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Estimating the number of mean shifts under long

memory∗

Philipp Sibbertsen† and Juliane Willert

Institute of Statistics, Faculty of Economics and Management

Leibniz Universität Hannover, 30167 Hannover, Germany

Abstract

Detecting the number of breaks in the mean can be challenging when it comes to the

long memory framework. Tree-based procedures can be applied to time series when the

location and number of mean shifts are unknown and estimate the breaks consistently

though with possible overfitting. For pruning the redundant breaks information criteria

can be used. An alteration of the BIC, the LWZ, is presented to overcome long-range

dependence issues. A Monte Carlo Study shows the superior performance of the LWZ to

alternative pruning criteria like the BIC or LIC.

Keywords: long memory, mean shift, regression tree, ART, LWZ, LIC.
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1 Introduction

The detection of changes in the mean is a fundamental issue for many areas of time series

analysis. To specify the number and location of a mean shift can be even more challenging

when the underlying framework consists of long memory behavior (see Sibbertsen (2004)).

The high persistence in the time series with local trends and long cycles makes it hard for every
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breakpoint estimator. Therefore, the biggest challenge is distinguishing between the true long

memory behavior and regular mean shifts. Undetected mean shifts can lead to misleading

conclusions e.g. by biased estimation of the long memory parameter (see Granger and Hyung

(1999) and Diebold and Inoue (2001) for further details).

Bai and Perron (1998) developed a method to specify number and location of mean shifts

which is performing well in a short memory framework. Rea (2008) investigated that the Bai

and Perron procedure does not work properly when it comes to long memory data. It tends to

fail when high persistent behavior becomes too severe. To overcome this problem we adopt

the fast approach of Breiman et al. (1984) via atheoretical regression trees (ART).

Regression trees split a time series into a left and right partition and continue by splitting the

subpartitions recursively. The split choice is based on the location where the highest reduction

in the residual sum of squares can be made. In this first phase the tree is spanned and builds

a well overfitted tree of potential partitions and breakpoints (see Rea et al. (2010)). In the

second phase the pruning technique tries to cut back branches with low contribution to the

deviance reduction to locate the optimal partition of the time series.

The application of ART to time series analysis by Cappelli and Reale (2005) shows the enor-

mous utility regarding break point analysis and opens a new perspective when it comes to

structural break estimators. They showed that regression trees have reasonable performance

in detecting and locating structural breaks. In comparison with Bai and Perron (1998) the

least squares regression trees perform convincingly even in short-memory time series.

To locate the redundant mean shifts during the pruning phase of ART information criteria

are used. Common pruning techniques such as the BIC fail when it comes to long memory

behavior. Lavielle and Moulines (2002) suggested the LIC for the long memory case, which

takes the long memory parameter into account. However, this requires a pre-specification that

the underlying process is indeed long memory and an estimation of the long memory behavior

when there are potential mean shifts coexistent. Thus a new information criteria, also Schwarz

information criteria based, will be used to overcome this problem and still maintain the good

properties of the regression trees to specify the number of mean shifts. The LWZ information

criterion, first suggested by Liu, Wu and Zidek (1997), retains consistency but is constructed

in a more flexible way with two parameters that are determined throughout the data generating
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process. It will be shown that it performs also in the long memory framework with superior

results in comparison to the alternative pruning criteria.

The remainder of this paper is organized as follows. Section 2 outlines the tree-based proce-

dure and their characteristics. Section 3 describes the new LWZ based pruning procedure and

section 4 presents the results of the simulation study. It compares the LWZ with the proce-

dure of Bai and Perron (1998, 2003) and the LIC (Laville and Moulines (2002)). Section 5

provides the conclusion.

