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Abstract 

Flow data across regions can be modeled by spatial econometric models, see LeSage and 

Pace (2009). Recently, regional studies became interested in the aggregation and 

disaggregation of flow models, because trade data cannot be obtained at a disaggregated 

level but data are published on an aggregate level. Furthermore, missing data in 

disaggregated flow models occur quite often since detailed measurements are often not 

possible at all observation points in time and space. In this paper we develop classical and 

Bayesian methods to complete flow data. The Chow and Lin (1971) method was developed 

for completing disaggregated incomplete time series data. We will extend this method in a 

general framework to spatially correlated flow data using the cross-sectional Chow-Lin 

method of Polasek et al. (2009). The missing disaggregated data can be obtained either by 

feasible GLS prediction or by a Bayesian (posterior) predictive density. 

 

Keywords 
Missing values in spatial econometrics, MCMC, non-spatial Chow-Lin (CL) and spatial 

Chow-Lin (SCL) methods, spatial internal flow (SIF) models, origin and destination (OD) data 

JEL Classification 
C11, C15, C52, E17, R12 

  



Comments 

This paper is part of a project funded by the Jubilaeumsfonds of the Austrian National Bank (OeNB). 



Contents 

1. Introduction 1 

2. Completing data in spatial internal flow (SIF) models 1 

3. Non-spatial internal flow (nSIF) models 4 
3.1. Least squares (LS) estimation for the non-spatial internal flow (nSIF) model   ...........   4 

3.2. Non-spatial Chow-Lin forecasts for SIF models   ........................................................   6 

3.3. Feasible generalized least squares (FGLS) estimation in the nSIF model   ................   8 

4. The general origin-destination spatial internal flow  
(OD-SIF) model     9 
4.1. The origin spatial internal flow (oSIF) model   ...........................................................   10 

4.2. Chow-Lin predictions in the SAR-SIF model   ...........................................................   13 

4.3. Estimation with structural zeros in trade flow models   ..............................................   14 

4.4. Uni-lateral spatial GLS estimation in the SAR-SIF model   ........................................   14 

4.5. Feasible GLS estimation in unilateral models   ..........................................................   16 

4.6. Chow-Lin prediction in the SIF model   ......................................................................   17 

5. Unilateral spatial lags in the Bayesian SAR-SIF model 17 
5.1. The Bayesian origin spatial internal flow (O-SIF) model   ..........................................   20 

5.2. MCMC for the oSIF Chow-Lin model   .......................................................................   22 

6. Application to trade flows in European regions 23 

7. Conclusions 27 

References 27 
 

 

 





1. Introduction

The origin of the Chow-Lin method lies in the desire to complete data sets
for disaggregated time series problems. This paper will do an extension in two
directions: First, we will use a spatial econometrics model and then we will use
it for classical and Bayesian estimation for origin and destination (OD) data in
flow models as in LeSage and Pace (2008). We propose a spatial econometrics
model in a Bayesian framework that will be estimated by MCMC.

The name internal flows stems from the fact that we consider flows between
n disaggregate units that will be aggregated to N aggregate units. Such model
we call spatial internal flows (SIF) models because we aggregate data for flows
within a fixed geographic area like a country.

This paper derives spatial Chow-Lin methods for flow data matrices, based
on models for origin to destination (OD) flows (see LeSage and Pace (2008))
and explains the GLS and the feasible GLS approach and the Bayesian approach
to estimate general SIF models. Simplified SIF models are called uni-lateral or
origin (oSIF) or destination (dSIF) models because they concentrate only on
one variance component of the spatial correlation polynomial. For the Bayesian
treatment of these SIF models we have to elicit a prior distribution and then
we explain how to adopt a heteroskedastic MCMC algorithm for estimation.

The spatial modeling of flow models face the problem that large cross sec-
tions imply rather large spatial weight matrices which makes any estimation
procedures computationally expensive. The plan of the paper is as follows. In
the next section we describe the basic spatial internal flow (SIF) model. Then
we derive the Chow-Lin procedure for non-spatial flow models, before we explain
the Chow-Lin procedure for spatial flow models. Finally, we apply the model
to European trade flow data. In a final section we conclude.

2. Completing data in spatial internal flow (SIF) models

We adopt the following notation: Let Ya : N×N be the aggregated flow ma-
trix for N aggregated cross-sectional units and Yd : n× n be the disaggregated
panel matrix. For a flow matrix the aggregation has to be done in 2 dimensions:

Ya = C0YdC′0. (1)

The aggregation matrix is C0 : N × n with n > N across spatial units has
to be defined as a block diagonal matrix (as in Polasek et al. (2009)):

C0 = diag(1′n1
, ....,1′nN

),
N∑
i=1

ni = n, (2)

where the n′is is the number of sub-units to be aggregated in each cell (unit)
and 1ni : ni × 1 is a column vector of ones and indexes the areas where units
are aggregated. Yd is the n× n disaggregated matrix. The sub-lengths add to
the total number: n1 + ...+ nN = n.
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For the Chow-Lin procedure we have to vectorize the aggregation equation
of the flows:

ya = (C0 ⊗C0)yd = Cyd with C = C0 ⊗C0, (3)

with yd = vecYd : n2× 1 and the joint aggregation matrix is C = C0⊗C0 :
N2 × n2, because of vec(ABC) = (C ′ ⊗A)vecB.

We need a fully observed disaggregated panel matrix Xd : n × K (the ag-
gregated matrix is Xa : N ×K) as ”panel indicators”, which can be vectorized
to a nK × 1 vector vecXd = xd. Note that indicator matrices for the disaggre-
gated flows need to have the same dimension as Yd (and the same number K).
The disaggregated model is a linear regression model using the vectorized flow
matrices:

yd = Xdβd + ud, ud ∼ N [0,Ωd ⊗ σ2Vd], (4)

where Vd and Ωd are the disaggregated n × n covariance matrices, and
yd = vecYd is the vectorization of the flow matrix Yd. The covariance matrices
have the following interpretation: Ωd is the covariance matrix across (between)
the columns while Vd is the covariance matrix within the columns. A simpler
assumption for the covariance matrix is the assumption of homoskedasticity
(and uncorrelatedness):

ud ∼ N [0, σ2
dInn] with Inn = In ⊗ In. (5)

For such a model we have to vectorize the flow matrix Yd and we use as
indicators in the regression distances and the origin and destination variables.

Definition 1 (The SIF model ). We consider the disaggregated dependent
variable yd = vecYd of a flow matrix Yd : n× n and we assume a SAR model
of the form as in LeSage and Pace (2008). Such a regression model we will call
a SIF (spatial internal flow) model for flow (or origin-destination) data:

yd = ρ(W1,W2)yd + Xdβd + ud, (6)

where ρ(W1,W2)yd stands for a spatial lag polynomial that captures spatial
correlation structures and is applicable for flow models

ρ(W1,W2)yd = ρ1(W1 ⊗ In)yd + ρ2(In ⊗W2)yd + ρ3(W1 ⊗W2)yd. (7)

The SIF model is homoskedastic if the residuals are distributed as ud ∼
N [0, σ2

dInn] and heteroskedsatic if the residuals are distributed as ud ∼ N [0, σ2
dΩd⊗

Vd].

