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Abstract

We study a model in which heterogenous agents first form a trading network

where link formation is costless. Then, a seller and a buyer are randomly selected

among the agents to bargain through a chain of intermediaries. We determine both

the trading path and the allocation of the surplus among the seller, the buyer and

the intermediaries at equilibrium. We show that a trading network is pairwise stable

if and only if it is a core periphery network where the core consists of all weak (or

impatient) agents who are linked to each other and the periphery consists of all

strong (or patient) agents who have a single link towards a weak agent. Once agents

do not know the impatience of the other agents, each bilateral bargaining session

may involve delay, but not perpetual disagreement, in equilibrium. When an agent

chooses another agent on a path from the buyer to the seller to negotiate bilaterally

a partial agreement, her choice now depends both on the type of this other agent and

on how much time the succeeding agents on the path will need to reach their partial

agreements. We provide sucient conditions such that core periphery networks are

pairwise stable in presence of private information.
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1 Introduction

We are interested in markets where trades between a buyer and a seller can occur

through intermediaries and where each agent can be some day the buyer, some other

day the seller, and the day after acting as an intermediary.1 In such cases it is natural

to model the market using a network where only pairs of connected agents may

engage in trade. Examples of such trading networks are over-the-counter financial

markets, housing markets, markets for antiques, energy markets, among others.

Which trading networks are likely to emerge when agents can be either patient or

impatient and the division of the surplus between the seller, the buyer and the

intermediaries is determined through a series of bilateral bargaining sessions? How

private information aects the trading path, the division of the surplus and the

stability of trading networks?

To answer these questions we study a model where agents having dierent dis-

count rates first form a trading network. Second, a seller and a buyer are randomly

selected among the agents. The seller owns an indivisible good and the buyer has

a valuation normalized to one for the good. The buyer can obtain the good from

the seller if and only if they are connected to each other. Agents on a given path

between the seller and the buyer can act as intermediaries if trade occurs along this

path. Third, the trading path and the allocation of the surplus among the seller, the

buyer and the intermediaries are determined as follows. The buyer first chooses one

of her predecessors, say the first intermediary, on a path from the buyer to the seller

to negotiate bilaterally a partial agreement. Each bilateral negotiation proceeds as

in Rubinstein’s (1982) alternating-oer bargaining model. Once a partial agreement

is reached, the buyer exists the game and the first intermediary chooses one of her

predecessors, say the second intermediary, on a path from the first intermediary

to the seller. Once a partial agreement is reached between the first intermediary

and the second intermediary, the first intermediary exists the game; and so on until

a partial agreement is reached between the last intermediary and the seller. Each

agent receives her share of the surplus once all partial agreements have been reached.

Suppose that the population of agents is partitioned in two types of agents: weak

agents (or impatient agents) and strong agents (or patient agents). Our main result

is that a trading network is pairwise stable2 if and only if it is a core periphery

network where the core consists of all weak agents who are linked to each other and

1See Goyal (2007), Jackson (2008), Easley and Kleinberg (2010) for a comprehensive introduc-

tion to the theory of social and economic networks.
2A trading network is pairwise stable if no agent benefits from severing one of her links and no

other two agents strictly benefit from adding a link between them.
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the periphery consists of all strong agents who have a single link towards a weak

agent.3 Intuitively, agents have first incentives to create and share some surplus, and

so any pairwise stable trading network consists of only one component connecting

all agents. Agents have also incentives to occupy a position in the trading network

to extract more rents from intermediation. In addition, agents have incentives to

negotiate a partial agreement with a weaker agent to exit with a larger share of the

surplus. Hence, in any pairwise stable trading network each agent is linked to a weak

agent. Each weak agent will also try to circumvent intermediaries to obtain more of

the surplus for her. It follows that in any pairwise stable trading network all weak

agents are linked to each other. Each strong agent will then destroy links to other

strong agents because those links are never used or are harmful (more intermediaries

lie on the trading path when she is the seller). Finally, in any pairwise stable trading

network each strong player is linked to exactly one weak player to avoid sharing

the surplus with more intermediaries when she is the seller. Thus, core periphery

networks are the unique pairwise stable trading architectures. When we have more

than two types of agents and agents can be ranked in terms of their discount rates,

a star network with the weakest agent being the center is pairwise stable. Once

agents become homogenous, there is a unique pairwise stable architecture, namely

the complete network.

Finite series of bilateral bargaining sessions with complete information predict

ecient outcomes of the bargaining process. In particular, each partial agreement

is always reached immediately, so that delay cannot occur in equilibrium. This is

not the case once we introduce private information into bargaining, in which the

first rounds of negotiation are used for information transmission between the two

parties.

Once agents do not know the discount rate of the other agents, each bilateral bar-

gaining session may involve delay, but not perpetual disagreement, in equilibrium.

In fact, delay can occur even when the game is close to one of complete information.

We find that the maximum delay time in reaching an agreement can be substantial

and is increasing with the amount of private information. Hence, when an agent

chooses another agent on a path from the buyer to the seller to negotiate bilaterally

a partial agreement, her choice now depend both on the type of this other agent and

on how much time the succeeding agents will need to reach their partial agreements.

We provide sucient conditions such that core periphery networks are still pairwise

3Craig and von Peter (2009) have provided empirical evidence for a core-periphery structure in

the German banking system. Interbank markets are tiered rather than flat, in the sense that most

banks do not lend to each other directly but through money center banks acting as intermediaries.
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stable when agents can be either strong or weak and do have private information

about their discount rate. Core periphery networks are likely to be pairwise stable

if all agents do not have too much private information and weak agents are quite

more impatient than strong agents. Otherwise, agents may prefer to add links for

reducing the length of trading paths and so avoiding costly delays in reaching a

global agreement.

Most of the literature on decentralized trade in networks has focused on the

exchange of goods in exogenously given networks with random matching, com-

plete information and no intermediation. See, among others, Abreu and Manea

(2012), Calvo-Armengol (2003), Corominas-Bosch (2004), Manea (2011) and Polan-

ski (2007).4 There are a number of papers where asymmetric information is present

and/or link formation is endogenous. Kranton and Minehart (2001) have studied

why buyers and sellers form bilateral links on which they mutually agree when buy-

ers’ valuations are private information and no intermediation takes place.5 Elliott

(2012) has examined the formation of buyer-seller networks when buyers and sellers

need to make relationship specific investment to enable trade and when gains from

trade are heterogeneous. Condorelli and Galeotti (2012a) have considered a model

of sequential bargaining for a simple good when agents are located in a given net-

work, agents’ valuations are private information (high or low monetary valuation),

and resale can take place. In each period the owner of the good makes a take-it-

or-leave-it oer to one of the agents she is linked to. This agent either accepts or

rejects the oer. When an agent becomes a new owner, she can either consume the

good or resale it to another agent she is linked to in the next period. Once the good

is consumed the game ends.

Recently, Condorelli and Galeotti (2012b) have investigated the eects of a class

of trading protocols where the trade surplus is shared entirely between the initial

owner of the good and the final buyer (i.e. intermediation rents are absent) on

the architecture and eciency properties of endogenously formed trading networks.

Agents form costly links and a single good is randomly assigned to one of them.

Then, valuations for the good are independently drawn and trade takes place. When

the trading outcome is ecient and gives no intermediation rents, equilibrium and

4Blume, Easley, Kleinberg and Tardos (2009) have analyzed a complete information model

where buyers and sellers are connected through intermediaries who strategically choose bid and

ask prices to oer to the sellers and buyers they are connected to, and where the exogenously given

network structure determines the amount of competition among intermediaries.
5Wang and Watts (2006) have considered the case when sellers can produce goods of a dier-

ent quality. Mauleon, Sempere-Monerris and Vannetelbosch (2011) have studied the endogenous

formation of networks between manufacturers of dierentiated goods and multi-product retailers.
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ecient networks are either minimally connected (when the link cost is small) or

empty (when the link cost is large). However, a tension between equilibrium and

ecient networks emerges when the cost of forming a link is intermediate.

The papers most closely related to our work are Babus (2012), Goyal and Vega-

Redondo (2007). Babus (2012) has studied over-the-counter markets where bar-

gaining along a given trading path consists of a finite series of bilateral bargaining

sessions with a common discount factor.6 If links are costly and agents are far-

sighted, then a star network that connects all agents is an absorbing state of a

dynamic network formation process. In Goyal and Vega-Redondo (2007), agents are

homogenous and the surplus is shared equally among the buyer, the seller and the

essential intermediaries. An intermediary is essential if she lies on all paths between

the seller and the buyer.7 If the formation of links is costly, a star network where

a single agent acts as an intermediary for all transactions and enjoys significantly

higher payos is the unique non-empty equilibrium architecture.

