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A simple specification procedure for the transition
function in persistent nonlinear time series models∗

Hendrik Kaufmann‡, Robinson Kruse§, Philipp Sibbertsen†

Abstract

A simple procedure for the specification of the transition function describing the regime

switch in nonlinear autoregressive models is proposed. This procedure is based on

auxiliary regressions of unit root tests and is applicable to a variety of transition

functions. In contrast to other procedures, complicated and computer-intense estima-

tion of the candidate models is not necessary. Our approach entirely relies on OLS

estimation of auxiliary regressions instead. We use standard information criteria for

the selection of the unknown transition function. Our Monte Carlo simulations reveal

that the approach works well in practice. Empirical applications to the S&P500 price-

earnings ratio and the US interest spread highlight the merits of our suggested procedure.
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1 Introduction

During the last two decades it has become widely accepted that time series dynamics of

a variety of macroeconomic and financial variables can be well described and modeled

by stationary nonlinear processes. The most popular classes of regime-dependent time

series models are smooth transition, threshold and Markov switching models. Never-

theless, model selection in a nonlinear framework is still a major challenge. This study

contributes to the literature by considering the problem of model selection amongst

smooth transition (see e.g. Teräsvirta, 1994) and threshold models (see e.g. Tong,

1990). To capture the well documented high degree of persistence in economic and fi-

nancial time series, we focus on widely applied unit root tests against nonlinear models.

It is remarkable that the theoretical and empirical literature on unit root tests against

nonlinear smooth transition models is steadily growing. A survey of recent developments

in unit root testing is given in Haldrup, Kruse, Teräsvirta, and Varneskov (2012).

The two different types of adjustment, i.e. threshold and smooth adjustment to an

equilibrium, are economically and statistically appealing. For this reason, numerous

empirical studies use these kind of transition functions to model the regime switch.

Even though the exponential smooth transition autoregressive (ESTAR) model receives

much attention, there are reasonable concerns regarding the exact shape of the tran-

sition function. Beside the fact that there are numerous different transition functions

describing the adjustment to an equilibrium, evidence against an exponential shape has

been documented. Yoon (2010) finds that ESTAR models cannot replicate the nonlinear

serial dependence found in real exchange rates. Kim and Moh (2010) find evidence for

nonlinearities in real exchange rates though not for an ESTAR model. Knowledge of

the specific type and shape of the transition function is of importance for the analysis of

generalized impulse-responses, forecasting and regime dating (see Rapach and Wohar,

2006). Another concern is a lack of asymmetry. Norman and Phillips (2009) suggest

a skewed generalized transition function. Sollis (2009) concludes that an asymmetric

ESTAR process is more appropriate than a symmetric one. Another criticism is the

low flexibility of an exponential transition function in general. On the contrary, the

threshold transition function implies an abrupt switch between regimes which can seen

as highly restrictive, too. The main goal of this study is to suggest and subsequent

compare simple procedures for the selection of the most appropriate transition function,

e.g. exponential, threshold or double logistic.

In a related article, Psaradakis, Sola, Spagnolo, and Spagnolo (2009) consider nonlinear

model selection by using well-known and standard information criteria. The major draw-

back of such an approach stems from the fact that estimation of all nonlinear models

under consideration is required. Beside time consuming and very intense computa-
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tions, optimization routines may easily end up in local valleys of the likelihood function.

Limited to the smooth transition framework, Teräsvirta (1994) suggests a procedure

to discriminate between transition functions relying on a sequence of ordinary F-tests.

Unfortunately, this procedure is problematic in the case of a linear unit root (see Kiliç,

2004, Harvey and Leybourne, 2007 and Kruse and Sandberg, 2010). To maintain gen-

erality and simplicity, we follow a similar philosophy as Teräsvirta (1994), but rely on

auxiliary regressions which are built for unit root tests against nonlinear models. As

pointed out by Choi and Moh (2007), a single unit root test is not able to distinguish

between different nonlinear models. On the other hand, a battery of different unit root

tests, each single one designed to detect a certain nonlinear model, are expected to be

more informative. Therefore, this article aims at comparing simple statistics which are

directly computable from a battery of auxiliary unit root regressions. These statistics

shall be informative and indicative for selecting the transition function of a nonlinear

transition model. This work focuses on the inf−t test by Park and Shintani (2009).

The test does not rely on a Taylor approximation as the test suggested by Kapetanios,

Shin, and Snell (2003) does. Linearization of the nonlinear model by applying a Taylor

approximation can be costly in terms model selection precision. We therefore use the

test proposed by Park and Shintani (2009) which uses a grid-search over the unidentified

parameters under the null hypothesis instead.

As a possible selection rule, we consider the minimal sum of squared residuals which is in

line with Hansen (1997). In a similar vein, we consider the performance of information

criteria (similar to Psaradakis et al., 2009). The main difference is that information cri-

teria are computed from auxiliary regressions and not from estimated nonlinear models

themselves. The appeal of such a procedure lies in its simplicity and the fact that OLS

estimation can used throughout the analysis.

