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Gerhard Stahl, Shaohui Wang, Markus Wendt
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Abstract

Within an internal model the Economic Scenario Generator (ESG) is an important component. In order
to get a regulatory approval of an internal model it is required that the implemented models (must be) passed
a rigorous validation process, see Ceiops [2009].

In this paper we focus on the particular problem to judge the contribution of correlations between interest
rate risks across countries in the ESG. To that end we apply two strategies: an analytical and a statistical
one. The analytical approach yields necessary conditions in terms of upper and lower bounds for correlations
within the chosen model. A system of stochastic differential equations is used to describe several economies
simultaneously. In this framework we derive a lower and upper bound of the correlation of the treasury yields
between two economies by solving the associated ordinary differential inequalities.

In order to deepen our understanding about the correlation structure we consider three modeling types
of correlations of historical datasets. We first derive the realized correlations as outlined by Andersen et al.
[2003] for the historical treasury yields of two economies. Furthermore we include Engle’s parsimonious
multivariate GARCH models – known as Dynamical Conditional Correlation (DCC) model, see Engle [2009]
– and we derive conditional correlations out of our ESG. We then exploit a nice relationship outlined by
Andersen et al. [2003], which relates the realized correlation and conditional correlations in oder to compare
the three model by their ability to capture the stylized facts of the underlying processes. In this respect the
long memory of the correlation processes is of particular importance. We give a series of statistical analysis
that highlight the adequacy of the model.

∗gerhard.stahl@talanx.com, shaohui.wang@talanx.com (correspondence author), markus.wendt@talanx.com. We thank our student
assistant Mr. Zheng Jingsong for his excellent technical supports.
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1 Introduction
Under Solvency II, the internal model approach is chosen by many insurance companies. Within an internal
model the Economic Scenario Generator (ESG) is of particular importance. Typically insurance undertakings
use ESGs provided by external vendors. In order to get a regulatory approval of an internal model it is required
that the implemented models (must be) passed a rigorous validation process, see Ceiops [2009]. This is in
particular the case for models delivered by third parties, because the use of black boxes is not in line with
the spirit of Solvency II. This situation – using an externally provided ESG within an internal model – is the
starting point and motivation of the following exposition.

In this paper we focus on the particular, however important problem to judge the contribution of correlations
between interest rate risks across countries to the diversification or concentration. To that end we apply two
strategies: an analytical and a statistical one. The analytical approach yields necessary conditions in terms
of upper and lower bounds for correlations within the chosen model. For a fixed economy e the short rate is
defined by a three factor extended Cox-Ingersoll-Ross(CIR3++) models, see e.g. Chen and Scott [2002]. A
system of stochastic differential equations is used to describe several economies simultaneously. In order to
ease the exposition we consider the case of two economies. In this framework we derive a lower and upper
bound of the correlation of the treasury yields between these two economies (i.e. for two correlated CIR process
Xe1
i , X

e2
i of two economies e1, e2)∫ t

0

E[Xe1
i X

e2
i ]ds ≤

∫ t

0

E[
√
Xe1
i X

e2
i ]ds ≤

∫ t

0

√
E[Xe1

i X
e2
i ]ds (1.1)

by solving associated ordinary differential inequalities in line with (1.1) (see theorem 2.1).

In order to deepen our understanding about the correlation structure we consider three modeling types of
conditional correlations. We start with the history of treasury yields and derive thereof realized correlations as
outlined by Andersen et al. [2003]. Furthermore we include Engle’s parsimonious multivariate GARCH models
– known as Dynamical Conditional Correlation (DCC) model, see Engle [2009] – and we derive conditional
correlations out of our ESG. Now, we exploit a nice relationship outlined by Andersen et al. [2003], which
relates the realized correlation and conditional correlations, especially the DCC, in oder to compare the three
model by their ability to capture the stylized facts of the underlying processes. In this respect the long memory
of the correlation processes is of particular importance. We give a series of statistical analysis that highlight the
adequacy of the model.