We go further their analysis by considering heterogeneous agents and allowing

them to hold private information about their bargaining strength. In addition, we

endogenize the trading path and we find that a core-periphery architecture emerges

even when link formation is costless.8

The paper is organized as follows. In Section 2 we introduce trading networks.

In Section 3 we consider the series of bilateral bargaining sessions with complete

information and we determine both the equilibrium trading path and the equilibrium

shares of the surplus to be divided. In Section 4 we characterize the pairwise stable

trading networks. In Section 5 we consider the bargaining with private information.

In Section 6 we conclude.
6Gofman (2011) has studied a reduced-form model of bargaining in over-the-counter markets

which are modeled as trading networks. Gale and Kariv (2009) have done an experimental study

of trading networks where each trader can only exchange assets with a limited number of other

traders and intermediation is used to transfer the assets between initial and final owners.
7This way of dividing the surplus implicitly assumes that bargaining is multilateral rather than

consisting of a series of bilateral bargaining sessions. In addition, some intermediaries will get

no surplus because they are not essential even though they may become essential once trade and

exchange reach some intermediary on a path between the seller and the buyer.
8Core periphery networks also emerge in other models of network formation. For instance,

Hojman and Szeidl (2008) have studied a model of communication network formation where con-

nections do not require mutual consent and where the benefits from connections exhibit decreasing

returns and decay with network distance. A star network where the center maintains no links and

earns a high payo and all other agents maintain a single link to the center and earn lower payos

is the unique equilibrium architecture.
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2 Trading Networks

Players are the nodes and links indicate bilateral relationships between players. Let

N denote the set of n players or nodes, N = {1, 2, . . . , n}. Let L denote the set
of all possible links, L = {(i, j) | i = j  N}. An undirected network g  L is a

set of links such that (j, i)  g whenever (i, j)  g.9 We use the shorthand ij  g
instead of (i, j)  g to indicate that i and j are linked under the network g. Let G
be the set of all possible networks on N . The network obtained by adding link ij to

an existing network g is denoted g + ij and the network that results from deleting

link ij from an existing network g is denoted g  ij. Let N(g) = {i |  j such that
ij  g} be the set of players who have at least one link in the network g. A path
in a network g between i and j is a sequence of players i1, i2, . . . , iK1, iK such that

ikik+1  g for each k  {1, . . . , K  1} with i1 = i and iK = j, and such that each
player in the sequence i1, ..., iK is distinct. We say that player i is connected in g to

j if there is a path between i and j in g. A subnetwork h  g is a component of g,
if for all i  N(h) and j  N(h) \ {i}, there exists a path in h connecting i and j,
and for any i  N(h) and j  N(g), ij  g implies ij  h. We denote by C(g) the
set of components of g.

Players participate in the market and can be active either as a seller or as a buyer

or as an intermediary. A pair of players is randomly selected. The probability that

the pair (s, b) is selected, where s is the seller and b is the buyer, is 1/ (n (n 1)).
The seller owns an indivisible good and the buyer has a valuation v = 1 for the good.

The buyer can obtain the good from the seller if and only if the two are connected.

In other words, the buyer and the seller can trade the good if and only if they belong

to the same component. Players on a path between the seller and the buyer can act

as intermediaries if trade occurs along the path. When there is no path between the

randomly selected pair, no surplus will be realized and both players receive 0. One

central question is how the surplus is shared between the buyer, the seller and the

intermediaries when trade is feasible.

3 Bargaining with Complete Information

Suppose that (s, b) is a pair randomly matched with s being the seller and b being

the buyer and the sequence (i1, i2, ..., ik) are the intermediaries that facilitate the

transaction in this order. The sequence (s, i1, i2, ..., ik, b) forms a path connecting

9Throughout the paper we use the notation  for weak inclusion and  for strict inclusion.

Finally, # will refer to the notion of cardinality.
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seller s to buyer b. Players along this path negotiate how to split the surplus via

successive bilateral bargaining sessions.10 Without loss of generality, we assume

that players bargain in the following order: (ik, b), (ik1, ik), (ik2, ik1), ..., (i1, i2),

(s, i1) when s is the seller and b is the buyer.11 In each bilateral bargaining session

(i, j), the negotiation proceeds as in Rubinstein’s (1982) alternating-oer bargaining

model where players make alternate oers, with i making oers in even-numbered

periods and j making oers in odd-numbered periods. The length of each period

is . The negotiation starts in period 0 and ends when one of the players accepts

an oer and leads to a partial agreement. A partial agreement specifies the share

of the surplus for j to exit the game. No limit is placed on the time that may be

expended in bargaining and perpetual disagreement is a possible outcome. Players

have time preferences with constant discount rates, r1 > 0, r2 > 0, ... rn > 0.

After having reached a partial agreement with player j, player i negotiates with her

predecessor her share of the remaining surplus to exit the game; and so forth until

all (k + 1) bargaining sessions end in a partial agreement. An outcome consists of

(k+1) partial agreements that specify player i’s share of the surplus, 0  xi  1, for
i  {s, i1, i2, ..., ik, b}, such that xs + xi1 + ...xik + xb = 1. Each player only receives
her share once all (k + 1) partial agreements have been reached. Under complete

information it does not matter in our model whether a player can exit and obtains

her share immediately or only at the end of the process. Players anticipate that an

agreement will be reached immediately in all subsequent bilateral negotiations.

As the interval between oers and counteroers shortens and shrinks to zero,

there is a unique limiting subgame perfect equilibrium (SPE) outcome given by (see

Appendix A for details):

10Multi-agent bilateral bargaining models consist of a potentially infinite series of bilateral bar-

gaining sessions. In each session, two players bargain for a partial agreement that specifies who

exits and who moves on to the next session (if there is any) via the alternating-proposal framework

of Rubinstein (1982). See e.g. Suh and Wen (2009). Here, the bargaining consists of a finite series

of bilateral negotiations along the trading path and the identity of the player who can exit in each

bilateral sessions is determined by the trading path, two features which are more realistic for the

markets we are interested in.
11Remember that each player has the same probability of being the seller or the buyer. In

addition, all the results we obtain are robust to the alternative order (i1, s), (i2, i1), ..., (ik1, ik2),

(ik, ik1), (b, ik), where first the seller negotiates with an intermediary i1.
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rik + rb
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
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
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ri1
ri1 + ri2
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1

ri2
ri2 + ri3


...


1

rik1
rik1 + rik
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1

rik
rik + rb


,

xs =


1

rs
rs + ri1


1

ri1
ri1 + ri2


1

ri2
ri2 + ri3


...


1

rik1
rik1 + rik


1

rik
rik + rb


,

where s is the seller, b is the buyer and the sequence (i1, i2, ..., ik) are the intermedi-

aries that facilitate the transaction in this order. All (k + 1) partial agreements are

reached immediately so that delay cannot occur in equilibrium.

Since for a given network g there may exist more than one path connecting s

and b, we need to determine which sequence (i1, i2, ..., ik) of intermediaries between

s and b is going to emerge at equilibrium. The game proceeds as follows. Buyer b

first chooses one of her predecessors, say intermediary ik, on a path from b to s to

negotiate bilaterally a partial agreement. Each bilateral negotiation proceeds as in

Rubinstein’s (1982) alternating-oer bargaining model. Once a partial agreement is

reached, b exists the game and ik chooses one of her predecessors, say intermediary

ik1, on a path from ik to s such that b does not lie on the path. Once a partial

agreement is reached between ik and ik1, ik exists the game. Then, ik1 chooses one

her predecessors, say intermediary ik2, on a path from ik1 to s such that ik and b

do not lie on the path. Once a partial agreement is reached between ik1 and ik2,

ik1 exists the game; and so on until a partial agreement is reached between i1 and s.

In case a player is indierent between two or more predecessors, we assume that she

will choose to negotiate with the predecessor leading to the shortest path between

the seller and herself, anticipating perfectly the behavior of the other players.12

12In case there are more than one predecessor leading to the shortest path between the seller

and herself, then she will choose them with equal probability. One motivation for choosing the

shortest path to break ties may be the existence of a small risk of breakdown for links.
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Proposition 1. The path (s, i1, i2, ..., ik, b) in g is an equilibrium trading path if and
only if

(i) for each player j = s in (s, i1, i2, ..., ik, b) the discount rate of her predecessor
in (s, i1, i2, ..., ik, b) is greater or equal than the discount rate of her prede-

cessor in any other paths in g between j and s such that her successors in

(s, i1, i2, ..., ik, b) do not lie on those paths, and

(ii) there is no strictly shorter path in g connecting s and b than (s, i1, i2, ..., ik, b)

that satisfies (i).

