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Abstract

In this paper, we derive a semiparametric estimation procedure for the sample selection model

when some covariates are endogenous. Our approach is to augment the main equation of in-

terest with a control function which accounts for sample selectivity as well as endogeneity of

covariates. In contrast to existing methods proposed in the literature, our approach allows that

the same endogenous covariates may enter the main and the selection equation. We show that

our proposed estimator is
√
n-consistent and derive its asymptotic distribution. We provide

Monte Carlo evidence on the small sample behavior of our estimator and present an empirical

application. Finally, we briefly consider an extension of our model to quantile regression settings

and provide guidelines for estimation.
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1 Introduction

Sample selection bias is a problem frequently encountered in applied econometrics. Pio-

neered by the seminal paper of Heckman (1979), several authors have proposed methods

to circumvent the problem in parametric and semi-nonparametric settings. A sample se-

lection model typically consists of a main equation (of interest) and a selection equation.

The variables in the main equation, however, can only be fully observed for a subset of

the observations, where the probability of full observability is governed by the selection

equation.

In this paper, we consider semiparametric estimation of a sample selection model when

some explanatory variables are endogenous. As in many other econometric models, the

endogeneity of explanatory variables causes parameter estimates to be biased. Hence, in

order to obtain unbiased estimates of the parameters of interest, one needs an econometric

model which not only accounts for sample selection issues but for endogeneity issues as

well. In contrast to existing methods proposed in the literature, our approach allows that

the same endogenous covariates may enter the main and the selection equation.

Sample selection models which also incorporate endogeneity issues have been previ-

ously studied by Wooldridge (2010), Das et al. (2003), Chib et al. (2009) and Semykina

and Wooldridge (2010). Based on Heckman’s (1979) original formulation of the sample

selection model (using a joint normality assumption on the distribution of error terms),

Wooldridge (2010) suggests estimating a probit model for the selection equation in the

first step, and then to apply two stage least squares to the main equation including the in-

verse Mills ratio term (which controls for sample selectivity). Semykina and Wooldridge

(2010) extend this approach to panel data sample selection models, and also consider

semiparametric estimation based on a series expansion due to Newey (2009). Chib et

al. (2009) impose a joint normality assumption not only on the error terms of main and

selection equation, but on the endogenous covariates as well, and estimate the model us-

ing Bayesian techniques. Das et al. (2003) propose nonparametric estimation methods.

That is, the main equation, the selection equation and the reduced form equations for
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the endogenous explanatory variables are being estimated nonparametrically using series

methods.

Our approach to estimating a sample selection model with endogenous covariates

differs from the parametric ones studied by Wooldridge (2010), Chib et al. (2009) and

Semykina and Wooldridge (2010) since our estimation framework is semiparametric. That

means, we do not have to rely on possibly too strong distributional assumptions like

the joint normality assumption in Heckman’s (1979) original formulation. In particular,

imposing false distributional assumptions leads to biased estimates of the parameters of

interest. However, a nonparametric framework as in Das et al. (2003) may suffer from

the well known curse of dimensionality problem if the number of covariates if large.

We propose a semiparametric approach where we impose a set of linearity assumptions

as it is common in semiparametric modeling. The main benefits of our semiparametric

approach are that it is relatively simple and does not make strong parametric assumptions;

furthermore, it helps avoid the curse of dimensionality problem raised in nonparametric

settings and is easy to interpret.

Our estimation procedure relies on the Robinson (1988) estimator for partially linear

models, which can be labeled a “kernel density” approach since it involves estimation of

an unknown function using kernel weights. In particular, we follow Das et al. (2003)

and expand the main equation with a “control function” which takes into account sample

selection as well as endogeneity of covariates. A control function approach is convenient

since it allows for some degree of conditional heteroskedasticity in the main equation

(Newey et al., 1999) as well as nonlinearities in the endogenous explanatory variables.

On the contrary, Semykina and Wooldridge (2010) use Newey’s (2009) series expansion to

control for sample selectivity in the main equation, and control for endogeneity by applying

two stage least squares. Since we allow for some kind of conditional heteroskedasticity in

the main equation, our approach is more general in this sense. Moreover, in series-based

frameworks one has to specify basis functions to be used in the series expansions (e.g.,

polynomials, splines). Estimation results may be sensitive to this choice. On the other
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hand, a kernel-based approach requires instead the specification of bandwidth parameters.

These are easier to alter, so that robustness checks may be obtained more easily.

Quite more important, our control function approach allows that the same endogenous

covariates appear in the main equation and the selection equation as well. In many

empirical applications there are common variables appearing in the main and the selection

equation. Some of these might be endogenous. For instance, the classical application of

the sample selection model is a wage regression for married women. In that case, both

the wage (main equation) as well as the probability of labor force participation (selection

equation) depend on educational attainment. Education, however, may be endogenous

in both equations due to some underlying (and unobservable) factors summarized by the

term “ability”. Since ability is unobservable and correlated with the wage, the probability

of labor force participation and educational attainment, we have a typical situation of

endogeneity bias.

Wooldridge’s (2010) approach (or Semykina and Wooldridge, 2010) only considers

endogeneity in the main equation. However, if the selection equation also includes these

endogenous covariates (which is quite realistic) one gets biased estimates even if the

selection equation parameters have been estimated consistently. The reason is that the

control function which depends on the selection index is itself endogenous through its

dependence on the endogenous variables appearing in the selection equation. Moreover,

the control function depends on both the selection index and the endogenous explanatory

variables in general.

As a consequence, Wooldridge’s method is only valid if we have an endogenous ex-

planatory variable in the main equation which does not appear in the selection equation.

On the contrary, our approach allows for the same endogenous covariates in both equa-

tions, and is thus more general.

The paper is organized as follows. In section 2, we set up the model and propose our

estimation procedure. In section 3 we discuss the asymptotic properties of our estimator.

In section 4 we give Monte Carlo Results on the small sample properties of our proposed
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estimator. We also compare our estimator to that of Wooldridge (2010). In section 5

we present an economic application in which we analyze how the income level affects the

number of children of working women. Section 6 outlines an extension of our model to

quantile regression settings. Finally, section 7 concludes the paper.

2 Model Setup and Estimation

The model we consider is given by

y∗1i = x′iβ + δy2i + εi (1)

d∗i = w′iγ + ui (2)

di = 1(d∗i > 0) (3)

y1i =


y∗1i if di = 1

“missing” otherwise

(4)

y2i = z′iα + vi if di = 1 (5)

where i = 1, . . . , N indexes individuals. The first equation is the main equation (of

interest), where y∗1 is the latent dependent variable, x is a vector of exogenous explanatory

variables, y2 is an endogenous explanatory variable and ε is an error term. For simplicity,

we consider only one endogenous explanatory variable, but an extension is straightforward.

The second equation is the selection equation, where d∗ is the latent dependent variable,

w is a vector of exogenous explanatory variables and u is the error term. The third

equation expresses that only the sign of d∗ is observable. The fourth equation comprises

the sample selection mechanism: y∗ is only observable if the selection indicator d is equal

to one. The fifth equation is the reduced form equation for the endogenous explanatory

variable y2, where z is a vector of exogenous explanatory (instrumental) variables and v

is an error term.

