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Abstract

Flow data across regions can be modeled by spatial econometric models, see LeSage and
Pace (2009). Recently, regional studies became interested in the aggregation and
disaggregation of flow models, because trade data cannot be obtained at a disaggregated
level but data are published on an aggregate level. Furthermore, missing data in
disaggregated flow models occur quite often since detailed measurements are often not
possible at all observation points in time and space. In this paper we develop classical and
Bayesian methods to complete flow data. The Chow and Lin (1971) method was developed
for completing disaggregated incomplete time series data. We will extend this method in a
general framework to spatially correlated flow data using the cross-sectional Chow-Lin
method of Polasek et al. (2009). The missing disaggregated data can be obtained either by
feasible GLS prediction or by a Bayesian (posterior) predictive density.

Keywords
Missing values in spatial econometrics, MCMC, non-spatial Chow-Lin (CL) and spatial
Chow-Lin (SCL) methods, spatial internal flow (SIF) models, origin and destination (OD) data
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1. Introduction

The origin of the Chow-Lin method lies in the desire to complete data sets
for disaggregated time series problems. This paper will do an extension in two
directions: First, we will use a spatial econometrics model and then we will use
it for classical and Bayesian estimation for origin and destination (OD) data in
flow models as in LeSage and Pace (2008). We propose a spatial econometrics
model in a Bayesian framework that will be estimated by MCMC.

The name internal flows stems from the fact that we consider flows between
n disaggregate units that will be aggregated to N aggregate units. Such model
we call spatial internal flows (SIF) models because we aggregate data for flows
within a fixed geographic area like a country.

This paper derives spatial Chow-Lin methods for flow data matrices, based
on models for origin to destination (OD) flows (see LeSage and Pace (2008))
and explains the GLS and the feasible GLS approach and the Bayesian approach
to estimate general SIF models. Simplified SIF models are called uni-lateral or
origin (oSIF) or destination (dSIF) models because they concentrate only on
one variance component of the spatial correlation polynomial. For the Bayesian
treatment of these SIF models we have to elicit a prior distribution and then
we explain how to adopt a heteroskedastic MCMC algorithm for estimation.

The spatial modeling of flow models face the problem that large cross sec-
tions imply rather large spatial weight matrices which makes any estimation
procedures computationally expensive. The plan of the paper is as follows. In
the next section we describe the basic spatial internal flow (SIF) model. Then
we derive the Chow-Lin procedure for non-spatial flow models, before we explain
the Chow-Lin procedure for spatial flow models. Finally, we apply the model
to European trade flow data. In a final section we conclude.

2. Completing data in spatial internal flow (SIF) models

We adopt the following notation: Let Y, : N x N be the aggregated flow ma-
trix for N aggregated cross-sectional units and Y4 : n X n be the disaggregated
panel matrix. For a flow matrix the aggregation has to be done in 2 dimensions:

Y, = CoY4C). (1)

The aggregation matrix is Cy : N x n with n > N across spatial units has
to be defined as a block diagonal matrix (as in Polasek et al. (2009)):

N
Co = diag(1}, ..., 1}, ), an =n, (2)
i=1

where the n}s is the number of sub-units to be aggregated in each cell (unit)
and 1,, : n; x 1 is a column vector of ones and indexes the areas where units
are aggregated. Yy is the n x n disaggregated matrix. The sub-lengths add to
the total number: nq + ... + ny = n.



For the Chow-Lin procedure we have to vectorize the aggregation equation
of the flows:

Yo = (Co ® Co)yd = Cyd with C=Cy® CQ, (3)

with y; = vecYy : n? x 1 and the joint aggregation matrix is C = Co ® Cy :
N? x n?%, because of vec(ABC) = (C' ® A)vecB.

We need a fully observed disaggregated panel matrix X, : n x K (the ag-
gregated matrix is X, : N x K) as ”panel indicators”, which can be vectorized
to a nK x 1 vector vecXy = x4. Note that indicator matrices for the disaggre-
gated flows need to have the same dimension as Y4 (and the same number K).
The disaggregated model is a linear regression model using the vectorized flow
matrices:

Va=XaBy+ua, g ~NI[0,Q4® 0%V, (4)

where V; and Q; are the disaggregated n x n covariance matrices, and
Y4 = vecY 4 is the vectorization of the flow matrix Y . The covariance matrices
have the following interpretation: €4 is the covariance matrix across (between)
the columns while V4 is the covariance matrix within the columns. A simpler
assumption for the covariance matrix is the assumption of homoskedasticity
(and uncorrelatedness):

ug ~ N[0,021,,,,] with I,,=1,®1L,. (5)

For such a model we have to vectorize the flow matrix Y, ; and we use as
indicators in the regression distances and the origin and destination variables.