The rest of paper is organized as following. In section 2 we validate the correlation of treasury yields by
testing its empirical values based on the scenarios generated by the ESG. For this purpose we first derive a upper
and a lower bound for the correlation of the treasury yield model of the ESG. Then we compare the empirical
value of the correlation implied by the ESG with its boundary. This is illustrated for the case of two economies
of Germany and U.S.A. In the section section 3 we validate the dynamic correlation of the treasury yields
across economies. After giving the definition of dynamic (conditional) correlation in line with Engle [2009]
and the realized correlation, we introduce a fundamental relationship between them found by Andersen et al.
[2003]. Focusing on one important stylized facts of the conditional correlations (long memory), we compare
the performance of the ESG with two alternative models, the HAR-model for realized correlation and the DCC-
model on the historical treasury yields of Germany and U.S.A.. In order to calculate the historical dynamic
conditional correlation of the ESG-model we apply two approximations: one is our upper bound derived in the
first section, the other one is the so-called Gaussian-mapping. In the last section 4 we give a brief outlook for
possible future works.

2 Validate the correlation of the scenarios for treasury yields
In the first part of the paper we validate the correlations of the scenarios for treasury yields across the economies.
We first provide some theoretical results about the correlations based on the interest rate models. Then we
perform some empirical tests on the scenarios generated by the ESG against our theoretical analysis.
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2.1 Some theoretical results
Within this ESG the risk free term structure under the real world measure is modeled through the three-factor
extended Cox-Ingersoll-Ross (CIR3++) model. The zero bond curves and coupon curves are derived from this
short rate model.

For a fixed economy e let Xe(t) = (Xe
i (t))3i=1 ∈ R3 be the state variable given by

dXe
i (t) = κei (θ

e
i −Xe

i (t))dt+ σei

√
X

e

i (t)dW e
i (t), (2.1)

where We(t) = (W e
i (t))3i=1 is a three dimensional standard Brownian motion. Without loss of the generality

we have omitted the market price of risks which are constant and can be encompassed into the κ and θ in a
proper way during the computing 1.

The short rate re(t) is given by

re(t) = δe(t) +
3∑
i=1

Xe
i (t), (2.2)

where δ : R+ → R is a piecewise linear function.

Without loss of generality we assume that δ(t) = 0 for all t for the theoretical analysis.

Since CIR3++ model belongs to the affine term structure model, the bond price process can be represented
as

P e(t, T ) = (Ae(t, T ) exp (−Be(t, T )′Xe(t)) , (2.3)

where Ae(t, T ) and Be(t, T ) = (Bei (t, T ))3i=1 follow certain ordinary Differential equations, see, e.g. Chen
and Scott [2002] for the CIR3 model and Brigo and Mercurio [2006] for the CIR2++ model. Analogous we
can derive that

Ae(t, T ) =
3∏
i=1

[
2hei exp{(kei + hei )(T − t)/2}

2he + (kei + hei )(exp{(T − t)hei} − 1)

]2ke
i θ

e
i /(σ

e
i )2

,

Bei (t, T ) =
2(exp{(T − t)hei} − 1)

2he + (kei + hei )(exp{(T − t)hei} − 1)
, (2.4)

where hei :=
√

(κei )2 + 2(σei )2.

Let Re(t, T ) := − logP e(t,T )
T−t denote the yield curves of P e(t, T ). Thus we have

Re(t, T ) = −
logAe(t, T )−

∑3
i=1B

e
i (t, T )Xe

i (t))
T − t

. (2.5)

Let us assume that for arbitrary two economies e1 and e2 their yield curves are correlated through the
correlated underlying Brownian Motions We1 and W e2 as following:

dW e1
i (t)dW e2

i (t) = ρe1,e2i dt, i = 1, 2, 3,

dW e1
i (t)dW e2

j (t) = 0, i 6= j,

where −1 ≤ ρe1,e2i ≤ 1. And thus we have

Cov
[
Xe1
i (t), Xe2

j (t)
]

= 0, i 6= j.

1That is, in the real-world dynamic of the bond price (2.3) the affine terms A and B depend on the risk-neutral parameters and the
dynamics of state variable X(t) depend on the real-world parameters.
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Proposition 2.1. (Correlation of yield curves between two economies)
Let Re1(t, T ),Re2(t, S) be the yield curves of two arbitrary economies e1 and e2 with maturity T and S

respectively. The correlation between these two yield curves is given by

Corr[Re1(t, T ), Re2(t, S)]

=
Cov

[
Re1(t, T ), Re2(t, S)

]√
Var [Re1(t, T )] Var [Re2(t, S)]

=
Cov

[∑3
i=1B

e1
i (t, T )Xe1

i (t),
∑3
i=1B

e2
i (t, S)Xe2

i (t)
]

√
Var

[∑3
i=1B

e1
i (t, T )Xe1

i (t)
]

Var
[∑3

i=1B
e2
i (t, S)Xe2

i (t)
]