The spatial correlation is decomposed into 3 components: ρ1 is attributed
to the spatial correlation of the rows (destination sites), ρ2 to the column (ori-
gin) component and ρ3 is the interaction component. Simpler ”unilateral” SIF
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models can be obtained if we consider just 1 component of the rho-polynomial
(see section 4 for more on origin and destination components). The aggregated
reduced form (ARF) of the SIF model (6) is given by multiplying the reduced
form by the aggregation matrix C:

Cyd = CR−1
ρ Xdβd + CR−1

ρ ud, (8)

where the general spread matrix Rρ for spatial flow models is given by

Rρ = Inn − ρ1(W1 ⊗ In) + ρ2(Im ⊗W2) + ρ3(W1 ⊗W2), (9)

and W1 and W2 are suitable chosen neighborhood matrices (see Anselin
(1988) or LeSage and Pace (2009) for discussion on possible W’s).

The reduced form (RF) of the spatial internal flow (SIF) model is obtained
by collecting all the dependent variables on the left hand side

yd = R−1
ρ Xdβd + ũd, ũd = R−1

ρ ud ∼ N [0, σ2
dVρ], (10)

and the reduced form variance covariance matrix (VCV) is a function of the
unknown parameter ρ:

Vρ = R−1
ρ (Ωd ⊗Vd)R

′−1
ρ . (11)

Because the disaggregated model can not be used to estimate the disaggre-
gated model parameters θd = (βd, ρd, σ2

d), we transform the model in order to
get a fully observed data set. If the aggregate data are known we can transform
(= aggregate) the disaggregated data to an estimable equation with aggregated
data using ya = Cyd. Now the estimation can be done using the aggregated
reduced form ARF of the SIF model in (8).

Since only the aggregated data are completely observed we have to make
a connection between the aggregated model and the disaggregated model and
we adopt a notation that can separate the 2 models. In compact notation the
spatial ARF model is obtained through the aggregation matrix C : N2 × n2 in
(3):

ya = Xaρβd + uaρ, uaρ ∼ N [0, σ2Vaρ], (12)

where uaρ is the aggregated residual and the covariance matrix is

Vaρ = CR−1
ρ (Ωd ⊗Vd)R′−1

ρ C′. (13)

There exist useful relationships between the aggregated and disaggregated
variables: ya = Cyd is the direct aggregation for the dependent variable, but –
interestingly – the regressor variables follow an indirect aggregation rule: Xaρ =
CR−1

ρ Xd, because of the inverse spatial correlation matrix Rρ sitting between
the aggregation matrix and the disaggregated observations.
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3. Non-spatial internal flow (nSIF) models

Since the econometric analysis of flow models involves high dimensions and
is more demanding, it is useful to start explaining the modeling process of flows
in a non-spatial model. It will help to understand the extension to the spatial
modeling process.

Spatial internal flow (SIF) models are high dimensional models that grow
with the square of the number of cross sections. The spatial lag assumption
introduces a spatial filter that makes the model non-linear in the spatial corre-
lation parameter and creates regressors and covariance matrices that disturbs
the otherwise nice Kronecker structure of the flow model. Therefore we like
first to see how the ’spatial warping’ of the variables (through the spread ma-
trix R) or the ”spatial curse” of dimensionality can be avoided by estimating a
non-spatial internal flow (’nSIF’) model.

Definition 2 (Non-spatial flow (nSIF) models). The (heteroskedastic) non-
spatial internal flow (nSIF) model for disaggregated data is given in matrix form
by

Yd =
K∑
i=1

Xdiβdi + Ud, Ud ∼ Nn×n[0, σ2
dΩd ⊗Vd], (14)

where K is the number of regressors and Nn×n denotes the matrix normal
distribution, and there are K disaggregated regressor panels Xdi : n× n, i =
1, ...,K.
The (homoskedastic) non-spatial internal flow (nSIF) model makes the following
simplified assumption for the error structure:

Ud ∼ Nn×n[0, σ2
dInn]. (15)

In contrast, the SIF model in matrix form for aggregated data has the form

Ya =
K∑
i=1

Xaiβai + Ua, Ua ∼ Nn×n[0, σ2
aΩagg ⊗Vagg], (16)

where the aggregated data are Ya = CYdC
′ : N×N and the scalar coefficient

βai is the i-th element of the regression vector βa : K × 1 in the aggregated
model. For this model we obtain different residuals and residual covariance
matrices Ωagg ⊗Vagg.

3.1. Least squares (LS) estimation for the non-spatial internal flow (nSIF)
model

For the non-spatial model (16) we consider various estimation procedures,
the first one being the least squares approach. Assume that there are K panel
indicator matrices Xd1, . . . ,XdK available for the disaggregate model and the
first one Xd1 defines the regression constant by a matrix of ones Xd1 = 1n⊗1′n.
Furthermore, we define the regressor matrix of all vectorized panel regressors
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X̃d = (vecXd1, . . . , vecXdK) : (nn×K) and CX̃d = X̃a : (NN ×K). (17)

The aggregated model is obtained by multiplying the regression equation
with the aggregation matrix C as in (14) and we obtain

X̃a = (vec(C1n1′nC′), vec(CXd2C′), ..., vec(CXdKC′)) =
= (vecXa1, vecXa2, ..., vecXaK). (18)

Note the relationship between the K disaggregated and the aggregated indi-
cator matrices: Xdk : (n× n)→ Xak : (N ×N), k = 1, . . . ,K which have to be
vectorized to build up the regressor matrix. The transposed regressor matrix
X̃a’ is given by

X̃
′
a =

 vec′Xa1

..
vec′XaK

 : (K ×N2), (19)

since there are N2 elements per row and the aggregated model can be written
as

ya = X̃aβa + ua. (20)

To estimate the covariance matrices Ωa and Va, we first estimate βa by OLS
(βOLSa : (K × 1)), using using the vectorized panel matrices in (18):

βOLSa = (X̃
′
aX̃a)−1X̃

′
aya. (21)

Construct the residual matrix Ûa from the OLS residuals ûa = ya−X̃aβ
OLS
a

then we get the covariance estimates

Ω̂a = Û
′
aÛa/N and V̂a = ÛaÛ

′
a/N. (22)

With these sample covariance matrices from the aggregated model we can
estimate Σ̂a = Ω̂a⊗V̂a and obtain the feasible GLS estimate for the aggregated
level model

βFGLSa = (X′aΣ̂−1
a Xa)−1X′aΣ̂−1

a ya. (23)

Because the vectorization of the flow matrices leads to high dimensions of
the involved matrices, we show in the next theorem how to simplify the moment
matrices of the GLS estimator.

Theorem 1 (Simplified moment matrices for GLS and FGLS). The GLS
estimate for βd in the aggregated SIF model (16) can be found by the K × 1 es-
timator using estimates of moments
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βGLSd = M−1

X̃X̃
MX̃Ỹ , (24)

and the feasible GLS estimator is

βFGLS = M̂−1

X̃X̃
M̂X̃Ỹ , (25)

where M̂X̃X̃ and M̂X̃Ỹ denote the estimated moment matrices and Va is replaced
by a point estimate. The tilde indicates that we replace the theoretical covariance
matrices by the estimated ones Ω̂d and V̂d.