Definition 1 (The SIF model ). We consider the disaggregated dependent
variable y; = vecY 4 of a flow matriz Y4 : n x n and we assume a SAR model
of the form as in LeSage and Pace (2008). Such a regression model we will call
a SIF (spatial internal flow) model for flow (or origin-destination) data:

Ya=p(W1,Wa)yq + X4 + ug, (6)

where p(W1, Ws)y,; stands for a spatial lag polynomial that captures spatial
correlation structures and is applicable for flow models

pP(W1,Wa)y, = p1(W1 ® 1)y, + p2(In @ Wa)y, + p3(W1 @ Wa)y,.  (7)

The SIF model is homoskedastic if the residuals are distributed as ug ~
N[O, O';Inn] and heteroskedsatic if the residuals are distributed asug ~ J\/[O, adeé@
V.

The spatial correlation is decomposed into 3 components: p; is attributed
to the spatial correlation of the rows (destination sites), ps to the column (ori-
gin) component and ps is the interaction component. Simpler "unilateral” SIF



models can be obtained if we consider just 1 component of the rho-polynomial
(see section 4 for more on origin and destination components). The aggregated
reduced form (ARF) of the SIF model (6) is given by multiplying the reduced
form by the aggregation matrix C:

Cy, = CR, "X 48, + CR, 'uq, (8)

where the general spread matrix R, for spatial flow models is given by

R, =L, — (W1 ®1,) + pa(l, @ Wa) + p3(W1 @ W), (9)

and W; and Wy are suitable chosen neighborhood matrices (see Anselin
(1988) or LeSage and Pace (2009) for discussion on possible W’s).

The reduced form (RF) of the spatial internal flow (SIF) model is obtained
by collecting all the dependent variables on the left hand side

ya=R,"XyBa+ 14, =R, 'ug~N[0,07V,] (10)

and the reduced form variance covariance matrix (VCV) is a function of the
unknown parameter p:

V, =R, Qo V)R, . (11)

Because the disaggregated model can not be used to estimate the disaggre-
gated model parameters 0, = (84, pa,05), we transform the model in order to
get a fully observed data set. If the aggregate data are known we can transform
(= aggregate) the disaggregated data to an estimable equation with aggregated
data using y, = Cy,;. Now the estimation can be done using the aggregated
reduced form ARF of the SIF model in (8).

Since only the aggregated data are completely observed we have to make
a connection between the aggregated model and the disaggregated model and
we adopt a notation that can separate the 2 models. In compact notation the
spatial ARF model is obtained through the aggregation matrix C : N? x n? in

(3):

Yo = Xapﬁd + Ugp;, Uap ™ N[OanVapL (12)

where u,, is the aggregated residual and the covariance matrix is

Va = CR,' (2 ® Vg)R, 'C'. (13)

There exist useful relationships between the aggregated and disaggregated
variables: y, = Cy, is the direct aggregation for the dependent variable, but —
interestingly — the regressor variables follow an indirect aggregation rule: X,, =
CR;lxd, because of the inverse spatial correlation matrix R, sitting between
the aggregation matrix and the disaggregated observations.



3. Non-spatial internal flow (nSIF) models

Since the econometric analysis of flow models involves high dimensions and
is more demanding, it is useful to start explaining the modeling process of flows
in a non-spatial model. It will help to understand the extension to the spatial
modeling process.

Spatial internal flow (SIF) models are high dimensional models that grow
with the square of the number of cross sections. The spatial lag assumption
introduces a spatial filter that makes the model non-linear in the spatial corre-
lation parameter and creates regressors and covariance matrices that disturbs
the otherwise nice Kronecker structure of the flow model. Therefore we like
first to see how the ’spatial warping’ of the variables (through the spread ma-
trix R) or the ”spatial curse” of dimensionality can be avoided by estimating a
non-spatial internal flow ('nSIF’) model.