Following Newey et al. (1999) and Das et al. (2003), we make the following assump-
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tions:

Assumption 1: E[εi|di = 1, wi, xi, zi, vi] = E[εi|w′iγ, vi] = g(w′iγ, vi) ∀i = 1, . . . , N.

Assumption 2: Pr(x′iβ+ δy2i + g̃(w′iγ, vi) = 0|di = 1) = 1 implies there is a constant

c with Pr(x′iβ + δy2i = c|di = 1) = 1.

The unknown function g(·) is our control function, which is assumed to depend only on

the propensity score w′γ and the reduced form error term v. Assumptions 1 implies that

E[y1i|di = 1, wi, xi, zi, vi] = x′iβ + δy2i + g(w′iγ, vi). (6)

Note that Assumption 1 allows for conditional heteroskedasticity in the sense that ε may

be heteroskedastic in w′γ and v.

Assumption 2 is an identifying assumption which is needed to identify the parameters

in β and δ. More precisely, there must not exist an exact functional relationship between

the linear part of equation (6) and the unknown function g(·). A sufficient condition for

this assumption to be fulfilled is that the selection equation as well as the reduced form

equation for y2 contain at least one variable which is exclusive in these equations. Note,

however, that a constant term in x is not identified since it cannot be distinguished from

the constant part of the unknown function g(·).

A convenient choice for estimating this model is the Robinson (1988) estimator for

partially linear models. By equation (6), we can rewrite (the observable part of) the main

equation as

y1i = x′iβ + δy2i + g(w′iγ, vi) + ri, i = 1, . . . , n, (7)

where ri ≡ y1i − E[y1i|di = 1, wi, xi, zi, vi] has a conditional mean of zero. Note that n

denotes the number of individuals for which di > 0. Obviously the main equation consists

of a linear part and the nonlinear function g(·). The idea of the Robinson estimator is

to get rid of the unknown function g(·). To do this, take expectations of equation (7)
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conditional on w′iγ and vi. This yields

E[y1i|w′iγ, vi] = E[xi|w′iγ, vi]′β + δE[y2i|w′iγ, vi] + g(w′iγ, vi). (8)

Subtracting (8) from (7) gives

y1i − E[y1i|w′iγ, vi] = (xi − E[xi|w′iγ, vi])′β + δ(y2i − E[y2i|w′iγ, vi]) + ri. (9)

Since E[y1i|w′iγ, vi] and E[xi|w′iγ, vi] are unknown, they are replaced by kernel estimates

such that

ŷ1i ≡ Ê[y1i|w′iγ, vi] ≡
1
n

∑n
j=1 y1j

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

(10)

ŷ2i ≡ Ê[y2i|w′iγ, vi] ≡
1
n

∑n
j=1 y2j

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

(11)

x̂i ≡ Ê[xi|w′iγ, vi] ≡
1
n

∑n
j=1 xj

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ/h)K((vj − vi)/h)

, (12)

where K : R → R is a kernel function (for example, the standard normal probability

density function) and h is the bandwidth parameter satisfying h → 0 as n → ∞. For

simplicity we have assumed the same kernel functions for w′γ and v as well as the same

bandwidths h. Let qi = (x′i, y2i)
′. The feasible Robinson estimator of θ = (β′, δ)′ is then

given by

θ̂ =

(
n∑
i=1

(qi − q̂i)(qi − q̂i)′di

)−1 n∑
i=1

{(qi − q̂i)(y1i − ŷ1i)di}, (13)

where q̂i = (x̂i, ŷ2i). Under some regularity conditions, it can be shown that the Robinson

estimator is
√
n-consistent and has an asymptotic normal distribution.

However, for making inference we cannot use the asymptotic normality results of the

Robinson estimator since we cannot observe γ and v. We thus have to replace these with

“first stage” estimates γ̂ and v̂ ≡ y2 − z′α̂, respectively. We then have to replace the
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infeasible estimator in (13) with

ˆ̂
θ =

(
n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′di

)−1 n∑
i=1

{(qi − ˆ̂qi)(y1i − ˆ̂y1i)di}, (14)

where ˆ̂qi = (ˆ̂xi, ˆ̂y2i) and

ˆ̂y1i ≡ Ê[y1i|w′iγ̂, v̂i] ≡
1
n

∑n
j=1 y1j

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

(15)

ˆ̂y2i ≡ Ê[y2i|w′iγ̂, v̂i] ≡
1
n

∑n
j=1 y2j

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

(16)

ˆ̂xi ≡ Ê[xi|w′iγ̂, v̂i] ≡
1
n

∑n
j=1 xj

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

1
n

∑n
j=1

1
h2
K((wj − wi)′γ̂/h)K((v̂j − v̂i)/h)

. (17)

Unfortunately, replacing γ and v with estimates alters the asymptotic properties of the

Robinson estimator, which will be further investigated in the next section.

3 Asymptotic Properties

Before we proceed with the asymptotic analysis, we make a comment on the interpretation

of the sample size n. In our formulation, n refers to the number of non-missing observa-

tions in y1. This interpretation of the sample size has been suggested by Powell (1987),

for instance. This implies that the selection equation may be estimated at a faster rate

than
√
n; for example a parametric estimation procedure such as probit or logit would

yield a rate of
√
N , where N denotes the number of individuals for which the variables

of the selection equation are fully observable. The fact that the selection equation (and

possibly the reduced form equation for y2) can be estimated at a faster rate than the

main equation is crucial to our asymptotic analysis in the following, since in this case the

asymptotic distribution of the Robinson estimator is unaffected by the fact that we use

estimated values of w′γ and v instead of the true values.

In order to derive the asymptotic properties of the estimator proposed in the last sec-

tion, we briefly state the assumptions which guarantee the consistency and asymptotic
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normality properties of the ordinary (infeasible) Robinson estimator. We follow the expo-

sition in Li and Racine (2009) which covers more general cases than in Robinson’s original

formulation (especially conditional heteroskedasticity).

Assumption 3: (y1i, qi, wi, zi), i = 1, . . . , N are i.i.d. observations, (w′γ, v) has a

density which is bounded from above, g(·) ∈ G4ν , and E[q|w′γ, v] ∈ G4ν , where ν ≥ 2 is an

integer.

In this formulation, G4ν denotes a class of functions which are ν times differentiable and

satisfy Lipschitz conditions such as |g(z) − g(z′)| = Hg(z)||z′ − z||, where Hg(z) is a

continuous function with E|Hg(z)|4 < ∞ and || · || denotes the Euclidean norm. Hence,

Assumption 3 puts some restrictions on the smoothness of the unknown function g(·).

Next, we make some assumptions on the moments of r and q.

Assumption 4: E[r|q, w′γ, v] = 0, E[r2|q, w′γ, v] = σ2(w′γ, v) is continuous in

(w′γ, v), E|q|4 <∞ and E|r|4 <∞.

The next two assumptions deal with the kernel function K(·) and the bandwidth pa-

rameter h.

Assumption 5: K(·) is a bounded νth order kernel with K(t) = O(1/[1 + |t|]ν+1).