From (1) we observe that the SPE share of each player only depends on (i) her

own discount rate, (ii) the discount rate of her predecessor, and (iii) the discount

rates of the players who have already exited the game with a partial agreement.

Therefore, when choosing her predecessor on a path from the buyer to the seller

for a bilateral negotiation, each player chooses her most impatient predecessor (i.e.

the one with the highest discount rate). The trading network depicted in Figure 1

illustrates the proposition. Suppose that r4 > r5 and r3 > r1. Then, (1, 3, 2, 4, 6, 7)

is the unique equilibrium trading path. Suppose now that r4 = r5 and r3 > r1 = r2.

Then, (1, 3, 5, 6, 7) is the unique equilibrium trading path. Player 6 is indierent

between players 4 and 5. Player 6 chooses 5 as her predecessor, because of the

shortest path assumption for breaking ties, anticipating perfectly that player 3 will

choose to negotiate with player 1. The trading path (1, 3, 5, 6, 7) involves five players.

If player 6 had chosen 4 as her predecessor then the trading path would have been

(1, 3, 2, 4, 6, 7) and would have involved six players.









 



















 
s

1

3

2

5

4

6 b

7

seller buyer

Figure 1: Equilibrium trading paths
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4 Stable Trading Networks

4.1 Pairwise stability

Players form a trading network before knowing which pair of players will be randomly

selected to become the seller and the buyer. Let ui(g, (s, b)) be player i’s SPE payo

(or share) in the trading network g with player s being the seller and player b being

the buyer, and let Ui(g) be player i’s SPE expected payo in the trading network

g before knowing which pair of players will be randomly selected. For instance,

suppose that the trading network is a star network {12, 13} where player 1 is the
center. Player 1’s expected payo will be equal to

U1({12, 13}) =
1

6
u1({12, 13} , (2, 1)) +

1

6
u1({12, 13} , (3, 1)) +

1

6
u1({12, 13} , (1, 2))

+
1

6
u1({12, 13} , (1, 3)) +

1

6
u1({12, 13} , (2, 3)) +

1

6
u1({12, 13} , (3, 2)).

That is,

U1({12, 13}) =
1

6

r2
r2 + r1

+
1

6

r3
r3 + r1

+
1

6


1

r1
r1 + r2


+
1

6


1

r1
r1 + r3



+
1

6

r2
r2 + r1


1

r1
r1 + r3


+
1

6

r3
r3 + r1


1

r1
r1 + r2


.

As our interest is in understanding which networks are likely to arise in trading net-

works when bargaining is with complete information and players are heterogeneous,

we need to define a notion which captures the stability of a network. We use a strict

version of Jackson and Wolinsky’s (1996) notion of pairwise stability. A network is

pairwise stable if no player does not lose from severing one of her links and no other

two players strictly benefit from adding a link between them.13

Definition 1. A network g is pairwise stable if

(i) for all ij  g, Ui(g) > Ui(g  ij) and Uj(g) > Uj(g  ij), and

(ii) for all ij / g, if Ui(g) < Ui(g + ij) then Uj(g)  Uj(g + ij).

Our first result is that, in the absence of costs for forming links, any pairwise

stable trading network will consist of only one component connecting all players in

N .
13Players are not farsighted in the sense that they do not forecast how others might react to

their actions. Dutta, Ghosal and Ray (2005), Herings, Mauleon and Vannetelbosch (2009) and

Page and Wooders (2009) have recently developed notions to predict which networks are likely to

be formed among farsighted players.
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Proposition 2. A network g such that #C(g) > 1 or N(g)  N is never pairwise

stable.

Suppose that, contrary to what is asserted, a pairwise stable network is split into

two or more components. Consider two players, i and j, in dierent components

Ci and Cj, respectively. First, we observe that, adding the link ij between player

i and player j will not modify player i’s payo from trades when the seller and

the buyer belong to the same component Ci (Cj). Indeed, the new link ij cannot

be part of a trading path among players in Ci (Cj). Second, we have that, in the

absence of the link ij, no trade is feasible when the seller (buyer) belongs to Ci and

the buyer (seller) belongs to Cj. Once player i is linked to player j, player i will

lie on all equilibrium trading paths when the seller (buyer) belongs to Ci and the

buyer (seller) belongs to Cj. Hence, before knowing which pair of players will be

randomly selected to become the seller and the buyer, player i and player j strictly

benefit from adding the link ij. Notice that the same reasoning holds if player i

or player j are isolated players. It then follows that networks that can be pairwise

stable consist of only one component connecting all players.

4.2 Strong and weak players

Suppose that we have two types of players: weak players (impatient) and strong

players (patient). Let W = {1, 2, ...,m} be the set of weak players and rW be the

discount rate of weak players. Let S = {m+ 1,m+ 2, ..., n} be the set of strong
players and rS be the discount rate of strong players. Obviously, rW > rS. Let gT be

the collection of all subsets of T  N with cardinality 2. Then, gW is the complete

network among the weak players. The degree of i is the number of players that i

is linked to. That is, di(g) = #{j | ij  g}. Which trading networks are pairwise
stable when there are two types players?

Our main result is that pairwise stable networks are core periphery networks

where the core only consists of weak players who are linked to each other and the

periphery only consists of strong players who are linked to one weak player.14 Figure

2 illustrates a core periphery network where W = {1, 2, 3} and S = {4, 5, ..., 11}.

14Notice that rich (patient) people have fewer friends than poor (impatient) people. An explana-

tion provided by Granovetter (1983) is that individuals develop strong social ties to those similar

to themselves and since there are fewer individuals in the upper strata of society, those at the top

have fewer close friends.
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Proposition 3. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for
j  S = {m+ 1, ..., n} and rS < rW . A network g is pairwise stable if and only if

(i) gW  g;

(ii) di(g) = 1 for all i  S;

(iii) #C(g) = 1.



 










1 3

2

















11

10

9



















6

5

4












 7 8

Figure 2: A core periphery network.

Proposition 1 tells us that a trading network g is pairwise stable if and only if (i)

all weak players are linked to each other, (ii) each strong player has exactly one link

(and so, each strong player is only linked to one weak player), and (iii) g consists of

only one component connecting all players in N . Part (iii) follows from Proposition

2. The proof of part (i) and part (ii) of Proposition 3 proceeds in five steps. First,

we show that networks that can be pairwise stable are such that each strong player

is linked to at least one weak player.

Lemma 1. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for

j  S = {m+ 1, ..., n} and rS < rW . A network g cannot be pairwise stable if there
is some strong player that is not linked to at least one weak player.

All the proofs not in the main text can be found in Appendix B. Suppose that g

consists of one component connecting all players and that there is some strong player

i  S that is not linked to at least one weak player j  W in g. The strong player

i has incentives to add the link ij because, as a buyer or intermediary or seller, she

will get a larger share of the surplus when bargaining with the weak player j rather

than having to bargain with another strong player. Moreover, she will endorse more

often the role of intermediary in g+ ij. Precisely, in g+ ij player i is winning when

she is matched as a buyer to the weak player j or to one of the strong players on

11



the geodesic between i and j or to any other player l such that player j lies on a

path between i and l in g.15 Indeed, player i will choose to negotiate with the weak

player j to obtain a larger share than the one she would get when bargaining with

strong players. Player j is indierent between g and g + ij when he is the buyer.

In g + ij player i is winning when she is matched as a seller to a player l such that

player j was lying on the trading path in g since the trading path in g + ij will be

shorter and j will end the sequence of bilateral bargaining sessions negotiating with

i. In addition, in g + ij player i is winning when she is matched as a seller to a

player l such that player j was not lying on the trading path in g and the length

of the geodesic between l and j is shorter than the length of the geodesic between

l and i. When j is the seller, he is either better o or equal o depending if the

length of the equilibrium trading path becomes shorter or not in g + ij. When i

was an intermediary in g for some match then she is still an intermediary for the

same match in g+ ij and she is either better o or equal o. Finally, it may happen

that i was not an intermediary in g for some match and now becomes in g + ij an

intermediary for the same match. Similarly, for player j. Thus, both players i and

j have incentives to add the link ij.