Definition 2 (Non-spatial flow (nSIF) models). The (heteroskedastic) non-
spatial internal flow (nSIF) model for disaggregated data is given in matriz form

by

K
Ya=> Xuifai+Us, Ua~ Nuxnl0,0504 © Va, (14)
i=1
where K is the number of regressors and Ny, denotes the matriz normal
distribution, and there are K disaggregated regressor panels Xg; : n X n,i =
1,.., K.
The (homoskedastic) non-spatial internal flow (nSIF) model makes the following
simplified assumption for the error structure:

Ud NNan[OaagInn] (15)

In contrast, the SIF model in matrix form for aggregated data has the form

K
Ya = Z Xaiﬂai + Ua7 Ua ~ Nnxn[ov o—gﬂagg ® Vagg]7 (]-6)
i=1
where the aggregated data are Y, = CYyC’ : N x N and the scalar coefficient
Bqi is the i-th element of the regression vector G, : K x 1 in the aggregated
model. For this model we obtain different residuals and residual covariance
matrices 2499 ® Vagg-

3.1. Least squares (LS) estimation for the non-spatial internal flow (nSIF)
model

For the non-spatial model (16) we consider various estimation procedures,
the first one being the least squares approach. Assume that there are K panel
indicator matrices Xg1, ..., Xgx available for the disaggregate model and the
first one X4 defines the regression constant by a matrix of ones X4 =1, ®1/,.
Furthermore, we define the regressor matrix of all vectorized panel regressors



Xy = (vecXa, ..., vecX k) : (nn x K) and CX, =X, : (NN x K). (17)

The aggregated model is obtained by multiplying the regression equation
with the aggregation matrix C as in (14) and we obtain

X, = (vec(C1,1,C"),vec(CXgC),...,vec(CXyxC')) =
= (vecX,1,vecXy2, ..., vecX k). (18)

Note the relationship between the K disaggregated and the aggregated indi-
cator matrices: Xgi : (n X n) = Xg : (N x N),k=1,..., K which have to be
vectorized to build up the regressor matrix. The transposed regressor matrix
X, is given by

ved'Xq,
X, = . : (K x N?), (19)
ved' Xy

since there are N2 elements per row and the aggregated model can be written
as

Yo = Xaﬁa + ug. (20)
To estimate the covariance matrices 2, and V, we first estimate 3, by OLS
(BOES : (K x 1)), using using the vectorized panel matrices in (18):
BT = (X, Xa) ' Xy, (21)
Construct the residual matrix Ua from the OLS residuals i, =y, fXa BC?LS
then we get the covariance estimates

~ Al A~ A~ A~ ~_/
Q,=U,U,/N and V,=U,U,/N. (22)

With these sample covariance matrices from the aggregated model we can
estimate 3, = Q,® V, and obtain the feasible GLS estimate for the aggregated
level model

BFELS — (X! 571X ) 71X Sy, (23)

Because the vectorization of the flow matrices leads to high dimensions of
the involved matrices, we show in the next theorem how to simplify the moment
matrices of the GLS estimator.

Theorem 1 (Simplified moment matrices for GLS and FGLS). The GLS
estimate for By in the aggregated SIF model (16) can be found by the K x 1 es-
timator using estimates of moments



Be =M Mgy, (24)
and the feasible GLS estimator is

BraLs = M;XMXY, (25)

where M)?X and l\A/I;ﬂ; denote the estimated moment matrices and V, is replaced
by a point estimate. The tilde indicates that we replace the theoretical covariance
matrices by the estimated ones Qg and V.

Proof 1. The aggregate regressor moment matrix XflVaan for the GLS esti-
mation s

vec'X,
MXX = (QQ®VQ)71XQ =
ved Xy
VX QX VX O 1X,
(26)
trVo X 1 QX e trV 1 Xk Q71X g,

using the formula trABCD = ved D'(C' @ A)vecB and vecd' D = (vecD)’
denotes the row vectorization (see Magnus and Neudecker 1988). In the same
way we find for the second (K X 1) cross-moment vector of the GLS estimate

trvV, Y, Q1 X!
(X;(Qa ® Va)_lvec(Ya)) = (27)

MX? eee ,
tTVailmgglxaK.