Assumption 6: nh4 →∞ and nh4ν → 0 as n→∞.

The conditions on the bandwidth parameter in Assumption 6 ensure that replacing the

conditional expectations in (9) with kernel estimates does not alter the asymptotic dis-

tribution.

Under Assumptions 1-6, it follows from Robinson (1988) that
√
n(θ̂−θ) d−→ N (0,Φ−1ΨΦ−1)

for the infeasible estimator, where Φ̂ = E[(qi − q∗i )(qi − q∗i )′], Ψ̂ = E[σ2(qi, w
′
iγ, vi)(qi −

q∗i )(qi − q∗i )′] and q∗i = E[qi|w′iγ, vi].

In order to establish asymptotic properties of our feasible estimator
ˆ̂
θ, we make the

following assumption on the first stage estimators γ̂ and α̂.

Assumption 7: (i) γ and α each lie in the interior of a compact set; (ii) γ̂ − γ =

Op(n
−p1) and α̂− α = Op(n

−p2), respectively, with p1 > 1/2 and p2 ≥ 1/2.

Note that Assumption 7 implies that the selection equation is estimated at a faster
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rate than
√
n, while the reduced form equation for y2 may be estimated at the same rate.

3.1 Consistency

The Robinson estimator is consistent in general. This property does also hold true when

we use estimates of γ and v rather than the true values, provided that these estimates are

consistent themselves. We can, therefore, establish the following lemma:

Lemma 1: Under Assumptions 1-7,
ˆ̂
θ − θ = op(1).

Proof: Given the consistency of the feasible Robinson estimator, consistency of the

infeasible Robinson estimator (which depends on first-stage estimates) can be easily estab-

lished using the consistency proof of the ordinary Robinson estimator and an application

of Lebesgue’s dominated convergence theorem (see Billingsley, 1995, Theorem 16.4).

3.2 Asymptotic normality

The infeasible Robinson estimator has an asymptotic normal distribution which is achieved

at a
√
n-rate. However, using estimates of γ and v instead of their true values alters the

asymptotic distribution. In estimation problems where a preliminary “first stage” esti-

mator is included, a common strategy to derive the asymptotic distribution is to assume

that the preliminary estimator converges at a faster rate to its true value than the actual

(“second stage”) estimator does. For example, Kyriazidou (1997) proceeds in this way.

As mentioned above, the selection equation can typically be estimated at a faster rate

than
√
n. If this is also true for the reduced form equation for y2 (for instance, if the

variables in this equation are fully observable and the error term is not correlated with

the selection effect), we can establish the following theorem:

Theorem 1: Under Assumptions 1-7, and if p1 > 1/2 and p2 > 1/2, then
√
n(

ˆ̂
θ −

θ)
d−→ N (0,Φ−1ΨΦ−1), where Φ and Ψ are defined as before.

Proof: See appendix.

However, if the reduced form equation for y2 can only be estimated at rate
√
n, we

have the following result:
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Theorem 2: Under Assumptions 1-7, and if
√
n(α̂ − α)

d−→ N (0,Γ), then
√
n(

ˆ̂
θ −

θ)
d−→ N (0,Φ−1(Ψ + Ω)Φ−1), where Φ and Ψ are defined as before and Ω is given by

Ω =

(
E

[
(qi − q∗i )

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

])
Γ

(
E

[
(qi − q∗i )

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

])′
. (18)

Proof: See appendix.

Hence, in this case the asymptotic distribution of the feasible estimator depends on

the asymptotic properties of the reduced form estimator α̂ through the additional matrix

Ω in the variance term. Since Ω depends on a partial derivative of the unknown function

g(·), one needs to estimate the partial derivative in order to calculate the finite-sample

analog to equation (18). Another possibility is to use bootstrap standard errors. Let
ˆ̂
θl

be the bootstrap estimate of the lth replication. An estimator of the variance of
ˆ̂
θ is then

given by

1

L

L∑
l=1

(
ˆ̂
θl − ˆ̂

θ
)2
, (19)

where L denotes the total number of replications.
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4 Monte Carlo Evidence

In this section, we provide some (limited) Monte Carlo evidence on the small sample

properties of our proposed estimator. Our simulated model is given by

y∗1i = β1xi + β2y2i + εi (20)

d∗i = xi + wi + ui (21)

y2i = xi + wi + zi + vi (22)

εi = ηi + νε,i (23)

ui = ηi + νu,i (24)

vi = ηi + νv,i (25)

di = 1(d∗i > 0) (26)

y1i =


y∗1i if di = 1

“missing” otherwise

, (27)

i = 1, . . . , N , where β1 = β2 = 1, x ∼ U[0,1], w ∼ N (1, 1), z ∼ N (1, 1), η ∼ N (0, 1),

νε ∼ N (0, 1), νu ∼ N (0, 1) and νv ∼ N (0, 1).

We also consider a slightly different design where our endogenous explanatory variable

y2 also enters the selection equation. In this case, we replace equation (21) with

d∗i = y2i + wi + ui. (28)

Note that the three error terms ε, u and v are correlated since they depend on the

common factor η. Such a situation may be quite realistic; for instance, when measuring

the returns to education for married women it is likely that the wage level, education, and

the probability of labor force participation all depend on a common factor like “ability”.

In our Monte Carlo experiments, we simulated data for sample sizes of 250, 500 and

1,000. Each experiment encompasses 1,000 replications. For different estimators and
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sample sizes, we computed the mean of the estimates of the main equation parameters as

well as the root mean squared error and the empirical sizes of t tests with a nominal size

of 5%. These t tests test the hypothesis H0 : β1 = 1 and H0 : β2 = 1, respectively. The

empirical sizes of the t tests will show how well the asymptotic distribution approximates

the finite sample distribution of the estimators we consider. Since we assume that the

reduced form equation for y2 is observable for all individuals and is independent of selection

effects, we can rely on theorem 1 of section 3 and apply the asymptotic theory of the

ordinary Robinson estimator when performing t tests based on our proposed estimator.

For the kernel K(·), we used the standard normal p.d.f., and chose a bandwidth of h =

n−1/6.5, which is in accordance with Assumption 6 as the standard normal p.d.f. is a

second order kernel.

In table 1 we collected estimation results for our simulated model when using what

we labeled “naive” estimators. The first naive estimator is a simple OLS estimator which

neither controls for endogeneity nor sample selection bias. We see that this estimator is

biased and that t tests almost always reject the null hypothesis. The next naive estimator

is a two stage least squares (2SLS) estimator which controls for the endogeneity in y2

(instruments are x, w and z, of course) but not for sample selectivity. Compared to the

OLS estimator, we have a smaller bias and smaller sizes of t tests. The bias in both β1

and β2 occurs because the fitted values from the first stage regression in 2SLS, which

are inserted into the main equation, are - like x - correlated with the omitted selectivity

correction term. The relatively good performance of the 2SLS estimator may be due to

the fact that we have a relatively small fraction of non-missing observations in y1 which is

on the order of 20%, so that the selectivity effect plays a minor role. Finally, we estimated

the model by Heckman’s two step method for the sample selection model which controls

for selectivity but not for endogeneity. This means, we augmented the main equation

with an inverse Mills ratio term (as ε and u are normally distributed). We see that the

estimator of β1 has less bias compared to OLS and more adequate empirical sizes of t tests.