The remainder of the paper is organized as follows. Section 2 reviews the unit root

inf−t test by Park and Shintani (2009) and the different transition functions. In Section

3 we discuss potential selection rules and computational details. Section 4 provides

the results of our Monte Carlo simulation. In Section 5 we apply our procedure to the

S&P500 price-earnings ratio and the US interest rate spread. Our results offer some new

insights and conclusions on the nonlinear transition mechanism in these series. Section

6 concludes.

2 Unit root tests and nonlinear models

The inf−t unit root test of Park and Shintani (2009) covers many types of transition

dynamics, including threshold, discrete and smooth transition functions in general. In

this paper we consider nonlinear AR(p) models with transition variable yt−1 which is
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the most common choice in the related literature. The data generating process (DGP)

is given by

∆yt = λyt−1G(yt−1, θ) +

p−1∑
i=1

ρi∆yt−i +εt, (1)

where θ is an m-dimensional parameter vector, G(·) denotes a real-valued transition

function and εt is a zero-mean white noise process. If λ = 0, the model becomes linear

and there is only a single regime with a unit root implying no adjustment to any long-

run equilibrium. Therefore, the null hypothesis of a unit root is given by H0 : λ = 0. The

alternative hypothesis of a globally stationary nonlinear model is given by H1 : λ < 0.

As θ is not identified under the null hypothesis, ordinary least squares estimates of λ for

each value of θ ∈ Θ are required to obtain1

t(θ) =
λ̂(θ)

s(λ̂(θ))
, (2)

where s(λ̂(θ)) is the OLS standard error of the OLS estimate λ̂(θ). The inf−t test is

defined as

inf−t ≡ inf
θ∈Θ

t(θ). (3)

The limiting distribution of the inf−t statistic is derived in Park and Shintani (2009).

It depends on the transition function and the parameter space Θ. The lag length p is

selected with the BIC criterion with a maximum of pmax = [4(n/100)1/4] lags. It shall be

noted that the limiting distribution does not change when additional lagged differences

of the dependent variable are included on the right-hand side of the regression.

We consider widely applied models like the exponential smooth transition autoregressive

(ESTAR), the double threshold autoregressive (D-TAR) and the double logistic smooth

transition autoregressive (D-LSTAR) model. For simplicity, only symmetric transition

functions are under consideration, but all procedures are applicable for asymmetric

functions as well. Moreover, our approach is not limited to these particular types of

transition functions in general.

The exponential transition function with location at zero is given by2

G(yt−1, θ) = 1− exp
{
−γ2y2

t−1

}
, θ = γ. (4)

1Note that equation (1) is the linear OLS test regression with fixed θ.
2Please note that we use this uncommon notation of γ2 to ensure comparability with Park and Shintani
(2009).
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Figure 1: Transition functions for different parameterizations. For the ESTAR model, we set
the scale parameter γ to

√
0.1 (solid),

√
0.5 (dashed) and

√
5 (dotted). For the D-TAR model,

the location paramters are set to −c1 = c2 = 2. For the D-LSTAR model, the parameters are
−c1 = c2 = 2 and γ1 = γ2 is 2 (solid), 1 (dashed) and 25 (dotted).

The parameter γ determines the smoothness of adjustment. The higher γ, the sharper

is the transition function. For each limit, γ→∞ or γ→ 0, the ESTAR model becomes

linear. In applied work, the inner regime is often modeled as unit root, while the outer

regime is stationary, i.e. λ < 0, thereby ensuring global stationarity.

The D-TAR (or three regime TAR) model transition function is given by

G(yt−1, θ) = 1{yt−1 < c1}+ 1{yt−1 > c2}, θ = (c1,c2)′, (5)

where 1{·} is the indicator function. The D-TAR model reflects sudden changes between

regimes and nests a linear process for c1 = c2. We consider the symmetric version with

−c1 = c2. A non-stationary regime is active if yt takes values between c1 and c2. Again,

the out regimes are stationary if λ < 0 which ensures global stationarity. The double

logistic transition function is the smooth-adjustment version of the threshold function

in 5 and given by

G(yt−1, θ) =
[
1 + exp {γ1(yt−1− c1)}

]−1
+

[
1 + exp {γ2(yt−1− c2)}

]−1 , θ = (γ1,γ2,c1,c2)′.
(6)

The D-LSTAR model nests the D-TAR model with γ1,γ2 →∞. A symmetric version

can be obtained by setting the parameter restrictions γ1 = γ2 and −c1 = c2. It has also

the ability to mimic the exponential transition function.

Graphs for different parameterizations of the three transition functions are shown in

Figure 1.
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3 Selection of nonlinear models

The goal of this paper is to discriminate between different transition functions in a

nonlinear framework. To this end, we are interested in model selection criteria which

are easy to implement and fast to compute. Therefore, we use only well-known criteria

which are directly accessible from the auxiliary regression of the inf−t test.

