
 

 





Flexible Waste Management under Uncertainty�

Luca Di Coratoy Natalia Montinariz

December 9, 2012

Abstract

In this paper, we use stochastic dynamic programming to model the choice of a municipality

which has to design an optimal waste management program under uncertainty about the price

of recyclables in the secondary market. The municipality can, by undertaking an irreversible in-

vestment, adopt a �exible program which integrates the existing land�ll strategy with recycling,

keeping the option to switch back to land�lling, if pro�table. We determine the optimal share

of waste to be recycled and the optimal timing for the investment in such a �exible program.

We �nd that adopting a �exible program rather than a non-�exible one, the municipality: i)

invests in recycling capacity under circumstances where it would not do so otherwise; ii) invests

earlier, and iii) bene�ts from a higher expected net present value.
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1 Introduction

The design of e¤ective solid waste management strategies is a crucial issue for policy makers not

only at the (inter)national level, where guidelines, targets, and strategies are set (US Environmental

Protection Agency, 2002; European Commission, 2010), but also at the local level, where waste is

actually produced, collected, and treated.

In the last decades, the amount of municipal solid waste produced by industrialized societies

has been increasing (Eurostat, 2011; EPA, 2011). This trend, together with growing attention on

environmental pollution, human health, and resource recovery, has stimulated a wide debate on

the strategies to be implemented to reduce the amount of waste produced and treat the waste

collected in an e¤ective and sustainable way (OECD, 2007).1 In particular, starting from the late

1970s, the U.S. �rst, and later the EU, introduced a stricter regulation for the construction and

operation of land�lls2 in order to promote recycling and incineration /incinerators as alternative

disposal methods (EEA, 2009 and Kinnaman, 2006). Incinerators are expensive, however, and

their e¤ect on human health is controversial. As a consequence, citizens seem more willing to

spend time sorting their waste for recycling than accepting the operation of an incinerator in their

neighborhood (Giusti, 2009).3 Thus, although their pro�tability is still debated, an increasing

number of municipalities have introduced recycling programs (in order) to meet citizens�preferences

(see, e.g., Kinnaman, 2006).

In this paper, we consider a municipality designing a new waste management program that

integrates the preexistent land�lling with recycling as an alternative waste disposal method.4 We

assume that a price is paid to the municipality for recycled materials and that such a price follows

a geometric Brownian motion. We also assume that recycling has higher operative costs than

land�lling. The municipality can choose between a non-�exible and a �exible waste management

program.

By investing in a non-�exible program (hereafter NFP), the municipality may partially or totally

substitute land�lling with recycling. This decision is irreversible and implies that, irrespective of a

change in the relative convenience of recycling with respect to land�lling, the purchased recycling

capacity must always be fully used.

In contrast, by investing in a �exible program (hereafter FP), the municipality purchases re-

cycling capacity but keeps the option to fully use the preexisting land�lling capacity whenever

1Municipal solid waste can be disposed by essentially adopting four methods: land�lling, incineration, recycling,
and composting. See Goddard (1995) for a discussion of these disposal methods.

2 In the U.S., after the Resource Conservation and Recovery Act of 1976 providing federal guidelines for the
operation of land�lls, their number (of land�lls) has signi�cantly reduced (Kinnaman and Fullerton, 2000b). In the
EU, after the Directive 1999/31/EC, which �xed targets for the reduction of biodegradable municipal waste going to
land�lls, the quantity of waste land�lled has reduced from 68% in 1995 to 33% in 2009 (Eurostat, 2011).

3Even though land�lling has strongly reduced, it is still adopted as a residual method together with recycling. As
for the EU countries, in 2009 shares of waste land�lled of 14% and 17% were reported by Norway and Luxembourg,
respectively. France, Italy, Finland, and the U.K. reported shares in the range of 32% to 50%. Among the EU-12
member states, the highest shares in 2008 were reported by Greece (81%), Portugal (62%), Ireland (62%), and Spain
(52%), (Eurostat, 2011).

4Note that considering incineration as an alternative disposal method would make no di¤erence in our analysis.
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changes in the relative convenience make it pro�table. By combining the two disposal methods, the

FP guarantees a certain degree of operational �exibility, which may be bene�cial under uncertainty

about the price for recycled materials. This �exibility, however, comes at a cost. More speci�cally,

we assume that the FP setup requires a sunk investment cost which depends on the chosen recycling

capacity, i.e., the chosen degree of �exibility.

The problem faced by the municipality is twofold, and we solve it in two steps. First, the

municipality must determine the recycling capacity, taking into account its uncertain pro�tability

and the option of land�lling whenever recycling becomes unpro�table. Second, the municipality

must set the investment time threshold, triggering the adoption of the optimally designed FP.

Having designed the optimal FP, we compare the investment in such a program with the invest-

ment in an NFP where, as stated above, the option to switch back to land�lling is not available. We

�nd that adopting an FP rather than an NFP gives the municipality two main advantages. First,

we show that the municipality may be willing to invest in recycling capacity under circumstances

where investment in an NFP would not be undertaken. Second, we show that an investment in an

FP may be undertaken earlier than one in an NFP and also provide a higher expected net present

value (hereafter NPV).

The intuition behind these results is that the municipality that adopts the FP, by holding the

option to switch back to land�lling, may, if needed, adjust the waste disposal operations and so

optimally hedge against uncertainty about the pro�t from recycling. This hedging policy may prove

particularly valuable when net revenues from recycling remain low and/or are volatile. In contrast,

when net revenues are high and stable, the exercise of the option to switch back to land�lling

becomes unlikely and the value of the hedging policy vanishes. Hence, the municipality may, by

investing in an FP that guarantees operational �exibility, start recycling when the relative net

revenues are too low to justify the investment in an NFP instead. Moreover, this may also occur

with a higher payo¤ in terms of NPV.

Several papers have studied the design of waste management programs in the presence of alterna-

tive disposal strategies. In a deterministic frame, some pioneer investigations have been conducted

by Huhtala (1997) and High�ll and McAsey (1997, 2001b). Huhtala uses an optimal control model

to determine the optimal recycling rate for municipal solid waste. He shows that land�lling is more

costly than other disposal alternatives, once the monetary costs of recycling, the social costs of

land�lling, and consumers�environmental preferences have been accounted for. Under endogenous

waste stream, High�ll and McAsey (1997) study a municipality which must choose between using an

(existing and exhaustible) land�ll or recycling at higher cost. The authors show that a municipality

that recycles will always simultaneously use its land�ll. This will last for some time when since

land�ll use is declining while recycling is increasing. High�ll and McAsey (2001b) extend previous

works by including in their analysis a growing income stream. Income is optimally split between

consumption and expenditures for waste disposal. Waste disposal must be optimally allocated

between recycling, which is considered (as) a backstop technology, and land�lling. The authors

show that land�ll capacity and initial income have a considerable impact on the optimal recycling
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program and recommend considering these factors when designing a waste management program.

Recently, Lavee et al. (2009) have analyzed the choice of a municipality that can switch forward and

backward between land�lling and recycling but cannot combine them. The choice is determined

by taking into account a sunk switching cost and uncertainty about prices for recycled materials.

Their main �nding is that recycling, due to its uncertain pro�tability, may not be adopted even

when it is less expensive than land�lling. Hence, their analysis advises policy intervention in favor

of price stabilization as a tool for enhancing recycling.