2 Atheoretical regression trees

Atheoretical regression trees are used to detect and locate structural breaks. Using a nonpara-

metric approach no distributional assumptions are required and a good fit to any kind of time

series can be expected. Our break point model is defined by

yt = µ+ εt

µ = (µ1, . . . ,µm)

µk = I(Tk+1<...<Tk+1)δk with δk ∈ R

where yt is the value of the time series at time t, εt is the error term which is assumed to be

stationary and µk is the mean of the time series in regime k up to the breakpoint m. The indi-

cator function is 1 if you are in the regime k and 0 otherwise. k = 1, ...,m are the breakpoints

with the mean of the regime µk.

The regression tree determines breakpoints through fitting piecewise constant functions in an

OLS regression framework. The exogenous predictor variable is the time t which works more

like a counter than a predictor. At each regression step the best split of the time series is

determined and an estimated breakpoint is not reconsidered but set fix in the further analysis.

The determination of the best split is identified with a node impurity measurement. Usually

the sum of squared residuals (RSS) is used as the risk function. The mean squared error is

given by

R(t) =
1

n(t) ∑
xi∈t

(yi− ȳ(t))2
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with

ȳ(t) =
1

n(t) ∑
xi∈t

yi.

The predictor variable xi represents the time points which belong to one regime and n(t) is the

number of elements in node t. A node symbolizes a part of the time series with length n(t)

i.e. the root node reflects the whole time series. To construct the tree a node t is split into a

left child node tL and a right child node tR where the sum of the RSS of the left side and the

right side of the node is minimized. That means we start by cutting the time series into two

parts where the minimization of the RSS is highest. The minimization problem describes as

follows.

min
t
(R(tL)+R(tR)) = min

t

(
1

n(tL)
∑

xi∈tL
(yi− ȳ(tL))2 +

1
n(tR)

∑
xi∈tR

(yi− ȳ(tR))2

)
The total sum of squares can be rewritten as a minimization of the within child nodes sum

of squares. This can also be written as a maximization problem regarding the improvement

through the splitting into tL and tR which maximally distinguishes the time series in the left

and right nodes by generating the highest drop in deviance (see Rea et al. (2010)).

max
t

(R(t)−R(tL)−R(tR)) =

max
t

(
1

n(t) ∑
xi∈t

(yi− ȳ(t))2− 1
n(tL) ∑

xi∈tL
(yi− ȳ(tL))2− 1

n(tR) ∑
xi∈tR

(yi− ȳ(tR))2
)

Each splitting process is a binary decision whether a node is found or not. This is applied

separately to each subgroup recursively until no improvement of the criterion can be achieved.

Thereby a hierarchical structure is build through the recursive partitionment of the time series

into nodes and terminal nodes (leaves), where every terminal node represents a final regime

with a shifted mean.

The growing process of the tree continues until no further improvement by splitting the time

series can be made. In practice this would lead to as many terminal nodes as observations and

therefore a minimum number of observations in each child node or a minimum within-node

deviance is set. Denote in what follows the estimated break points by κ̂ = (κ̂1, . . . , κ̂m) =

(T̂1/T, . . . , T̂m/T ) with true values κ0 = (κ0
1, . . . ,κ

0
m). Under assumption 1 that bT with T ≥ 1

are nonnegative constants with probability one, we show adopting arguments similar to those
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in Bai and Perron (1998).

Assumption 1:

PT (t)≥ bT
logT

T
for T ≥ 1 and t ∈ T̂T (1)

PT (t) denotes the empirical distribution of a random sample.

Lemma 1: Let εt be I(d) with d ∈ [0,1/2). Then under assumption 1, κ̂→ κ0.

Proof: Denote by ε̂t the estimated residuals

ε̂t = yt− µ̂k for t ∈ [T̂k−1 +1, T̂k]. (2)

Here, µ̂k = ȳ(t) = 1
n(t) ∑

t∈[T̂k−1+1,T̂k]

yi and n(t) gives the number of time points t in [T̂k−1+1, T̂k].