Proof 1. The aggregate regressor moment matrix X′aVaρXa for the GLS esti-
mation is

MX̃X̃ =

 vec′Xa1

...
vec′XaK

 (Ωa ⊗ Va)−1Xa

 =

 trV −1
a Xa1Ω−1

a X′a1 ... trV −1
a XaKΩ−1

a X′a1
... ...

trV −1
a Xa1Ω−1

a X′aK ... trV −1
a XaKΩ−1

a X′aK ,

 (26)

using the formula trABCD = vec′D′(C ′ ⊗ A)vecB and vec′D = (vecD)′

denotes the row vectorization (see Magnus and Neudecker 1988). In the same
way we find for the second (K × 1) cross-moment vector of the GLS estimate

MX̃Ỹ =
(
X′a(Ωa ⊗ Va)−1vec(Ya)

)
=

 trV −1
a YaΩ−1

a X′a1
...

trV −1
a YaΩ−1

a X′aK .

 (27)

The estimated moment matrices M̂ use the estimated covariance matrices Ω̂d
and V̂d.

3.2. Non-spatial Chow-Lin forecasts for SIF models
It was shown in Polasek et al. (2009) that the spatial Chow-Lin predictions

have the form of a conditional mean for the disaggregated observations, given
the aggregated model (the conditional density is denoted as f(y)d|a), and yields
the following ”Chow-Lin formula”.

Theorem 2. The ”Chow-Lin formula”
The ”Chow-Lin formula” for the missing disaggregated, given the observed ag-
gregated observations is the conditional mean ŷd of the disaggregated observation
in a joint system of observed and unobserved observation:

ŷd = Plain+Gain ∗Residual
= ŷd0 + AC′(CAC′)−1(ya − ŷa), (28)

with ŷd0 = fXdβd and ŷa = fCXdβd is the fit from the ARF model.
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Proof 2. The joint distribution of the aggregated and the disaggregated model
is given by A = V ar(yd) by(

yd
Cyd

)
∼ N

[(
µd
µa

)
, σ2
d

(
A AC′

CA CAC′

)]
. (29)

Since is this a partitioned normal distribution the conditional mean for the
disaggregated data is given by

µd|a = E(yd|a) = µd + AC′(CAC′)−1(ya − ŷa) (30)

while the conditional variance is

V ar(yd|a) = A−AC′(CAC′)−1CA (31)

In the nSIF model we have the following joint distribution between the yd
and ya observations:

(
yd
ya

)
∼ N

[(
µd
µa

)
, σ2
d

(
Ωd ⊗Vd (Ωd ⊗Vd)C′

./. Ωa ⊗Va

)]
. (32)

This covariance between the aggregated and disaggregated residuals is

Cov(ud, ua) = E(udu′dC
′) = σ2

d(Ωd ⊗Vd)C ′ = σ2
dΣdC′. (33)

In the SCL model the C matrix has a special diagonal structure C =
diag(1′n1

, ....,1′nN
).

Now we find for the Chow-Lin formula in the nSIF model by assuming a
homoskedastic error structure for the unknown disaggregated covariance matrix
Σd = Inn, which is matrix A in formula (29).

The non-spatial Chow-Lin forecasts in the nSIF model are also given by the
Chow-Lin formula (28) and the covariance matrices in the heteroskedastic case
have to be estimated. Another way of avoiding the assumption is to parameterize
the covariance matrices by a distance correlation function. Let W : n× n be a
known positive (non-negative and symmetric) distance matrix with zeros in the
main diagonal, then for 0 ≤ ρ < 1 we define the correlation matrix S = ρ−D. S
has 1’s in the main diagonal and all other entries are between 0 and 1.
We can parameterize the covariance matrix now e.g. as Vd = Dσ(In+ρ−Wd)Dσ

where Dσ = diag(σ1, ..., σn) is a diagonal matrix of n standard deviations and
the matrix exponent in ρ−Wd is understood to be point-wise, yielding a n× n
matrix. All together we would have to estimate N + 1 parameters from the
aggregate model and then make the assumption that the disaggregate covariance
matrix can be ’extrapolated’ by Vd = Dσ(In+ρ−Wd

a )Dσ. Since the disaggregate
standard deviations of the Dσ vector are unknown we have to make the Chow-
Lin type of dilution assumption: The disaggregate standard deviations of the
subunits are equal to the aggregate standard deviations in this aggregation unit.
Thus, in analogy a similar Gain*Residual formula can be used:

σd = Dd,σ1n = C D−1
n CDa,σ1N .
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Here σd is a n× 1 vector of disaggregate standard deviations and σa = Da,σ1N
is an N × 1 aggregate vector of standard deviations.

3.3. Feasible generalized least squares (FGLS) estimation in the nSIF model
Consider the aggregated homoskedastic nSIF model in panel form:

Ya =
K∑
i

Xaiβdi + Ua, Ua ∼ NN×N [0, σ2
dINN ], (34)

where the aggregates are given by

Ya = C0YdC′0 and Xai = C0XdiC′0, i = 1, . . . ,K,

from the disaggregated panels and with INN = IN ⊗ IN . Next, we need the
aggregated model equation to estimate βd. Note that by aggregation we get a
heteroskedastic model with the variance matrix

Σa = V ar(Cvec(Ua)) = CV ar(ua)C′ = σ2
d(C0C′0 ⊗C0C′0) = σ2

dDnn,

where Dnn = Dn ⊗Dn is diagonal since Dn = C0C′0 = diag(d1, . . . , dn) is a
diagonal matrix of positive numbers.

Therefore the K ×K regressor moment matrix MXX is given via Theorem
(1) where the elements are computed as numbers from trace operations:

MXX = X′aΣ−1
a Xa =

[
trX′aiD

−1
n XajD−1

n

]
i,j=1,...,K

, (35)

and the cross-moment vector is via (27)

MXY = X′aΣ−1
a ya =

[
trX′aiD

−1
n YaD−1

n

]
i=1,...,K

. (36)

Because of the diagonal structure we can call this estimator the weighted or
WLS estimator and the nSIF least squares estimator can be computed as in
(24). We summarize this result in the next theorem.

Theorem 3 (WLS in the nSIF model). The LS estimate in the nSIF model
(34) is given by

βnSIFd = M−1
XXMXY

with the moments given in (35) and (36).

Proof 3. Follows from the above.

The residuals of the WLS estimates in the nSIF model are

Ûa = Ya −
K∑
i=1

Xaβ̂
WLS
ai ,

and this estimate can be also used to make Chow-Lin predictions for the
nSIF model as in (37):

8



ŷnSIFd = ŷd0 + C′D−1
n CunSIFa ,

with unSIFa = ya − X̃aβ̂
nSIF

d and X̃a : NN × K is the aggregated regressor
matrix.

Note that it is possible to use ŷnSIFd to construct a full covariance matrix
for the disaggregated model.