Lemma 2. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for

j  S = {m+ 1, ..., n} and rS < rW . A network g cannot be pairwise stable if

gW  g.

Lemma 2 follows from two observations. Firstly, two weak players i, j  W

having a common weak player l  W as neighbor (i.e. il, jl  g but ij / g) have
incentives to link to each other in g to form g + ij. Both i and j never make losses

by adding the link ij. When i is the buyer, her payo does not change since she

is already linked to another weak player l (that is linked to j) with whom she can

negotiate first. When i is the seller or an intermediary, her payo increases for all

trades such that player j is either the buyer or a preceding intermediary in g since

the new equilibrium trading path in g+ ij will be shorter than the one in g avoiding

one intermediary, namely player l. Similarly for player j. Next, we proceed from

g+ ij by adding a link between any two weak players having a common weak player

as neighbor until we cannot add such links and we end up with the new network g

where the set of weak players can be partitioned into coalitions such that all weak

players within each coalition are linked to each other and no weak player from a

given coalition is linked to a weak player from another coalition. Secondly, two weak

15The distance between two nodes is the length of (number of links in) the shortest path or

geodesic between them.
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players i and j of dierent coalitions have incentives to add the link ij to form the

network g+ij. When i is the seller she is winning for all trades where j or one of his

coalition partner is the buyer or an intermediary since the new equilibrium trading

path in g + ij will be shorter than the one in g avoiding one strong intermediary.

When i is the buyer she is indierent. When i is an intermediary in g she is also an

intermediary in g+ ij and she is either equal o or better o. Similarly for player j.

Next, we repeat the process until we end up with a network where all weak players

are linked to each other and all strong players have exactly the same links as in g.

Lemma 3. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for

j  S = {m+ 1, ..., n} and rS < rW . A network g cannot be pairwise stable if there
is some link between two strong players that are linked to the same weak player.

Here, the main point is that, when in g there is a link between two strong players

i, k  S that are linked to the same weak player j  W , either the link ik is never
used or one of the strong players is better o in g ik. For instance, suppose that i
is only linked to one weak player j. If k is only linked to i and j then the link ik will

never be used. If k is only linked to i and j and to another weak player then player

i has incentives to delete the link ik because when the match is (i, j) player j will

choose to negotiate first with the other weak player instead of negotiating directly

with i.

Lemma 4. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for

j  S = {m+ 1, ..., n} and rS < rW . A network g cannot be pairwise stable if there
is some link between two strong players that are not linked to the same weak player.

Suppose that in g there is a link between two strong players that are not linked

to the same weak player: ik  g, jl  g and ij  g with i, j  S and k, l  W .
Depending on the other links in g, either player i (or j) has incentives to delete

the link ij or player i (or j) has incentives to add a link with another weak player

(= k, l). For instance, if i and j do not have other links then i has incentives to

delete the link ij. By deleting ij she is only loosing the payo she obtains as an

intermediary for the match (j, l). This loss is largely compensated by the gains she

makes by shortening the trading path for the match (i, k) in g  ij. If j is linked
to another weak player (say m  W ) then i would have even more incentives to
delete ij since otherwise she would earn less from the match (i, k) and she would

get nothing from the matches (j, l) and (j,m).

Lemma 5. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj = rS for

j  S = {m+ 1, ..., n} and rS < rW . A network g cannot be pairwise stable if some
strong player is linked to more than one weak player.

13



We already know that the candidates for being pairwise stable are networks g

such that (i) #C(g) = 1 and N(g) = N , (ii) gW  g, (iii) ij / g if i  S and j  S.
Suppose that in g player i  S is linked to two weak players k, l  W . Clearly,
player i is indierent when she is the buyer and she is never an intermediary. When

she is matched to a weak player (= k) or to a strong player that is not linked to

player k she is better o by deleting the link ik since the equilibrium trading path is

shortened of one link. Hence, we obtain our main result that a network g is pairwise

stable if and only if gW  g, di(g) = 1 for all i  S, and #C(g) = 1.
Suppose now that we allow group of players to modify their links. Link addition

is bilateral, link deletion is unilateral, and multiple link changes can take place

at a time. A network g is obtainable from g via deviations by group Q  N if

(i) ij  g and ij / g implies {i, j}  Q, and (ii) ij  g and ij / g implies

{i, j}Q = . A network g is strongly stable if (i) for all ij  g, Ui(g) > Ui(g ij)
and Uj(g) > Uj(g  ij), and (ii) for all Q  N , g that is obtainable from g via

deviations by Q, there exists i  Q such that Ui(g)  Ui(g).16 Strong stability is

a refinement of pairwise stability. We have that a network g is strongly stable if

and only if (i) gW  g, (ii) di(g) = 1 for all i  S, (iii) di(g) = n  1 for some
i  W , and (iii) #C(g) = 1. Thus, strongly stable networks are core periphery

networks where the core consists of weak players who are linked to each other and

the periphery consists of strong players who are only linked to the same weak player.

Those core periphery networks give to the strong players (and to player i  W for

which di(g) = n 1) their best payos among pairwise stable networks. Notice that
in those core periphery networks the payo of a strong player may be greater or

smaller than the payo of the weak player i  W for which di(g) = n 1 depending
on the discount rates, the number of weak players (m) and the number of strong

players (nm). See Appendix C for the details.

4.3 Ranked players

Suppose now that players can be ranked in terms of their discount rates with player

1 being the most impatient player (weakest player): r1 > r2 > ... > rn1 > rn.

Clearly, a star network with the weakest player being the center is pairwise stable.

16This definition of strong stability reverts to Dutta and Mutuswami (1997) definition of strong

stability if we do not require that no player does not lose from severing one of her links. Strong

stability of Dutta and Mutuswami considers a deviation to be valid only if all members of a

deviating coalition are strictly better, while the definition of Jackson and van den Nouweland

(2005) is slightly stronger by allowing for a deviation to be valid if some members are strictly

better and others are weakly better.
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Proposition 4. Suppose that r1 > r2 > ... > rn1 > rn. The network g such that

(i) d1(g) = n 1;

(ii) di(g) = 1 for all i  {2, 3, ..., n};

(iii) #C(g) = 1.

is pairwise stable.
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Figure 3: A star network with the weakest player being the center.

However, a star network with the weakest player being the center is not the

unique pairwise stable network when players can be ranked based on their impa-

tience. For instance, take N = {1, 2, 3} and r1 > r2 > r3. The star network {12, 23}
is pairwise stable if 3r2(r2 + r3)1 > r1(r1 + r3)

1(2r1 + 3r2)(r1 + r2)
1. The last

condition is likely to hold the more impatient player 2 is (that is, when r2 is close

to r1).

In addition, suppose that there are more than one player of each type and that we

have more than two types of players. That is, ri = r1 > 0 for i  W = {1, 2, ...,m},
ri = r2 > 0 for i  {m+ 1, ..., l}, ri = r3 > 0 for i  {l + 1, ..., k}, ... with r1 > r2 >
r3 > .... Then, the network g such that gW  g, di(g) = 1 for i  {m+ 1, ..., n} and
#C(g) = 1. So, core periphery networks where the core only consists of the weakest

players i  W who are linked to each other and the periphery consists of all other

players who are linked to one player in W are pairwise stable.
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4.4 Homogenous players

Suppose now that players are homogenous in terms of their discount rates: r1 =

r2 = ... = rn. From Proposition 2 and Lemma 2 we have that there is a unique

pairwise stable architecture, namely the complete network.

Corollary 1. Suppose that ri = r for all i  N . The complete network gN is the

unique pairwise stable network.

Babus (2012) has shown that, if the formation of links is costly and players

are farsighted, then a star network that connects all players is an absorbing state

of Dutta, Ghosal and Ray (2005) dynamic network formation process. Intuitively,

players have incentives to reduce the number of intermediaries to obtain a larger

share of the surplus. In addition, decreasing monitoring costs over time provide

incentives to interact frequently with the same partners.17 Farsighted players can

rely on their successors in the network formation process to converge towards a star

network. Both the order of play in which players decide about their links and the

amount of intermediation rents each player extracts in the initial network matters

for determining who will become the center of the star.

5 Bargaining with Private Information

Under complete information, agreement is reached immediately in each bilateral

bargaining session. This is not true if we introduce incomplete information into the

bargaining. In this case, the early rounds of negotiation are used for information

transmission.