However, regarding the estimator of β2 there is a similar bias and unreliable outcomes of
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t tests.

The main conclusion that should be drawn from table 1 is that conventional estimators

are biased if they are not able to control for sample selectivity and endogeneity. In table 2,

we present results for two estimators which indeed control for both types of specification

errors. The first estimator is the infeasible Robinson estimator from section 2. Hence, we

did not estimate γ and α in the first stage but assumed their true values to be known

instead. We contrast the estimation results from our proposed estimator to those obtained

by the estimator suggested by Wooldridge (2010) (or Semykina and Wooldridge, 2010,

respectively). As mentioned in the introduction, Wooldridge’s strategy is to augment the

main equation with a selection correction term and then to apply 2SLS to this augmented

equation (using all exogenous variables and the inverse Mills ratio term as instruments).

As the error terms of main and selection equation are normally distributed, we augmented

the main equation with the inverse Mills ratio term. We assumed that γ is known in

advance, and so the inverse Mills ratio term is known. However, since the instruments for

y2 suggested by Wooldridge also contain the inverse Mills ratio term (whose influence on

y2 is not known in advance), we estimated the first stage for y2 instead of assuming the

true values of these coefficients were known in advance. Hence, the Wooldridge estimator

may not be fully comparable to our proposed estimator as it depends on estimated values.

With these caveats in mind, we nevertheless see that both estimators perform well for all

sample sizes. The RMSE of the Wooldridge estimator is slightly larger which may be due

to the estimation of the first stage. However, the empirical sizes of the t tests are close

to their nominal sizes, which suggests that tests based on asymptotic distribution theory

are valid for both estimators.

As noted in the introduction, if the selection equation also contains y2, the Wooldridge

estimator is biased. The reason is that the inverse Mills ratio term includes y2 and is,

thus, endogenous as well, even if the parameters of the selection equation were known in

advance (or have been estimated consistently). On the contrary, our proposed estimator

can deal with endogeneity in the selection equation as well. To illustrate the different
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behavior of both estimators in the presence of endogeneity in the selection equation, we

replaced equation (21) above with equation (28) and obtained Monte Carlo results for this

slightly modified model. Table 3 gives the results. As we can see, our proposed estimator

performs well, while the Wooldridge estimator is biased in β2. However, the Wooldridge

estimator yields unbiased estimates of β1. This is due to the fact that correct estimation

of β1 depends on a correct specification of the selectivity correction term. But as the

selection equation parameters were known in advance, the selection effect is correctly

accounted for by the inverse Mills ratio term. Hence, the endogeneity of the selectivity

correction term affects only estimation of the parameters belonging to the endogenous

explanatory variables, but not estimation of the remaining parameters (provided that the

selectivity correction term has been correctly specified).

The next issue to be considered is the effect of estimating the parameters of the

selection equation and the reduced form equation for y2 in a “first stage”, rather than

assuming these values to be known in advance. Given our assumptions on the reduced form

equation for y2, especially its linearity, the natural semiparametric first stage estimator for

this equation is OLS. However, concerning the selection equation several semiparametric

estimators have been proposed (Manski, 1975; Han, 1987; Ichimura, 1993; Horowitz,

1992; Klein and Spady, 1993). We consider two of them, the Klein and Spady (1993)

estimator and the smoothed maximum score estimator due to Horowitz (1992). The

Klein and Spady (1993) estimator estimates not only the parameters in the selection

equation, but the c.d.f. of u as well, and it attains the semiparametric efficiency bound.

Moreover, it is
√
N consistent under appropriate regularity conditions. The Horowitz

(1992) estimator is a smoothed version of Manksi’s (1975) maximum score estimator with

a rate of convergence which is slower than
√
N but which can be made arbitrarily close

to
√
N . Like Manski’s (1975) estimator, this estimator is robust to heteroskedasticity of

an unknown form. However, in contrast to Manski’s estimator the smoothed maximum

score estimator has a faster rate of convergence.

In addition to equation (24), we consider three further distributions of u or νu, re-
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spectively, in the selection equation in order to show how these estimators perform under

different distributions. These distributions are very close to those used in Horowitz (1992).

(i) νu ∼ uniform with zero mean and unit variance

(ii) νu ∼ Student’s t with 3 degrees of freedom and normalized to have unit variance

(iii) νu = 0.25(1 + 2a2 + a4)ν, where a = x+ w and ν ∼ N (0, 1)

(In the case of endogeneity in the selection equation, a in (iii) is replaced by a = y2 +w.)

As both estimators require the specification of kernel-type functions and bandwidths,

we made the following choices: For the Klein and Spady (1993) estimator, we selected

the standard normal p.d.f. and a bandwidth of h = n−1/6.5, while for the Horowitz

(1992) estimator we selected the standard normal c.d.f. and a bandwidth of h = n−1/6.5.

Furthermore, both estimators require a normalization as the parameters of a binary choice

model are only identified up to scale. We chose that the coefficient of x in the selection

equation be equal to unity (which is indeed its true value). Since the objective function for

obtaining the smoothed maximum score estimates is difficult to maximize numerically, we

performed a grid search over the interval [-1,3] with a step length of 0.005. Note that both

the Klein and Spady and the Horowitz estimator are robust to the kind of conditional

heteroskedasticity in distribution (iii).

We not only considered these two semiparametric estimators for estimating the selec-

tion equation parameters, but we also analyzed the performance of the OLS estimator

(which, in this context, is known as the linear probability model (LPM)) and the two

well-known parametric estimators for binary choice models, logit and probit. The idea

why we consider these alternative estimators is that in large samples the Klein and Spady

estimator requires long computation times, which limits its applicability especially in the

case of bootstrap-based inference. On the other hand, the smoothed maximum score

estimator requires sophisticated optimization routines in the case of many explanatory

variables, as there is the possibility of finding a local rather than a global maximum when

maximizing the objective function. For these practical reasons, it may be convenient to
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stick to a conventional model such as the LPM, logit or probit to estimate the selection

equation. We seek to investigate how this possibly wrong model specification for the

selection equation affects the outcomes of our feasible Robinson estimator.

The Monte Carlo results for the feasible Robinson estimator based on our five selection

equation estimators are presented in table 4. Note that these results are also based on

preliminary (OLS) estimates of the reduced form equation for y2. As we can see, the

Robinson estimator based on the Klein and Spady estimates works very well even in small

sample sizes and for all considered distributions of u, with acceptable empirical sizes of t

tests. The Robinson estimator based on the smoothed maximum score estimates performs

similarly with respect to β2, but exhibits some (small) bias regarding β1. Since the correct

estimation of β1 relies heavily on a correct estimation of the selection equation (as these

estimates are used to eliminate the selection effect which directly affects estimation of β1

but not β2), we may conclude that the smoothed maximum score estimator performs not

sufficiently well in small samples, a conclusion which has also been raised by Kyriazidou

(1997) and attributed to the relatively large finite sample bias of this estimator. Hence,

one may conclude that the Klein and Spady estimator should be preferred in applications,

unless one suspects that the selection equation is contaminated by a significant amount

of conditional heteroskedasticty of unknown form.