4. The general origin-destination spatial internal flow (OD-SIF) model

In this section we show how the LS estimation works in simple and com-
plicated spatial SIF models. We start with the non-spatial OD-SIF regression
model for the aggregated observations:

Yd =
K∑
i=1

Xdiβdi + Ud, Ud ∼ Nn×n[0, σ2
dΩd ⊗Vd], (37)

where K is the number of regressors and Nn×n denotes the matrix normal
distribution, and there are K disaggregated regressor panels Xdi : n× n, i =
1, ...,K. In contrast, the OD-SIF model in matrix form for aggregated data has
the form

Ya =
K∑
i=1

Xaiβai + Ua, Ua ∼ Nn×n[0, σ2
aΩagg ⊗ Vagg], (38)

where Ya = CYdC′ : N ×N .
Next we extend the non-spatial model (37) with spatial lags. A general

3-component spatial lag polynomial for OD regressions can be defined by

Rρ = Inn − ρ1(W1 ⊗ In)− ρ2(In ⊗W2) + ρ3(W1 ⊗W2) =

= R̃ρ1 + R̃ρ2 − R̃ρ3, (39)

with the following 3 components

R̃ρ1 = Inn − ρ1(W1 ⊗ In) = R1 ⊗ In
R̃ρ2 = Inn − ρ2(In ⊗W2) = In ⊗R2

R̃ρ3 = Inn − ρ3(W1 ⊗W2) = R̃1 ⊗ R̃2, (40)

and the spread matrices are defined for each ρ-component:

Ri = In − ρiWi, i = 1, 2 and R̃i = In −
√
ρ3Wi, i = 1, 2.

9



The OD-SAR model is an OD-SIF model that uses 3 spatial neighborhood
components as spatial lags

Yd = WρYd +
K∑
i=1

Xdiβdi + Ud, Ud ∼ Nn×n[0, σ2
dΩd ⊗Vd] (41)

with the OD-polynomial

Wρ = ρ(W1,W2) = ρ1(W1 ⊗ In)− ρ2(In ⊗W2) + ρ3(W1 ⊗W2). (42)

The feasible GLS estimator for βd using the aggregate model is given by

β̂FGLSd = (X′dC
′(CV̂aρC′)−1CXd)−1X′dC

′(CV̂aρC′)−1ya, (43)

with the estimated covariance matrix from the aggregated reduced form of
the SAR model

V̂aρ = CR̂
−1

ρ (Ω̂⊗ V̂ )R̂
′−1

ρ C′,

(see Polasek et al., 2009), and where we have replaced the unknown parame-
ters in (13) by their estimates. Estimation of the ρi coefficients can be done
numerically over a 3-dimensional grid, but it is computationally intensive. The
Chow-Lin formula (i.e. the BLUE prediction of the missing disaggregated val-
ues) for the flow SAR model is now given for the disaggregated model

ŷd = R−1
ρ Xdβ̂GLS + V̂aρC′(CV̂aρC′)−1(ya −CR−1

ρ Xdβ̂GLS) = (44)
= ŷ0 + Gûa =
= Plain+Gain ∗Residual,

where the variables are defined in the same way as in the non-spatial Chow-
Lin model (4). The spatial improvement of the Goldberger (1962) ’gain projec-
tion matrix’ is now

G = V̂aρC′(CV̂aρC′)−1, (45)

and distributes the estimated aggregate residuals ûa = ya −CR−1
ρ̂ Xdβ̂GLS

across the spatial naive prediction ŷ0 = R−1
ρ̂ Xdβ̂GLS .

Instead of assuming the whole spatial lag polynomial (39) we could find an
easier way and estimate the components individually. In the next subsections
we will discuss the general case and the special cases for estimation.

4.1. The origin spatial internal flow (oSIF) model
In this section we consider the uni-lateral ”origin-only” spatial internal flow

(oSIF) model as in the special form of the general SIF model (6). Thus the
oSIF model uses only the origin component of the lag polynomial to define the
spatial origin lag variable:

10



ρ(W1,W2)yd = ρ1(W1 ⊗ In)yd = W̃1yd = vec(YdW′
1), (46)

with W̃1 = W1 ⊗ In. The heteroskedastic SAR-oSIF model is defined as

yd = ρ1W̃1yd + Xdβd + ud, ud ∼ N [0, σ2
dΩd ⊗Vd], (47)

or in matrix notation we can write using (46)

Yd = ρ1YdW′
1 +

∑
i

Xdiβdi + Ud, Ud ∼ Nn×n[0, σ2
dΣd], (48)

where Ud : n × n is the residual matrix of the flow model and the full
(heteroskedastic) covariance matrix of the flow model is

Σd = Ωd ⊗Vd, (49)

while for the homoskedastic covariance matrix of the disaggregated flow
model we assume

V ar(ud) = σ2
dIn ⊗ In. (50)

The reduced form of the oSIF model is

yd ∼ N [R̃
−1

Xdβd,Σd1 = σ2
dΩ1 ⊗Vd], (51)

with R̃ = R1 ⊗ In and R1 = In − ρ1W1 and

Ω1 = R−1
1 ΩdR

′−1
1 , (52)

because

Σd1 = (R−1
1 ⊗ In)(Ωd ⊗Vd)(R

′−1
1 ⊗ In) = R−1

1 ΩR
′−1
1 ⊗Vd = Ω1 ⊗ Vd. (53)

In matrix form the reduced form of the oSIF model is

Yd ∼ Nn×n

[
K∑
i=1

XdiR
′−1
1 βi, σ

2
dΣd1

]
. (54)

The aggregated reduced form of the oSIF model in (47) is given by multiply-
ing the reduced form by the aggregation matrix C. Thus, the ARF-oSIF model
has the following form:

Cyd = CR−1Xdβd + CR−1ud, CR−1ud ∼ N [0,Σd2], (55)

where the spread matrix R1 for oSIF flows is given in (40) and with

Σd2 = C(Ω1 ⊗ Vd)C′ = C0Ω1C′0 ⊗C0VdC′0 = Ω2 ⊗ V2. (56)

The estimated covariance matrix replaces the unknown parameters by ML esti-
mates

Σ̂d2 = Ω̂2 ⊗ V̂2. (57)
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In matrix form the ARF model can be written with Ya = CC0YdC′0 as

Ya ∼ Nn×n[
K∑
i=1

C0XdiR
′−1
1 C′0βdi, σ

2
dΣd2]. (58)

Next we turn to the problem of how to estimate the parameters in an oSIF
model θd = (βd, σ2

d, ρd) by the existing SAR programs (e.g. in the packages R
or MATLAB). This leads to the following FGLS procedure.

Procedure 1 (β̂d: Feasible GLS in the SAR-oSIF model). The feasible GLS
estimation of the aggregated reduced form (ARF) model (55) is given by

β̂GLSd = (X ′d2Σ̂−1
d2 Xd2)−1X ′d2Σ̂−1

d2 ya, (59)

with Xd2 = CR−1Xd and the estimated covariance matrix is

Σ̂d2 = C0R̂
−1

1 Ω̂dR̂
′−1

1 C′0 ⊗C0V̂C′0. (60)

The feasible GLS (FGLS) procedure can be set up in the following way:

• Estimate β̂WLS
d by the homoskedastic nSIF flow model with Σd = Inn as

in (50).

• Compute Σ̂d2 using the residuals of the homoskedastic nSIF flow model:
Ω̂d = U′aUa/N

• Make a Cholesky decomposition of Σ̂d2 = S′S ⊗ L′L.

• Compute the transformed regressors
Y ∗ = L

′−1YaS
−1 and X∗i = L

′−1XiS
−1, i = 1, . . . ,K.

• Estimate β̂FGLSd by applying a SAR model with the transformed regressors
Y ∗ and X∗i .

The rationale behind this procedure is: Insert the ARF model (55) into the
GLS estimation formula and approximate the unknown correlation structure in
a step-wise estimation procedure.

Note 1 (Feasible GLS for the homoskedastic ARF model). The GLS es-
timation formula is simplified if we assume homoskedastic covariance matrices
for the oSIF model as in (50 ).