5.1 Maximal delay in reaching an agreement

We now suppose that players have private information. Players do not know the

impatience (or discount rate) of the other players. It is common knowledge that

player i’s discount rate lies in the range [rPi , r
I
i ], where 0 < rPi  rIi and i  N .

The superscripts ”I” and ”P” identify the most impatient and most patient types,

respectively. The types are independently drawn from the set [rPi , r
I
i ] according to the

probability distribution pi, i  N . Watson (1998) has characterized the set of perfect
Bayesian equilibrium (PBE) payos which may arise in Rubinstein’s alternating-oer

17Players incur monitoring costs for each transaction along the trading path. Decreasing mon-

itoring costs over time reflect that players need to do less eort to get information about players

with whom they interacted already.
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bargaining game and constructed bounds (which are met) on the agreements that

may be made. The bounds and the PBE payos set are determined by the range

of incomplete information and are easy to compute because they correspond to the

SPE payos of two bargaining games with complete information. These two games

are defined by matching one player’s most impatient type with the opponent’s most

patient type. Each bilateral bargaining session may involve delay, but not perpetual

disagreement, in equilibrium.18 In fact, delay is positively related to the distance

between the discount rates of the most and least patient types of the players. If

the range of types is reduced, then this leads to a smaller range of possible payos

and less delay. Delay can occur even when the game is close to one of complete

information (as the type distributions converge to point mass distributions).

We propose to analyze the maximum delay time in reaching an agreement. Only

on average is this measure a good proxy for actual delay.19 In each bilateral bargain-

ing session (i, j), the maximum real time player j would spend bargaining is the time

D(i, j) such that player j is indierent between getting her lower bound PBE payo

at time 0 and getting her upper bound PBE payo at time D(i, j). In Appendix D

we derive the expression for the maximum delay in equilibrium which shows that an

agreement is reached in finite time and that delay time equals zero as incomplete

information vanishes (in that rPi and r
P
j converge to r

I
i and r

I
j, respectively).

Proposition 5. In each bilateral bargaining session (i, j), the maximum real delay

time in reaching a partial agreement is given by

D(i, j) = 
1

rPj
· log


rPi
rIi
·
rIi + r

P
j

rPi + r
I
j


.

In fact, D(i, j) is the maximum real time player j would spend negotiating if

she were of the most patient type. We have D(i, j)/rPj < 0, D(i, j)/rIj > 0,

D(i, j)/rPi < 0 and D(i, j)/rIi > 0. Given the trading path (s, i1, i2, ..., ik, b),

the maximum real delay time in reaching k + 1 partial agreements is equal to

D(s, i1, i2, ..., ik, b) = D(s, i1) +D(i1, i2) + ...+D(ik1, ik) +D(ik, b).

We now provide an example of the maximum delay. Suppose that (s, i1, i2, i3, b)

is the trading path and let rPi = r
P, rIi = r

I, rI = 0.33  rP with rP  [0.04, 0.17],
i  {s, i1, i2, ..., ik, b}. Table 1 gives the integer part of the maximum delay. We can

18Watson (1998) has constructed equilibria with delay in which the types of each player behave

identically (no information is revealed in equilibrium), players use pure strategies, and players

make non-serious oers until some appointed date.
19It is not uncommon in the literature on bargaining to analyze the maximum delay before

reaching an agreement. See, for instance, Cramton (1992) and Cai (2003).
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interpret r as the annual discount rate and the numbers in Table 1 as the maximum

number of days needed to reach an agreement.20 We observe that the real delay time

in reaching an agreement is not negligible (many bargaining rounds may be needed

in equilibrium before an agreement is reached) and is increasing with the amount of

private information
rP  rI

.

rP .17 .16 .15 .14 .13 .12 .11 .10 .09 .08 .07 .06 .05 .04

"partial delay" 0 1 2 3 4 5 7 9 12 15 20 26 36 51

"total delay" 0 4 8 12 16 20 28 36 48 60 80 104 144 204

Table 1: Maximum delay in reaching an agreement

5.2 Stability

When a player chooses one of her predecessors on a path from the buyer b to the

seller s to negotiate bilaterally a partial agreement once there is private information

about the impatience of the players, her choice still does not depend on how the

successors are going to share the rest of the surplus but now depends on how much

time the successors will need to reach their partial agreements.

Suppose that N = {1, 2, 3}, g = {12, 23, 13} and that rI2 = rP2 = rI3 = rP3 < rP1 <
rI1. That is, it is common knowledge that player 1 is a weak player and players 2

and 3 are strong players. Suppose first that player 1 is the seller and player 3 is the

buyer. Since rP1 /(r
P
1 + r

I
3) > rI2/(r

I
2 + r

P
3 ) = 1/2, player 3 will choose to negotiate

directly with player 1. Suppose now player 2 is the seller and player 3 is the buyer.

Since rI2/(r
I
2 + r

P
3 ) = 1/2  rP1 /(r

P
1 + r

I
3) exp(rI3D(1, 2)), it is not excluded that

player 3 would choose to negotiate directly with player 2 instead of going through

the weak player 1. Player 3 will choose to bargain with player 2 instead of player

1 if the expected delay for reaching an agreement in a negotiation between player 1

and player 2 is large enough. Hence, player 3 may now have incentives to be linked

to both players 1 and 2 although it is commonly known that player 2 is stronger

than player 1.

We now provide sucient conditions such that core periphery networks are still

pairwise stable when players have private information.

20The integer part of the maximum delays for  = 1/365 are exactly the numbers in Table 1.
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Figure 4: Trading paths with private information.

Proposition 6. Suppose that ri = rW > 0 for i  W = {1, ...,m} and rj  [rPS , rIS]
for j  S = {m+ 1, ..., n} (0 < rPS  rIS) and that it is common knowledge that any
player i  W is less patient than any player j  S : rPS < rIS < rW . If

(i) D(i, j) <
1
rIS
log


rIS
rW

rW + r
I
S

rPS + r
I
S


and (ii) D(j, i) <

1
rW

log


2rIS

rW + rIS


,

then a network g such that gW  g, di(g) = 1 for all i  S and #C(g) = 1 is

pairwise stable.

Condition (i) in Proposition 6 is a sucient condition for player j  S for not
adding a link to another player k  S in a core periphery network g. It implies that
if j  S and k  S are matched then buyer j prefers to negotiate with the player
i  W is linked to rather than building the link jk and negotiating directly with k.

For condition (i) to hold we need that rW  rIS is large enough (for the right-hand
side of the inequality being positive) and rIS  rPS is not too large (for D(i, j) being
small enough). Condition (ii) in Proposition 6 is a sucient condition for player

j  S for not adding a link to another weak player l  W (l = i) in a core periphery
network g. It implies that if i  W is an intermediary (or the buyer) in a match

where j  S is the seller then i prefers to negotiate with player l  W rather than

negotiating directly with j. For condition (ii) to hold we need that rIS  rPS is not
too large (for D(j, i) being small enough) and rW  rIS is large enough.

Proposition 7. Suppose that ri  [rPW , rIW ] for i  W = {1, ...,m} (0 < rPW  rIW )
and rj = rS > 0 for j  S = {m+ 1, ..., n} and that it is common knowledge that
any player i  W is less patient than any player j  S : rS < rPW < rIW . If

(i) D(l, i)+D(i, j) <
1
rS
log


rPW + rS
2rPW


and (ii) D(j, i) <

1
rIW

log


rS
rPW

rPW + r
I
W

rPW + rS


,

with i, l  W and j  S, then a network g such that gW  g, di(g) = 1 for all i  S
and #C(g) = 1 is pairwise stable.
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Similarly to conditions (i) and (ii) in Proposition 6, both conditions (i) and (ii)

in Proposition 7 are sucient conditions for a strong player j  S for not adding a
link to another strong player and to another weak player, respectively. For condition

(ii) to hold we need that rPW  rS is large enough (for the right-hand side of the
inequality being positive) and rIW  rPW is not too large (for D(j, i) being small

enough).

So, once there is private information about the impatience of the players, a core

periphery network is likely to be pairwise stable if all players do not have too much

private information and weak players are quite more impatient than strong players.

Otherwise, players may prefer to add links for reducing the length of trading paths

and so avoiding longer costly delays in reaching a global agreement.

6 Conclusion

We have analyzed a model in which heterogenous players form a trading network

and a seller and a buyer are randomly selected among the players to bargain through

a chain of intermediaries. We have determined both the trading path and the alloca-

tion of the surplus among the seller, the buyer and the intermediaries at equilibrium.