=
∑3
i=1B

e1
i (t, T )Be2i (t, S)Cov

[
Xe1
i (t), Xe2

i (t)
]√∑3

i=1(Be1i (t, T ))2 · Var [Xe1
i (t)]

∑3
i=1(Be2i (t, S))2 · Var [Xe2

i (t)]

=
∑3
i=1B

e1
i (t, T )Be2i (t, S)

(
E[Xe1

i (t)Xe2
i (t)]− E[Xe1

i (t)]E[Xe2
i (t)]

)√∑3
i=1(Be1i (t, T ))2 · Var [Xe1

i (t)]
∑3
i=1(Be2i (t, S))2 · Var [Xe2

i (t)]
, (2.6)

where in the second to last step we use the fact that only the (W e1
i (t),W e2

i (t)) are correlated.

It is sufficient to calculate the covariance of the related state variables Xe1
i , X

e2
i , i = 1, 2, 3. The main

task now turns out to be calculating the following terms

E[Xe1
i (t)Xe2

i (t)].

For clarity of the formulation we denote from now on X , Y two arbitrary correlated CIR processes given
by

dX(t) = κ(θ −X(t))dt+ σ
√
X(t)dW (t), (2.7)

dY (t) = κ̄(θ̄ − Y (t))dt+ σ̄
√
Y (t)dW̄ (t), (2.8)

with dW (t)dW̄ (t) = ρdt being two correlated Brownian Motions.

The mean and the variance of X(t) conditional on filtration Fs at time s are given by

E[X(t)|Fs] = X(s) exp{−κ(t− s)}+ θ (1− exp{−κ(t− s)}) ,

Var[X(t)|Fs] = X(s)
σ2

κ
(exp{−κ(t− s)} − exp{−2κ(t− s)}) + θ

σ2

2κ
(1− exp{−κ(t− s)})2 . (2.9)

Theorem 2.1. (Correlation boundary for correlated CIR processes)
Let us define h(t) = E [X(t)Y (t)] for all t ≤ 0.

Let us define

∆(t) := κ̄θ̄E[X(t)] + κθE[Y (t)], (2.10)
m := −(κ+ κ̄), (2.11)
n := σσ̄ρ. (2.12)

Let f , g be the solutions of the following two ODEs

∆(t) + (m+ n)f(t) = f ′(t), (2.13)

∆(t) +mg(t) + n
√
g(t) = g′(t), (2.14)

where f(0) = g(0) = h(0).
Then the term h(t) satisfies following inequality

f(t) ≤ h(t) ≤ g(t). (2.15)
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Proof. We first apply Ito’s formula on X(t)Y (t) and get

X(t)Y (t)−X(0)Y (0) =
∫ t

0

(
κ̄θ̄X(s) + κθY (s)

)
ds (2.16)

+
∫ t

0

mX(s)Y (s)ds+
∫ t

0

n
√
X(s)Y (s)ds (2.17)

+
∫ t

0

(·)dW (s) +
∫ t

0

(·)dW̄ (s). (2.18)

Now we take the expectation on both sides of the above equation. Applying the Fubini theorem and using
the fact that the expectation of Ito integral w.r.t. Brownian Motion is zero, we get

E[X(t)Y (t)]−X(0)Y (0) =
∫ t

0

∆(s)ds+
∫ t

0

mE[X(s)Y (s)]ds+
∫ t

0

nE[
√
X(s)Y (s)]ds. (2.19)

Note that under our modeling settlement 0 ≤ X(t)Y (t) ≤ 1 and that√. is a concave function. By applying
the fact X(t)Y (t) ≤

√
X(t)Y (t) and Jensen’s inequality we have∫ t

0

nE[X(s)Y (s)]ds ≤
∫ t

0

nE[
√
X(s)Y (s)]ds ≤

∫ t

0

n
√

E[X(s)Y (s)]ds. (2.20)

Substitute this inequality into 2.19 we have following two differential inequalities

∆(t) + (m+ n)h(t) ≤ h′(t) ≤ ∆(t) +mh(t) + n
√
h(t). (2.21)

Let f , g be the solutions of the following two ODEs

∆(t) + (m+ n)f(t) = f ′(t), (2.22)

∆(t) +mg(t) + n
√
g(t) = g′(t), (2.23)

with f(0) = g(0) = h(0). Furthermore, let U1(t, f) := −∆(t)+(m+n)f and U2(t, g) := ∆(t)+mg+n
√
g.

We see that both U1 and U2 are continuously differentiable on interval (0,∞)× (0,∞), therefore they are local
Lipschitz.