Then Σaρ can be simplified to the homoskedastic case by assuming

Σaρ = CR̃
−1

1 (σ2Inn)R̃
′−1

1 C ′ = σ2
dC(R̃

′
1R̃1)−1C ′ = σ2

dΣa1 ⊗Dn, (61)

because

Σ̂aρ = σ2
dC((R′1R1)−1 ⊗ In)C′ = σ2

dC0(R′1R1)−1C′0 ⊗C0C′0,
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since Dn = C0C′0 and with Σ̂a1 the aggregated covariance matrix given by

Σ̂a1 = CΣ̂d1C′ = σ̂2
dC0Ω̂1C′0 ⊗C0V̂C′0. (62)

The ML estimates of the covariance matrices are

Ω̂ = ÛaÛ
′
a/N and V̂ = Û ′aÛa/n, (63)

where Ûa is the residual matrix of the homoskedastic model: Ûa = Ya− Ŷ0 where
Ŷ0 is the plain OLS prediction, assuming a homoskedastic error structure as in
(50).

In similar way we find the FGLS for the dSIF model.

Theorem 4 (β̂d: Feasible GLS in the dSIF model). The GLS estimator of
the aggregated reduced form (ARF) model (55) is given by

β̂GLSd = (X ′d2Σ̂−1
d2 Xd2)−1X′d2Σ̂−1

d2 ya, (64)

with Xd2 = CR−1Xd with R = R2 ⊗ IN and the estimated covariance matrix

Σ̂d2 = C0Ω̂C′0 ⊗C0R̂
−1
2 V̂ R̂

′−1
2 C′0. (65)

Proof 4. Follows the proof of the oSIF model.

This suggests the feasible GLS (FGLS) procedure in the same way as in Proce-
dure 1, but now the second step replaced by:

• Estimate R̂2 = IN − ρ̂W2 and construct Σ̂d2 for the dSIF model.

4.2. Chow-Lin predictions in the SAR-SIF model
The FGLS results of the previous section can be used for the Chow-Lin

prediction in the disaggregate model:

ŷd = R−1Xdβ̂GLS + Σ̂d1C′(CΣ̂d1C′)−1(ya −CR−1Xdβ̂GLS). (66)

The plain point forecasts are computed with the GLS estimate ŷ0 = (R−1
1 ⊗

In)Xdβ̂GLS or

vecŶ0 =
n∑
j=1

vec(XdjR
′−1
1 )β̂GLS,j

and the ’Goldberger gain matrix’ stems from the ARF in (65) and is derived
via the covariance matrices that are used in the Chow-Lin approach in the same
way as in (33). The improvement term is

Gain ∗Residual = (Ω̂⊗C′0R̂
−1
2 V̂ R̂

′−1
2 C′0)Σ̂−1

d2 û
GLS
a , (67)
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with Σ̂d2 = C0Ω̂C′0 ⊗C0R̂
−1
2 V̂dR̂

′−1
2 C′0 and ûGLSa = ya −CR−1Xdβ̂GLS .

Therefore we can summarize the least squares prediction in the oSIF model
for O/D-matrices in the following way using the spatial CL (SCL) approach of
Polasek et al. (2009):

Procedure 2 (Chow-Lin prediction in the oSIF model). We consider the
SIF model (6)

1. Vectorize the aggregate Ya and Xa matrices and run the ordinary SAR-
SCL program.

2. Compute the simple (’plain’) aggregate residual Û0 = Y0 − Ŷ0 and the
covariance matrices Σ̂ and V̂ in (63).

3. Estimate β̂d,FGLS as in (43).
4. Compute the Chow-Lin forecasts (66) with the known Xd matrices.

Note: The Chow-Lin prediction in the dSIF model follows parallel steps as
in the oSIF model.

4.3. Estimation with structural zeros in trade flow models
If we estimate flow models with trade, the trade within a cell is recorded by

a 0 and so the y-observation at this location is zero (structural zero). For the
estimation (to avoid biases) we have to ignore these values and they are deleted
from the model (e.g. SAR) estimation. We outline the procedure by an example
with a 10× 10 trade flow matrix. To avoid biases in the estimation we need to
eliminate the observation with a structural zero in the vectorized regression.

Procedure 3 (Estimation with structural zeros).

1. Vectorize all variables and eliminate every 10th observation, giving 90 non-
zero observations.

2. Eliminate the corresponding rows in the Σρ matrix.
3. Estimate β and ρ from the non-zero system and get the residual vector u.
4. Construct the residual matrix U by inserting into the main diagonal ’NA’s.
5. Estimate the within and between covariance matrices by a ’NA’ procedure

(skipping over non fully observed pairs).
6. Make a Cholesky transformation and transform the original variables.
7. Eliminate again all observations that correspond to the structural zeros and

estimate the remaining system by a homoskedastic procedure.

4.4. Uni-lateral spatial GLS estimation in the SAR-SIF model
In this section we will explore the estimation of the uni-lateral spatial SAR-

SIF models that will only consider the neighborhood relationships at the origin
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or destination separately. The reason for this a simplification in the estimation
formulas involved.1

First, we consider the SIF model with an additional simple spatial origin lag
of the form W2Ya or YaW′

1. No simple matrix expression for the joint origin-
destination lag W2YaW′

1 is possible. For such a model we can only estimate
the SIF model in vectorized form, and thus the size of the matrices is dependent
on the storage capabilities of the computing environment.

The disaggregate SAR-oSIF model with W = W1 is

Yd = ρWYd +
K∑
i=1

Xdiβdi + Ud, Ud ∼ N [0,Ωd ⊗Vd], (68)

where Yd : N × N and βdi is the i-th element of the regression vector
βd : K × 1. The vectorized form of the model is, with yd = vecYd, ud = vecUd

and xdi = vecXdi, i = 1, . . . ,K,

yd = ρ(In ⊗W)yd +
K∑
i=1

xdiβdi + ud, ud ∼ N [0,Ωd ⊗Vd]. (69)

The ARF of the oSIF model uses the (origin-lateral) spread matrix R =
Inn − ρ(In ⊗W) = In ⊗R1 and is given by

Ya ∼ N [
K∑
i=1

R−1
1 Xaβdi,Co = C(Ω⊗Vr)C′], (70)

with the aggregated observations Ya = CYdC′ : n× n, Xr = CR−1
1 XdC

′ :
n× n,Vr = (R′1V

−1R1)−1 and R1 = In − ρW . And we get for the aggregated
covariance matrix Vo

Vo = (C0ΩC′0)⊗ (C0VrC′0) = Ω1 ⊗ V1. (71)

Since the ARF of the oSIF model has the same structural form as the non-
spatial SIF model, we can use the GLS estimation of Theorem (1) with the GLS
estimate given by βGLS = M−1

XXMXY .
This implies the element-wise construction of the moment matrix (26), com-

puted as numbers from trace operations:

MXX = X ′aV
−1
o Xa =

(
trX ′aiV

−1
1 XajΩ−1

1

)
i,j=1,...,K

, (72)

with the variance matrix Vo from the ARF form (70) and the cross-moment
vector as in (27) by

MXY = X ′aV
−1
o ya =

[
trX ′aiV

−1
1 YaΩ−1

1

]
i=1,...,K

. (73)