The OLS estimator is also a semiparametric estimator. Its use for binary dependent

variables has often been criticized because one may obtain predicted probabilities which lie

outside of the [0, 1] interval. However, since the OLS estimator only serves for estimating

the parameters in the selection equation as a first step estimator, this argument loses

some of its validity. As we can see from table 4, the Robinson estimator based on the

LPM estimates performs well except for the case were u is heteroskedastic. Like the

logit and the probit model, the LPM is not robust against conditional heteroskedasticity.

However, for the remaining distributions we obtain sensible results even for small sample

sizes, which suggests that the LPM can well be used as a first stage estimator for the

selection equation.
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Regarding the Robinson estimator based on probit and logit estimates of the selection

equation parameters, we see that the estimates are very similar to the estimates based

on the LPM, even if the distribution of u does not fit the model assumptions (this latter

point has also been recognized by Horowitz (1992)). This suggests that, as long as u is

not conditionally heteroskedastic, one can obtain good estimation results for the main

equation parameters by applying either the LPM, logit or probit to the selection equa-

tion. This is especially important for large sample sizes combined with bootstrap-based

inference, as the computational burden is considerably lower if one uses one of these three

estimators to estimate the selection equation (as opposed to using the Klein and Spady

or smoothed maximum score estimators).

Finally, we considered the performance of the feasible Robinson estimator when there is

endogeneity in the selection equation. For simplicity, we estimated the selection equation

with 2SLS and did not consider extended versions of, e.g., the Klein and Spady estimator

which also account for endogeneity (see Blundell and Powell, 2004; Rothe, 2009). Table

5 contains the results. As we can see, the Robinson estimator yields good results for

β1 which are similar to using the LPM in the first stage. For β2 there is some (small)

bias which may be due to the fact that estimation of β2 is affected by endogeneity and

selection effects, which in turn requires a larger sample size to obtain “good” results.

5 Empirical Application

In this section, we present an economic application of our estimator. We seek to study

the effect of the wage rate on the number of children of married women who work full

time. From an economic perspective, the higher the (potential) wage of a woman, the

higher are the opportunity costs of having children and, thus, the lower the probability

of having many children. We thus expect a negative impact of the wage variable in a

regression of the number of children on the wage rate (and other covariates).

We restrict our analysis to full time working women because these might differ from
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part time working women in some respects (and, of course, women who are not working).

For instance, part time working women may have a higher preference for having children.

Restricting our sample to a specific group of women may cause a sample selection bias.

Moreover, the women’s wage may not be exogenous since wages as well as the number

of children are determined by preferences and, thus, past human capital investments of

women. In order to account for this potential endogeneity, we use industry dummies as

instrumental variables for a woman’s wage. We argue that industry choices are unrelated

to unobserved factors (such as preferences) affecting the number of children.

In our empirical specification, the main equation has the number of children (nchild)

as its dependent variable. Explanatory variables are the (log) annual wage (lwage), ed-

ucational attainment (in years, educ), the (log) husband’s wage (lhuswage), age (age)

and age squared (age2 ). The selection equation (governing the decision to work full time,

ftwork) includes the metropolitan status (metropolitan, =1 if woman lives in metropolitan

area), educational attainment, the (log) husband’s wage, age and age squared.

The data are from the American Community Survey 2010 sample.1 We restrict our

sample to white married women who were born in the U.S. and between 25 and 40 years

of age. Descriptive statistics of our variables are given in table 6 (except for the industry

dummies). We have a total of 71,730 women of whom 44,639 are working full time (that

is, equal to or more than 36 hours per week), which corresponds to a fraction of women

working full time of 62.2 percent.

In order to implement our feasible Robinson estimator, we have to obtain “first stage”

estimates of γ and v. The natural candidate for obtaining consistent estimates of v or

α, respectively, is OLS, as pointed out in the last section. Consequently, we regressed

the log wage on our instrumental variables and the remaining exogenous variables. We

performed this regression for the “selected” subsample only as the reduced form equation

for the log wage may be contaminated by selection effects. The estimation results are

presented in table 7. Note that the t statistics of our instruments are relatively large,

1We obtained our data files from the IPUMS-USA database (Ruggles et al., 2010).
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thus indicating that our instrumental variables have a sufficiently high impact on our

endogenous explanatory variable. The F -statistic of joint significance of our instrumental

variables also supports this view with a value of 280.23.

Regarding estimation of the selection equation, we refer to the conclusions raised in the

last section. Since the sample size is relatively large, we selected the LPM, the logit and the

probit model. Estimation results for the selection equation based on these three models

are given in table 8. Note that the variable metropolitan which is exclusive in the selection

equation has a significant impact on the probability of working full time. Educational

attainment and the husband’s wage also have strong impacts (with plausible signs), while

age and age squared seem to be irrelevant. As usual, the coefficient estimates of these

models are not directly comparable, as the estimates reflect the ratio of a coefficient and

the square root of a variance parameter. Instead, we can compare coefficient ratios across

the three models. The ratio of the coefficient of metropolitan and the coefficient of educ,

for example, is -0.383 for logit, -0.399 for probit and -0.402 for the LPM. The remaining

coefficient ratios are also similar across the three models, which indicates that estimation

results are not crucially affected by the choice of the model.

After having obtained first stage estimates of γ and v, we can employ the feasible

Robinson estimator to get estimates of the parameters of the main equation. Since we

estimated v only for the selected sample, however, we cannot rely on Theorem 1 from sec-

tion 3 in order to obtain standard errors. As raised above, we use bootstrapping instead.

We did this by sampling with replacement from the original sample for a total of 100

bootstrap replications. For each replication, we computed the feasible Robinson estima-

tor and computed the variance of our estimated coefficients according to the formula in

equation (19). Table 9 gives the results of the feasible Robinson estimator in dependency

of the three models which were used to estimate the selection equation. The coefficient

of lwage is around -0.25, meaning that a doubling of wages (increase by 100 percent) de-

creases the number of children by 0.25 on average. All estimated coefficients are relatively

similar across the three models used to estimate the selection equation (maybe except for
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lhuswage), which is in accordance with the results from the last section.

To gain further insights into our data set and for a comparison of our proposed esti-

mator with other estimators, we estimated the wage equation with OLS, 2SLS and the

maximum likelihood estimator of the Heckman sample selection model. In the last sec-

tion, we labeled these estimators the “naive” estimators as neither controls for the joint

presence of sample selectivity and endogeneity. When applying OLS, we see from table

9 that the coefficient of lwage is smaller (in absolute terms) than the estimate from the

Robinson estimator and that the husband’s wage is insignificant. In order to control for

endogeneity of the (log) wage, we computed the IV estimator using the same instrumental

variables as for the Robinson estimator. From table 9 we see that the coefficient of lwage

increases dramatically (in absolute terms and compared to OLS), while the effects of age

and age2 are similar. However, the coefficients of educ and lhuswage change considerably.

Finally we employed the Heckman estimator in order to control for sample selection bias.