Our paper contributes to this literature in two respects. First, under uncertainty about pro�t

from recycling, we study the optimal design of a program where the simultaneous combination

of two disposal strategies, i.e., land�lling and recycling, is feasible. Second, we consider how the

presence of land�lling as a preexisting and residual method a¤ects i) the degree of operational

�exibility in the waste management program and ii) the timing of its adoption.5

The remainder of the paper is organized as follows. In Section 2, we present the basic setup

of our model. In section 3, we determine the optimal recycling capacity. In section 4, we study

investment value and timing. In section 5, we use some numerical examples to illustrate our �ndings.

Section 6 concludes. All proofs are available in the Appendix.

2 The Basic Setup

Consider a municipality currently using land�lling as a waste disposal method and contemplating

the opportunity of integrating it with recycling. Following High�ll and McAsey (2001), we restrict

our analysis to the recycling programs o¤ered by the municipality and do not consider any recycling

activity undertaken by individuals on their own initiative. By integrating these two disposal meth-

ods, the collected waste may be partially or totally recycled, with the municipality still holding

the option of land�lling.6 Both disposal methods are costly. Denote by cL and cR the operating

costs of land�lling and recycling waste, respectively. We assume that cR � cL > 0.7 Compared

to land�lling, recycling involves additional costs for collection, selection of di¤erent types of waste

fractions (i.e., plastic, paper, glass), and for their transport to the di¤erent recycling plants. Col-

lection costs depend on the requirements of the program, for instance how the recyclables have to

be sorted by households (i.e., single-stream or multi-stream), the frequency of the collection of the

di¤erent sorted waste fractions, and the level of participation in the program. The selection and

5 In the real option literature, the value of operational �exibility has been deeply investigated. See, e.g., Kulatilaka
(1988, 1993), Triantis and Hodder (1990), and He and Pindyck (1992). In this literature, our paper belongs to a
recent family of papers studying investment in �exible systems where the degree of �exibility is optimally chosen. See,
e.g., Di Corato and Moretto (2011) on investment in a biogas digester under �exible diet composition and Moretto
and Rossini (2012) on partial outsourcing and �exible vertical arrangements.

6 In our paper, we implicitly consider a non-exhaustible land�ll. The reason for this is that we want to focus
on the bene�t of implementing hedging policies against uncertain recycling pro�t through a combination of waste
disposal technologies. Note that at no loss our frame is su¢ ciently general to consider an alternative technology such
as incineration.

7This assumption is in line with Kinnaman (2006, p. 220) reporting that "On a per-ton basis, recycling is roughly
twice as costly as land�ll disposal." The cost of land�lling may also include the compensation paid to households
living near the land�ll (Kinnaman, 2006).
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processing costs per ton increase with the number of commingled commodities, (EPA, 2012).

Recycled materials are valuable on a secondary market, and the municipality is paid a price pt
for each unit of recycled waste, where units are expressed in tons.8

Let us assume that such a price evolves according to the following geometric Brownian motion:

dpt
pt
= �dt+ �dzt; with p0 = p (1)

where � is the expected growth rate, � is the volatility parameter, and dzt is the increment of the

standard Wiener process satisfying E [dzt] = 0, E
�
dz2t
�
= dt.

In the following, we simplify the analysis by considering the optimal disposal of one unit of

waste which is potentially recyclable. Such a unit can be thought as including only one speci�c

recyclable material, i.e., glass, paper, plastic, metals, or a mixture of recyclable materials. In the

�rst case, pt is the price paid for a speci�c material. Otherwise, pt can be a price vector or, for

simplicity, an average price.

2.1 A waste management program

Denote by WL the waste management program where the collected waste is totally land�lled and

byWR the program where a portion � 2 [0; 1] of waste is recycled while the rest, 1��, is land�lled.
When both disposal methods are feasible, the collected waste could be managed in order to minimize

the cost of waste disposal, ct, that is:

ct = min
�
cL; cL(1� �) + �

�
cR � pt

�	
= cL +min

�
0; �[cR � (cL + pt)]

	
= cL �max

�
0; �[(cL + pt)� cR]

	
(2)

where (cL + pt) represents the total bene�t per unit of recycled waste, i.e., the price paid to the

municipality plus the avoided land�lling cost.

The relative convenience of using land�lling or recycling depends on market prices. In this

respect, we can have the following two scenarios:

ct =

(
cL for pt � cR � cL

(1� �)cL + �
�
cR � pt

�
for pt > cR � cL

(3)

This means that, whenever the current price of recycled material does not cover the increase in

the disposal cost, land�lling is the less costly disposal method. In contrast, whenever the current

8The implicit assumption is that the municipality is a price-taker. The arrangements for selling the recycled
materials in the secondary markets are di¤erent and a¤ected by the national legislative framework. In the U.S.,
municipalities can sign contracts with private entities providing these services (EPA, 2012). In the EU, there is
heterogeneity due to the di¤erent approaches adopted by the national Producer Responsibility System (PRO). In
Italy, e.g., CONAI, the national PRO, pays municipalities a �compensation fee�for taking back packaging waste from
separated waste collections.
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price, pt, covers the additional disposal cost, the municipality recycles a share � 2 [0; 1] of the
collected waste. In the following, we (will) refer to the �rst and second scenarios as "Land�lling"

and "Recycling", respectively.

The analysis can be simpli�ed by noting that the marginal advantage of a waste management

program adding the program WR to the existing WL strictly depends on the bene�ts the munici-

pality may obtain under each scenario, that is

bt =

(
0 for pt � d
�(pt � d) for pt > d

(4)

where d = cR � cL > 0 is the additional operating cost to be paid when recycling is preferred to

land�lling.

Now, denote by W an FP, that is, under W , we allow the municipality to switch between WL

and WR, if this is pro�table. Note that, without loss of generality, we assume that, once initiated,

the waste management program runs forever.9 Let V (pt;�), V L(pt;�), and V R(pt;�) represent

the value of W , WL, and WR, respectively. For � 2 [0; 1], V (pt;�) is the solution of the following
dynamic programming problem (Dixit, 1989, pp. 624-628):

�V L(pt;�) = 0 for pt < d

�V R(pt;�) = ��(pt � d) for pt > d
(5-6)

where � = 1
2�

2p2t
@2

@p2t
+ �pt

@
@pt
� r is the di¤erential operator with r as interest rate.

As shown in appendix A.1, the solution to [5-6] is

V (pt;�) =

(
V L(pt;�) = �O

Rp�1t for pt < d

V R(pt;�) = �[O
Lp�2t + (

pt
r�� �

d
r )] for pt > d

(7)

where �1 > 1 and �2 < 0 are the roots of the characteristic equation � (�) = 1
2�

2� (� � 1)+���r = 0
and

OR =
d1��1

r

r � ��2
(r � �)(�1 � �2)

> 0; OL =
d1��2

r

r � ��1
(r � �)(�1 � �2)

> 0 (7.1-7.2)

In equation (7), we observe that for pt � d (Land�lling scenario), the value of the FP, �ORp�1t ,

is simply represented by the option to recycle a portion � of collected waste as soon as WR

becomes pro�table. Note that the value of this option is increasing in pt and decreasing in d, i.e.,

cR � cL. This makes sense, considering that such an option is more valuable if recycled waste is
more pro�table and less desirable if land�lling becomes relatively more convenient. By contrast,

9This is a costless assumption. Recall that the focus of our paper is the comparison between a �exible and non-
�exible program. Hence, even assuming a more realistic �nite time horizon, our �nal results would still hold. Finally,
note also that, for the sake of simplicity, we abstract from other operative options such as the options to mothball
and/or abandon the program once it has been initiated (see, e.g., Dixit and Pindyck, 1994, chaps. 6-7).

