and we obtain

MS T,h,d0 = op(1)+Op

(

T d1−d0
)

. (11)

Ad (ii):

The situation (ii) is depicted in figure 3.
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T

in−sample out−of−sample

[T ⋅ τ]k*k0 k1

[T ⋅ h]

Figure 3: MOSUM case (ii).

Now only I contains I(d1) variables. Write the test statistic as

MS T,h,d0 = max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

[rT ]∑

i=1

êi−
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i=1

êi−
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T
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êi

∣
∣
∣
∣
∣
∣
∣

= max
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∣
∣
∣
∣
∣
∣
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i=1

êi+
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êi−
[rT ]−[hT ]∑
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T

T∑
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êi

∣
∣
∣
∣
∣
∣
∣

= max
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σ−1T−
1
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∣
∣
∣
∣
∣
∣
∣

[rT ]∑
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êi
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∣
∣
∣
∣
∣
∣
∣

k∗∑

i=[rT ]−[hT ]

êi

∣
∣
∣
∣
∣
∣
∣
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− max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

[hT ]
T
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i=1

êi

∣
∣
∣
∣
∣
∣
∣

.

With the arguments from case (i) we obtain

MS T,h,d0 = Op

(

T d1−d0
)

+op(1)+op(1) , (12)

where the second part of the above expression does not expand with T anymore and

therefore vanishes as T →∞. �
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A.2 Proof of theorem 2

Denote by dT ≔
√

2T 2d+1 log log(T ). By the reverse triangle inequality we have for some

r ∈ [0,1]

d−1
T

∣
∣
∣B(Tr,d)− rB(T,d)− (B(Tr′,d)− r′B(T,d)

)∣∣
∣ ≤ d−1

T

∣
∣
∣B(Tr,d)−B(Tr′,d)

∣
∣
∣+d−1

T

∣
∣
∣(r− r′)B(T,d)

∣
∣
∣ ,

for distinct values r and r′. Using the notation from Altissimo and Corradi (2003, p.

232) we write S (r, δ) = (r′ : |r− r′| ≤ δ). Now, by the fact that (see Davidson (1994, p.

335 ff.))

sup
θ∈Θ

sup
θ′∈S (θ,δ)

∣
∣
∣ fn(θ′)− fn(θ)

∣
∣
∣ ≤ 2sup

θ∈Θ
| fn(θ)|

and the LIL for the fractional Brownian motion (see e.g. Taqqu (1977)) we have for the

second part of the right side

limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

d−1
T

∣
∣
∣(r− r′)B(T,d)

∣
∣
∣ ≤ 2δσ ,

with σ the variance of the fractional Brownian Motion. As δ→ 0 the whole part ap-

proaches zero which ensures the asymptotic uniform equicontinuity almost surely.

For the first part of the right hand side we have by self-similarity

limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

d−1
T

∣
∣
∣B(Tr)−B(Tr′)

∣
∣
∣ = limsup

T→∞
sup

r∈[0,1]
sup

r′∈S (r,δ)
d−1

T

∣
∣
∣T d+1/2B(r)−T d+1/2B(r′)

∣
∣
∣

= limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

T d+1/2d−1
T

∣
∣
∣B(r)−B(r′)

∣
∣
∣ .

Now note that

dT =

√

2T 2d+1 loglog(T ) =
√

T 2d+1
√

2loglog(T ) = T d+1/2
√

2loglog(T ) .

Therefore we obtain

limsup
T→∞

(

2log log(T )
)− 1

2 sup
r∈[0,1]

sup
r′∈S (r,δ)

∣
∣
∣B(r)−B(r′)

∣
∣
∣ .

Because |B(r)−B(r′)| is almost surely Hölder continuous of order strictly less than H (see

Biagini et al. (2008, p. 11)) and limsupT→∞
(

2loglog(T )
)− 1

2 tends to zero as T →∞ it

follows that the above expression is almost surely asymptotically uniform equicontinu-

ous. �
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