The first selection rule is the residual sum of squares (RSS), which measures the goodness

of fit. The RSS is given by

RSS ≡
n∑

t=1

ε̂2
t (θ̃),

where θ̃ denotes the parameter vector θ which minimizes the inf−t statistic. Sec-

ond, we compute well-known information criteria, Akaike’s information criterion (AIC),

the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion

(HQIC). These criteria reflect the goal of parsimony and penalize in different ways for

the inclusion of an additional parameter. They share the following common structure:

IC ≡ ln(RSS/n) +ϕ(n),

where ϕ(n) denotes the penalty term which is specific to the particular criterion. Such

information criteria are able to circumvent over-parametrization. Although all criteria

are not designed for the selection of nonlinear models in the first place, reasonable

results are presented by Psaradakis et al. (2009). The main difference in our approach is

that we do not have to estimate a single model. The price for this simplification is that

only a limited amount of parameter combinations are under consideration. However, our

simulation results presented in the next section suggest that this issue is not problematic.

The exact procedure for a collection of models (M) under consideration is as follows:

1. Determine the appropriate lag length p as described in Section 2.

2. Perform an inf−t unit root test against model m ∈ M. Find the minimal t(θ)-
statistic. Save the auxiliary regression output and parameter vector θ̃. Repeat

this step for all models m ∈M.

3. Calculate a selection criterion for each model m ∈M based on the saved regression

outputs in the previous step.

4. Select the model m∗ which minimizes the selection criterion, i.e.

m∗ = arg min
m∈M

IC(m). (7)
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1% 5% 10% 25% 50% 75% 90% 95% 99%

ESTAR -3.64 -3.14 -2.85 -2.37 -1.86 -1.35 -0.71 -0.26 0.48

D-LSTAR -4.07 -3.61 -3.33 -2.93 -2.49 -2.09 -1.71 -1.45 -0.78

D-TAR -4.07 -3.54 -3.30 -2.90 -2.47 -2.06 -1.65 -1.34 -0.65

Note: Based on discrete approximation to the Brownian motion by partial sums of standard normal

random variable with 1,000 steps and 10,000 replications for demeaned data.

Table 1: Asymptotic critical values of the inf−t test against different transition functions.

The following remarks to the procedure are in order. The critical values of the test

of Park and Shintani (2009) depend on the transition function and the chosen grid for

θ. Because of the grid-based approach the computer time grows exponentially with

additional parameters. Even though only linear regressions are performed, we try to

reduce the required time as much as possible. Therefore, we deal only with demeaned

time series where the location parameters for symmetric models are often fixed or in a

fixed relationship like in the presented transition functions in Section 2.

Another important point is the exact specification of the grid which determines the

parameter space Θ. For the location parameters we search over the parameter space

[min(y),max(y)], where min(y) and max(y) are respectively the minimum and maximum

of (y1, . . . ,yn). This is a slight modification in comparison to Caner and Hansen (2001)

and Park and Shintani (2009) who work with a grid containing values from the 15th to

the 85th percent quantile. Although the smaller grid is reasonable if the true model is

known, it turned out to be to restrictive if it has to approximate another data generating

process (DGP). For the scale parameter γ a search over the interval [10−1P,103P] is

performed, where P =
(∑n

t=1 y2
t /n

)−1/2
, which is the same grid as in Park and Shintani

(2009). Due to the fact that changes in γ have a larger impact on the result when γ is

small, a kinked grid is used. Two thirds of the available grid-points are in the interval

[10−1P,S ], S = 103P−10−1P
100 . Two thirds of the remaining grid-points are in the interval

[S ,3S ] and the last grid-points are located in the interval [3S ,103P].
Critical values for demeaned time series and the corresponding transition functions are

given in Table 1 for a grid of 50 data points per parameter.

4 Monte Carlo study

This section examines the empirical finite-sample performance of the RSS and infor-

mation criteria to distinguish between different transition functions based on inf−t test

auxiliary regressions. Additionally, we investigate whether a kinked grid with 50 points

as described in Section 3 is sufficient to approximate the true transition function well.
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The DGPs of the experiments are based on the models in Section 2 which are given by

∆yt = λyt−1G(yt−1, θ) +εt, (8)

where εt ∼ N(0,σ2). The parameter settings are λ = {−0.5,−0.9} and σ = 1. For the

ESTAR model we use the transition function in 4 and set γ =
√

0.1 to ensure a persistent

time series with sufficient observations in the smooth transition region between the inner

and outer regime. For the D-LSTAR model we use the transition function in 6 and set

γ1 = γ2 = 4 and −c1 = c2 = 2 and for the D-TAR model the transition function is given

in 5 with −c1 = c2 = 2. With these parametrizations all investigated transition functions

are symmetric. Graphs of the transition functions for these parameter combinations are

shown in Figure 1. All simulated time series are demeaned before we apply the unit root

tests and the first 300 observations are discarded to reduce the effect of initial values.

We use sample sizes of n = {200,400,800} with M = 2000 replications. For all unit root

tests we set p = 1, meaning that no further autoregressive components enter the auxiliary

regressions. Even though we want to discriminate between nonlinear models, we also

compare the performance with a linear AR model.