6



when pt > d (Recycling scenario), the term �OLp�2t represents the value of the option to switch

back to land�lling, which is consistently decreasing in pt and increasing in d. The term �( ptr�� �
d
r )

represents instead the net bene�t obtained by recycling a portion � of collected waste.

Finally, denote bycW an NFP where the municipality, once it has/ initiated the program, adopts

the disposal regime WR forever. Note that in this case the municipality does not hold the option

to switch between WL and WR, i.e., OR = OL = 0. Hence, the value of the program is simply

given by bV (pt;�) = �( pt
r � � �

d

r
); (8)

which, as above, represents the expected net bene�t accruing from the recycling of a portion

� 2 [0; 1] of the total collected (recyclable) waste.

3 The Optimal Waste Management Program

In this section, we determine the recycling capacity, �, that a municipality must purchase to ensure

an optimal waste management program. As discussed above, when an FP, W , has been adopted,

the municipality holds the options to switch to recycling and back to land�lling. These options are

particularly valuable under uncertain pro�t from recycling since they provide the �exibility needed

to conveniently rearrange the waste disposal operations. As can be seen from equations (7.1-7.2),

the value of these options depends linearly on the degree of operational �exibility which, in our

setup, corresponds to the recycling capacity, �. However, higher operational �exibility does not

come free of cost so that, given the higher investment cost, the municipality may have to give up

operational �exibility and invest in a less costly NFP, cW .
Let us denote by I(�) the sunk investment cost required to addWR to the existingWL. Assume

that it is a function of the recycling capacity � and that it takes the following convex functional

form:

I(�) = i1�+ i2
�


, with  > 1, i1 � 0 and i2 > 0 (9)

where i1 and i2 are dimensional investment parameters.

The investment cost in (9) is obtained by summing two components. The �rst component, i1�,

captures costs which are linear in the recycling capacity, �, as, for instance, the cost of informing

households about the new collection program, the cost of buying and providing households with

speci�c bins for the waste fraction(s) to be collected separately, the cost of transporting waste,

etc. The second component, i2 �


 , accounts for nonlinear costs
10 such as the cost of keeping

idle land�lling capacity when recycling or the additional cost of transports to di¤erent recycling

facilities or to the land�ll (see Nagurney and Toyasaki, 2005). Thus, by the second cost component,

we mainly want to account for the costs directly related to the implementation of a more complex

10 In general, we agree on the idea that it should be "less expensive per unit to recycle bottles and newspapers than
it is to recycle bottles, newspapers, and refrigerators" (High�ll and McAsey, 2001a, p. 681).
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FP allowing for both disposal alternatives.

In order to focus on the role that technological �exibility may have in the adoption of recycling,

we assume, in the following, that the �rst linear cost component, i1�, must be paid whenever

recycling is adopted while the second component, i2 �


 , is conditional on the municipality having

decided to keep the option to switch between land�lling and recycling whenever pro�table, i.e., if

the municipality invests in an FP. Without loss of generality we may set i1 = 0 and i2 = i and then

proceed (in order) to determine the optimal recycling capacity ��. Note that this must be done

under both �Land�lling�and �Recycling�scenarios, i.e., for pt � d and for pt > d, respectively.

3.1 Flexible program: optimal recycling capacity under the "Land�lling" sce-
nario

As discussed above, program WL is preferred to WR when the price for recycled materials, pt,

does not cover the increase in disposal costs determined by the introduction of recycling, d. This

implies that by investing in an FP when pt � d the municipality is only purchasing the option to
adopt recycling later as soon as pt > d. The optimal recycling capacity, �; must then maximize

the expected net present value, NPV L(pt; �), of such an option, that is, V L(pt;�), minus the

investment cost, I(�). Formally

�� = argmaxNPV L(pt; �) s.t. 0 < � � 1 for pt � d (10)

where NPV L(pt; �) = V L(pt;�)� I(�).
Solving the maximization problem yields the following proposition:

Proposition 1 The optimal recycling capacity to be adopted in an FP when investing at pt � d is

��(pt) =

(
(
ORp

�1
t
i )

1
�1 for 0 < pt < p

1 for p � pt � d
(10.1)

where p = ( i
OR
)
1
�1 .

Proof. See section A.2 in the appendix.
Note that the optimal recycling capacity, ��(pt); is increasing in price pt. This makes sense,

considering that a higher pt implies a higher probability of switching to program WR where the

municipality starts recycling. Note also that ��(pt) is decreasing in the investment cost magnitude,

i; and increasing in the parameter illustrating the convexity of the costs, ; respectively.11 This

implies that, as expected, a higher recycling capacity is installed as investment costs drop. However,

there is a ceiling for recycling capacity. Hence, there exists a price level, p, such that for p � pt

it is always worth choosing the highest feasible recycling capacity, i.e., ��(pt) = 1: This means

the municipality switches from a waste management program where it land�lls the entire amount

11Note that dI(�)
d

= i�


2
( ln�� 1) � 0 in the interval � 2 [0; 1].
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of collected (recyclable) waste to a program where such waste is completely recycled. It is worth

noting that the higher the marginal value, ORp�1t , of the option to switch to W
R, the higher is the

desired recycling capacity.

By substituting the optimal recycling capacity, ��(pt), into the net present value function, we

obtain:

NPV L(pt; �
�(pt)) =

8<: (
ORp

�1
t
i )


�1 (1� 1

 )i for pt < p

ORp�1t � i
 for p � pt < d

(10.2)

3.2 Flexible program: optimal recycling capacity under the "Recycling" sce-
nario

When pt > d; recycling is worthwhile and the municipality adopts program WR as soon the invest-

ment in the �exible program W has been undertaken. The optimal recycling capacity, �; is given

by the solution of the following problem:

�� = argmaxNPV R(pt; �) s.t. 0 < � � 1 for pt > d (11)

where NPV R(pt; �) = V R(pt;�)� I(�).

Proposition 2 The optimal recycling capacity to be adopted in an FP when investing at d < pt <
1 is

a) for 	 > 0

��(pt) =

8<: (
OLp

�2
t +

pt
r���

d
r

i )
1

�1 for d < pt < p

1 for p � pt
(11.1)

b) for 	 � 0
��(pt) = 1 for pt > d (11.2)

where 	 = i�ORd�1 and p (> d) solves Q(p) = (OLp�2 + p
r�� �

d
r )� i = 0.

Proof. See section A.3 in the appendix.
We observe that ��(pt) is increasing in pt in the interval d < pt < p. In this respect, we

need to distinguish the presence of two components. First, as pt increases, due to larger expected

net bene�ts, pt
r�� �

d
r ; the municipality would prefer to invest in high recycling capacity. Second,

��(pt) is increasing in the value of the option to switch back to land�lling, i.e., OLp
�2
t . This is

not surprising, considering that the option to restore WL is an extremely valuable hedging policy

against �uctuations in the net revenues from recycled waste. However, we also note that such a

positive e¤ect is decreasing in pt. This is due to the relationship between the value of the option

to switch back to land�lling and the distance between pt and d or, di¤erently put, the probability

that once the investment has been undertaken, pt reaches the region pt < d where the program WL

is less costly than WR. Accordingly, the contribution of this second component is decreasing in pt

9



since the higher the price of recycled materials, the less likely is the exercise of the option to switch

back to WL. Studying the impact of investment costs, it is immediate to see that, as in (11.1), the

recycling capacity, ��(pt); is decreasing in i and increasing in ; respectively. In other words, the

lower the investment cost, the higher the recycling capacity installed.