Thus in our model the mean is piecewise estimated with the arithmetic mean of the respective

observations. It holds
1
T

T

∑
t=1

ε̂t ≤
1
T

T

∑
t=1

εt . (3)

Furthermore, we have with dt = µ̂−µ0 for t ∈ [T̂k−1 +1, T̂k] and ε̂t = εt−dt

1
T

T

∑
t=1

ε̂
2
t =

1
T

T

∑
t=1

ε
2
t +

1
T

T

∑
t=1

d2
t −2

1
T

T

∑
t=1

εtdt . (4)

Using Lemma 1 in Bai and Perron (1998) which holds also in the long-memory context for

d < 1/2 (Beran et al. (1998)) and states that 1
T ∑

T
t=1 εtdt = oP(1) and the equations (3) and (4)

it can be seen that 1
T ∑

T
t=1 d2

t
P→ 0. This states that κ̂ contains the correct break points among

possible other incorrectly estimated mean shifts. Therefore, the regression tree is overfitted.

However, pruning the tree by any under I(d) consistent information criteria gives the desired

consistency for the number and location of the mean shifts. ♦

3 Pruning by means of the LWZ information criterion

The process of pruning is the ex post discarding of branches whose proportion to the error

reduction is negligible. In order to find out the optimal sequence of partitions and breakpoints

of all candidates a model selection criteria can be employed. The well-established BIC fails

in the presence of long-range dependencies. It retains its consistency but is outperformed in

finite sample studies (Bai and Perron (2004)).
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Lavielle and Moulines (2002) suggested an information criterion based on the bayesian infor-

mation criterion that penalizes the estimation with a term including the long memory param-

eter d. The LIC is defined by

LIC = min
1≤k≤m

min
κ1,...,κm

m+1

∑
k=1

[κkT ]

∑
t=[κk−1T ]+1

(yt− µ̂k)
2 +

4k logT
T 1−2d .

The penalization is chosen in order to obtain a consistent estimator for the change-point and

balances the number of over- and underestimation (see Lavielle and Moulines (2002)). The

information criterion is built exclusively for the long memory case and leads to a necessary

pre-specification of the underlying framework. Also the long memory parameter has to be

estimated without being biased through potential mean shifts.

Liu, Wu and Zidek (1997) suggested a modified Schwarz criterion to estimate the number of

sections of their multivariate regression model which is denoted as LWZ. This criterion takes

the form

LWZ(m) = ln(ST (T̂1, . . . , T̂m)/(T − p∗))+(p∗/T )co(ln(T ))2+δ0,

where c0 > 0 and δ0 > 0 are some constants and p∗ describes the total number of fitted pa-

rameters. T denotes the total number of observations and T̂i the number of observations of

regime i. The idea is to change the well-established Schwarz criterion as little as possible

to retain consistency but also to embrace the desire to construct a more flexible information

criterion accordingly.

By minimizing the sum of squares of the residuals a model dependent best criterion is given.

A reasonable choice of c0 and δ0 is suggested by Liu, Wu and Zidek (1997) for short memory

processes. They set a small δ0 (=0.1) to reduce the potential risk of underestimation with

a normal noise distribution and estimate c0 = 0.299 by equalizing the LWZ to the Schwarz

information criterion, but call for further research to develop a globally optimal pair of c0 and

δ0 under a variety of specifications which will be done in section 4.

Bai and Perron (2004) show that the LWZ outperforms the BIC in all short memory cases

including serial correlation. Under long memory the BIC is generally outperformed (see Rea

(2008) and Rea et al. (2010) for demonstrative comparison). The classic BIC is therefore no

competitor when it comes to performance questions.

6



4 Monte Carlo study

In the long memory context a simulation to specify a globally optimal pair for (c0, δ0) of the

LWZ is done. Based on an ARFIMA(p,d,q) process with negligible short memory components

for differentiation reasons no, one and two shifts in the mean of the time series is considered.