The gstimated moment matrices M use the estimated covariance matrices Qd
and Vy.

3.2. Non-spatial Chow-Lin forecasts for SIF models

It was shown in Polasek et al. (2009) that the spatial Chow-Lin predictions
have the form of a conditional mean for the disaggregated observations, given
the aggregated model (the conditional density is denoted as f(y)qjq), and yields
the following ” Chow-Lin formula”.

Theorem 2. The ”Chow-Lin formula”

The ”Chow-Lin formula” for the missing disaggregated, given the observed ag-
gregated observations is the conditional mean yq of the disaggregated observation
i a joint system of observed and unobserved observation:

Yqo = Plain+ Gain * Residual
ydO + AC/(CAC,)il(ya - ya)’ (28)

with ¥ g0 = fXafBa and y, = fCXaBq is the fit from the ARF model.



Proof 2. The joint distribution of the aggregated and the disaggregated model
is given by A = Var(y,) by

() ~n (")t (B e )] -

Since is this a partitioned normal distribution the conditional mean for the
disaggregated data is given by

tidja = B(Yqja) = pa + AC'(CAC) "y, — ¥,) (30)
while the conditional variance is
Var(yd‘a) =A— AC’(CAC/)_1CA (31)

In the nSIF model we have the following joint distribution between the y4
and y, observations:

Ya pa\ o Qa®Vy (Q40Vy)C
G2 (G (M SR o
This covariance between the aggregated and disaggregated residuals is

Cov(ug, ) = E(uquyC') = 05(Qy @ V)’ = 02%5,C. (33)

In the SCL model the C matrix has a special diagonal structure C =
diag(1y, ..., 17, ).

Now we find for the Chow-Lin formula in the nSIF model by assuming a
homoskedastic error structure for the unknown disaggregated covariance matrix
¥4 = L,,, which is matrix A in formula (29).

The non-spatial Chow-Lin forecasts in the nSIF model are also given by the

Chow-Lin formula (28) and the covariance matrices in the heteroskedastic case
have to be estimated. Another way of avoiding the assumption is to parameterize
the covariance matrices by a distance correlation function. Let W : n x n be a
known positive (non-negative and symmetric) distance matrix with zeros in the
main diagonal, then for 0 < p < 1 we define the correlation matrix S = p~P. S
has 1’s in the main diagonal and all other entries are between 0 and 1.
We can parameterize the covariance matrix now e.g. as Vg4 = D, (I, —l—p_Wd D,
where D, = diag(o1, ...,0,) is a diagonal matrix of n standard deviations and
the matrix exponent in p~ V' ¢ is understood to be point-wise, yielding a n x n
matrix. All together we would have to estimate N + 1 parameters from the
aggregate model and then make the assumption that the disaggregate covariance
matrix can be ’extrapolated’ by V; = D, (I, +p, "V4)D,. Since the disaggregate
standard deviations of the D, vector are unknown we have to make the Chow-
Lin type of dilution assumption: The disaggregate standard deviations of the
subunits are equal to the aggregate standard deviations in this aggregation unit.
Thus, in analogy a similar Gain*Residual formula can be used:

04=Dgy,1,=CD,'CD,,1y.



Here 04 is a n x 1 vector of disaggregate standard deviations and 0, = Dg 1N
is an N x 1 aggregate vector of standard deviations.

3.8. Feasible generalized least squares (FGLS) estimation in the nSIF model

Consider the aggregated homoskedastic nSIF model in panel form:

K
Yo =) Xaifai+Us, Us~Nyxn|[0,05Inn], (34)

where the aggregates are given by
Ya = COYd06 and Xai = Con,;Cf), 1= 1, ceey K,

from the disaggregated panels and with Iyy = Iy ® In. Next, we need the
aggregated model equation to estimate (3;. Note that by aggregation we get a
heteroskedastic model with the variance matrix

Y, = Var(Cvec(U,)) = CVar(u,)C' = 03(CoCf @ CoCy) = 03Dy,

where D,,,, = D,, ® D,, is diagonal since D,, = CoC{, = diag(ds,...,d,) is a
diagonal matrix of positive numbers.