It is worth discussing the role played by the sign of the term 	 = i�ORd�1 , which represents
the net marginal cost of investing in full capacity. Note that this is, in fact, given by the di¤erence

between the marginal investment cost, I 0(1) = i, and the marginal value of the option to switch to

WR, ORp�1t , evaluated at the boundary pt = d. Thus, if at d the marginal bene�t, O
Rd�1 , is higher

than the marginal cost, i, of investing in the last unit of feasible capacity, the municipality invests

in the maximum recycling capacity. In contrast, if i > ORd�1 the municipality may opt for partial

recycling capacity. This will occur if prices for recycled material are lower than the level p which,

according to (12.1), triggers the choice of a 100% recycling capacity (��(pt) = 1). Otherwise, again,

prices may be su¢ ciently high to justify ��(pt) = 1.

Finally, by plugging the optimal recycling capacity, ��(pt); into NPV R we have:

(i) for 	 > 0;

NPV R(pt; �
�(pt)) =

8<: (
OLp

�2
t +

pt
r���

d
r

i )


�1 (1� 1
 )i for d < pt < p

OLp�2t +
pt
r�� � (

d
r +

i
 ) for p � pt

(11.3)

(ii) for 	 � 0;
NPV R(pt; �

�(pt)) = OLp�2t +
pt
r�� � (

d
r +

i
 ) for d � pt (11.4)

3.3 Non-�exible program: optimal recycling capacity

Let us now set the optimal recycling capacity, �, for an NFP cW . Recall that in this case I(�) = 0:
As above, such a capacity is given by

b�� = argmax bV (pt;�) s.t. 0 < � � 1 for pt � d (12)

Note that bV (pt;�) > 0 for pt > r��
r d. Thus, by the linearity of

bV (pt;�) in �, it is straight-
forward to show that this is the case.12

Proposition 3 The optimal recycling capacity to be adopted when investing in an NFP is

b��(pt) = 1 for pt >
r��
r d (12.1)

As expected, the municipality chooses the maximum recycling capacity if the expected net

bene�ts from recycling, pt
r�� �

d
r , are positive and no capacity at all otherwise. The expected

12Note that having assumed i1 = 0 does not a¤ect our results. In fact, even allowing for a more general concave
investment function in this case, I(�) = i1�

! with i1 > 0 and ! � 1, the municipality would still have invested in
the highest feasible recycling capacity (b��(pt) = 1).
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present value of cW is then given by

bV (pt; b��(pt)) = pt
r � � �

d

r
; for

r � �
r

d < pt (12.2)

4 Investment Value and Adoption Timing

In this section, we study the timing of the investment in an optimal waste management program. To

this end, we derive the value of the option to invest and then determine the conditions characterizing

an optimal investment time strategy.

First, let us de�ne byW � and cW � the �exible and the non-�exible program where the recycling

capacity has been set at its optimal level, ��(pt): Second, we consider the option to invest in the

continuation region 0 < pt < ep where ep is the price threshold triggering investment. The value of
such an option is given by

F (pt) = max
�
Efe�r�NPV k(p� )g; with k = fW �;cW �g (13)

where � = infft � 0 j pt = epg is the optimal investment stopping time and
NPV W

�
(pt) =

(
NPV L(pt; �

�(pt)) for pt < d

NPV R(pt; �
�(pt)) for d � pt

(13.1)

NPV
cW �

(pt) = bV (pt; b��(pt)); for r � �
r

d < pt (13.2)

The problem can be rearranged as follows:13

F (pt) = maxep [(
ptep )�1NPV k(ep)] (14)

From the �rst-order condition of the maximization problem14 we obtain

ep = �1NPV k(ep)@NPV k(ep)
@ep (14.1)

Finally, the de�nition of a maximum requires that the following second-order condition should hold

at ep: ep
�1 � 1

@2NPV k(ep)
@ep2 <

@NPV k(ep)
@ep (14.2)

Let us now study the investment policy under both scenarios, "Recycling" in Section 4.1 and

"Land�lling" in Section 4.2.

13For the calculation of expected present values, see Dixit and Pindyck (1994, pp. 315-316).
14See appendix A.4.
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4.1 Investment in a �exible program under the "Recycling" scenario

We consider the option to invest in the subset d � pt where WR � WL. In this case, the recycling

capacity would be used as soon as the municipality has invested in W �. The desired degree of

�exibility, ��, will be chosen taking into account price volatility and the magnitude of investment

costs, i. In addition, the municipality will choose it, aware that it would still be possible to switch

back to WL: As discussed above, this consideration should favor investment in a higher recycling

capacity.

By using Proposition 2 we can distinguish between two cases in terms of adopted recycling

capacity. This will depend on the comparison between the magnitude of the investment cost, i, and

the value of the option to switch to recycling, ORd�1 . We start by considering case b) where 	 � 0
and the municipality opts for the highest feasible level of �exibility, i.e., �� = 1. Substituting (11.4)

into (14.1), we obtain the following result:

Proposition 4 When 	 � 0 the optimal investment threshold, p�(� d), for the adoption of an FP
with �� = 1 is given by the solution of the following equation

p� +
�1 � �2
�1 � 1

OLp��2(r � �)� �1
�1 � 1

(r � �) i

= bp� (15)

where bp� = �1
�1�1(r � �)

d
r .

Proof. See section A.5 in the appendix.
According to Proposition 4, it is worth investing at p� � pt. In equation (15), bp� represents

the investment threshold for the investment in an NFP, i.e., bp� = argmax[(pep)�1NPV cW (ep)]. It is
immediate to see that the investment threshold p� depends not only on the present value of the

disposal cost di¤erential, dr ; investment cost,
i
 ; and on the standard option value considerations

15

but also on the presence of land�lling as a waste management option. This e¤ect is captured by

the second term on the RHS of (15). As shown in section A.5, @p�

@OL
< 0. In other words, the more

valuable the option to switch back to WL, the earlier, in expected terms, the �exible program W
�, is adopted. Rearranging (15) as follows

p� � bp� = (1
2
�2�1 + r)

i


� �1 � �2
�1 � 1

OLp��2(r � �) (15.1)

in Eq. (15.1), the �rst term of the RHS accounts for the higher investment cost, i , to be paid in

order to have a �exible program allowing for both recycling and land�lling. As expected, given

that such a program is more costly than a non-�exible one, the municipality should wait longer

before investing. Waiting before making an investment takes even longer under uncertainty. Note,

in fact, that the �rst term, 12�
2�1, must be added to the user cost per unit of capital, r, to account

15The investment timing should account for the option value arising from new information about the variables
a¤ecting the pro�tability of the investment decision. This consideration implies a higher investment threshold with
respect to the one set under the standard NPV approach. See Dixit and Pindyck (1994, chap. 5).
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for uncertainty. However, this e¤ect is balanced by the second term in the RHS of (15.1), which

represents the option to land�ll whenever recycling is less pro�table than land�lling. This clearly

reduces the uncertainty characterizing the investment. Note that the second e¤ect may also prevail,

leading to a faster adoption of the �exible program. This will occur if the following condition is

met:

OLp��2 > (1 +
�2

�1 � �2
)
i


(15.2)

that is, whenever the value of the option to land�ll evaluated at p� covers a portion of the investment

cost i
 (note that 1 +

�2
�1��2 < 1).