Recall that this estimator is based on a joint normality assumption concerning the error

terms in main and selection equation. From table 9 we see that the estimates are very

close to the OLS estimates. Nevertheless, the estimated correlation coefficient between

the error terms of main and selection equation is about -0.106 and significantly different

from zero at the 1%-level, so that we have to reject the hypothesis that there is no sample

selection bias.

The three Robinson estimators support the evidence from OLS, IV and the Heckman

model. The IV results suggest the presence of a remarkable endogeneity bias in the

log wage. In this sense, the Robinson estimates point into the right direction as their

absolute values are larger than those of OLS. Put differently, the Robinson estimators

yield plausible results. However, the discrepancy between the Robinson results and the

IV results suggests that selectivity bias is a concern as well. This confirms the Monte

Carlo results from the last section that it is not sufficient to control for endogeneity alone.

The coefficients of educ and lhuswage are very different across the estimators listed in

table 9 and are sometimes insignificant, whereas they are very large in case of the Robinson
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estimator. To get some further insights, we estimated the coefficients again for different

choices of the bandwidth parameter h. In addition to our initial bandwidth choice of

h = n−1/6.5, we selected bandwidths of h = n−1/6, h = n−1/7 and h = n−1/8. Results (based

on a probit estimation of the selection equation) are given in table 10. While the estimated

coefficients of lwage, age and age2 are very close over the bandwidths, the coefficients of

educ and lhuswage exhibit a lot of variation. Hence, these coefficient estimates are rather

unstable and not robust against variations of the bandwidth parameter. Consequently,

interpretation of the effects of educational attainment and the husband’s wage on the

number of children should be done with caution. The remaining variables, however,

possess numerically robust coefficients across the three estimators, so that one can have

some confidence that these estimates measure the respective effects correctly.

6 Extension to Quantile Regression Settings

In this section, we briefly consider an extension of our model to quantile regression settings

and provide guidelines for estimation. Let Qτ (y|x), 0 < τ < 1, be the τth conditional

quantile of y given x. Then, combining the approaches in Buchinsky (1998) and Lee

(2007), we may write

Qτ (yi|di = 1, wi, xi, zi, vi) = q′iθ +Qτ (εi|di = 1, wi, xi, zi, vi) (29)

= x′iβ + h(w′iγ, vi). (30)

Hence, we again employ a control function approach where the expectation operator

from Assumption 1 is replaced by a quantile operator. As pointed out in Huber and

Melly (2011), a setup of the model as in equations (29) and (30) requires conditional

independence of ε and x, so that any quantile regression yields the same slope coefficients.

Hence, one of the benefits of quantile regression, namely that coefficients vary over the

distribution, must be sacrificed. However, quantile regression may nevertheless be useful

as it is more robust than mean regression. Huber and Melly (2011) also provide a test on
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the validity of the conditional independence assumption.

Estimation can be carried out as in Lee (2007). In particular, the unknown control

function h(w′γ, v) can be approximated by a series expansion, where one may use power

series or splines, for instance. Let PK(q, w′γ, v) = (q, p1(w
′γ, v), . . . , pK(w′γ, v)), where

pk(·), k = 1, . . . , K, denote known basis functions and K → ∞ as n → ∞. Further-

more, let ζ = (θ′, a1, . . . , aK)′, where a1, . . . , aK are the series coefficients which must be

estimated along with the parameters of interest. Then, the estimator of ζ is given by

ζ̂ = arg min
ζ

1

n

n∑
i=1

ρτ (yi − Pk(q, ŵ′γ, v̂)ζ), (31)

where ρτ (·) is the “check function” defined as ρτ (u) = |u|+ (2τ − 1)u for 0 < τ < 1.

Lee (2007) shows that this estimator is
√
n consistent under appropriate regularity

conditions. Note that, once again, first stage estimates of γ̂ and v̂ enter the objective

function. If these first stage estimators converge at a faster rate than
√
n, we can repeat

the statement from section 3 that, in this case, it does not matter asymptotically whether

γ̂ and v̂ are estimated or one uses the true values.

7 Conclusion

In this paper, we derived a semiparametric estimation procedure for the sample selection

model which also controls for endogeneity of covariates. We presented some Monte Carlo

results and demonstrated that our proposed estimator performs well in finite samples. In

contrast to existing approaches raised in the literature, our approach is able to handle

situations in which the same endogenous covariates enter the main as well as the selection

equation.

We also extended our model to quantile regression settings. Quantile regression meth-

ods have become a popular tool in applied econometrics as they allow to obtain hetero-

geneous effects over the entire distribution of the dependent variable. As noted above,

however, this feature is not possible in the sample selectivity and endogeneity case, at least
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if the model is specified as in section 6. However, quantile regression may nevertheless be

useful due to its robustness properties.

Since its popularization by Heckman in 1979, many researcher have used the sample

selection model to control for sample selection bias. On the other hand, the exogeneity

assumption on the covariates has only seldom been challenged. But, and this is the crucial

result of this paper, if sample selectivity and endogeneity of covariates are jointly present,

econometric models should account for both types of specification error jointly if one

wishes to obtain consistent estimates of the parameters of interest.
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Appendix

Proof of theorems 1 and 2.

The Robinson estimator has the following linear representation:

ˆ̂
θ = θ +

(
n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′

)−1 n∑
i=1

{(qi − ˆ̂qi)(gi − ˆ̂gi + ri − ˆ̂ri)}. (32)

Let

q∗i = E[qi|w′iγ, vi], g∗i = E[gi|w′iγ, vi], r∗i = E[ri|w′iγ, vi] (33)

and

q̃i = E[qi|w′iγ̂, v̂i], g̃i = E[gi|w′iγ̂, v̂i], r̃i = E[ri|w′iγ̂, v̂i]. (34)

Then, eq. (1) can be augmented as

θ̂ = θ +

(
n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′

)−1 n∑
i=1

{(qi − q∗i + q∗i − q̃i + q̃i − ˆ̂qi)

× (gi − g∗i + g∗i − g̃i + g̃i − ˆ̂gi + ri − r∗i + r∗i − r̃i + r̃i − ˆ̂ri)} (35)

=

(
n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′

)−1 n∑
i=1

{(qi − q∗i + q∗i − q̃i + q̃i − ˆ̂qi)

× (g∗i − g̃i + g̃i − ˆ̂gi + ri − ˆ̂ri)} (36)

Under regularity conditions, the analysis of Robinson (1988) implies that

θ̂ = θ +

(
n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′

)−1 n∑
i=1

{(qi − q∗i + q∗i − q̃i)

×(g∗i − g̃i + ri)}+ op(n
−1/2). (37)

28



Hence,

√
n(θ̂ − θ) =

(
1

n

n∑
i=1

(qi − ˆ̂qi)(qi − ˆ̂qi)
′

)−1(
1√
n

n∑
i=1

{(qi − q∗i + q∗i − q̃i)(g∗i − g̃i + ri)}

)
+ op(1)

(38)

= Ĉ−1(A1 + A2 + A3 + A4) + op(1), (39)

where

A1 =
1√
n

n∑
i=1

(qi − q∗i )ri (40)

A2 =
1√
n

n∑
i=1

(qi − q∗i )(g∗i − g̃i) (41)

A3 =
1√
n

n∑
i=1

(q∗i − q̃i)ri (42)

A4 =
1√
n

n∑
i=1

(q∗i − q̃i)(g∗i − g̃i) (43)

Since E[r|q, w′γ, v] = 0, it follows from the central limit theorem that A1
d−→ N (0,Ψ).