Therefore the K x K regressor moment matrix M x x is given via Theorem
(1) where the elements are computed as numbers from trace operations:

I y—1 l -1 -1
Mxx = X5, 'X, = [trX(; D' Xo;D, ], ) (35)
and the cross-moment vector is via (27)
Mxy = X5, 'yo = [trX,, DY, D ] . (36)

Because of the diagonal structure we can call this estimator the weighted or
WLS estimator and the nSIF least squares estimator can be computed as in
(24). We summarize this result in the next theorem.

Theorem 3 (WLS in the nSIF model). The LS estimate in the nSIF model
(84) is given by
B = My Mxy

with the moments given in (35) and (36).
Proof 3. Follows from the above.

The residuals of the WLS estimates in the nSIF model are

al )

K
U, =Y, - > X35
i=1

and this estimate can be also used to make Chow-Lin predictions for the
nSIF model as in (37):



~nSIF ~ -1 nSIF
Ya = Ydo + C Dn Cua ’

- ~nSIF -
with u™S'F =y — X,8," and X, : NN x K is the aggregated regressor
matrix.
Note that it is possible to use ygs IF t6 construct a full covariance matrix

for the disaggregated model.

4. The general origin-destination spatial internal flow (OD-SIF) model

In this section we show how the LS estimation works in simple and com-
plicated spatial SIF models. We start with the non-spatial OD-SIF regression
model for the aggregated observations:

K
Yi= Z XaiBai + Ug,  Ug ~ Noxnl0,05Q @ V], (37)
i=1
where K is the number of regressors and N,,x,, denotes the matrix normal
distribution, and there are K disaggregated regressor panels Xg; : n X n,i =
1,..., K. In contrast, the OD-SIF model in matrix form for aggregated data has
the form

K
Ya = Z Xaiﬂai + Ua; Ua ~ Nnxn [07 Uggagg @ Vagg]; (38)

=1

where Y, = CY,C' : N x N.
Next we extend the non-spatial model (37) with spatial lags. A general
3-component spatial lag polynomial for OD regressions can be defined by

Rp = Inn _pl(Wl ®In) _p2(In®W2> +,03(W1 ®W2) =
= R, +R,2 — Ry, (39)

with the following 3 components

Rpl = ILn— Pl(Wl ® In) =Ri®I,
f{p2 = Inn _p2(1n®W2) :In®R2
Rys = Iny—p3(Wi @Wa) =R, ® Ro, (40)

and the spread matrices are defined for each p-component:

Ri=1I1,—pW;, i=12 and R;=1,— /p;Wi,i=12.



The OD-SAR model is an OD-SIF model that uses 3 spatial neighborhood
components as spatial lags

K
Yi=W, Y+ Z XaiBai + Ug, Ug ~ Nxn[0,0504 ® V4 (41)
i=1

with the OD-polynomial
W, =p(Wi,W3) =p1 (W1 ®1,) — p2(In ® W2) + p3(W1 @ Wa).  (42)

The feasible GLS estimator for §; using the aggregate model is given by

1 = (XAC(CV,,C) T OX) T IXGC (CVe,C) e, (43)

with the estimated covariance matrix from the aggregated reduced form of

the SAR model A R
Vap=CR, (2@ V)R, c’,

(see Polasek et al., 2009), and where we have replaced the unknown parame-
ters in (13) by their estimates. Estimation of the p; coefficients can be done
numerically over a 3-dimensional grid, but it is computationally intensive. The
Chow-Lin formula (i.e. the BLUE prediction of the missing disaggregated val-
ues) for the flow SAR model is now given for the disaggregated model

ja = R,;'Xafors + VapC'(CVayC)(ya — CR, ' Xyfars) =  (44)
= Plain + Gain * Residual,

where the variables are defined in the same way as in the non-spatial Chow-
Lin model (4). The spatial improvement of the Goldberger (1962) ’gain projec-
tion matrix’ is now

G =1,,C'(CV,,C) L, (45)

and distributes the estimated aggregate residuals @, = y, — CRngdﬁAG LS
across the spatial naive prediction gy = R;leBG LS-

Instead of assuming the whole spatial lag polynomial (39) we could find an
easier way and estimate the components individually. In the next subsections
we will discuss the general case and the special cases for estimation.