We have shown that a trading network is pairwise stable if and only if it is a core

periphery network where the core consists of all weak (or impatient) players who are

linked to each other and the periphery consists of all strong (or patient) players who

have a single link towards a weak player. Once players do not know the impatience

of the other players, each bilateral bargaining session may involve delay, but not

perpetual disagreement, in equilibrium. When a player chooses another player on

a path from the buyer to the seller to negotiate bilaterally a partial agreement, her

choice now depends both on the type of this other player and on how much time the

succeeding players on the path will need to reach their partial agreements. We have

provided sucient conditions such that core periphery networks are still pairwise

stable.

Recently, Siedlarek (2012) has studied a stochastic model of bargaining and

exchange with common discount factor and intermediation on an exogenously given

network. There is one seller who holds the indivisible good and trade is only feasible

if there exists one path in the network connecting the seller to the buyer. In each

period, a stochastic process determines both a buyer, a trade route and an order of

play for agents on this route. Agents that are on the route bargain according to the

order of play. If one agent along the route rejects the proposed split of the surplus,

bargaining terminates and the game moves to the next period where a new buyer,
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a new trade route and a new order of play is redrawn. The process goes on until an

allocation of the surplus is accepted by all players.

In Siedlarek (2012) bargaining is multilateral instead of having a series of bilateral

negotiations along the trade route. It is close as if in each period a coalition of agents

is drawn and has to divide some surplus and if they do not reach an agreement, then

a new coalition is drawn to bargain over the division of some surplus, and so forth

until an agreement is reached. We rather adopt a finite series of bilateral negotiations

along the trade route and we make endogenous the trade route, two features which

are more realistic for the markets we are interested in.

Acknowledgments
We thank Francis Bloch and Matt Jackson for useful comments and suggestions.

We also thank seminar audiences and conference participants at Bilbao, Bordeaux,

Brussels (WEDI 2011), EUI (Florence), MINT3 (Paris1), 17th CTN (Paris1), PET11

(Bloomington), SAET11 (Faro), SING7 (Paris Telecom), UECE Meeting 2012 (Lis-

bon). Vincent Vannetelbosch and Ana Mauleon are, respectively, Senior Research

Associate and Research Associate of the National Fund for Scientific Research

(FNRS). Financial support from Spanish Ministry of Sciences and Innovation under

the project ECO 2009-09120, and support of a SSTC grant from the Belgian Fed-

eral government under the IAP contract P6/09 are gratefully acknowledged. Mikel

Bedayo acknowledges financial support from the government of the Basque Country

(Program for the Formation of Researchers from the DEUI).

Appendix

A Bargaining with complete information

Take the path (s, i1, i2, ..., ik, b) that connects s to b. Players along this path nego-

tiate how to split the surplus via successive bilateral bargaining sessions. Players

bargain in the following order: (ik, b), (ik1, ik), (ik2, ik1), ..., (i1, i2), (s, i1). In

each bilateral bargaining session (i, j), the negotiation proceeds as in Rubinstein’s

(1982) alternating-oer bargaining model where players make alternate oers, with

i making oers in even-numbered periods and j making oers in odd-numbered pe-

riods. The length of each period is . The negotiation starts in period 0 and ends

when one of the players accepts an oer and leads to a partial agreement. A partial

agreement specifies the share of the surplus for j to exit the game. Players have time

preferences with constant discount factors, 1 > 1 > 0, 1 > 2 > 0, ... 1 > n > 0.
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Let yt be the surplus left to be shared among the remaining players after t bilateral

bargaining sessions. So, y0 is the initial surplus to be shared and is equal to 1; y1
is the surplus left to be shared after buyer b has taken her share; y2 is the surplus

left to be shared after intermediary ik and buyer b have taken their shares; y3 is

the surplus left to be shared after intermediary ik1, intermediary ik and buyer b

have taken their shares; yk is the surplus left to be shared after intermediary i2,

intermediary i3, ... intermediary ik1, intermediary ik and buyer b have taken their

shares.

Consider first the bargaining session (s, i1). The SPE partial agreement is

xi1 = yki1 (1 s) / (1 si1). Consider next the bargaining session (i1, i2). The
SPE partial agreement is xi2 = yk1i2 (1 i1) / (1 i1i2); and so forth. Con-
sider finally the bargaining session (ik, b). The SPE partial agreement is xb =

y0b (1 ik) / (1 ikb). Since y0 = 1, buyer b will obtain at equilibrium

xb =
b(1 ik)
1 ikb

.

Since y1 = y0  xb , intermediate ik will obtain at equilibrium

xik =
ik(1 ik1)
1 ik1ik

1 b
1 ikb

.

Since y2 = y1  xik , intermediate ik1 will obtain at equilibrium

xik1 =
ik1(1 ik2)
1 ik2ik1

1 ik
1 ik1ik

1 b
1 ikb

;

and so on. Since yk = yk1  xi2 , intermediate i1 will obtain at equilibrium

xi1 =
i1(1 s)
1 si1

1 i2
1 i1i2

1 i3
1 i2i3

...
1 ik

1 ik1ik

1 b
1 ikb

;

and seller s will obtain at equilibrium

xs =
1 i1
1 si1

1 i2
1 i1i2

1 i3
1 i2i3

...
1 ik

1 ik1ik

1 b
1 ikb

.

It is customary to express the players’ discount factors in terms of discount rates,

r1 > 0, r2 > 0, ... rn > 0, and the length of the bargaining period, , according to

the formula i = exp (ri). As  approaches zero, using l’Hopital’s rule, the SPE
outcomes xb , x


ik
, xik1 , ..., x


i1
, xs tend to the equilibrium outcomes given in (1).
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B Stable trading networks

Proof of Lemma 1.
(i) First, we show that a strong player always wants to link to a weak player if

in the current network there are at least two strong players as intermediaries on the

geodesic between the strong player and the weak player. Remember that a geodesic

between players i and j is a shortest path between these nodes; that is, a path with

no more links than any other path between these nodes.

Suppose that 1  W and {2, 3, 4}  S. Take any network g1 such that {12, 23, 34} 
g1, the path 1, 2, 3, 4 is a geodesic between 1 and 4, and the distance between player

4 and any other weak player is greater than 3. We now show that 1 and 4 have

incentives to add the link 14 to form g2 = g1 + 14. Player 4 is winning when she is

matched as a buyer to the weak player 1 or to one of the strong players 2 and 3 or

to any other player j such that in g1 players 2 or 3 were on the equilibrium trading

path between 4 and j. Notice that 4 is strictly winning because she is avoiding at

least one of the two intermediaries 2 and 3 if not both depending to whom she is

matched. If 4 is matched to a player j such that in g1 players 2 or 3 are not on the

equilibrium trading path between 4 and j, then 4 is indierent between g1 and g2.

So, when 4 is the buyer she is never loosing by adding the link 14 to g1. When 4

is the seller, she is always better o when she is matched to a player j such that

player 1 was lying on the trading path in g1 since the trading path in g2 will be

shorter and 1 will end the sequence of bilateral bargaining sessions negotiating with

4. In addition, in g2 player 4 is winning when she is matched as a seller to a player

j such that player 1 was not lying on the trading path in g1 and the length of the

geodesic between 1 and j is shorter than the length of the geodesic between 4 and

j. Otherwise, she is equal o. When 4 was an intermediary in g1 for some match

(i, j) then she is still an intermediary for the match (i, j) in g2 and she is either

better o or equal o. Finally, it may happen that 4 was not an intermediary in g1
for some match (i, j) and now becomes in g2 an intermediary for the match (i, j).

Player 1 is indierent between g1 and g2 when he is the buyer. When player 1 is the

seller, he is either better o or equal o depending if the length of the equilibrium

trading path becomes shorter or not in g2. When 1 was an intermediary in g1 for

some match (i, j) then he is still an intermediary for the match (i, j) in g2 and he is

either better o or equal o. Finally, it may happen that 1 was not an intermediary

in g1 for some match (i, j) and now becomes in g2 an intermediary for the match

(i, j). Thus, we conclude that both players 1 and 4 have incentives to add the link

14.
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(ii) Second, we show that a strong player having links with at least two other

strong players that are linked to the same weak player has always incentives to link

to the weak player.