We now proceed by studying case a) in Proposition 2 where 	 > 0. In contrast with the previous

case, the municipality may invest in a �exible program W � with a lower degree of �exibility, i.e.,

�� < 1, due to the higher investment cost. This should allow a faster adoption of the �exible

program by trading o¤ the degree of �exibility with the initial investment cost. Note that not

investing in a 100% recycling program (�� = 1) makes sense if pt is likely to take low values or

fall below d, but this may be regretted when prices for recycled material are high and well above d

since the municipality will not be able to exploit the entire potential of the recycling strategy.

In the appendix, we show that

Proposition 5 When 	 > 0 and provided that

p

r � � < � and  >
�1

�1 � 1
,

the optimal investment threshold, p��(� d), for the adoption of an FP with �� < 1 is given by the
solution of the following equation

p�� +
[�1( � 1)� �2]OLp���2 � bp�

r��
�1( � 1)� 

(r � �) = bp� (16)

where � = �2
�2�1

d
r �

�1(�1)��2
�2�1

i
 .

Proof. See section A.6 in the appendix.
According to Proposition 5, the municipality should invest in the region where p�� � pt � p.

Note that investments in programs with �� < 1 are undertaken when, at p; the expected present

value of earnings, p
r�� ; is not su¢ ciently high to cover level � which, as we show in the appendix,

triggers investment in programs with full recycling capacity. By rearranging (16), we obtain

p�� � bp� = bp�
r�� � [�1( � 1)� �2]O

Lp���2

�1( � 1)� 
(r � �) (16.1)

Again, we stress the role played by the option to switch back to WL: In fact,) in this case too16
@p��

@OL
< 0. This implies that also when �� < 1, the higher the value of the option to restore WL,

16See section A.6 in the appendix.
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the faster, in expected terms, the �exible program W � is introduced.

By comparing the investment in a lower recycling capacity with the investment in a program

providing 100% recycling capacity but no option to restore WL; we notice that the former may be

undertaken earlier if the following condition holds:

OLp���2 >

bp�
r��

�1( � 1)� �2
(16.2)

that is, when at p�� the value of the option to restoreWL is higher than a percentage 1
�1(�1)��2 < 1

of the expected discounted value of revenues accruing from the alternative waste disposal program,

namely, bp�
r�� .

We complete our analysis by showing that

Proposition 6 When 	 > 0 and provided that p
r�� � �, the optimal investment threshold p

��(� p)
for the adoption of an FP with �� = 1 is

p�� = p� (17)

Proof. See section A.5 in the appendix.
The above discussion also applies here. However, note that, since 	 > 0; the investment in a

management program with full recycling capacity occurs only if at p the expected present value of

earnings, p
r�� ; is higher than level �. In fact, if this condition is met, investment occurs at a price

level high enough to cover the investment cost.

Finally, by focusing only on the case17 where ��(p�(�)) = 1 we can also show that a higher

expected net present value corresponds to an earlier investment, p�(�) < bp�. In fact, by comparing
at p� investment in W � with investment in cW �, it is immediate to show that to conclude our

discussion on the relationship between investment

Proposition 7 If OLp��2 > 
 then

NPV W
�
(p�) > (p�=bp�)�1NPV cW �

(bp�) (18)

where 
 = d
r [1� (p

�=bp�)�1 ]� p��bp�(p�=bp�)�1
r�� + i

 .

In words, this means that a W � program guarantees earlier investment and a higher expected

net present value when, at the investment time, the value of the option to land�ll, OLp��2 , covers

the sum of investment cost, i
 , plus the di¤erence between the discounted expected value of the

�ow of increased disposal costs, dr [1 � (p
�=bp�)�1 ]; and the discounted expected value of the �ow

of revenues, p
��bp�(p�=bp�)�1

r�� , from recycling. Note that both �ows start at p� and are consistently

discounted, taking into account the random time period needed for reaching price level bp�.
17Note that one may easily show that a similar result holds also for the case where ��(p��) < 1:
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4.2 Investment in a �exible program under the "Land�lling" scenario

In this section, we examine the investment strategy for the range of values pt < d whereWL �WR.

In this range, even if land�lling is still pro�table, the municipality may consider the possibility of

adopting a �exible waste management program W � so that it can switch to WR as soon as pt � d.
As we show in appendix A.7, this never occurs. In fact, we prove that

Proposition 8 If pt < d, the municipality never invests in a �exible waste management program
with �� � 1.

Proof. See section A.7 in the appendix.
By plugging (10.2) into (14.2) it is straightforward to show that the second-order condition is

violated. This implies that an investment time trigger maximizing (14) does not exist in the range

of prices considered. As can be easily seen in (10.2), the option to switch to WR, even if valuable,

is not worth the investment cost when pt < d. Its expected net present value is increasing in pt as

the probability of a switch increases so that the municipality prefers to postpone the investment.

Finally, note also that di¤erently from the option to switch to WL; the option to switch to WR

does not pay any "dividend" when held.

4.3 Probability and expected time of adoption

As explained above, due to the presence of uncertainty, the municipality may keep open the option

to invest for long time periods. In this respect, it is important, in terms of informing policy makers,

to determine, at least in expected terms, the length of such a period. In the following, we will

therefore �rst determine the probability of adoption within a particular time period in the future

and then the expected time of adoption.

For this purpose we �rst remember that investment occurs at stopping time � = infft � 0 j
pt = epg. Note that as prices for recycled materials follow the stochastic process (1), � also becomes
a stochastic variable. Hence, denoting by T the time period in which a �rst passage through

barrier ep may occur, the cumulative probability of investment is given by the following function
(see Harrison, 1985, p.14):

G(p; T ; ep) = N

"
� ln(ep=p) + (�� 1

2�
2)T

�
p
T

#
+ (19)

+e2 ln(ep=p)(�� 1
2
�2)=�2N

"
� ln(ep=p)� (�� 1

2�
2)T

�
p
T

#

where N [:] is the cumulative standard normal distribution.

Following Dixit (1993), the probability of an eventual investment (i.e., T !1) is

G(p;1; ep) = ( 1 for � � 1
2�

2

e2 ln(ep=p)(�� 1
2
�2)=�2 for � < 1

2�
2

(20)
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while the expected investment time is given by

E(� ; p; ep) = ( ln(ep=p)=(�� 1
2�

2) for � > 1
2�

2

1 for � � 1
2�

2
(21)

Note that for � � 1
2�

2 the expected time is 1. This is due to the drift which drives the price away
from barrier ep. Since, by (20), the probability of hitting the barrier is lower than one, the expected
time tends to 1 for T !1.

Finally, in order to assess the relative pro�tability of a �exible program with respect to a

non-�exible one, we derive from (18) the following measure:

�(x; bp�) =
8><>:

NPVW
�
(x)

( xbp� )�1NPV cW � (bp�) for x < bp�
( bp�
x
)�1NPVW

�
(x)

NPV cW � (bp�) for x � bp� ; with x = fp�; p��g: (22)

By (22) we are basically comparing the expected present values of both possible programs evaluated

at the same time period. In particular, the comparison occurs at the earliest investment time for

the two projects.18 For instance, if the �exible program is adopted earlier, i.e., x < bp�, the
expected present value of the non-�exible program, NPV cW �

(bp�), is discounted back to x by using
the stochastic discount factor, ( xbp� )�1 . In contrast, if the adoption of the non-�exible program
occurs earlier, i.e., x � bp�, then NPV W �

(x) is discounted back to bp�. Thus, �(x; bp�) indicates,
in percentage terms, the value of a �exible program when compared to the value of a non-�exible

program. Finally, note that by using the measure �(x; bp�) for the comparison, we are taking into
account the di¤erence in the probability of adoption and in the expected investment time through

the stochastic discount factor ( xbp� )�1 .