For A2, a Taylor series expansion yields

A2 =
1√
n

n∑
i=1

(qi − q∗i )
(
∂g̃i(w

′
iγ, vi)

∂v̂i
z′i(α̂− α)

)
+ op(1) (44)

=

(
1

n

n∑
i=1

(qi − q∗i )
(
∂g̃i(w

′
iγ, vi)

∂v̂i

)
z′i

)
√
n(α̂− α) + op(1) (45)

Note that

1

n

n∑
i=1

(qi − q∗i )
(
∂g̃i(w

′
iγ, vi)

∂v̂i

)
z′i

p−→ E

[
(qi − q∗i )

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

]
. (46)

Hence, if
√
n(α̂− α)

d−→ N (0,Γ), then A2
d−→ N (0,Ω), where

Ω =

(
E

[
(qi − q∗i )

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

])
Γ

(
E

[
(qi − q∗i )

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

])′
. (47)
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On the contrary, if
√
n(α̂− α) = op(1), then A2 = op(1).

Regarding A3, we have that

A3 =
1√
n

n∑
i=1

ri

(
∂g̃i(w

′
iγ, vi)

∂v̂i
z′i(α̂− α)

)
+ op(1) (48)

=

(
1

n

n∑
i=1

ri

(
∂g̃i(w

′
iγ, vi)

∂v̂i

)
z′i

)
√
n(α̂− α) + op(1) (49)

Note that

1

n

n∑
i=1

ri

(
∂g̃i(w

′
iγ, vi)

∂v̂i

)
z′i

p−→ E

[
ri

(
∂gi(w

′
iγ, vi)

∂vi

)
z′i

]
= 0 (50)

since r is uncorrelated with the exogenous variables. Hence, A3 = op(1).

For A4, we have that

A4 ≤
√
n

1

n

n∑
i=1

||(q∗i − q̃i)|| |(g∗i − g̃i)| ≤
√
n||ξ̂ − ξ||2 = op(1). (51)

By a law of large numbers argument and the dominated convergence theorem, it follows

that Ĉ
p−→ Φ, where Φ = E[(qi − q∗i )(qi − q∗i )

′]. Therefore, if
√
n(α̂ − α) = op(1), we

obtain that

√
n(θ̂ − θ) d−→ N (0,Φ−1ΨΦ−1); (52)

if
√
n(α̂− α)

d−→ N (0,Γ), we have

√
n(θ̂ − θ) d−→ N (0,Φ−1(Ψ + Ω)Φ−1). (53)

�
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Table 1: Naive estimators
OLS IV Heckman

Mean RMSE Size Mean RMSE Size Mean RMSE Size

N=250 β1 = 1 0.728 0.291 0.742 0.948 0.130 0.073 0.917 0.144 0.103
β2 = 1 1.221 0.226 0.995 0.947 0.093 0.089 1.274 0.278 1.000

N=500 β1 = 1 0.722 0.287 0.968 0.941 0.101 0.098 0.911 0.119 0.185
β2 = 1 1.221 0.224 1.000 0.945 0.076 0.159 1.274 0.276 1.000

N=1000 β1 = 1 0.723 0.281 0.999 0.941 0.082 0.165 0.912 0.105 0.319
β2 = 1 1.221 0.223 1.000 0.947 0.064 0.268 1.274 0.275 1.000

Table 2: Robinson vs. Wooldridge
Robinson Wooldridge

Mean RMSE Size Mean RMSE Size

N=250 β1 = 1 1.000 0.120 0.044 1.009 0.128 0.050
β2 = 1 1.025 0.082 0.058 0.996 0.092 0.043

N=500 β1 = 1 1.000 0.081 0.045 1.001 0.087 0.044
β2 = 1 1.015 0.057 0.056 0.995 0.067 0.056

N=1000 β1 = 1 0.999 0.059 0.055 1.001 0.061 0.048
β2 = 1 1.010 0.041 0.047 0.999 0.046 0.043

Table 3: Robinson vs. Wooldridge - endogeneity in the selection equation
Robinson Wooldridge

Mean RMSE Size Mean RMSE Size

N=250 β1 = 1 0.992 0.113 0.046 1.010 0.138 0.045
β2 = 1 1.004 0.143 0.028 0.883 0.189 0.049

N=500 β1 = 1 0.998 0.077 0.043 1.006 0.094 0.038
β2 = 1 0.995 0.107 0.032 0.881 0.160 0.149

N=1000 β1 = 1 1.000 0.056 0.051 1.003 0.067 0.039
β2 = 1 0.991 0.080 0.040 0.888 0.133 0.292
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Table 4: Estimator performance for different selection equation estimators
Klein & Spady Smoothed Max. Score LPM Probit Logit

Mean RMSE Size Mean RMSE Size Mean RMSE Size Mean RMSE Size Mean RMSE Size

N=250 normal β1 = 1 1.005 0.142 0.086 0.987 0.134 0.086 1.001 0.139 0.084 1.001 0.139 0.090 1.001 0.139 0.092
β2 = 1 1.022 0.084 0.071 1.022 0.085 0.079 1.022 0.084 0.069 1.022 0.084 0.070 1.022 0.084 0.071

uniform β1 = 1 0.995 0.138 0.094 0.983 0.135 0.111 0.993 0.138 0.091 0.993 0.137 0.090 0.993 0.137 0.092
β2 = 1 1.023 0.092 0.109 1.023 0.092 0.105 1.023 0.093 0.107 1.023 0.093 0.109 1.023 0.093 0.109

t β1 = 1 0.996 0.144 0.086 0.978 0.138 0.116 0.989 0.140 0.094 0.989 0.140 0.094 0.989 0.140 0.096
β2 = 1 1.021 0.089 0.095 1.022 0.090 0.088 1.022 0.090 0.095 1.022 0.090 0.094 1.022 0.090 0.093

het β1 = 1 0.998 0.198 0.079 0.976 0.160 0.090 0.904 0.261 0.092 0.901 0.261 0.093 0.902 0.259 0.093
β2 = 1 1.025 0.096 0.068 1.028 0.098 0.074 1.023 0.093 0.071 1.023 0.094 0.075 1.023 0.094 0.075