Table 2 shows the results for the ESTAR model. Without the AR model as competitor

the BIC performs best in all combinations, but AIC and HQIC also perform quite well

with a selection rate around 70% for n = 800. If n = 200 the D-TAR model is selected

quite often but the selection error approaches zero with growing n. This result changes

slightly if the AR model is added to the analysis. In this case the linear model is

often selected by the BIC in small samples (n = 200) instead of the ESTAR or D-TAR

model. But as sample size grows the difference between the results with and without the

additional competitor vanish. The pairwise comparison shows that in the most draws the

D-LSTAR model wins in terms of the RSS, but the gain from the additional parameter

is not sufficient to win in terms of information criteria. In contrast the AR model has

never the lowest RSS. It also turned out that the results of the direct comparisons of the

ESTAR against the D-LSTAR model are quite stable for different sample sizes, whereas

the selection rates for all other models decrease rapidly. While this analysis holds for

both values of λ, the selection rates of the ESTAR model are usually higher the less

persistent the time series is, especially in small samples. This result is not surprising

since the importance of the connection between regimes increases with their difference.

The results of the D-LSTAR model are shown in Table 3. With this transition function

in the DGP the additional consideration of the AR model has almost no effect on the

results, even for small samples the selection rates are close to zero. The best criteria

to choose the true model are the AIC and HQIC. But even though a selection rate

up to 100% is observed for n = 800, the sample size has to be large enough that the
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ESTAR

λ = −0.5, σ = 1, λ = −0.9, σ = 1,

γ =
√

0.1 γ =
√

0.1
ESTAR D-LSTAR D-TAR AR ESTAR D-LSTAR D-TAR AR

n = 200
RSS 6 53 42 11 68 21

(6) (53) (42) (0) (11) (68) (21) (0)

AIC 34 3 63 58 8 34

(32) (2) (53) (13) (57) (8) (32) (4)

BIC 36 0 64 64 0 36

(23) (0) (37) (40) (57) (0) (29) (15)

HQIC 33 5 63 55 12 33

(31) (4) (54) (11) (55) (11) (31) (3)

RSS 7 36 100 11 64 100

AIC 78 36 80 77 64 94

BIC 98 36 50 97 64 83

HQIC 71 36 83 73 64 95

n = 400
RSS 11 72 17 16 80 4

(11) (72) (17) (0) (16) (80) (4) (0)

AIC 59 10 31 73 19 8

(59) (9) (29) (3) (73) (19) (8) (0)

BIC 67 0 33 90 1 10

(57) (0) (27) (16) (88) (1) (9) (3)

HQIC 58 12 30 70 23 8

(57) (11) (29) (2) (70) (23) (8) (0)

RSS 12 67 100 16 90 100

AIC 77 67 96 77 90 99

BIC 98 67 82 98 90 97

HQIC 74 67 96 73 90 100

n = 800
RSS 15 82 3 20 80 0

(15) (82) (3) (0) (20) (80) (0) (0)

AIC 72 22 7 70 29 1

(72) (22) (7) (0) (70) (29) (1) (0)

BIC 91 0 9 97 2 1

(90) (0) (8) (2) (97) (2) (1) (0)

HQIC 70 24 7 68 32 1

(70) (24) (7) (0) (68) (32) (1) (0)

RSS 15 91 100 20 99 100

AIC 75 91 100 70 99 100

BIC 99 91 98 98 99 100

HQIC 73 91 100 68 99 100

The top panel in each block shows the percentage of model selection on the basis of the RSS and different
information criteria. The values in parentheses show the results if a linear model is an additional
competitor. The bold numbers highlight the percentage of correct decisions. The bottom panel in
each block shows the selection rates of the true models in percent in pairwise comparisons between the
candidate models and the true model.

Table 2: Monte Carlo results for ESTAR DGPs.
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D-LSTAR

λ = −0.5, σ = 1, λ = −0.9, σ = 1,

γ1 = γ2 = 4, −c1 = c2 = 2 γ1 = γ2 = 4, −c1 = c2 = 2
ESTAR D-LSTAR D-TAR AR ESTAR D-LSTAR D-TAR AR

n = 200
RSS 5 61 34 3 88 9

(5) (61) (34) (0) (3) (88) (9) (0)

AIC 31 8 61 26 49 25

(31) (8) (60) (2) (26) (49) (25) (0)

BIC 34 0 65 45 11 43

(30) (0) (61) (8) (45) (11) (43) (0)

HQIC 30 12 58 23 55 22

(29) (12) (57) (1) (23) (55) (22) (0)

RSS 95 66 100 97 91 100

AIC 50 27 96 72 74 100

BIC 19 5 70 41 42 99

HQIC 55 33 97 76 77 100

n = 400
RSS 4 84 12 1 98 1

(4) (84) (12) (0) (1) (98) (1) (0)

AIC 29 41 30 8 89 4

(29) (41) (30) (0) (8) (89) (4) (0)