5 Numerical Examples

In this section, we use some numerical examples to illustrate the e¤ect of operational �exibility on

the investment timing and on the value of a waste disposal program. We start our calculations

by setting d = 1: This is equivalent to normalizing our frame with respect to the additional cost

of disposal incurred when recycling.19 By using (1), it is straightforward to show that the ratio

qt = pt=d evolves according to the following Brownian motion:

dqt
qt
= �dt+ �dzt; with q0 = q =

p

d
(23)

Note that recycling is consistently pro�table for any q > 1 and not pro�table otherwise.

In our exercise, we let the other parameters vary as follows:

18Clearly, nothing would change if we chose the latest investment time.
19Note that we could have normalized the setting from the beginning by assuming that qt = pt=dt with dt > 0

evolves according to dqt = �qtdt+�qtdzt. However, we preferred to keep dt since it guarantees a clearer presentation
and discussion of our results.
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1. Price trend and volatility - We let drift, �, and volatility, �, take values f0; 0:025g and
f0:1; 0:2; 0:3g, respectively. Note that a positive drift may capture both an expected increase
in the price for recycled material and/or an expected decrease in the gap between recycling

and land�lling operating costs. A driftless motion simply implies that, even if �uctuating

over time, ratio qt on average takes the initial value q. See Table 2. In each table, we

allow for increasing levels of volatility in order to check the impact of uncertainty on the

choice of the program and on the investment policy. In particular, we expect that under

higher uncertainty i) the municipality prefers a higher degree of �exibility, and ii) investment

in a costly �exible program should be delayed. As a result, the municipality must trade o¤

�exibility with investment delay. In light of this trade-o¤, it is of interest, however, to check

how a �exible program performs compared to a non-�exible one.

2. Investment cost - We consider the impact of investment cost by letting its magnitude, i,
and convexity, , take values f2:5; 5; 10g and f2; 4g, respectively. As discussed above, higher
i and lower  will likely make a �exible program less desirable since the marginal investment

cost of �exibility increases. See Tables 1 and 4.

3. Interest rate - We set the interest rate, r, equal to 5% in our calculations. We then check

for the e¤ect of a variation by raising it to 10%. It is immediate to see that when investing in

a �exible program, this variation implies, ceteris paribus, a higher user cost of capital. Hence,

in order to invest, the �exible program must yield higher returns. With a higher interest rate,

investment is likely to occur when q is high enough to cover the higher opportunity cost of

capital. See Table 3.

In our calculations, we set 1 as initial level for q. This means that the additional cost of recycling

is covered by revenues from the sale of recycled materials. Note that 1) as discussed above, this does

not necessarily trigger investment in any of programs under analysis, and 2) this assumption does

not in�uence the comparison between a �exible and a non-�exible program. In this respect, recall

that when comparing the two programs on the basis of probability of investment and expected in-

vestment timing, what matters is the temporal distance between the optimal investment thresholds

set for each program. We compare the probabilities of eventual investment and investment within

10 years (T = 10) with or without �exibility.

In Table 1, we set � = 0:025; r = 0:05 ,and  = 2 and we let vary the investment cost magnitude,

i, and the volatility, �. We observe that within a �exible program, the municipality would always

prefer to purchase the maximum feasible recycling capacity, i.e., �� = 1. Furthermore, in the

majority of cases the investment in such a program would occur earlier than the investment in a

non-�exible program. In particular, we note that this is always the case for the highest level of

volatility. This makes sense, considering that under highly uncertain recycling pro�tability, the

municipality may fully exploit the potential of the hedging policy adopted by investing in a �exible

program. This consideration is also supported by the performance of the �exible program in terms of

expected investment time and value. In fact, we observe that the presence of �exibility may induce
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important reductions in the length of time needed for eventual investment. Note that �(x; bp�) is
always increasing in the level of uncertainty. Interestingly, the �exible program may perform even

better in some cases, for instance if i = 5 and � = 0:3. In this case, the value attached to the

�exible program is equivalent to 105% of the value of a non-�exible one. Not surprisingly, �(x; bp�)
is decreasing in i, i.e., the higher the investment cost of the �exible program, the lower the net

bene�t in comparison to the non-�exible one. In general, however, even when �(x; bp�) is lower
than 1, we note that the score is quite high. This is particularly noteworthy when considering

that a non-�exible program is actually costless in terms of investment (i = 0). Finally, note that

the investment thresholds for both programs are increasing in �. This is due to the presence of

uncertainty and irreversibility which, as is standard in the real option literature, requires a more

prudent investment policy. Investment should, in fact, occur at higher price levels. This, in turn,

requires waiting longer before investing. This period of inaction may become in�nitely long in

the presence of a weak expected growth in the net bene�t of recycling (q). In Table 1, this is

actually the case for � = 0:3. This �gure must be analyzed in combination with the probability of

investment which, up to Table 1, markedly increases when investing in �exibility.

TABLE 1

The E¤ect of Investment Cost on Timing and Program Value

for � = 0:025; r = 0:05; T = 10 and  = 2

In Table 2, we focus on the impact that a change in the expected trend, �, may have. We note that
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in the majority of cases, 1) the municipality prefers to invest in the maximum recycling capacity

and 2) investment occurs earlier in the presence of �exibility. The expected time of adoption is

decreasing in �: In particular, E(� ; p; ep) =1 for � = 0. As explained above, this is due to the fact

that there is a positive probability of never hitting the investment threshold, i.e., G(p;1; ep) < 1.
When considering a �exible program, there are, however, marked gains in terms of probability

of adoption as uncertainty rises. The value attached to the disposal program is increasing in �:

Higher NPV are attached to higher growth in recycling pro�tability. Note also that for high levels

of uncertainty the �exible program performs better when the drift is null (higher �(x; bp�)). This
makes sense, considering that if the recycling pro�tability is expected to grow, the hedging policy

available within a �exible program is less valuable. This is due to the lower likelihood of q falling

below 1. In contrast, the activation of the hedging policy is more likely when � = 0. Finally, the

positive relationship between �(x; bp�) and � holds also for � = 0:
TABLE 2

The E¤ect of a Change in the Drift on Timing and Program Value

for i= 5; r = 0:05; T = 10 and  = 2

In Table 3, in order to isolate the e¤ect of the interest rate, r, we set � = 0. We note that by

raising r to 10%, we have two opposite e¤ects on the investment thresholds set for both feasible

programs. In fact, while the investment in a �exible program is postponed, the investment in a

non-�exible program is anticipated. To explain this di¤erence, again, recall that the investment in

a non-�exible program occurs at no cost (i = 0). In addition, the current value of future payo¤s

decreases since they are discounted at a higher rate. This easily explains the rush in investing in

a non-�exible program. In contrast, when investing in a �exible program, the e¤ect of discounting

on future payo¤s is balanced by the e¤ect of a higher user cost for the capital needed to purchase

�exibility. In Table 3, the second e¤ect is prevailing in every scenario. This clearly has a huge
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impact on the performance of the �exible program when compared to a non-�exible one. Note that

�(x; bp�) is decreasing in r and the �exible program performs poorly for � = 0:1. As above, the

performance improves, as uncertainty risesand reaches 90% for � = 0:3. This con�rms again the

relevance of �exibility in terms of program value. Similarly, note also that, despite its higher cost,

a full recycling capacity is chosen.