1A bilateral spatial SAR-SIF model is defined by a spatial polynomial that takes into
account the spatial neighborhood relationships at the origin and destination simultaneously.
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Similarly, as in the oSIF model, the aggregated reduced form (ARF) of the
SAR-dSIF model is given by

Ya ∼ N

[
K∑
i=1

Xaβdi,Ωr ⊗V

]
(74)

with Ωr = (R′1Ω−1R1)−1 and R1 = In − ρdW as before.
Again the ARF of the dSIF model has the same structural from as the non-

spatial SIF model, we can use the GLS estimation of Theorem (1) with the GLS
estimate given by the moment matrix

MXX = X ′aV
−1
d Xa =

[
trX ′aiV

−1
1 XajΩ−1

1

]
i,j=1,...,K

, (75)

with the Vd = C(Ωr⊗V)C′ from the ARF form (74) and the cross-moment
vector as in (27) by

MXY = X ′aV
−1
d ya =

[
trX ′aiV

−1
1 YaΩ−1

1

]
i=1,...,K

. (76)

4.5. Feasible GLS estimation in unilateral models
The feasible GLS estimator of βa is given by

βFGLSa = (X ′aV̂
−1

a1 Xa)−1X ′aV̂
−1

a1 ya

with

Va1 = Ω̂a ⊗ V̂1, with V̂1 = (R′1V̂
−1

a R1)−1. (77)

For the estimation of the residual variance-covariance matrices we define the
matrices Ω̂a = Û ′aÛa/N and V̂a = ÛaÛ

′
a/N as before but now with the non-

spatially estimated residuals Ûa = Ya −
∑K
i Xaβ̂di. In case of the dSIF model

we have

Va1 = Ω̂1 ⊗V. (78)

For bilateral models the FGLS estimator is with ya = vecYa

MX̃Ỹ =
[
X ′a(Ωa ⊗Va)−1vec(W1YaW

′
2)
]

=

 trV−1
a W1YaW

′
2Ω−1

a X ′a1
...

trV−1
a W1YaW

′
2Ω−1

a X ′aK

 .

For the estimation of ρd a grid search for ρd is possible: The minimum of
the spatial ρ is found by minimizing over a grid of rho values in the interval
(−1, 1).
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4.6. Chow-Lin prediction in the SIF model
The Chow-Lin forecasting has to be done by using the usual Goldberger

(1962) formula: ŷd = Xdβ
GLS
d +Gûa where the term Gûa is an improvement of

the estimated error term ûa = (ya − Xaρβ
GLS
d ) using the ”‘Goldberger gain”’

matrix G = V−1
aρ C′(CV−1

aρ C′)−1.
The point forecasts can be calculated as

ŷd = XβGLSd + Gûa, (79)

and the matrix Y is obtained by de-vectorizing: ŷ = vecŶ.

5. Unilateral spatial lags in the Bayesian SAR-SIF model

For the Bayesian treatment of the oSIF or dSIF model (68) we have to
assume a prior distribution and then we just adopt the heteroskedastic MCMC
algorithm.

The Bayesian estimation follows the same line as in the general SIF model
and can be summarized by the MCMC procedure similar as in Theorem 3. We
consider the model with the prior distribution for Θ = (β, ρ, φ, σ2,Ω)

p(Θ) =
n∏
i=1

N [βi | b
∗
i ,H∗] WN [Ω−1 | (ν∗Ω∗)−1, ν∗] U−1,1(ρ) U−1,1(φ), (80)

where U−1,1(ρ) and U−1,1(φ) stands for a uniform distributions in the in-
terval (−1, 1) and WN for a Wishart distribution of dimension N . Note that
simplified formulas emerge, if we assume a Zellner type ”g-prior” of for the
betas, centered at zero:

p(βd) = N [βd | 0,H∗ = gIK ], (81)

with the scalar g being large (e.g. g = 103 or 106).
The likelihood function is given by the aggregated reduced form of the spatial

internal flow (ARF-SIF) model for Cyd = ya

ya ∼ N [CR̃
−1

Xdβd, CR̃
−1

(Ω⊗ σ2V)R̃
′−1

C ′]. (82)

Then the joint posterior distribution of the disaggregated model parameter
Θd can be simulated numerically by MCMC.

Theorem 5 (MCMC in the internal flow model). The MCMC in the spa-
tial internal flow (SIF) model for the disaggregated model parameter is imple-
mented as follows (for simplicity the d-index is omitted from the parameters)

1. Draw β from N [β | b∗∗,H∗∗]
2. Draw ρ by a Metropolis step: ρnew = ρold +N [0, τ2

1 ]
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3. Draw σ−2 from Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2]
4. Draw Ω−1 from p(Ω−1 | Y,Θc) =WN [Ω−1 | (ν∗∗Ω∗∗)−1, ν∗∗]
5. Repeat until convergence.

Proof 5 (Proof of Theorem 5).

(a) The fcd for the beta regression coefficients is

p(β | y, θc) = N [β | b∗,H∗] · N [Cy | CR−1Xβ, σ2Vaρ]
= N [β | b∗∗,H∗∗] , (83)

with the parameters

H−1
∗∗ = H−1

∗ + σ−2X>R′−1C ′V−1
aρ CR

−1X,

b∗∗ = H∗∗[H−1
∗ b∗ + σ−2X′R′−1C′V−1

aρ Cy], (84)

using (78). These formulas can be written as

H−1
∗∗ = H−1

∗ + σ−2MX̃RX̃ ,

b∗∗ = H∗∗[H−1
∗ b∗ + σ−2MX̃RỸ ], (85)

where the moment matrices are given as before, but now the contain an
additional spatial transformations, since the regressors are filtered by the
inverse spread matrix R̃ = R⊗ In:

C(R−1⊗In)vecXk = (C0⊗C2)vecXkR′−1 = vecC0XkR′−1C′0 for k = 1, ...,K.

The regressor matrix is constructed as

Xaρ = (vecXaρ,1, vecXaρ,2, ..., vecXaρ,K)

with the elements vecXaρ,k = CR̃
−1
vecXk and the K×K moment matrices

(of aggregated filtered regressors) are given by

MX̃RX̃ =

 vec′Xaρ,1

...
vec′Xaρ,K

 (Ωa ⊗Va)−1Xaρ

 = (86)

 trX′aρ,1Ω−1
a Xaρ,1V−1

a ... trX′aρ,KΩ−1
a Xaρ,1V−1

a

... ...
trX′aρ,KΩ−1

a Xa1V−1
a ... trX′aKΩ−1

a Xaρ,KV−1
a ,

 (87)

and for the cross-product moment vector we find

MX̃RỸ =
(
X′aρ(Ωa ⊗Va)−1Ya

)
=

 trX′aρ,1Ω−1
a YaV−1

a

...
trX′aρ,KΩ−1

a YaV−1
a

 . (88)

Note that these matrices have usually small dimensions, since the number
of indicators is limited and can be easily built up by a loop in a computer
program.
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Note 2. If we assume a centered g-prior as in (81), then the posterior
moments are simply given by

H−1
∗∗ = g−1IK + σ−2MX̃RX̃ , (89)

b∗∗ = σ−2H∗∗MX̃RỸ . (90)

(b) The fcd for the residual variance σ−2 we find

p(σ−2 | y, θc) = Γ[σ−2 | s2∗∗, n∗∗], (91)

with n∗∗ = n∗ + n and s2∗∗n∗∗ = s2∗n∗ + ESSρ,φ where the error sum of
squares ESSρ,φ uses aggregated residuals (78) and is given by