Now by applying the lemma 4.1 in appendix we get the desired results.

The equation of (2.13) is a first order linear ODE and its solution is given by

f(t) = f(0) exp{(m+ n)t}+ exp{(m+ n)t}
∫ t

0

∆(s) exp{−(m+ n)s}ds, (2.24)

where f(0) = h(0). (see, e.g. Walter [1998] page 28).

The equation of (2.14) is a so called nonlinear nonautonomous first order differential equation. If ∆(t) = 0
it becomes a Bernoulli’s differential equation (see, e.g. Walter [1998] page 29 ). So we call the equation (2.14)
inhomogeneous Bernoulli’s equation. Since to our best knowledge no analytical solution to such an equation
is available, we will solve it numerically.

Example 2.1. (Case of two correlated Vasicek processes)
Let X,Y be two correlated Vasicek processes which are given by

dX(t) = κ(θ −X(t))dt+ σdW (t),
dY (t) = κ̄(θ̄ − Y (t))dt+ σ̄dW̄ (t),

with dW (t)dW̄ (t) = ρdt being two correlated Brownian Motions.
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Let h(t) := E [X(t)Y (t)] and ∆, m, n be defined as in the Theorem 2.1 for X, Y . Then similar to the
Theorem 2.1 we can derive that h satisfies following ODE

∆(t) + n+mh(t) = h′(t),

which has a solution

h(t) = h(0) exp{mt}+ exp{mt}
∫ t

0

(∆(s) + n) exp{−ms}ds.

We see that for the case of correlated Vasicek processed we can derive the correlation analytically.

2.2 Empirical tests: case of Germany and U.S.A.
As an example we analysis the ESG scenarios of the economies Germany (DE) and U.S.A.(US). The simulation
starts at 30.09.2009. The simulated horizon is up to 50 years in the future and the simulated treasury yields
have terms (time to maturities) from 0.25 to 35 years. The number of the simulated paths is 10.000. Precisely,
we choose following settings for both of DE and US:

Table 1: Simulated Horizon of the Scenarios of Treasury Yields: DE and US
Risk Horizon(year) 1.0 2.0 3.0 4.0 5.0 10.0 15.0 20.0 25.0 30.0

Table 2: Terms of Treasury Yields in the Scenarios: DE and US
Pivot Maturity: DE 3M 5Y 10Y
Pivot Maturity: US 3M 5Y 10Y

Based on the scenarios generated by our ESG, we first calculate the empirical correlation for the yields
curves of Germany and U.S.A. which is the statistic estimate of formula (2.6) (see figure 1 and table of 3 for its
values). Then by using the parameters of the ESG and applying our approximations in theorem (2.1) we derive
its upper bounds and lower bounds (see figures of 2 and table of 4 for upper bounds and table of 5 for lower
bounds respectively)2.

From this empirical test we can see that the empirical correlation for (2.6) lies within its upper and lower
bounds. Furthermore, by observing the difference between the upper bounds and the empirical correlation (
see figure 3) we see that all of the empirical correlations are lower (but quite close) to their theoretical upper
bounds. The empirical correlations are obviously larger than their lower bounds (see table 5).

Therefore we can conclude that based on our approximation the correlation of the treasury yields between
Germany and U.S.A. of our ESG is plausible. In the next section we will use this upper bound approximation
to validate the dynamical correlations of the ESG.

2Here we use the open source R-package deSolveSoetaert et al. [2010] to solve the ordinary differential equations involved in our
approximation.
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Figure 1: Empirical correlation of the Treasury Yields: DE and US

Table 3: Empirical Correlation of Treasury Yields: DE and US
1 2 3 4 5 10 15 20 25 30

DE3M US3M 0.54 0.56 0.57 0.57 0.58 0.61 0.61 0.61 0.60 0.61
DE3M US5Y 0.55 0.57 0.58 0.58 0.59 0.61 0.62 0.61 0.61 0.62
DE3M US10Y 0.54 0.56 0.57 0.57 0.59 0.61 0.61 0.60 0.61 0.61
DE5Y US3M 0.62 0.64 0.65 0.65 0.66 0.68 0.68 0.69 0.68 0.68
DE5Y US5Y 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73 0.72 0.72
DE5Y US10Y 0.71 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
DE10Y US3M 0.64 0.66 0.68 0.68 0.69 0.71 0.71 0.72 0.71 0.72
DE10Y US5Y 0.76 0.77 0.77 0.77 0.77 0.76 0.77 0.77 0.77 0.76
DE10Y US10Y 0.77 0.77 0.77 0.77 0.77 0.76 0.77 0.77 0.77 0.77
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Figure 2: Approx. upper bounds for correlation of the Treasury Yields: DE and US