TABLE 3

The E¤ect of a Change in the Interest Rate on Timing and Program Value

for i = 5; � = 0; T = 10 and  = 2

Finally, we study the e¤ect of investment cost convexity, . Recall that in the interval � 2 (0; 1] the
investment cost is decreasing in . In the three scenarios represented in Table 4, the municipality

would always install full recycling capacity within the �exible program. Thus, the e¤ect of  is

highly similar to the e¤ect of a higher i. As  decreases, the investment in a �exible program is

postponed, and its relative pro�tability, �(x; bp�), drops. Note that in Table 4 we set r = 0:1 so that,
not surprisingly, the investment in a non-�exible program occurs earlier in the majority of cases. It

is, however, worth pointing out the strength of a �exible program which improves its performance

in terms of �(x; bp�) as uncertainty increases.
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TABLE 4

The E¤ect of a Change in the Investment Cost Convexity on Timing and Program Value

for i = 5; � = 0:025; T = 10 and r = 0:1

6 Conclusion

The design of a waste management program is a crucial choice for a municipality. This must

be made by taking into account, on the one hand, the constraints �xed on the disposal methods

available and, on the other hand, the economic pro�tability of the adopted program. Despite the

increasing popularity of recycling programs, their actual economic pro�tability remains weak. This

is mainly due to the level of prices paid for recycled materials, which, for some speci�c materials, do

not even cover the cost of recycling. In addition, investment in recycling capacity is also discouraged

by the volatility characterizing the dynamic of prices in secondary markets for raw materials.

In our paper, we propose to hedge against uncertainty about pro�t from recycling by operating

a �exible waste management program allowing for the use of land�lling whenever recycling is not

pro�table. The land�lling disposal strategy, which is generally less costly than recycling, could then

act as a bu¤er in periods when prices for recycled materials are too low. Clearly, the operation of a

more complex waste management program, allowing for the option to restore land�lling whenever

needed, may impose additional investment costs on the municipality. However, we have shown that
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the value of operational �exibility may cover the additional cost and have a positive impact on

the decision to invest in recycling capacity. This is mainly explained by the presence of �exibility,

which may substantially reduce uncertainty about recycling pro�tability. This positive e¤ect may

lead to two interesting results. First, investment in recycling within a �exible program may occur

earlier than within a non-�exible program. Second, it may result in a higher expected net present

value.
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A Appendix

A.1 The value of the �exible program

The general solution to the di¤erential equations (5) and (6) takes the form:20

V L(p;�) = OR1 p
�1 for pt < d

V R(p;�) = OL2 p
�2 + �( p

r�� �
d
r ) for pt > d

(A.1.1-A.1.2)

where �1 > 1 and �2 < 0 are the roots of the characteristic equation � (�) = 1
2�

2� (� � 1)+���r =
0. In (5) and (6) the �rst term indicates the value of the option to switch to the alternative

operational arrangement. In (6) the second term represents the value of bene�ts (cost reduction)

accruing operating forever under regime WR. Clearly, since the availability of strategic options

always increases the value of a project, the constants OLR1 and OL2 must be non-negative.
21

At pt = d, the standard pair of conditions for an optimal waste disposal policy must hold. That

is, value-matching

V L(d; �) = V R(d; �) (A.1.3)

and the smooth-pasting

V Lp (d; �) = V
R
p (d; �): (A.1.4)

Solving the program [A.1.3-A.1.4] yields

OR1 = �
d1��1

r

r � ��2
(r � �)(�1 � �2)

= �OR

OL2 = �
d1��2

r

r � ��1
(r � �)(�1 � �2)

= �OL

A.2 Proof of Proposition 1

Suppose that pt < d . The optimal share of recycling is given by

��(pt) = argmaxf�ORp�1t � i
�


g; s.t. 0 < � � 1:

From the �rst-order condition for (A.2.1) we obtain

��(pt) = (
ORp�1t
i

)
1

�1 (A.2.2)

20Note that under WL the general solution to (5) should take the form V L(pt; �) = O
R
1 p

�1
t +O

R
2 p

�2
t : However, since

the value of the option to switch to WR vanishes as pt ! 0 then we set OR2 = 0. Similarly, under WR the general
solution to (6) should be V R(pt; �) = �

pt�d
r
+OL1 p

�1
t +OL2 p

�2
t . However, the option to switch to W

L is valueless as
pt !1 and then we set OL1 = 0.
21See Dixit and Pindyck (1994, chps. 6 and 7) for a thorough discussion.
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As can be easily shown, the second-order condition is always satis�ed. Taking into account the

upper and lower bound for ��we have:

��(pt) =

(
(
ORp

�1
t
i )

1
�1 for pt < p

1 for p � pt < d
(A.2.3)

where p = ( i
OR
)
1
�1 .

A.3 Proof of proposition 2

Suppose pt � d . The optimal share of recycling is given by

��(pt) = argmaxf�OLp�2t + �(
pt
r � � �

d

r
)� i�




g; s.t. 0 < � � 1:

The �rst-order condition for (A.3.1) yields

��(pt) = (
OLp�2t +

pt
r�� �

d
r

i
)

1
�1 (A.3.2)

It is easy to check that the second-order condition holds always. To be feasible ��(pt)must belong to

the interval (0; 1]: Let�s then show under which conditions ��(pt) belongs to such interval. First, let�s

introduce the convex function U(pt) = OLp
�2
t +

pt
r�� �

d
r and p as solution of the equation U(p) = i.

Note that since U(d) = d(r���2)
r(r��)(�1��2) > 0 and U 0(d) = �1(r���2)

r(r��)(�1��2) > 0 then �(pt) > 0 and

��0(pt) > 0 for pt � d. In order to de�ne the interval where �(pt) < 1 we need to impose that

U(pt) < i. Finally, we simply need to check under which conditions U(d) < i: That is,

d(r � ��2)
r(r � �)(�1 � �2)

= ORd�1 < i (A.3.3)

Note that if (A.3.3) holds then it exists a p (> d) such that ��(pt) < 1 for d < pt < p and ��(pt) = 1

for p � pt. Otherwise, ��(pt) = 1 for d � pt.

A.4 Optimal investment timing

Let�s maximize the objective function in (14) with respect to ep. The �rst-order condition is:
(
ptep )�1 [@NPV k(ep)@ep � �1ep NPV k(ep)] = 0 (A.4.1)

It is immediate to derive (14.1) from (A.4.1).

A necessary and su¢ cient condition for the de�nition of a maximum at ep is given by the following
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second-order condition:

��1ep (ptep )�1 [@NPV k(ep)@ep � �1ep NPV k(ep)]+
+(
ptep )�1 [@2NPV k(ep)@ep2 � �1ep (NPV k(ep)@ep � NPV

k(ep)ep )] < 0 (A.4.2)

Plugging (A.4.1) into (A.4.2) and rearranging, we obtain condition (14.2):

ep@2NPV k(ep)
@ep2 < (�1 � 1)

@NPV k(ep)
@ep (A.4.3)

A.5 Proof of propositions 4 and 6

It is easy to show that condition (14.2) holds for a maximum at p�. Substituting NPV R(p�; 1) into

(14.2) we obtain

OL�2(�2 � 1)p��2�1 < (�1 � 1)(OL�2p��2�1 +
1

r � �)

�d
1��2

r

r � ��1
r � � �2p

��2 <
p�

r � �(�1 � 1)

� r � ��1
r(�1 � 1)

�2 < (
p�

d
)1��2

1 < (
p�

d
)1��2 (A.5.1)