ESSρ,φ = (ya −CR−1Xβ)′V−1
aρ (ya −CR−1Xβ). (92)

Using matrix notation we find

ESSρ,φ = (vec′U)V−1
aρ vecU, (93)

with the aggregated residual matrix Ua = (u1, ...,uN ) : N ×N is computed
by

ua = vecUa = ya −CR−1Xβ or ui = ya,i −Xaρ,iβi, for i = 1, ..., N. (94)

(c) The fcd for the spatial ρ coefficient For the generation of the ρ’s we use a
Metropolis step:

ρnew = ρold +N [0, τ2] with α = min

[
1,
p(ρnew)
p(ρold),

]
the acceptance ratio and where p(ρ) is the (kernel of) the full conditional
for ρ, in our case the kernel is just stemming from the likelihood function:

p(ρ) = |Vaρ|−
1
2 exp

(
− 1

2σ2
ESSρ,φ

)
= |RΩ−1R′|− 1

2 exp

(
− 1

2σ2
ESSρ,φ

)
,

because from (78) we find

|Vaρ|−
1
2 ∝ |CR̃

−1
(Ω⊗V)R̃

′−1
C′|− 1

2

and ESSρ,φ given in (92) contains ρ.
(d) The fcd for the correlation parameter φ

For the φ we use a Metropolis step: φnew = φold + N [0, τ2
2 ] with the ac-

ceptance ratio α = min
[
1, p(φnew)

p(φold)

]
where p(φ) is the (kernel of) the full

conditional for φ, in our case the kernel is just stemming from the likelihood
function:

p(φ) = |V |−N
2 exp

(
− 1

2σ2
ESSρ,φ

)
, (95)
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because from (78) we get

|Vaρ|−
1
2 ∝ |CR̃

−1
(Ω⊗V)R̃

′−1
C′|− 1

2

and ESSρ,φ given in (92) contains φ.
(e) The fcd for the SUR covariance matrix Ω

p(Ω−1 | Y,Θc) =WN [Ω−1 | (ν∗∗Ω∗∗)−1, ν∗∗], (96)

a (N -dim.) Wishart distribution with ν∗∗ = ν∗ +N d.f. and

Ω∗∗ = Ω∗ + U′U, (97)

where U is the residual matrix as in (94).

5.1. The Bayesian origin spatial internal flow (O-SIF) model
We estimate the spatial origin flow (O-SIF or oSIF) model in the same way

as the spatial cross-sectional model in Polasek et al. (2009). The model assumes
that we have a disaggregated cross-sectional vector yd : n× 1 at a certain point
in time, which is not observed, but we can observe a shorter, aggregated vector
ya = Cyd : N × 1 and C is the N × n aggregation matrix consisting of 0’s
and 1’s, indicating which cells have to be aggregated together. We consider the
disaggregated spatial regression model

yd = ρWdyd + Xdβd + εd, εd ∼ N [0, σ2
dIn]. (98)

The reduced form is obtained by the spread matrix R for an appropriately
chosen weight matrix Wd : R = In − ρdWd

yd = R−1Xdβd + R−1εd, R−1εd ∼ N [0, σ2
d(R′R)−1]. (99)

The prior distribution for the parameters θd = (βd, σ
−2
d , ρd) is proportional

to

p(βd, σ
−2
d , ρd) ∝ p(βd) · p(σ−2

d ) (100)
= N [βd | β∗,H∗] · Γ(σ−2

d | s2∗, n∗),

since we assume a uniform prior for ρa ∼ U [−1, 1]. The C-aggregation of the
reduced form model is obtained by multiplying with the N × n matrix C

Cyd = CR−1Xdβd + CR−1εd, CR−1εd ∼ N [0, σ2
dC(R′R)−1C ′]. (101)

We will write shorter for the covariance matrix:
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σ2
dΣ(ρd) = σ2

dC(R′dRd)−1C ′. (102)

We see that (101) is a completely observed model for the disaggregated
parameters θd but estimated with an aggregated ya = Cyd variable. The joint
distribution of θd = (βd, ρd, σ2

d) and the aggregated data ya of this oSIF model
is given by

p(θd, ya) = N [CR−1Xdβd, σ
2
dΣ(ρd)] · N [βa | β∗,H∗] · Γ[σ−2

d | s2∗, n∗]. (103)

Note that the parameters of the aggregated model θa can be estimated in
the RF model for the aggregated data. Since the data set and the model differ,
the results of the estimation are different.

ya = R−1Xaβa + R−1εa, R−1
a εa ∼ N [0,Σa = σ2

a(R′R)−1]. (104)

The prior distribution for the parameters θa = (βa, σ−2
a , ρa) is proportional

to

p(βa, σ
−2
a , ρa) ∝ p(βd) · p(σ−2

a )
= N [βa | β∗,H∗] · Γ(σ−2

a | s2∗, n∗),

since we have assumed a uniform prior for ρa ∼ U [−1, 1].
The MCMC for this model follows the same steps as in Theorem (5) but

now with the parameters θa since the joint distribution is

p(θa,ya) = N [R−1
a Xaβa, σ

2
aΣ(ρa)] · N [βa | β∗,H∗] · Γ(σ−2

a | s2∗, n∗). (105)

We will write shorter for the covariance matrix:

σ2
aΣ(ρa) = σ2

a(R′aRa)−1.

The prior distribution for the parameters θd = (βd, σ
−2
d , ρd) is proportional

to

p(βd, σ
−2
d , ρd) ∝ p(βa) · p(σ−2

d )
= N [βd | β∗,H∗] · Γ(σ−2

d | s2∗, n∗),

since we assume a uniform prior for ρd ∼ U [−1, 1].
In case of the heteroskedastic model we have the parameter vector Θd =

(βd, σ
−2
d , ρd,Ωd,Vd) and the prior distribution has to be enlarged by 2 Wishart

distributions:

p(Θd) ∝ p(βd, σ
−2
d , ρd)p(Ωd)p(Vd)

= p(θd) · W[Ω−1
d | (Ω∗κ∗)

−1, κ∗]W[V−1
d | (V∗ν∗)

−1, ν∗].
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5.2. MCMC for the oSIF Chow-Lin model
After vectorizing the flow matrices we obtain a cross-sectional Chow-Lin

SIF model (oSIF) for the parameters θd given in (101) and let us denote the
3 conditional distributions by p(ρd | θc), p(βd | θc), and p(σ2

d | θc) where θd =
(ρd, βd, σ2

d) denotes all the parameter of the model and θc the complementary
parameters in the f.c.d.’s, respectively. The MCMC procedure consists of 3
blocks of sampling, as is shown in the next theorem:

Theorem 6 (MCMC in the homoskedastic oSIF model). The MCMC es-
timation for the oSIF Chow-Lin model involves the following iterations:

Step 1. Draw βd from N [βa | b∗∗,H∗∗]
Step 2. Draw ρi by a Metropolis step: ρnew = ρold +N [0, τ2]
Step 3. Draw σ−2

d from Γ[σ−2
d | s2∗∗, n∗∗]

Step 4. Repeat until convergence.

Proof 6 (Proof of Theorem 6).