Table 4: Upper Bounds of Correlation of Treasury Yields: DE and US
1 2 3 4 5 10 15 20 25 30

DE3M US3M 0.56 0.58 0.59 0.60 0.61 0.63 0.64 0.64 0.64 0.64
DE3M US5Y 0.56 0.58 0.60 0.61 0.61 0.63 0.64 0.64 0.65 0.65
DE3M US10Y 0.55 0.57 0.59 0.60 0.61 0.63 0.63 0.64 0.64 0.64
DE5Y US3M 0.63 0.65 0.67 0.68 0.69 0.71 0.72 0.72 0.72 0.72
DE5Y US5Y 0.73 0.73 0.74 0.74 0.75 0.75 0.76 0.76 0.76 0.76
DE5Y US10Y 0.73 0.73 0.74 0.74 0.74 0.75 0.76 0.76 0.76 0.76
DE10Y US3M 0.65 0.67 0.69 0.70 0.71 0.74 0.75 0.75 0.75 0.75
DE10Y US5Y 0.77 0.78 0.78 0.79 0.79 0.80 0.80 0.80 0.80 0.80
DE10Y US10Y 0.78 0.78 0.78 0.79 0.79 0.80 0.80 0.80 0.80 0.80

Table 5: Lower Bounds of Correlation of Treasury Yields: DE and US
1 2 3 4 5 10 15 20 25 30

DE3M US3M 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04
DE3M US5Y 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
DE3M US10Y 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
DE5Y US3M 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
DE5Y US5Y 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05
DE5Y US10Y 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05
DE10Y US3M 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
DE10Y US5Y 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05
DE10Y US10Y 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05
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Figure 3: Relative difference between the upper bounds and the empirical correlation of the Treasury Yields:
DE and US

3 Validate the dynamic correlation of treasury yields

In the second part of this paper we validate the dynamical (conditional) correlations of the treasury yields across
the ESG economies. We will compare the conditional correlations implied by the ESG-Model with those im-
plied by two alternative approaches: the realized correlations and the dynamical-conditional-correlation (DCC).

For the conditional correlations the most important stylized fact among others is the long memory prop-
erty which is normally characterize by the auto-correlation-function (ACF). First we use the heterogeneous
autoregressive model (HAR) to fit the realized correlation and use the DCC model (see Engle [2009]) to fit
the historical treasury yields of two Economies: Germany and U.S.A. Then we compare the fitted conditional
correlations with the conditional correlations of ESG-Model where we use two approximations to extract them
from ESG-Model.

3.1 Some empirical facts of historical yields

We use the daily datasets of Germany and U.S.A. treasury yields of maturies 3 months, 5 and 10 years from
1991− 10− 31 to 2010− 02− 23 from Bloomberg. These three yields are the so-called pivot-yields in ESG-
Model and representative enough for our analysis.

Figure 4 shows the historical zero-yields bootstrapped from the par-yields in Bloomberg. Here we use
semi-annually coupon payments for both of U.S. and Germany in order to be consistent with ESG-Assumptions
although the Germany treasuries (Bundesanleihen) only pay coupons annually.

We are interested in the conditional correlations of the treasury yields between Germany and U.S.A.
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Historical Zero Yields Curves of Pivot Maturiies
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Let us now define the conditional covariance of yields Re1, Re2 of two economies e1, e2 at time t by

Cov1,2(t;h) := Et
[
(Re1(t+ h, T )− Et[Re1(t+ h, T )])(Re2(t+ h, S)− Et[Re2(t+ h, S)])

]
, (3.1)

where the subscript in Et[.] denotes the conditional expectation based on the information up to time t.

Let V ar1(t;h) := Cov1,1(t;h) be the conditional variance. The conditional correlation is then defined by
(see equation (2.3) of Engle [2009])

ρ1,2(t;h) :=
Cov1,2(t;h)√

Var1(t;h)Var2(t;h)
. (3.2)

Similar to the case of modeling and forecasting volatilities, the conditional correlation is not an observ-
able variable. We will analysis the conditional correlation benchmarked on the realized correlation, which is
a model-free, observable variable of the dynamical evolution of two stochastic processes (see Andersen et al.
[2003] and Barndorff-Nielsen and Shephard [2003] for general theoretical backgrounds).