For ten different values of the long memory parameter d (stationary and non-stationary) and

a level shift height equally to the variance of the noise distribution (constantly 1) an overall

distribution regarding the percentage of correctly specified break points is computed. Under

normal, t- and double exponential noise all combinations are examined. Through a two-

dimensional grid search procedure for all considered cases the optimal parameter pair (c0 =

0.26, δ0 = 3.76, marked with a dot in figure 1) leads to 83% correct specifications. The

performance deficit of 17% is based on high (nonstationary) d values and challenging break

patterns when there are two mean shifts in the data.

Figure 1: Contour lines for correct specifications over all parameter combinations

See figure 1 for the contour plot of all considered parameter combinations. Yellow lines

represent a low percentage of correct specifications and the more red the contour level line

the higher the percentage of correct specification over all considered cases. The parameter

combination with the highest percentage (83%) is marked with a dot in figure 1 and lies at

c0 = 0.26 and δ0 = 3.76. The LWZ would be accordingly

LWZ(m) = ln(ST (T̂1, . . . , T̂m)/(T − p∗))+(p∗/T )0.26(ln(T ))5.76.

Not surprisingly, the penalization is typically higher than in the BIC (see Yao (1988)). As the

BIC was constructed based on the iid case, the penalty term has to be somewhat stronger to

balance the long-range dependance structure.

Besides an optimal parameter pair the graph also tells us that there is a rather wide central

corridor for results of roughly equally good quality. That implies that the exact parameter

combination is subordinate because of the stability of the results. The combination suggested

by Liu, Wu and Zidek (1997) (δ0 = 0.1, c0 = 0.299) is situated at the edge of the red corridor.

Due to the fact that this combination leads to good results in the short memory case and

outperforms the BIC, in general the LWZ is supposed to lead to good specification results as

long as the penalty term is higher than the BIC.
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In the short memory case the optimal parameter pair for long memory (c0 = 0.26, δ0 = 3.76)

leads to 89% correct specifications which makes the criterion safe to use for both frameworks

without previous specification analysis. In the short memory case the optimal parameter pair

would be a smaller value for c0 with the same constant δ0 or vice versa.

The Monte Carlo study serves as a comparison between the new adjusted LWZ criterion, the

ordinary BIC as a benchmark information criterion and the LIC which is specialized in long

memory cases. For ART we used tree growing procedures as implemented in ’tree’ (Ripley

(2005)) as a contributed package in the ’R’ software. A time series with a length of 500

observations will be used and 100,000 replications are made since the computation time is not

an issue.

The question that needs to be addressed after applying regression trees to time series according

to Rea et al. (2010) is whether the pruning method under- or overestimates mean shifts and

is robust against e.g. serial correlation. When there is no mean shift present in the data the

results for the estimated number of mean shifts is given in table 1.

Table 1: Simulation results for pruning criteria when there are no mean shifts present

LWZ BIC LIC

d % correct mean s.d. % correct mean s.d. % correct mean s.d.

0,05 100,00% 0,00 0,00 59,41% 0,65 0,95 50,23% 0,83 1,03

0,15 99,99% 0,00 0,00 18,86% 1,99 1,48 15,92% 2,15 1,49

0,25 99,94% 0,00 0,03 0,04% 3,36 1,52 0,03% 3,45 1,50

0,35 96,13% 0,04 0,19 0,00% 4,33 1,35 0,04% 4,36 1,33

0,45 77,62% 0,23 0,44 0,00% 4,87 1,18 0,10% 4,48 1,29

0,55 50,38% 0,57 0,65 0,00% 5,11 1,11 1,37% 3,26 1,45

0,65 27,21% 1,02 0,86 0,00% 5,17 1,10 6,14% 2,05 1,22

0,75 13,18% 1,56 1,09 0,00% 5,12 1,12 14,90% 1,34 0,93

0,85 5,91% 2,17 1,26 0,00% 4,99 1,15 24,92% 0,96 0,74

0,95 2,66% 2,70 1,32 0,00% 4,82 1,16 34,03% 0,76 0,65
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The LWZ performs well when it comes to low and moderate long memory. For high values of

d the increasing process variance of the underlying long memory tends to cover the true be-

havior of the mean. The BIC fails and tends to find at least one mean shift. The LIC develops

a valley distribution. The shape of the estimation with the LIC is conditioned on the penalty

term. With T 2d−1 it degenerates for d values close to 0.5 and increases very strong for higher

d values. For very small d values it performs well again because of the negligible long-range

dependency. That’s why for the LIC rather good results can be observed for low and high d

values but not for moderate ones.