4.1. The origin spatial internal flow (0SIF) model

In this section we consider the uni-lateral ”origin-only” spatial internal flow
(oSIF) model as in the special form of the general SIF model (6). Thus the
oSIF model uses only the origin component of the lag polynomial to define the
spatial origin lag variable:

10



(W1, W2)ya = p1(W1 ® I,)ya = Wiyg = vec(YyWY), (46)
with W; = W; @ I,,. The heteroskedastic SAR-0SIF model is defined as

Yd = p1W1yd + X4fBq+uq, ug~NJO, Usﬂd ® Val, (47)

or in matrix notation we can write using (46)
Yi=p1YaWi+ Y XaiBai +Us, Us ~ Noxen[0, 0724, (48)
i

where Uy : n x n is the residual matrix of the flow model and the full
(heteroskedastic) covariance matrix of the flow model is

Ya=Qa® Vg, (49)

while for the homoskedastic covariance matrix of the disaggregated flow
model we assume
Var(ug) = 031, @ I,. (50)

The reduced form of the oSIF model is
-1
ya~ NR X84, %01 = 030 @ V4, (51)
with R =R, ® I,, and Ry = I,, — pyW; and
O =R 'R, (52)

because

Sau=RI'®L) QR VIR,T®L)=ROR, '@ V=0 @V, (53)

In matrix form the reduced form of the oSIF model is

K
Yar~ Nosn | Y XaiRy ' 85,0551 | - (54)
i=1
The aggregated reduced form of the oSIF model in (47) is given by multiply-
ing the reduced form by the aggregation matrix C. Thus, the ARF-0STF model
has the following form:

Cy, = CR‘leﬁd + CR_lud, CR_lud ~ N[O, Zdz], (55)
where the spread matrix R4 for oSIF flows is given in (40) and with

Saz = C(2 ® V3)C' = Co,Cly @ CoVyCly = Qp @ Va. (56)

The estimated covariance matrix replaces the unknown parameters by ML esti-
mates

Sip = Qo @ Va. (57)
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In matrix form the ARF model can be written with Y, = CCyY;Cj as

K
Yo ~ Nosnld CoXaiRy ™ CpBui, 07 5az). (58)

i=1

Next we turn to the problem of how to estimate the parameters in an oSIF

model 04 = (84,02, pa) by the existing SAR programs (e.g. in the packages R
or MATLAB). This leads to the following FGLS procedure.

Procedure 1 (3;: Feasible GLS in the SAR-0SIF model). The feasible GLS
estimation of the aggregated reduced form (ARF') model (55) is given by

B = (X3 Xa2) ™ X235 Yas (59)
with Xgo = CR™'X,; and the estimated covariance matriz is
Se2 = CoR; R, C,® CoVCh. (60)
The feasible GLS (FGLS) procedure can be set up in the following way:

o Estimate B};VLS by the homoskedastic nSIF flow model with X4 = 1,,,, as
in (50).

e Compute Do using the residuals of the homoskedastic nSIF flow model:
2y =U.U,/N

e Make a Cholesky decomposition of Sue =5'S® L'L.

o Compute the transformed regressors
Y*=L"1Y,Stand X; =L 1X;S Li=1,....K.

o FEstimate BgGLS by applying a SAR model with the transformed regressors
Y* and X}.

The rationale behind this procedure is: Insert the ARF model (55) into the
GLS estimation formula and approximate the unknown correlation structure in
a step-wise estimation procedure.

Note 1 (Feasible GLS for the homoskedastic ARF model). The GLS es-
timation formula is simplified if we assume homoskedastic covariance matrices
for the oSIF model as in (50 ).

Then X4, can be simplified to the homoskedastic case by assuming

Sap = CR, (02 L)R, O = 2C(R)RY)IC" = 0235, ® D, (61)
because

Sap = 02C((RIR1) ' © 1,)C' = 02Co(R|R1)~1C) @ CoCy,
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since D, = CoCy and with a1 the aggregated covariance matriz given by
S = CE1C' = 62CoQCl ® CoV T (62)
The ML estimates of the covariance matrices are
QO=U,U'/N and V =U.U,/n, (63)

tyhere Ua 1s the residual matriz of the homoskedastic model: Ua =Y, —)A’o where
Yy is the plain OLS prediction, assuming a homoskedastic error structure as in

(50).
In similar way we find the FGLS for the dSIF model.