Let R̂e1(t, T ) and R̂e2(t, S) be two historical observations of Re1(t, T ) and Re2(t, S). The realized co-
variance of Re1, Re2 at time t over a risk horizon h, e.g. one month, is defined as

RCov1,2(t;h) :=
t+h∑
s=t

∆R̂e1(s, T )∆R̂e2(s, S), (3.3)

where ∆R̂.(s, .) := R̂.(s+ δ)− R̂.(s) for a fixed small time step δ.

Let RVar1(t;h) := RCov1,1(t;h) be the realized variance. The realized correlation is then defined by

Rρ1,2(t;h) :=
RCov1,2(t;h)√

RVar1(t;h)RVar2(t;h)
. (3.4)

Figure 5a shows the realized correlations of the Germany and U.S. treasury yields for risk horizon of one
month. Figure 6a shows the average values of overlapped realized correlations of one month (21 days), one
quarter (63 days), half year (126 days) and one year (252 days).

The most important stylized facts of dynamic correlations is the long-memory property. We use the auto-
correlation-function (ACF) to characterize it. Figure 5b shows the ACF of each of the non-overlapped monthly
realized correlations. Figure 6b shows the ACF of overlapped realized correlations with risk horizons: one
month, one quarter, half and one year. The long-memory property is obviously. Furthermore, in most of the
ACF we can observe a regime-switch of the realized correlation in year of 1997 which may reflect the facts of
Federal Reserve Monetary Policy Changes and introducing of EURO.

3.2 Some theoretical facts
The fundamental relation between the non-observable conditional correlation and the observable realized cor-
relation can be derived from the following fact

Proposition 3.1. Let QCV1,2(t) be the quadratic covariation (see definition in §II.6 of Protter [2005] for the
definition) of Re1(t, T ) and Re2(t, S). Under regular conditions we have that

• the realized covariance RCov1,2(0, t) converges to the quadratic covariation QCV1,2(t), as the time
step δ goes to 0 (see theorem 23 of Protter [2005]).

• the conditional covariance Cov1,2(t;h) equals the conditional expectation of the quadratic covariation
for 0 ≤ t ≤ t+ h (see Corollary 1 of Andersen et al. [2003]),

Cov1,2(t;h) = Et[QCV1,2(t+ h)−QCV1,2(t)]. (3.5)
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Figure 5: One month realized correlation and its ACF
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Remark 3.1. By a slight abusing of the Proposition 3.1, we can approximate the conditional correlation
through the modeling of the realized correlation if we have sufficient small time step (or equivalently sufficient
frequent observations) over a risk-horizon, i.e.

ρ1,2(t;h) ≈ Et [Rρ1,2(t;h)] . (3.6)

3.3 Some models and empirical test results
HAR-Model for Realized Correlation Following Corsi [2006] we use a heterogeneous autoregressive model
(HAR) to fit the realized correlation. See also Corsi [2004] for general background and Andersen and Benzoni
[2008] §4.4.2 for an application on realized volatility of U.S. treasury yields.

We will model the monthly realized correlation as following

ρ1,2(t+ 1;m) = a+ bρ1,2(t;m) + cρ1,2(t; q) + dρ1,2(t; s) + εt+1, (3.7)

where q, s denote the quarterly and semi-annually (overlapped) realized correlation and εt the random errors.
Similar analysis can be done for quarterly realized correlations by including the annually realized correlation.

The fitted results of this HAR-Model can be found in figure 8a and figure 9a. The ACF of the fitted HAR-
Model can be found in figure 8b and 9b. We see that this simple HAR-Model fits the realized correlation with
a quite satisfactory quality.

DCC-Model for Conditional Correlations Following Engle [2002] we use the dynamic conditional corre-
lation GRACH model(DCC) to model the conditional correlations by fitting the changes of German and U.S.
treasury yields. See Engle and Sheppard [2001] for more theoretical details and Engle [2009] for a mono-
graphic discussion. Our fitting procedure is base on the R-Package: ccgarch (see Nakatani and Teräsvirta
[2008] and Nakatani [2009]).