Suppose that 1  W and {2, 3, 4}  S. Take any network g1 such that {12, 13, 24, 34}
 g1, the paths 1, 2, 4 and 1, 3, 4 are geodesics between 1 and 4, and the distance

between player 4 and any other weak player is greater or equal than 2. We now show

that 1 and 4 have incentives to add the link 14 to form g2 = g1 + 14. Player 4 is

winning when she is matched as a buyer to the weak player 1 or to one of the strong

players 2 and 3 or to any other player j such that there is a path between players 1

and j and player 4 does not lie on the path; otherwise, player 4 is equal o. Player

4 is winning when she is matched as a seller to a player j such that player 1 is on

the equilibrium trading path in g1; otherwise, he is equal o. Player 4 is winning

when she is an intermediary on trades that are passing through the weak player 1

in g1; otherwise, player 4 is equal o. Player 1 is equal o when he is the buyer, but

he is better o or equal o when he is the seller or an intermediary. Thus, we have

that both players 1 and 4 have incentives to add the link 14.

(iii) Third, suppose that 1  W and {2, 3}  S. In any network g1 such that

{12, 23}  g1, the path 1, 2, 3 is a geodesic between 1 and 3 in g1, d2(g1) = 2, and
the distance between the strong player 3 and any other weak player is greater or

equal than 2, players 1 and 3 have incentives to add the link 13 to form g2 = g1+13.

(iv) Fourth, suppose that 1  W and {2, 3, 4}  S. In any network g1 such that
{12, 23, 24}  g1, the path 1, 2, 3 is a geodesic between 1 and 3, the path 1, 2, 4 is a
geodesic between 1 and 4, and the distance between the strong player 3 (4) and any

other weak player is greater or equal than 2, the strong players 3 and 4 have first

incentives to add the link 34 to form g2 = g1 + 34. Once the link 34 is formed, the

strong player 4 has now incentives to link to the weak player 1 to form the network

g2 + 14. Player 1 is equal o when he is the buyer, but he is better o or equal o

when he is the seller or an intermediary. Thus, player 1 agrees to add the link 14.

From (i)-(iv) we conclude that a network g cannot be pairwise stable if there is

some strong player that is not linked to at least one weak player. 

Proof of Lemma 2.
Consider any network g such that #C(g) = 1, N(g) = N and each strong player

is linked to at least one weak player.

(i) First, we will show that two weak players i, j  W having a common weak

player l  W as neighbor (i.e. il, jl  g but ij / g) have incentives to link to

each other in g to form g + ij. When i is the buyer, her payo does not change by

adding the link ij since she is already linked to another weak player l (that is linked
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to j) with whom she can negotiate first. When i is the seller, her payo does not

change by adding the link ij for all trades such that player j is not the buyer nor an

intermediary in g since the equilibrium trading path in g+ ij will be the same as the

one in g. When i is the seller, she is winning by adding the link ij for all trades such

that player j is either the buyer or an intermediary in g since the new equilibrium

trading path in g + ij will be shorter than the one in g avoiding one intermediary,

namely player l. When i is an intermediary, she is winning by adding the link ij

for all trades such that player j is either the buyer or a preceding intermediary in

g since the new equilibrium trading path in g + ij will be shorter than the one in

g avoiding one intermediary, namely player l. Finally, when i is an intermediary,

her payo does not change by adding the link ij for all trades such that player j

is not on the equilibrium trading path in g or is not a preceding intermediary in g.

Similarly for player j. Hence, players i and j have incentives to add the link ij.

(ii) Next, we proceed from g by adding a link between any two weak players

having a common weak player as neighbor until we cannot add such links and we

end up with the new network g = gW  gS where

gW =

ij  gN | there is a path between i and j in g \ gS



and gS = {ij  g | i  S or j  S}. Let (gW ) be the partition of W induced by

gW . That is, P  (gW ) if and only if either there exists h  C(gW ) such that
P = N(h) or there exists i / N(gW ) such that P = {i}. The set of weak players is
partitioned into coalitions such that all weak players within each coalition are linked

to each other and no weak player from a given coalition is linked to a weak player

from another coalition. We want now to prove that, in g, two weak players i and j of

dierent coalitions Pi and Pj in (gW ) (i  Pi and j  Pj) of fully connected players
that are not linked to any strong player on the path between these two coalitions

P1 and P2 have incentives to add the link ij to form the network g + ij. When i

is the seller she is winning for all trades where j or one of his coalition partner in

Pj is the buyer or an intermediary since the new equilibrium trading path in g+ ij

will be shorter than the one in g avoiding one strong intermediary; otherwise she is

indierent. When i is the buyer she is indierent between g + ij and g. When i is

an intermediary in g she is also an intermediary in g+ ij and she is either equal o

or better o (when the new equilibrium trading path in g + ij is shorter than the

one in g and avoids one strong preceding intermediary). Similarly for player j. In

addition, in g, two weak players i and j of dierent coalitions Pi and Pj in (gW )

(i  Pi and j  Pj) of fully connected players that are linked to a strong player on
the path between these two coalitions Pi and Pj have also incentives to add the link
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ij to form the network g + ij. When i is the buyer or the seller she is either better

o or equal o between g + ij and g depending to whom she is matched. When i

is an intermediary in g she is also an intermediary in g + ij and she is either equal

o or better o or worse o. However, the losses she makes as an intermediary in

some matches are easily compensated by the gains she makes as an intermediary in

other matches. Precisely, player i can only make losses when she is an intermediary

in matches between two strong players who are linked to weak players both in Pi
and in Pj, and these losses are compensated by the gains she makes when she is

an intermediary in matches between those two strong players (as sellers) and weak

players (as buyers) from Pj.

(iii) Next, we repeat the process of step (ii) until we end up with network gW gS
where all weak players are linked to each other and all strong players have exactly

the same links as in g. 

Proof of Lemma 3.
From Proposition 2, Lemma 1 and Lemma 2 we know that the candidates for

being pairwise stable are networks g such that (i) #C(g) = 1 and N(g) = N , (ii)

gW  g, (iii) for each i  S there is j  W such that ij  g. We now show that g
cannot be pairwise stable if there is some link between two strong players that are

linked to the same weak player. Five cases have to be considered.

(a) In g the strong player i is only linked to one weak player j. Suppose that
we add the link ik to g to form g + ik where i, k  S. (a.1) If k is only linked to i
and j then the link ik will never be used. (a.2) If k is only linked to i and j and to

another weak player then player i has incentives to delete the link ik because when

the match is (i, j) player j will choose to negotiate first with the other weak player

instead of negotiating directly with i. (a.3) If k is only linked to i and j and to

another strong player that is only linked to j then the link ik will never be used.

(a.4) If k is only linked to i and j and to another strong player that is linked to

another weak player (= j) then player i has incentives to delete the link ik.
(b) In g the strong player i is only linked to weak players j, k  W (at least

two). Suppose that we add the link il to g to form g + il where i, l  S. (b.1) If l
is only linked to i and j then player l has incentives to delete the link il. (b.2) If l

is only linked to i and j and to another weak player then the link il will never be

used. (b.3) If l is only linked to i and j and to another strong player m  S that is
only linked to j, then this strong player m has incentives to delete the link lm since

player m is in the position of player i in case (a.4). (b.4) If l is only linked to i and

j and to another strong player m  S that is linked to another weak player n (= j),
then the the link lm is never used if n = k and player m has incentives to delete the
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link lm if n = k.

(c) In g the strong player i is only linked to one weak player j  W and to a

strong player k  S that is only linked to i and j. Suppose that we add the link il
to g to form g+ il where i, l  S. In g+ il player k has incentives to delete the link
ik since player k is in the position of player i in case (a.4).

(d) In g the strong player i is only linked to one weak player j  W and to

a strong player k  S that is only linked to i and to another weak player m = j

(kj / g). Suppose that we add the link il to g to form g+ il where i, l  S. In g+ il
player l has incentives to delete the link il if he is only linked to j and player l has

also incentives to delete the link to another weak player if this link exists in g + il.

(e) In g the strong player i is only linked to one weak player j  W and to a

strong player k  S that is linked to i and j and to another weak player m = j

(kj  g). Suppose that we add the link il to g to form g+il where i, l  S. (e.1) If l is
linked only to j and i then l has incentives to delete the link il to avoid this link being

used when l is the seller (notice that l is never intermediary in g + il). (e.2) If l is

linked only to j and i and to another weak player, then i has incentives to delete the

link il either to avoid this link being used when i is the seller or because this link is

not used. 