When it comes to a single mean shift at midpoint of the series the characteristics of the pruning

criteria hold. For different break sizes that correspond to the standard deviation of the noise

distribution (sεt = 1) see table 2. The position of the mean shift does not affect the estimations

strongly though mean shifts in the boundary area weaken every criterion.
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Table 2: Simulation results for pruning criteria when there is one mean shift present

µ1 = 1, µ2 = 3 LWZ BIC LIC

d % correct mean s.d % correct mean s.d. % correct mean s.d.

0,05 100,00% 1,00 0,00 86,76% 1,14 0,38 86,76% 1,14 0,38

0,15 100,00% 1,00 0,00 49,20% 1,69 0,81 49,20% 1,69 0,81

0,25 99,90% 1,00 0,03 16,40% 2,63 1,13 16,40% 2,63 1,13

0,35 96,52% 0,97 0,18 3,92% 3,60 1,24 3,92% 3,60 1,24

0,45 82,65% 0,89 0,41 0,85% 4,35 1,23 1,04% 4,27 1,23

0,55 65,85% 0,91 0,64 0,27% 4,82 1,17 7,33% 3,54 1,37

0,65 54,00% 1,16 0,89 0,12% 5,03 1,14 29,05% 2,26 1,25

0,75 42,95% 1,63 1,11 0,09% 5,06 1,14 50,13% 1,42 0,96

0,85 29,96% 2,18 1,26 0,07% 4,96 1,15 58,60% 0,99 0,76

0,95 18,83% 2,71 1,32 0,07% 4,81 1,16 57,99% 0,77 0,65

µ1 = 1, µ2 = 2

0,05 38,39% 0,38 0,49 60,40% 1,51 0,72 59,78% 1,52 0,72

0,15 40,94% 0,41 0,49 23,57% 2,40 1,11 22,99% 2,41 1,10

0,25 41,48% 0,41 0,49 6,36% 3,42 1,27 6,14% 3,42 1,27

0,35 42,73% 0,43 0,50 1,59% 4,22 1,26 1,54% 4,23 1,26

0,45 45,51% 0,48 0,53 0,45% 4,77 1,19 1,13% 4,49 1,25

0,55 50,50% 0,67 0,66 0,15% 5,04 1,13 10,22% 3,36 1,44

0,65 51,64% 1,06 0,87 0,09% 5,13 1,11 32,14% 2,10 1,23

0,75 43,09% 1,58 1,10 0,06% 5,10 1,13 50,64% 1,36 0,94

0,85 30,11% 2,17 1,27 0,07% 4,98 1,15 58,33% 0,98 0,75

0,95 19,08% 2,71 1,33 0,05% 4,82 1,16 57,50% 0,76 0,65

The BIC again performs inferior with an average break estimation higher than 1. The LIC

holds its shape and outperforms the LWZ for several combinations. The problem of the LIC

still holds that d has to be estimated first and therefore can lead due to the deviance of the

criterion easily to false results in a practical setting. The LWZ stays comparably constant
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when the long memory parameter changes and tends to underestimate the number of mean

shifts for stationary long memory. Tree-based procedures in general overfit for small breaks

and short observation length (see Rea et al. (2010)), hence a criterion which does not exceed

this behavior could be a more than welcome technique.

For more than one mean shift the criteria weaken and are highly dependent on the break size

but fortunately not on the break pattern.