Note that @p�

@OL
< 0: In fact, taking the derivative with respect to OL on both sides of (15) we obtain

@p�

@OL
= ��1 � �2

�1 � 1
p��2(1 +

�2O
L

p�
@p�

@OL
)(r � �)

=
� �1��2
�1�1 p

��2

1 + r���1
�1�1

�2
r (

p�

d )
�2�1

(r � �)

= �
�1��2
�1�1 p

��2

1� (p�d )�2�1
(r � �) < 0 (A.5.2)

A.5.1 Existence and uniqueness of the threshold p�

Let�s �rst de�ne the function �(pt) = �1��2
�1�1 O

Lp�2t (r��)+pt� �1
�1�1(

d
r +

i
 )(r��). Note that �(pt)

is convex and �(p�) = 0. Thus, to prove that an unique p� > d exists for 	 � 0, it su¢ ces to show
that �(d) < 0. That is:

�(d) = �[ �1
�1 � 1

(
d

r
+
i


)(r � �)� d� r � ��1

�1 � 1
d

r
]

= � �1
�1 � 1

i


(r � �) < 0 (A.5.3)
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Similarly, in order to prove the existence of an unique investment threshold, p�� = p� � p, for 	 > 0
we need to show that �(p) � 0. Using results in section A.3 we obtain OLp�2 = i � ( p

r�� �
d
r ).

Substituting and rearranging, we have

�(p) =
�1 � �2
�1 � 1

OLp�2(r � �) + p� �1
�1 � 1

(
d

r
+
i


)(r � �)

= [�OLp�2(�2 � 1)�
d

r
� i(1 + �1

1� 


)]
r � �
�1 � 1

� 0

It follows that a necessary and su¢ cient condition for p� � p is given by the following inequality:

OLp�2 �
d
r + i(1 + �1

1�
 )

1� �2
p

r � � � � =
�2

�2 � 1
d

r
� �1( � 1)� �2

�2 � 1
i


: (A.5.4)

A.6 Proof of proposition 5

Substituting NPV R(p��; ��(p��)) (where 0 < ��(p��) < 1) into (14.1), we obtain:

p�� = �1
OLp���2 + p��

r�� �
d
r

OL�2p���2�1 +
1
r��

(1� 1


)

= [
�1(1� 1

 )

�1(1� 1
 )� 1

d

r
�OLp���2

�1(1� 1
 )� �2

�1(1� 1
 )� 1

](r � �) (A.6.1)

from which it follows (16).

Let�s now check for condition (14.2). Plugging NPV R(p��; ��(p��)) into (14.2) yields

(
OLp���2 + p��

r�� �
d
r

i
)


�1�2[

p��

 � 1
(OL�2p

��2�1 + 1
r��)

2

i
+
OLp���2 + p��

r�� �
d
r

i
OL�2(�2 � 1)

p���2

p��
]

<
�1 � 1
p��

(
OLp���2 + p��

r�� �
d
r

i
)


�1�1(OL�2p

���2 +
p��

r � �)
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Using (A.6.1) and rearranging we obtain

(OL�2p
���2 + p��

r��)
2

i( � 1) <
OLp���2 + p��

r�� �
d
r

i
[OL�2p

���2(�1 � �2) + (�1 � 1)
p��

r � � ]

(OL�2p
���2 + p��

r��)
2

i( � 1) <
OL�2p

���2 + p��

r��

�1(1� 1
 )i

[OL�2p
���2(�1 � �2) + (�1 � 1)

p��

r � � ]

(OL�2p
���2 +

p��

r � �)
�1

< OL�2p

���2(�1 � �2) + (�1 � 1)
p��

r � �
p��

r � � [�1(1� ) + ] < �O
L�2p

���2 [�1(1� ) + �2]

(
p��

d
)1��2 [�1(1� ) + ] <

�1 � 1
�1 � �2

[�1(1� ) + �2] (A.6.2)

Note that �1�1
�1��2 [�1(1 � ) + �2] < 0: This implies that if 1 <  �

�1
�1�1 ; the inequality in (A.6.2)

does not hold. Then let�s restrict the analysis to the set where  > �1
�1�1 . Dividing on both sides

by [�1(1� ) + ] we obtain

(
p��

d
)1��2 >

�1 � 1
�1 � �2

�1(1� ) + �2
�1(1� ) + 

> 1 (A.6.3)

Finally, using (A.6.3) it is easy to show that @p
��

@OL
< 0:

@p��

@OL
= ��1( � 1)� �2

�1( � 1)� 
p���2(1 +

�2O
L

p��
@p��

@OL
)(r � �)

=
� �1(�1)��2

�1(�1)� p
��2

1� �1�1
�1��2

�1(1�)+�2
�1(1�)+ (

p��

d )
�2�1

(r � �) < 0 (A.6.4)

A.6.1 Existence and uniqueness of the threshold p��

Let�s provide the conditions that guarantee existence and uniqueness of the optimal threshold when

d � p�� < p. We introduce the function �(pt) = �1(�1)��2
�1(�1)� O

Lp�2t (r� �) + pt �
�1(�1)
�1(�1)�

d
r (r� �):

Note that �(pt) is convex and �(p��) = 0. Hence, if �(d) � 0 then an unique p�� � d exists. This
can be easily veri�ed:

�(d) =
d

r

r � ��1
�1 � �2

�1(1� 1
 )� �2

�1(1� 1
 )� 1

+ d�
�1(1� 1

 )

�1(1� 1
 )� 1

d

r
(r � �)

= �d
r

r � ��1(1� 1
 )�

r���1
�1��2 [�1(1�

1
 )� �2]

�1(1� 1
 )� 1

= �d
r

�1
r���2


(�1 � �2)[�1(1� 1
 )� 1]

< 0 (A.6.5)
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We complete the analysis by studying the condition p�� < p. Note that, using the properties of

�(pt); this is equivalent to having �(p) > 0. After substituting, we obtain

�(p) =
�1( � 1)� �2
�1( � 1)� 

OLp�2(r � �) + p� �1( � 1)
�1( � 1)� 

d

r
(r � �)

= 
1� �2

�1( � 1)� 
OLp�2(r � �) + i(r � �)� 

�1( � 1)� 
d

r
(r � �)

= 
r � �

�1( � 1)� 
[(1� �2)OLp�2 +

i


(�1( � 1)� )�

d

r
] > 0 (A.6.6)

which is positive if and only if

OLp�2 >

d
r + i(1 + �1

1�
 )

1� �2
p

r � � < � =
�2

�2 � 1
d

r
� �1( � 1)� �2

�2 � 1
i


: (A.6.7)

Last, note that if condition (A.6.7) does not hold then p�� = p�.

A.7 Proof of proposition 8

Denote by p+ the investment threshold and consider the case p+ < p: Plugging (10.2) into (14.2)

yields

p+(


 � 1�1 � 1)(
OR

i
p+�1)


�1

i�1
p+2

< (�1 � 1)(
OR

i
p+�1)


�1

i�1
p+

(
OR

i
p+�1)


�1 i�1(



 � 1�1 � 1) < (
OR

i
p+�1)


�1 i�1(�1 � 1)



 � 1�1 � 1 < �1 � 1

�1
 � 1 < 0; (A.7.1)

which never holds since  > 1 by assumption.

Finally, it is immediate to verify that (14.2) does not hold also for p � p+ < d: In fact, following
the same steps we obtain

p+(�1 � 1)OR�1p+�1�2 < (�1 � 1)OR�1p+�1�1

0 < 0 (A.7.2)
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