BIC 45 3 52 32 54 14

(44) (3) (52) (1) (32) (54) (14) (0)

HQIC 27 44 28 7 90 3

(27) (44) (28) (0) (7) (90) (3) (0)

RSS 96 88 100 99 99 100

AIC 68 67 100 92 96 100

BIC 32 23 96 67 84 100

HQIC 70 70 100 94 97 100

n = 800
RSS 1 97 2 0 100 0

(1) (97) (2) (0) (0) (100) (0) (0)

AIC 9 86 6 0 100 0

(9) (86) (6) (0) (0) (100) (0) (0)

BIC 39 35 26 5 94 0

(39) (35) (26) (0) (5) (94) (0) (0)

HQIC 8 87 5 0 100 0

(8) (87) (5) (0) (0) (100) (0) (0)

RSS 99 98 100 100 100 100

AIC 91 94 100 100 100 100

BIC 57 69 100 95 100 100

HQIC 92 95 100 100 100 100

The top panel in each block shows the percentage of model selection on the basis of the RSS and different
information criteria. The values in parentheses show the results if a linear model is an additional
competitor. The bold numbers highlight the percentage of correct decisions. The bottom panel in each
block shows the selection rates in percent in pairwise comparisons between the candidate models and
the true model.

Table 3: Monte Carlo results for D-LSTAR DGPs.
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D-TAR

λ = −0.5, σ = 1, λ = −0.9, σ = 1,

−c1 = c2 = 2 −c1 = c2 = 2
ESTAR D-LSTAR D-TAR AR ESTAR D-LSTAR D-TAR AR

n = 200
RSS 2 52 47 0 65 35

(2) (52) (47) (0) (0) (65) (35) (0)

AIC 12 8 81 4 34 62

(12) (8) (80) (1) (4) (34) (62) (0)

BIC 14 0 86 7 8 85

(12) (0) (85) (3) (7) (8) (85) (0)

HQIC 11 10 79 3 39 58

(11) (10) (78) (0) (3) (39) (58) (0)

RSS 86 47 100 92 35 100

AIC 86 85 99 92 63 100

BIC 86 98 96 92 89 100

HQIC 86 82 99 92 58 100

n = 400
RSS 1 66 34 0 72 28

(1) (66) (34) (0) (0) (72) (28) (0)

AIC 4 31 65 0 57 43

(4) (31) (65) (0) (0) (57) (43) (0)

BIC 8 1 90 1 28 71

(8) (1) (90) (0) (1) (28) (71) (0)

HQIC 4 35 62 0 59 41

(4) (35) (62) (0) (0) (59) (41) (0)

RSS 92 34 100 98 28 100

AIC 92 66 100 98 43 100

BIC 92 95 100 98 71 100

HQIC 92 62 100 98 41 100

n = 800
RSS 0 78 22 0 81 19

(0) (78) (22) (0) (0) (81) (19) (0)

AIC 0 59 41 0 73 27

(0) (59) (41) (0) (0) (73) (27) (0)

BIC 2 17 82 0 51 49

(2) (17) (82) (0) (0) (51) (49) (0)

HQIC 0 60 40 0 74 26

(0) (60) (40) (0) (0) (74) (26) (0)

RSS 97 22 100 100 19 100

AIC 97 41 100 100 27 100

BIC 97 82 100 100 49 100

HQIC 97 40 100 100 26 100

The top panel in each block shows the percentage of model selection on the basis of the RSS and different
information criteria. The values in parentheses show the results if a linear model is an additional
competitor. The bold numbers highlight the percentage of correct decisions. The bottom panel in each
block shows the selection rates in percent in pairwise comparisons between the candidate models and
the true model.

Table 4: Monte Carlo results for D-TAR DGPs.
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ESTAR D-LSTAR D-TAR

n λ = −0.5 λ = −0.9 λ = −0.5 λ = −0.9 λ = −0.5 λ = −0.9
200 0.15 0.12 0.12 0.07 0.06 0.03

400 0.10 0.08 0.08 0.05 0.03 0.02

800 0.07 0.04 0.05 0.03 0.02 0.01

Table 5: Average distance between the true transition function and the transition function of
the correct model which minimizes the inf−t statistic.

gain from the additional parameter exceeds the penalty. Especially for n = 200 and the

BIC the true model is hardly chosen at all. In those cases the wins are split between

the other nonlinear models. In a direct comparison with its competitors the D-LSTAR

model shows quickly increasing win ratios for AIC and HQIC whereas the BIC selection

increases more slowly. As in the ESTAR case, a correct decision is more likely the more

the regimes differ. For the DGP with λ = −0.9 and n = 200 the win rate is up to 55% for

the HQIC instead of 12% for λ = −0.5. Therefore, the gain is higher for the D-LSTAR

model in comparison to the former ESTAR results.