For a k−dimensional return process rt with risk horizon h a typical DCC-Model can be defined as follows:

rt+h|Ft ∼ N(0, Dt+hRt+hDt+h) (3.8)
Dt+h = diag(σi,t+h) (3.9)

σ2
i,t+h = ωi + κir

2
i,t + λiσ

2
i,t, i = 1, ·, k (3.10)

εt+h = D−1
t+hrt+h (3.11)

Qt+h = Q̄(1− α− β) + αεtε
′

t + βQr (3.12)

Rt+h = diag(Qt+h)−1/2Qt+hdiag(Qt+h)−1/2, (3.13)

where Ft is the filtration up to time t and Q̄ is the (unconditional) sample correlation matrix. In this spec-
ification, the unconditional mean of Qt is equal to the sample correlation. In this approach the number of
parameters is greatly reduced from k2+5k

2 + 2 to 3k + 2 (for the case of k-dimensional GRACH-Model).

Remark 3.2. • The conditional correlation ρ1,2(t;h) of yields R1(t, T ), R2(t, S) over risk-horizon h is
equal to the conditional correlation of changes of yields ∆1(t, T ), ∆2(t, S) because R1(t, T ), R2(t, S)
are measurable with respect to filtration Ft.

• To get a better fitting result we initialized the parameters by two steps similar to the estimation procedure
suggested by Engle and Sheppard [2001]:

– for parameters in conditional variances Dt we fit k single GARCH(1,1) for each (demeaned) yield
changes ∆i(t, T ) := Ri(t+ h, T )−Ri(t, T ) for two economies i = 1, 2 and each pivot maturity
T .

– for parameters in the conditional correlation Qt we fit a GARCH(1,1) on the average monthly
realized correlations. (An alternative Ansatz could be using the fitted conditional correlation from
HAR-Model.)
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The fitted results of this DCC-Model can also be found in figure 8a and figure 9a and the ACF of the fitted
DCC-Model can be found in figure 8b and 9b.

Comparing with the realized correlation and HAR-Model we see that the DCC-Model fit the conditional
correlations in a plausible manner.

Approximations of ESG-Model Similar to the proposition 2.1 we have the following conditional correlation
for treasury yields

Proposition 3.2. (Conditional Correlation of yield curves between two economies)
The conditional correlation over a risk-horizon h for two yield curves Re1(t, T ),Re2(t, S) is given by (cf. 3.1)

Corrt[Re1(t+ h, T + h), Re2(t+ h, S + h)]

=
Covt

[
Re1(t+ h, T + h), Re2(t+ h, S + h)

]√
Vart [Re1(t+ h, T + h)] Vart [Re2(t+ h, S + h)]

=
Covt

[∑3
i=1B

e1
i (t, T )Xe1

i (t+ h),
∑3
i=1B

e2
i (t, S)Xe2

i (t+ h)
]

√
Vart

[∑3
i=1B

e1
i (t, T )Xe1

i (t+ h)
]

Vart
[∑3

i=1B
e2
i (t, S)Xe2

i (t+ h)
]

=
∑3
i=1B

e1
i (t, T )Be2i (t, S)Covt

[
Xe1
i (t), Xe2

i (t)
]√∑3

i=1(Be1i (t, T ))2 · Vart [Xe1
i (t)]

∑3
i=1(Be2i (t, S))2 · Vart [Xe2

i (t)]

=
∑3
i=1B

e1
i (t, T )Be2i (t, S)

(
Et[Xe1

i (t)Xe2
i (t)]− Et[Xe1

i (t)]Et[Xe2
i (t)]

)√∑3
i=1(Be1i (t, T ))2 · Vart [Xe1

i (t)]
∑3
i=1(Be2i (t, S))2 · Vart [Xe2

i (t)]
, (3.14)

where in the second to last step we use the fact that only the (W e1
i (t),W e2

i (t)) are correlated and we use the
fact that the Affine-Terms depend only on time-to-maturity.

It is sufficient to calculate the conditional covariance of the related state variables Xe1
i , X

e2
i , i = 1, 2, 3.

The main task now turns out to be calculating the following terms

Et[Xe1
i (t+ h)Xe2

i (t+ h)].

Remark 3.3. To evaluate the conditional correlations we first need to extract the positive initial state variable
Xe
i (t) > 0 for all t by using the historical pivot yield curves and the ESG-Parameters. There are two possible

approaches to derive them.

• One way is that for a fixed ESG economy and three pivot yields with (time-to-)maturities T1, T2, T3 we
solve a 3× 3 linear equation system at each time t.