(a) The fcd for the beta regression coefficients is

p(βd | ya, θc) = N [βd|b∗,H∗] · (106)
N [ya | CR−1Xdβd, σ

2
dC(R′R)−1C ′]

= N [βd | b∗∗,H∗∗] ,

with the parameters

H−1
∗∗ = H−1

∗ b∗ + σ−2
d X′R

′−1C′Σ(ρd)−1CR−1X,

b∗∗ = H∗∗[H−1
∗ b∗ + σ−2

d X′R
′−1C′Σ(ρd)−1ya].

(b) For the fcd for the inverse variance we find

p(σ−2
d | ya, θc) = Γ[σ−2

d | s2∗∗, n∗∗], (107)

with n∗∗ = n∗ + n and s2∗∗n∗∗ = s2∗n∗ +ESSρd
and where the error sum of

squares ESSρd
is given by

ESSρ = (ya −CR−1Xdβa)′Σ(ρ)−1(ya −CR−1Xdβa). (108)

(c) For the fcd of the spatial ρd we use a Metropolis step:

ρnew = ρold +N (0, τ2) with α = min

[
1,
p(ρnew)
p(ρold)

]
being the acceptance ratio and where p(ρd) is the (kernel of) the full con-
ditional for ρd, in our case the kernel is just stemming from the likelihood
function:

p(ρd) = |Σ(ρd)|−
1
2 exp(− 1

σ2
d

ESSρd
),

with ESSρd
given in (92).
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From the MCMC simulation run we obtain a numerical sample of the pos-
terior distribution p(βd, ρd, σ−2

d | ya).

Theorem 7 (MCMC in the heteroskedastic oSIF model). The MCMC
estimation for the oSIF Chow-Lin model involves the following iterations:

Step 1. Draw βa from N [βa | b∗∗,H∗∗]
Step 2. Draw ρi by a Metropolis step: ρnew = ρold +N (0, τ2)
Step 3. Draw σ−2

d from Γ[σ−2
a | s2∗∗, n∗∗]

Step 4. Draw Ω−1
d from W[Ω−1

d | (Ω∗∗κ∗∗)−1, κ∗∗]
Step 5. Draw v−1

d from W[v−1
d | (v∗∗ν∗∗)−1, ν∗∗]

Step 6. Repeat until convergence.

Proof 7 (Proof of Theorem 7). Add to the iteration cycle of the homoskedas-
tic oSIF model the following 2 draws

1. The fcd for the precision matrix Ω−1
d . The posterior d.f. are given by

κ∗∗ = κ∗ + n and the scale matrix by

Ω∗∗κ∗∗ = Ω∗κ∗ + Û Û ′

with Û = Ya − Ŷa and the matrix Ŷ contains the current predicted values
of the RF.

2. The fcd for the precision matrix V−1
d . The posterior d.f. are given by

ν∗∗ = ν∗+n and the scale matrix by V∗∗ν∗∗ = V∗ν∗+Û ′Û with Û = Ya−Ŷa
as before.

6. Application to trade flows in European regions

The following section demonstrates the method of the origin-destination
Chow-Lin procedure. We predict the regional NUTS-2 origin/destination im-
port flows for a sample of 10 EU-27 countries by a classical trade gravity model
(see for example Frankel and Romer (1999)). The aggregate trade data for the
year 2006 is taken from the Eurostat external trade database. As explaining
factors we use origin and destination population and GDP as well as the Eu-
clidean distances between the countries and regions. The regional GDP and
population data was obtained from Eurostat.

The aggregate trade flows are first estimated using the OLS estimation al-
gorithm of LeSage (1998). We use the following gravity specification for the
estimation of the trade flows:

log Yij = α+ β1 logGDPi + β2 logGDPj (109)
+γ1 logPOPi + γ2 logPOPj + δ logDistij + εij ,

with Yij being the trade flow from region i to region j, GDPi (GDPj) is
the Gross Domestic Product of the origin (destination) region, POP is the
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population and Distij is the Euclidean distance between region i and region j.
The results of this estimation are given in Table 1. The signs of the coefficients
are as expected by theory. GDP and population of the destination region act
as an attraction factor for trade flows. Conversely, the population of the origin
acts as a proxy for the demand of the exporting regions. The more is demanded
locally, the less is exported. GDP of the origin region can be interpreted as a
supply factor for potential exports. Distance serves as a proxy for transport
costs of trade and has the expected negative impact. All coefficients are highly
significant and the R2 is of sufficient size.

Table 1: OLS Chow-Lin flow estimation results
variable coef std. err.

constant -1.461 2.402
GDP origin 2.124 0.237 ***
GDP destination 0.753 0.237 ***
POP origin -1.248 0.214 ***
POP destination 0.152 0.214
Distance -1.116 0.135 ***

adj. R2 0.79
Nobs 90

Using the non-spatial Chow-Lin flow predictor, the import flows have been
disaggregated as shown in Figure 1. As the sum of the logs is not equal to the log
of the sum we notice that the Chow-Lin summation property, i.e. that the sum
of the disaggregates equals the aggregates, does not hold for the exponentiated
(antilog) values of the flows.

The lowest flows are from the Spanish autonomous region Melilla in North
Africa (with region number 42), the highest import flows are observed for the
Greek region Attiki (Athens).

Embedding the Chow-Lin procedure in the spatial framework, we define
the spatial weight matrix W as the row-normalized inverse Euclidean distances
between the countries or regions. The results of the aggregate D-SIF (i.e. the
Wdestination-matrix has been constructed by IN ⊗W) estimation are given in
Table 2. We receive a significant spatial effect and the size of the remaining
coefficients is reduced.

Using the SAR GLS Chow-Lin flow predictor, the import flows can be disag-
gregated as shown in Figure 2 in form of a matrix contour plot. The predicted
flow pattern is rather similar to the non-spatial. As no information is available
on observed regional trade flows, no evaluation measures can be computed so
far.
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Figure 1: Predicted log import flows, 2006

Table 2: SAR Chow-Lin flow estimation results
variable coef std. err.

constant -6.109 2.187 ***
GDP origin 1.040 0.279 ***
GDP destination 0.858 0.200 ***
POP origin -0.596 0.213 ***
POP destination 0.176 0.179
Distance -1.005 0.118 ***
Spatial Lag 0.481 0.086 ***

adj. R2 0.77
Nobs 90
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Figure 2: Predicted NUTS-2 log import flows, 2006 - SAR
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7. Conclusions

This paper has shown that the Chow-Lin method can be applied in a classical
or Bayesian framework for completing data in spatial internal flow (SIF) models,
i.e. for origin and destination (O-D) data. The spatial models rely on a spatial
lag polynomial that takes into account the neighborhood relationships at all
origins and destinations. The Bayesian approach is based on MCMC and has
the advantage that the problem of missing data can be easily implemented in
quite flexible MCMC programs. At the end of the paper, we demonstrated
the non-spatial and spatial internal flow model with an application to European
trade flow data within a gravity framework. Unfortunately, no regional observed
trade flow data is available, so we are not able to evaluate the accuracy of the
forecasts.

In further research, we will consider models where we can observe external
flows, i.e. flows from the current N aggregate units to other units outside the N
current units where we know only the aggregated sum of the flows. Such models
are called spatial external flows (SEF) models and details will be presented in
an upcoming paper. The basic ideas for spatial Chow-Lin (SCL) models were
discussed in Polasek and Sellner (2008).
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