Proof of Lemma 4.
We now show that g cannot be pairwise stable if there is some link between two

strong players that are not linked to the same weak player. From Proposition 2,

Lemma 1, Lemma 2 and Lemma 3 we know which networks are the candidates for

being pairwise stable networks. Hence, take any network g such that (i) #C(g) = 1

and N(g) = N , (ii) gW  g, (iii) for each i  S there is j  W such that ij  g, (iv)
ij / g if i, j  S and there is some k  W such that ik  g and jk  g.
(a) Suppose that ik  g, jl  g and ij / g where i, j  S and k, l  W . Suppose

that we add the link ij to g to form g+ ij where i, j  S. (a.1) If i and j do not have
other links then i has incentives to delete the link ij. By deleting the link ij she is

only loosing the payo she obtains as an intermediary for the match (j, l) in g + ij.

This loss is compensated by the gains she makes by shortening the trading path for

the match (i, k) in g. (a.2) If j is linked to another weak player (say m  W ) then i
would have more incentives than in (a.1) to delete ij since she would earn less from

the match (i, k) in g + ij and she would get nothing from the matches (j, l) and

(j,m). (a.3) If j is linked to another strong player (= i) then i has more incentives
than in (a.1) to delete ij. (a.4) If i is linked to at least two weak players then (i) if

j is also linked to at least two weak players then ij is not used, (ii) if j is linked to

27



one weak player then j has incentives to delete ij since j is in the position of i in

case (a.2).

(b) The last case to be considered is when in g strong players are linked to all of

them (that is, gS  g) but each strong player is linked to a dierent weak player.

Suppose that il  g, jm  g and kn  g where i, j, k  S and l,m, n  W . Suppose
that we add the link im to g to form g + im. For player i the link im only modifies

her payo from the match (i, l). With the link im the trading path is shorter and

so, player i has incentives to add the link im. By adding the link im player m makes

additional gains from the matches (m, i) and (k, i) for k = j, k  S, but he makes
losses from the matches (i, k) for k = j, k  S. However, the losses are much smaller
than the gains. In all other matches nothing changes for player m. Hence, player

m has also incentives to add the link im to g, and so we have that g is not pairwise

stable. Once we have added the link im to g, we have obtained a network g + im

where two strong players i and j are linked to the same weak player m and we know

from Lemma 3 that such network cannot be pairwise stable. 

Proof of Lemma 5.
From Proposition 2, Lemma 1, Lemma 2, Lemma 3 and Lemma 4 we know that

the candidates for being pairwise stable are networks g such that (i) #C(g) = 1

and N(g) = N , (ii) gW  g, (iii) ij / g if i  S and j  S. We now show that
g cannot be pairwise stable if some strong player i  S is linked to more than one
weak player. Suppose that in g player i  S is linked to two weak players k, l  W .
When i is the buyer she is indierent between g and g  ik. Notice that player is
never an intermediary in g nor in g ik. Suppose now that i is the seller. When she
is matched to a weak player m = k she is better o by deleting the link ik since the
equilibrium trading path is shortened of one link, and when she is matched to the

weak player k she is equal o by deleting the link ik. When player i (as a seller) is

matched to a strong player that is not linked to player k she is better o by deleting

the link ik since the equilibrium trading path is shortened of one link, and when

she is matched to a strong player that is linked to the weak player k (and not to

player l) she is equal o by deleting the link ik. Finally, when player i (as a seller) is

matched to a strong player that is linked to player l she is better o by deleting the

link ik since the equilibrium trading path is shortened of one link between two weak

players. 
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C Core periphery networks

Consider any core periphery network g such that (i) gW  g, (ii) di(g) = 1 for all
i  S, (iii) di(g) = n 1 for some i  W , and (iii) #C(g) = 1. That is, we consider
core periphery networks where the core consists of weak players who are linked to

each other and the periphery consists of strong players who are only linked to the

same weak player. Figure 5 illustrates a core periphery network with three weak

players {1, 2, 3} and three strong players {4, 5, 6} and where all strong players are
only linked to the weak player 1.
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Figure 5: A core periphery network with one weak player linked to all strong players.

The SPE expected payo for a strong player i  S in such core periphery trading
network g is equal to

Ui(g) =
1

2(n 1)
rW

rW + rS


n+

m 1
2

+ (nm 1)
rS

rW + rS


,

and the SPE expected payo for the weak player j  W who is linked to all strong

players is equal to

Uj(g) =
1

2(n 1)


m 1 +

rS
rW + rS

(nm)

m+ 1 + 2 (nm 1)

rS
rW + rS


.

Suppose m = 1. If 2(n  1)rS > nrW then the SPE expected payo for the weak

player j  W who is linked to all strong players is greater than the SPE expected

payo for a strong player i  S. However, if 2(n1)rS < rW then the SPE expected

payo for the weak player j  W who is linked to all strong players is smaller than

the SPE expected payo for a strong player i  S. Notice that those core periphery
networks give to the strong players (and to player i  W for which di(g) = n  1)
their best payos among pairwise stable networks.
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D Private information and maximum delay

Consider again the path (i0, i1, i2, ..., ik, ik+1) that connects seller s (player i0) to

buyer b (player ik+1). Players negotiate how to split the surplus via successive

bilateral bargaining sessions in the following order: (ik, ik+1), (ik1, ik), (ik2, ik1),

..., (i1, i2), (i0, i1). Suppose now that the players have private information. They

are uncertain about each others’ discount factors. Player i’s discount factor lies in

the range [Ii, 
P
i ], where 0 < 

I
i  

P
i < 1. The types are independently drawn from

the interval [Pi , 
I
i] according to the probability distribution pi, i  N .

Lemma 6. Consider the sequence (ik, ik+1), (ik1, ik), (ik2, ik1), ..., (i1, i2), (i0, i1)
of k+1 bilateral bargaining sessions with private information in which the probability

distributions are common knowledge and in which the period length shrinks to zero.

For any perfect Bayesian equilibria, the payo of player ik+1l in each bilateral

bargaining session (ikl, ik+1l) belongs to



Iik+1l


1 Pikl



1 Pikl
I
ik+1l

yl,
Pik+1l


1 Iikl



1 Iikl
P
ik+1l

yl



 ,

for l = 0, ..., k, where yl is the surplus left to be shared after players ij (j > k+1 l)
have taken their shares.

This lemma follows from Watson (1998) Theorem 1. Whether or not all payos

within the intervals given in Lemma 6 are possible depends on the distributions

over types. As Watson (1998) stated ”each player will be no worse than he would

be in equilibrium if it were common knowledge that he were his least patient type

and the opponent were his most patient type. Furthermore, each player will be no

better than he would be in equilibrium with the roles reversed”. Since we allow

for general probability distributions over discount factors, multiplicity of perfect

Bayesian equilibria (PBE) is not an exception (even when the game is almost with

complete information).

The maximum number of bargaining periods player ik+1l would spend nego-

tiating in the bilateral bargaining session (ikl, ik+1l), I (m(ikl, ik+1l)), is given

by

Iik+1l


1 Pikl



1 Pikl
I
ik+1l

yl =

Pik+1l

m(ikl,ik+1l) 
P
ik+1l


1 Iikl



1 Iikl
P
ik+1l

yl,

from which we obtain

m(ikl, ik+1l) =
1

log(Pik+1l)
log


Iik+1l
Pik+1l

1 Pikl
1 Iikl

1 Iikl
P
ik+1l

1 Pikl
I
ik+1l


.
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Notice that I (m(ikl, ik+1l)) is simply the integer part of m(ikl, ik+1l). It is cus-

tomary to express the players’ discount factors in terms of discount rates, ri > 0, and

the length of the bargaining period, , according to the formula i = exp (ri).
With this interpretation, player i’s type is identified with the discount rate ri, where

ri  [rPi , rIi ]. We thus have that 
I
i = exp(rIi) and 

P
i = exp(rPi ). Note that

rIi  rPi since greater patience implies a lower discount rate. As  approaches zero,

using l’Hopital’s rule we obtain that

D(ikl, ik+1l) = lim
0

(m(ikl, ik+1l) ·) = 
1

rPk+1l
·log


rPkl
rIk+1l

·
rIkl + r

P
k+1l

rPkl + r
I
k+1l


,

which is a positive, finite number. Notice that D(ikl, ik+1l) converges to zero as

rPi and r
I
i become close. Given the equilibrium trading path (s, i1, i2, ..., ik, b), the

maximum real delay time in reaching a global agreement is D(s, i1, i2, ..., ik, b) =

D(s, i1) +D(i1, i2) + ...+D(ik, b).
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