The results of the D-TAR model are presented in Table 4. As in the D-LSTAR case,

the interpretation of the results is independent of the AR model which is hardly chosen

at all. The BIC has the most correct decisions. The selection rate is best for small

n and decreases in favor of the D-LSTAR model in larger samples. This result is also

observable in the pairwise comparison. The selection rate of the ESTAR model is quite

low and especially for n ≥ 400 close to zero. Even in the rare cases where the ESTAR

model wins in a pairwise comparison, the D-LSTAR model is better overall in most

cases so that the ESTAR is not selected. This result shows that there is a substantial

gain from the additional smoothness parameter of the D-LSTAR in large samples. Even

though this behavior may not be desirable at first sight, it turned out that the selected

value for the smoothness parameter γ is always close to the upper bound of the grid

and thus close to the D-TAR model. In this case the transition functions are practically

the same with only a few observations on the smooth part of the D-LSTAR transition

function. Therefore, the economic interpretation of the final model is almost identically.

It is also important to note that this behavior is not limited to our procedure, but also

visible in the results of Psaradakis et al. (2009) where the models are estimated.

An overall comparison reveals that the AIC and HQIC exhibit the most balanced per-

formance. The most likely error is to choose the D-LSTAR instead of the D-TAR in

large samples. Fortunately the impact of this error on the interpretation of the final

model should be quite small because of the practically identical transition functions.

The second question is if the specified grid in Section 3 with only 50 grid-points per
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Figure 2: Representative draws of the DGP with λ = −0.5 and n = 400 (one per simulated
transition function). The solid line shows the true transition function; the dashed line shows
the transition function of the correct model evaluated at θ̃. The grey shaded area is the
computed distance between the two functions.

parameter is sufficient to approximate the true model. Therefore, we suggest to measure

the distance between the true transition function and the transition function which

minimizes the inf−t statistic with

D =

∫ max(y)
min(y)

(
G(y;θ)− G̃(y; θ̃)

)
dy

max(y)−min(y)
, (9)

where G(y;θ) is the true and G̃(y; θ̃) the transition function which corresponds to the inf−t

test. D measures the normalized area between the two functions. For all models the

average distance D̄ = M−1 ∑M
i=1 Di between the true transition function and the transition

function of the correct model evaluated at θ̃ is computed, where Di denotes the distance

D of Monte Carlo replication i. These measures approach zero with an increasing sample

size as shown in Table 5. Even for small samples the average distance is quite small. An

example of D for the different transition functions is shown in Figure 2. Thus, we can

conclude that even a small grid is sufficient for the proposed procedure. With this small

grid computations are extremely fast and below one second for transition functions with

one parameter and below ten seconds for transition functions with two parameters for

n = 200. An increasing sample size raises the computer time only slightly.3 This makes

the procedure useful for practitioners and ensures a wide applicability.

3All computations were made on a 3GHz Intel Core 2 (one core used) with R and the popular standard
lm() function therein. A much better performance with other programs like GAUSS or MATLAB and
parallel computing is expected.
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Figure 3: S&P500 price-earnings ratio (demeaned).

5 Empirical applications

We first report and discuss the empirical results of two important applications. The

first one we consider is the S&P500 price-earnings (P/E) ratio. The general idea behind

the P/E ratio is that market prices will not drift too far away from their normal levels

relative to earnings (as long as no bubbles are present in the price index). If the P/E

ratio is high above/below its historical mean, a price adjustment to the equilibrium is

expected, i.e. a decrease/increase in the next periods. This idea was first applied in

Campbell and Shiller (1998) in a linear setting. They conclude that the ratio has special

significance to forecast stock prices, but also that the linear relation might not hold in

the case of extreme events. Rapach and Wohar (2005) reexamine the predictability of

stock prices based on the P/E ratio. They argue that the evidence of real stock price

predictability at long, but not short horizons by the P/E ratio is difficult to explain

in a linear framework. Kilian (1999) interprets this observation as indirect evidence

of a nonlinear DGP. Therefore, Rapach and Wohar (2005) work with a parsimonious

ESTAR model, similar to the one in Section 2, to reconsider the mean-reverting behavior.

Kilian and Taylor (2003) argue that such a model is able to capture price movements

better in a world of noise trading and risky arbitrage. Nevertheless, Rapach and Wohar

(2005) conclude that further analysis of nonlinear model specification for the P/E ratio

is warranted. Another ESTAR approach to explain financial ratios is given in McMillan

(2007).

We use data obtained from Robert Shiller’s website, consisting of 1644 monthly obser-

vations ranging from January 1871 to December 2007. We thus exclude observations
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g = 50 g = 300