N=500 normal β1 = 1 0.999 0.096 0.079 0.988 0.092 0.084 0.998 0.094 0.076 0.997 0.094 0.079 0.998 0.094 0.080
β2 = 1 1.012 0.062 0.085 1.013 0.063 0.083 1.012 0.062 0.082 1.012 0.062 0.083 1.012 0.062 0.085

uniform β1 = 1 0.998 0.097 0.081 0.988 0.094 0.097 0.996 0.095 0.089 0.996 0.096 0.086 0.997 0.096 0.086
β2 = 1 1.019 0.063 0.083 1.019 0.064 0.082 1.019 0.063 0.084 1.019 0.063 0.083 1.019 0.063 0.083

t β1 = 1 1.003 0.100 0.089 0.987 0.094 0.087 0.999 0.097 0.076 1.000 0.099 0.088 1.000 0.099 0.091
β2 = 1 1.011 0.062 0.084 1.012 0.063 0.090 1.012 0.063 0.091 1.012 0.063 0.085 1.012 0.063 0.086

het β1 = 1 1.007 0.126 0.078 0.987 0.110 0.082 0.922 0.220 0.115 0.924 0.223 0.110 0.925 0.223 0.111
β2 = 1 1.016 0.071 0.069 1.018 0.072 0.073 1.012 0.070 0.076 1.012 0.070 0.080 1.012 0.070 0.081

N=1000 normal β1 = 1 1.000 0.065 0.073 0.992 0.065 0.084 0.999 0.065 0.073 0.999 0.065 0.072 0.999 0.065 0.071
β2 = 1 1.009 0.043 0.072 1.010 0.044 0.073 1.009 0.043 0.072 1.009 0.043 0.067 1.009 0.043 0.067

uniform β1 = 1 0.997 0.071 0.098 0.989 0.070 0.111 0.997 0.070 0.099 0.997 0.070 0.094 0.997 0.070 0.095
β2 = 1 1.010 0.047 0.091 1.011 0.047 0.097 1.010 0.047 0.096 1.010 0.047 0.092 1.010 0.047 0.093

t β1 = 1 1.000 0.071 0.098 0.988 0.070 0.121 0.998 0.072 0.105 0.998 0.070 0.097 0.998 0.070 0.097
β2 = 1 1.009 0.045 0.083 1.010 0.046 0.086 1.010 0.046 0.086 1.010 0.045 0.082 1.010 0.045 0.082

het β1 = 1 1.001 0.086 0.096 0.984 0.079 0.100 0.935 0.189 0.172 0.936 0.186 0.163 0.937 0.185 0.164
β2 = 1 1.010 0.050 0.054 1.010 0.050 0.059 1.007 0.049 0.059 1.007 0.049 0.060 1.007 0.049 0.059
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Table 5: Estimator performance in case of endogeneity in the selection equation
2SLS

Mean RMSE Size

N=250 normal β1 = 1 0.996 0.122 0.072
β2 = 1 0.986 0.136 0.028

uniform β1 = 1 0.991 0.126 0.083
β2 = 1 0.985 0.153 0.063

t β1 = 1 0.988 0.127 0.093
β2 = 1 0.982 0.151 0.046

het β1 = 1 0.963 0.160 0.083
β2 = 1 0.973 0.133 0.070

N=500 normal β1 = 1 0.999 0.085 0.062
β2 = 1 0.980 0.113 0.038

uniform β1 = 1 0.997 0.084 0.064
β2 = 1 0.983 0.111 0.042

t β1 = 1 1.002 0.088 0.076
β2 = 1 0.976 0.116 0.061

het β1 = 1 0.980 0.116 0.084
β2 = 1 0.963 0.105 0.077

N=1000 normal β1 = 1 1.002 0.061 0.068
β2 = 1 0.982 0.084 0.056

uniform β1 = 1 0.998 0.065 0.085
β2 = 1 0.985 0.089 0.056

t β1 = 1 1.001 0.065 0.084
β2 = 1 0.982 0.090 0.068

het β1 = 1 0.979 0.083 0.080
β2 = 1 0.962 0.087 0.102
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Table 6: Descriptive statistics

Variable Mean Std. Dev.

nchild (ftwork=1) 1.317 1.126
lwage (ftwork=1) 10.572 0.635
educ 14.498 2.036
lhuswage 10.700 0.825
age 33.195 4.482
ftwork 0.622 0.485
metropolitan 0.765 0.424

no. obs. 71,730
no. obs. with ftwork=1 44,639

Table 7: Selection equation estimates

Variable Logit Probit LPM

metropolitan -0.0745 -0.0475 -0.0178
(0.0189) (0.0116) (0.0043)

educ 0.1948 0.1192 0.0442
(0.0041) (0.0025) (0.0009)

lhuswage -0.2894 -0.1709 -0.0617
(0.0108) (0.0063) (0.0024)

age 0.0104 0.0055 0.0020
(0.0283) (0.0174) (0.0064)

age2 -0.0001 0.0000 0.0000
(0.0004) (0.0003) (0.0001)

cons 0.5996 0.3251 0.6072
(0.4645) (0.2847) (0.1058)

Note: Standard errors in parentheses.
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Table 8: Reduced form estimates
Variable Coeff. S.E. t-Stat.

agriculture 0.2290189 0.0562054 4.07
mining 0.8409302 0.0840846 10
construction 0.5408305 0.0345118 15.67
manufacturing 0.7347648 0.0227991 32.23
wholesale 0.70541 0.0304954 23.13
retail 0.2717634 0.0212436 12.79
transport 0.5706506 0.0328031 17.4
utilities 0.8415711 0.0530471 15.86
communication 0.6425299 0.0295484 21.74
finance 0.7127673 0.0210127 33.92
management 0.6403309 0.0210235 30.46
social 0.3649633 0.0186949 19.52
arts -0.0589073 0.0232935 -2.53
public 0.6772269 0.0235076 28.81
armed 0.9888614 0.068932 14.35
educ 0.1527763 0.0017988 84.93
lhuswage 0.0476687 0.0043233 11.03
age 0.0949767 0.0121166 7.84
age2 -0.0012707 0.0001833 -6.93
cons 5.371472 0.2001243 26.84

Table 9: Main equation estimates

Variable OLS IV Heckman Robinson: Logit Robinson: Probit Robinson: LPM

lwage -0.1558 -0.8386 -0.1552 -0.2536 -0.2538 -0.2541
(0.0088) (0.0473) (0.0088) (0.0236) (0.0237) (0.0237)

educ -0.0815 0.0069 -0.0888 -0.4909 -0.4823 -0.4796
(0.0028) (0.0067) (0.0037) (0.0404) (0.0408) (0.0403)

lhuswage -0.0101 0.0698 -0.0002 0.6140 0.5798 0.5609
(0.0065) (0.0088) (0.0072) (0.0632) (0.0612) (0.0583)

age 0.5326 0.6067 0.5323 0.5197 0.5232 0.5234
(0.0178) (0.0196) (0.0178) (0.0622) (0.0615) (0.0608)

age2 -0.0068 -0.0077 -0.0068 -0.0068 -0.0068 -0.0068
(0.0003) (0.0003) (0.0003) (0.0009) (0.0009) (0.0009)

cons -5.7703 -2.1403 -5.7006 - - -
(0.2958) (0.4000) (0.2971)

Note: Standard errors in parentheses.
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Table 10: Robustness check: varying the bandwidth

Variable h = n−1/6.5 h = n−1/6 h = n−1/7 h = n−1/8

lwage -0.2538 -0.2552 -0.2516 -0.2452
educ -0.4823 -0.5278 -0.4365 -0.3560
lhuswage 0.5798 0.6477 0.5112 0.3902
age 0.5232 0.5212 0.5251 0.5282
age2 -0.0068 -0.0068 -0.0068 -0.0068
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