Theorem 4 (3;: Feasible GLS in the dSIF model). The GLS estimator of
the aggregated reduced form (ARF) model (55) is given by

3 = (X2 Xaz) ™ X2 Y, (64)
with Xgo = CR_le with R = Ry ® Iy and the estimated covariance matrix

Sae = CoQC) ® CoRy 'V R, 1Cl. (65)
Proof 4. Follows the proof of the oSIF model.

This suggests the feasible GLS (FGLS) procedure in the same way as in Proce-
dure 1, but now the second step replaced by:

e Estimate f{Q = Iy — pW3 and construct g0 for the dSIF model.

4.2. Chow-Lin predictions in the SAR-SIF model
The FGLS results of the previous section can be used for the Chow-Lin

prediction in the disaggregate model:
ja =R 'Xafcrs + Sa1C (CEnC) (y, — CR™' Xybars).  (66)

The plain point forecasts are computed with the GLS estimate gy = (Rl_1 ®
I,)XafBcLs or

vecYy = Z ’UGC(deR;_l)BGLS,j
=

and the ’Goldberger gain matrix’ stems from the ARF in (65) and is derived
via the covariance matrices that are used in the Chow-Lin approach in the same
way as in (33). The improvement term is

Gain  Residual = (Q® C(/)]:Zgl\A/R;*ng)f];ZlafLa (67)
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with Sgp = CoQC) ® CoR; 'V R, 1Cl and 4CLS =y, — CR™'XyfaLs.

Therefore we can summarize the least squares prediction in the oSTF model
for O/D-matrices in the following way using the spatial CL (SCL) approach of
Polasek et al. (2009):

Procedure 2 (Chow-Lin prediction in the oSIF model). We consider the
SIF model (6)

1. Vectorize the aggregate Y, and X, matrices and run the ordinary SAR-
SCL program.

2. Compute the simple (’plain’) aggregate residual Uy = Yo — Yo and the
covariance matrices ¥ and V in (63).

3. Estimate Bd,FGLS as in (43).

4. Compute the Chow-Lin forecasts (66) with the known X4 matrices.

Note: The Chow-Lin prediction in the dSIF model follows parallel steps as
in the oSIF model.

4.3. Estimation with structural zeros in trade flow models

If we estimate flow models with trade, the trade within a cell is recorded by
a 0 and so the y-observation at this location is zero (structural zero). For the
estimation (to avoid biases) we have to ignore these values and they are deleted
from the model (e.g. SAR) estimation. We outline the procedure by an example
with a 10 x 10 trade flow matrix. To avoid biases in the estimation we need to
eliminate the observation with a structural zero in the vectorized regression.

Procedure 3 (Estimation with structural zeros).

1. Vectorize all variables and eliminate every 10th observation, giving 90 non-
zero observations.

Eliminate the corresponding rows in the X, matriz.
Estimate 8 and p from the non-zero system and get the residual vector u.
Construct the residual matriz U by inserting into the main diagonal 'NA’s.

CUp W

Estimate the within and between covariance matrices by a 'NA’ procedure
(skipping over non fully observed pairs).

Make a Cholesky transformation and transform the original variables.

7. Eliminate again all observations that correspond to the structural zeros and
estimate the remaining system by a homoskedastic procedure.

o

4.4. Uni-lateral spatial GLS estimation in the SAR-SIF model

In this section we will explore the estimation of the uni-lateral spatial SAR-
SIF models that will only consider the neighborhood relationships at the origin
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or destination separately. The reason for this a simplification in the estimation
formulas involved.!

First, we consider the SIF model with an additional simple spatial origin lag
of the form W5Y, or Y, W/. No simple matrix expression for the joint origin-
destination lag WY, W/ is possible. For such a model we can only estimate
the SIF model in vectorized form, and thus the size of the matrices is dependent
on the storage capabilities of the computing environment.