ESTAR D-LSTAR D-TAR AR ESTAR D-LSTAR D-TAR AR

RSS 2.8117∗∗∗ 2.8098∗∗∗ 2.8098∗∗∗ 3.3158∗∗∗ 2.8117∗∗∗ 2.8098∗∗∗ 2.8095∗∗∗ 3.3158∗∗∗

AIC -6.3668∗∗∗ -6.3663∗∗∗ -6.3675∗∗∗ -6.2043∗∗∗ -6.3668∗∗∗ -6.3663∗∗∗ -6.3676∗∗∗ -6.2043∗∗∗

BIC -6.3570∗∗∗ -6.3531∗∗∗ -6.3577∗∗∗ -6.2011∗∗∗ -6.3570∗∗∗ -6.3531∗∗∗ -6.3578∗∗∗ -6.2011∗∗∗

HQIC -6.3668∗∗∗ -6.3663∗∗∗ -6.3675∗∗∗ -6.2043∗∗∗ -6.3668∗∗∗ -6.3663∗∗∗ -6.3676∗∗∗ -6.2043∗∗∗

UR test -3.9115∗∗∗ -4.0529∗∗∗ -4.0490∗∗∗ -3.8469∗∗∗ -3.9120∗∗∗ -4.0755∗∗∗ -4.0524∗∗∗ -3.8469∗∗∗

λ̂ -0.0118∗∗∗ -0.0123∗∗∗ -0.0123∗∗∗ -0.0081∗∗∗ -0.0118∗∗∗ -0.0123∗∗∗ -0.0124∗∗∗ -0.0081∗∗∗

Table 6: Results obtained from inf−t auxiliary test regressions for the price-earnings ratio
(columns ESTAR, D-LSTAR and D-TAR) and from an ADF test regression for the linear
model (column AR).

belonging to the period of the recent financial crisis. These few observations can be

judged as being highly influential on the results as they are very different from the

remaining observations. We assume that including these observations would lead to

structural breaks in the parameters of the nonlinear models we consider. This claim is

supported by the strong empirical evidence for structural breaks found in Lettau and

Nieuwerburgh (2008). Hence, time-varying STAR models allowing for both, nonlinearity

and structural instability appear to be better suited in this case. This class of models

is, however, beyond the scope of this paper. An important reference is Lundbergh,

Teräsvirta, and van Dijk (2003).

In this application one additional lag is selected. The calculated criteria and t-values

of the inf−t test can be found in Table 6. The procedure is performed with a grid of

g = 50 and g = 300 points per parameter. Regardless which information criterion we

consider (either AIC, BIC or HQIC), the D-TAR model is selected in all cases. The

D-LSTAR model performs equivalently well in terms of RSS, which is not surprising

because it is nesting the D-TAR. Nevertheless, minor deviations in favor of the D-TAR

model can occur because of the upper bound of the grid for γ. Therefore, we judge the

ESTAR and D-LSTAR model to be inferior. This finding contrasts previous results.

When comparing the nonlinear models to the linear one, a clear improvement can be

observed.

For the sake of a deeper investigation, we compare all transition functions in Figure 4.

Each individual cell of the left side of Figure 4 plots a transition function against its

argument yt−1. The relevant parameters are obtained from the Park and Shintani (2009)

unit root test regressions. For the ESTAR model, we have γ̃ = 7.45 and c̃ = 0.2 for the

D-TAR model. The threshold parameter c has a clear interpretation: the three different

regimes are r1 = (−∞,−0.2),r2 = [−0.2,0.2] and r3 = (0.2,∞). For the D-LSTAR model

we find exactly the same threshold parameter and a very high smoothness parameter

close to, but lower than the maximal value of the grid.

A comparison to the suggested D-TAR model shows that the exponential transition
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Figure 4: Transition functions obtained from Park-Shintani auxiliary test regressions for the
S&P500 price-earnings ratio (g = 50).

function leads to a fairly smooth transition function which is in sharp contrast to the

one for the D-TAR model. The D-LSTAR transition function looks similar to the D-

TAR, but has an additional parameter. The transition functions against time on the

right hand side of Figure 4 show similar features. Note that an observation belongs to

the inner unit root regime (as defined in Section 2) when the transition function equals

zero. A comparison suggests rather different behavior of the ESTAR and the D-TAR

model although both mainly agree on which observations belong or are close to the unit

root regime. Finally, we note that the minimal unit root t-statistics indicate a rejection

at the nominal significance level of 5% for all nonlinear models. Similarly, the ADF

test statistic for the linear model is also highly significant. The relatively small negative

values for λ̂ indicate a high persistence in the P/E ratio.

Our second application is the US interest rate spread, defined as zt = iSt − iLt , where iSt and

iLt are the short and long term interest rate respectively. Stock and Watson (1988) find

that interest rates are random walks which share a common trend. From an economic

angle this result confirms the expectation hypothesis of the term structure. Investors

should be indifferent between the two investment opportunities, so that the expected

returns are the same plus a risk premium for the long term investment (or for the short

term investment, corresponding with investor preferences). The equilibrium relationship
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Figure 5: US interest rate spread (demeaned).

has the form iSt − iLt = a, where a is a constant. After demeaning, the equilibrium is at

zero.