Re(t, T1) = −
logAe(t, T1)−

∑3
i=1B

e
i (t, T1)Xe

i (t)
T1

Re(t, T2) = −
logAe(t, T2)−

∑3
i=1B

e
i (t, T2)Xe

i (t)
T2

Re(t, T3) = −
logAe(t, T3)−

∑3
i=1B

e
i (t, T3)Xe

i (t)
T3

. (3.15)

• The other one is to use the updated value of the state variables derived in the Kalman-filtering estimation
procedure for the treasury yields model. The results of the two approaches are quite close and here we
use the solution from the linear equation above.

Unfortunately, there are a not-negligible portion of negative state variable in both of two economies. Even
after we have tried to get a smaller portion of negative state variables for each single economy, this is still a
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serious problem because the time points of negative state variables are disjoint and which yields again a larger
proportion of problematic conditional correlations.

Figure 7 shows the historical state variables with recognizing portion of negative values.
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Figure 7: Historical initial state variables based on ESG-Model

So far to our best knowledge, there is no analytical expression about the correlation of ESG yield-curve
model, we use two approximations to evaluate the dynamic correlation of treasury yields between ESG economies.

• One is given by an upper-bound of the theoretical value of the correlation based on the method derived
in the first part of this paper, see theorem 2.1. This method is quite reliable as shown by the empirical
test where the upper-bounds of (unconditional) correlations are only slightly larger than the empirical
correlations derived from the ESG-scenarios. We will use this method to detect both of the values and
the stylized facts of the conditional correlations of ESG-Model. The positions of problematic conditional
correlations caused by the negative initial state variables are computed by (linear) interpolation.

• The other one is derived by assuming a Gaussian-Mapping of the ESG-Model. That is, we compute two
correlated three factor Vasicek-Model (G3++) by using the ESG-Parameters (see section 22.7 of Brigo
and Mercurio [2006] for more details about this topic). This Ansatz has no theoretical foundation and
our empirical test shows that the values of correlations are not so plausible. However, the computing is
not affected by the negative initial state variables. We use this method just to detect the stylized facts of
the conditional correlations of ESG-Model.
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We summarize all of the results in figures 8a and figure 9a and the ACFs in figures 8b and 9b. Following is
our finding.

Benchmarked on the results of the (model-free) realized correlations (see HAR-model of (3.7)), we find that
the results of DCC-Model (see (3.8)) are in general plausible, both in the values and the long-memory stylized
facts. The results of ESG-Model might in general be not so satisfactory. The approximation by Gaussian-
Mapping matches the long memory stylized facts quite well but the values of this approximation are too high.
The upper bound approximation yields a quite different long memory stylized facts and the values are also
quite high although this approximation-method is very reliable.

Although comparing with the results of HAR and DCC-Models the conditional correlation based on ESG-
Model seems like to be not so satisfiable, we should remark that our requirement on dynamical correlations
is much stronger than how the ESG actually models and implements the correlations. The differences of
test results are also partially caused by the difficulties in the estimation of ESG-Model to avoid negative state
variables for each single economy which can be identified by extracting the initial state variables of ESG-Model
using the historical treasury yields (see figure 7).

4 Outlook
• There are various alternative modelling approaches of realized correlations. An very promising approach

is the Square Root Process (Jacobi-Model). We can compare its fitting results with HAR-Model. How-
ever, the implementation is much more involved than fitting HAR-Model. See van Emmerich [2009]
and Boortz [2008]. Another one is Wishart Inverse Covariance Model (WIC-Model), see Jin and Maheu
[2009] where they also compare their results with DCC-Model.

• We can further investigate the fitting results of various models in line with those of Andersen and Benzoni
[2008] and Jacobs and Karoui [2008] where they also study the Affine-Models similar to our ESG-model.

• We can also apply similar analysis on the other ESGs such as Barrie-Hibbert-ESG and compare their
performances with each other.
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Figure 8: Fitted results of average one-month conditional correlation and its ACF
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(a) Fitted results of all one-month conditional correlations
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Figure 9: Fitted results of all one-month conditional correlation and its ACF
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Appendix
Lemma 4.1. Let U(t, g) be continuous and locally Lipschitz on an open connected set O ⊂ R2. Suppose g(t)
is a solution to g′(t) = U(t, g) on the interval [t0, t1].

Let h(t) be the solution of the following differential inequality on interval [t0, t1)

h ′(t) ≤ U(t, h(t)), h(t0) ≤ g(t0)

where h ′(.) denotes the right hand derivative of h. Then

h(t) ≤ g(t) for t ∈ [t0, t1).

Proof of this lemma can be found in chapter 6 of Newhouse [2005]. Further details about the differential
inequalities can be found in section III.4 of Hartman [2002].
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