5 Empirical Application

To exemplify the benefits of break point detection with regression trees we analyze the monthly

current account deficit reported in the balance of payment (BoP) including January 2012. The

balance of payment is calculated according to the IMF (International Money Fund) and there-

fore defined as all transactions between a domestic economy and the rest of the world in a

given time period (see IMF (2010)). It consists of the visible trade (total balance of goods),

the invisible trade and transfers of funds which balances out even. These trades will be consid-

ered in the current account (deficits or surpluses) and the capital account excluding central’s

band reserve account (see Milesi-Ferretti and Razin (1996)).

It is non-controversial that the structural characteristics of current account deficits are persis-

tent based on the concept that structural imbalances are not easy to suppress in the economy.

Structural changes can be external crisis, wars and political instabilities, shifts in demand at

key industries, changes in the rate of international capital movements or elementary techno-

logical innovations. This affects not only short term cycles but also long-run behavior of the

deficit or surplus in the balance of payments of a country (see McCombie (1997), Moreno-

Brid (1998) and Araujo and Lima (2007)). In addition Cunado et al. (2004) investigated

the usage of fractional integrated models in this framework and could embrace their thoughts

through testing and application to the US deficit.

Of interest is the presence of sudden changes in the structure of the mean. We allow for an

endless number of breaks as long as the segment size contains at least 50 observations. The

estimation of the break point via regression trees leads to the following results (see table 3).
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Table 3: Break positions in current account deficits

Country Start date Break position (Month/Year)

Germany 1956 11 / 2003

Japan 1985 03 / 2003

Norway 1981 02 / 1999

UK 1955 11 / 1998

US 1960 02 / 1999

The results indicate that these countries mostly reacted to two different events. UK and US,

among other countries such as Norway, Australia and South Korea responded to the dot-com

bubble in 1999 (up to March 2000). And Germany and Japan struggled in the course of the

third oil crisis due to their large focus of high-end (oil-dependent) technology exports. Mc-

Combie (1997) (investigating Japan, UK and US) pointed out that there has to be an awareness

for structural breaks for current account deficits. Furthermore he could not rule out an I(1) be-

havior in the data. Looking at the persistence of the series before and after the structural break

in the mean is taken into account it becomes clear that the observed non-stationary behavior

can ’turned’ into (stationary) long memory (see table 4).

Table 4: Long memory estimation in current account deficits

Country d estimation d estimation after demeaning

Germany 1,005 0,564

Japan 0,843 0,432

Norway 0,946 0,455

UK 0,688 0,428

US 1,212 0,635

Milesi-Ferretti and Razin (1996) point out that in the long-run the dynamics are mostly driven

by the development of productivity differentials between traded and non-traded goods in an

economy in comparison to the rest of the world. These persistent current account imbalances,

refereed as the Balassa-Samuelson effect, are not compulsory a weakness of a domestic econ-

omy as long as the export sector and savings are large enough. Therefore it is also not implied
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that a large deficit leads to a crisis or that a crisis can only occur if a large current account

deficit is present (see Summers (2000) and Araujo and Lima (2007)).

6 Conclusion

Estimating the number of mean shifts in a long-memory time series can be challenging. Tree-

based procedures are presented as a powerful yet simple technique (see De’ath, G., Fabricius,

K. (2000)) and are therefore useful for the practitioner (Rea et al. (2010)). To prune the over-

fitting of atheoretical regression trees the BIC is widely used in a short memory framework and

surprisingly outperformed by the LWZ under multiple specifications (Bai and Perron (2004)).

The LIC which was derived for long memory shows good properties as well and partially

outperforms the LWZ for some combinations of d. Though the disadvantages of the LIC to

depend on the true value of d last. The LWZ keeps reasonable results even when the frame-

work contains long memory and thus needs no beforehand knowledge of the data generating

process. It is therefore preferable to the BIC and LIC.
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