Balke and Fomby (1997) and Anderson (1997) argue that nonlinear error correction

models provide an appropriate framework for studying how transaction costs affect yield

movements in the primary US Treasury bill market. Balke and Fomby (1997) use a D-

TAR model with a inner unit root to capture the argument that trading and arbitrage

only takes place if the deviation from equilibrium is high enough. In this case the

transaction costs are the same for all investors. Anderson (1997) uses an ESTAR model

instead to allow for heterogeneous transaction costs. Both models outperform linear

ones in terms of forecasting, but Anderson (1997) points out that her purpose was not

to find the best nonlinear model. She also investigates asymmetry but concludes that

the removal of this part changes the model and its properties only slightly.

g = 50 g = 300

ESTAR D-LSTAR D-TAR AR ESTAR D-LSTAR D-TAR AR

RSS 59.1668∗∗∗ 59.1337∗∗∗ 59.5234∗∗∗ 64.8142∗∗∗ 59.1554∗∗∗ 59.1334∗∗∗ 59.4263∗∗∗ 64.8141∗∗∗

AIC -1.1828∗∗∗ -1.1733∗∗∗ -1.1768∗∗∗ -1.1117∗∗∗ -1.1830∗∗∗ -1.1733∗∗∗ -1.1784∗∗∗ -1.1117∗∗∗

BIC -1.1331∗∗∗ -1.1071∗∗∗ -1.1271∗∗∗ -1.0952∗∗∗ -1.1333∗∗∗ -1.1071∗∗∗ -1.1288∗∗∗ -1.0952∗∗∗

HQIC -1.1878∗∗∗ -1.1800∗∗∗ -1.1818∗∗∗ -1.1134∗∗∗ -1.1880∗∗∗ -1.1800∗∗∗ -1.1834∗∗∗ -1.1134∗∗∗

UR test -4.9891∗∗∗ -4.8546∗∗∗ -5.0015∗∗∗ -4.0987∗∗∗ -4.9933∗∗∗ -4.8915∗∗∗ -5.0016∗∗∗ -4.0987∗∗∗

λ̂ -0.5031∗∗∗ -0.3504∗∗∗ -0.2130∗∗∗ -0.1086∗∗∗ -0.6441∗∗∗ -0.3442∗∗∗ -0.2072∗∗∗ -0.1086∗∗∗

Table 7: Results obtained from inf−t auxiliary test regressions for the price-earnings ratio
(columns ESTAR, D-LSTAR and D-TAR) and from an ADF test regression for the linear
model (column AR).
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Figure 6: Transition functions obtained from Park-Shintani test regressions for the US interest
rate spread (g = 50).

The data we use covers the span from 1962:1 to 2011:4 and is obtained from the FREDII

database (Fed St. Louis). The number of quarterly observations equals n = 200. The

short term interest rate has a maturity of three months and the long term interest

rate is the ten year government bond yield. The lag length is equal to p = 2 using

the same procedure as in the first application. A comparison of information criteria as

shown in Table 7 clearly suggests the selection of an exponential transition function. All

information criteria agree on such a selection. But as in the first example, the best fit

is the D-LSTAR model in terms of the RSS. The selected parameters are γ̃ = 0.33 for

the ESTAR model which gives a very smooth transition function. For the D-LSTAR

model, we find the grid-points γ̃ = 2.05 and c̃ = 1.99. As seen on the left side of Figure 6,

the resulting transition function is similar (to a certain extent) to the one obtained for

the ESTAR model. A completely different behavior is observed for the D-TAR model

which appears to be least promising in this application. The threshold parameter is

selected as c̃ = 1.69 indicating a rather wide inner unit root regime. As the US interest

rate spread seems to follow a stationary process, see Figure 5, the D-TAR model with

a wide inner regime does not fit the data too well. This claim is supported by the unit

root test results in Table 7 which strongly indicate evidence against the null hypothesis.

The different values for λ̂ indicate a different level in persistence at first sight. But a
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combined consideration of λ̂ and the maximum value of G(yt−1, θ̃) shows that this level

is similar for all nonlinear models.

Another approach by Pfann, Schotman, and Tschernig (1996) suggests that interest rates

in levels are stationary but nonlinear. They apply a two-regime TAR model to show

that extremely high interest rates are corrected back. If we use our selection approach

for this hypothesis, a D-TAR model is chosen with only two regimes (no data points are

in the lower regime). The ESTAR model is not able to capture any dynamics and is

very close to a random walk.

6 Conclusion

Model selection in nonlinear time series models is still a challenge in econometrics. While

the literature about estimation and specification of a certain type of nonlinearity is quite

extensive, procedures and tests to distinguish between different types of nonlinearity are

rare. This work focuses on model selection between smooth transition and threshold

time series models which are widely applied in practice. We propose a simple specifica-

tion procedure based on standard regression output to select the appropriate transition

function. The starting point of the procedure is the inf−t unit root test, where the prob-

lem of unidentified parameters under the null is solved by a grid-search. The auxiliary

regression can be estimated by OLS and information criteria can be calculated easily in

order to select the most appropriate transition function. Thereby the procedure itself

does not require any complicated estimation of the competing nonlinear models as it

uses linear auxiliary regressions instead. The use of standard tests and selection criteria

as well as the low computational requirements make the procedure useful for practition-

ers. The Monte Carlo results suggest that the procedure works well in finite-samples in

a variety of settings. The two empirical applications also underline the usefulness of the

proposed method in practice.
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