The disaggregate SAR-oSIF model with W = W is

K
Yi=pWY,+ Z Xgifai +Ug, Ug~N[0,Q4® Vg, (68)
i=1
where Yy : N X N and (g4 is the i-th element of the regression vector
B4 : K x 1. The vectorized form of the model is, with y,; = vecY 4, ug = vecUy
and xg; = vecXy;,i=1,..., K,

K
Ya=pIn @ W)y, + Zxdzﬂdi +ug, ug~N[0,Q;® Vg (69)

i=1

The ARF of the oSIF model uses the (origin-lateral) spread matrix R =
Iy — p(In ® W) = I, ® Ry and is given by

K
Y. ~ N> R X84, Co = C(Q@ V)T, (70)
i=1
with the aggregated observations Y, = CY4C' :n xn, X, = CRflde” :
nxn,V,=(R;VIR))" and Ry = I, — pW. And we get for the aggregated
covariance matrix V,

V, = (COQCB) (%9 (C()VTCE)) =0 V. (71)

Since the ARF of the oSIF model has the same structural form as the non-
spatial SIF model, we can use the GLS estimation of Theorem (1) with the GLS
estimate given by Bgrs = M)_(lxMXy.

This implies the element-wise construction of the moment matrix (26), com-
puted as numbers from trace operations:

Mxx =X,V X, = (tr X}, Vi ' Xo;Q7") (72)

4,j=1,....K’
with the variance matrix V, from the ARF form (70) and the cross-moment
vector as in (27) by

Mxy = X,V lyo = [tr X, V1Y, 07 (73)

i=1,... K"

LA bilateral spatial SAR-SIF model is defined by a spatial polynomial that takes into
account the spatial neighborhood relationships at the origin and destination simultaneously.
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Similarly, as in the oSIF model, the aggregated reduced form (ARF) of the
SAR-dASIF model is given by

K
Z Xaﬁdia Qr ®V
i=1

with Q. = (RIQ7'Ry)~! and Ry = I,, — paW as before.

Again the ARF of the dSIF model has the same structural from as the non-
spatial SIF model, we can use the GLS estimation of Theorem (1) with the GLS
estimate given by the moment matrix

Y, ~ N (74)

Mxx = X, V' X, = [tr X}, Vi X,;97"] (75)

=1, K

with the V4 = C(€2, ® V)C’ from the ARF form (74) and the cross-moment
vector as in (27) by

Myxy = X, Vy'lye = [trXo, VIV (76)
4.5. Feasible GLS estimation in unilateral models
The feasible GLS estimator of 3, is given by
BECTS = (X V0 X)XV
with
V=G, Vi, with Vi=(R,V, Ry (77)

For thg estimAatiAon of the regddual yar}ance—covariance matrices we define the
matrices 0, = U,U,/N and V, = U,U./N as before but now with the non-
spatially estimated residuals U, =Y, — Zf{ XoPBa;i. In case of the dSTF model
we have

Va=04oV. (78)
For bilateral models the FGLS estimator is with y, = vecY,

trV, WY, W X,
Mgy = [XL(Q ® Vo) lvec(W1 Y, W3)] =
trV, WY, WiQ L X!

For the estimation of pg a grid search for py is possible: The minimum of
the spatial p is found by minimizing over a grid of rho values in the interval

(—1,1).
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4.6. Chow-Lin prediction in the SIF model

The Chow-Lin forecasting has to be done by using the usual Goldberger

(1962) formula: g4 = XdﬁdGLS + G, where the term G, is an improvement of

the estimated error term t, = (Yo — Xqp ¢LS5) using the ”‘Goldberger gain””’

matrix G =V, C'(CV,, C')~".
The point forecasts can be calculated as

Ja = XBT"5 + G, (79)

and the matrix Y is obtained by de-vectorizing: y = vecY.

5. Unilateral spatial lags in the Bayesian SAR-SIF model

For the Bayesian treatment of the oSIF or dSIF model (68) we have to
assume a prior distribution and then we just adopt the heteroskedastic MCMC
algorithm.

The Bayesian estimation follows the same line as in the general SIF model
and can be summarized by the MCMC procedure similar as in Theorem 3. We
consider the model with the prior distribution for © = (3, p, ¢, 0%, Q)

n

p(©) = [IVIB; I bi H Wx [0 | (1) 7H ] Unra(p) Uora(),  (80)

i=1

where U_11(p) and U_1,1(¢) stands for a uniform distributions in the in-
terval (—1,1) and Wy for a Wishart distribution of dimension N. Note that
simplified formulas emerge, if we assume a Zellner type ”g-prior” of for the
betas, centered at zero:

with the scalar g being large (e.g. g = 10% or 10°).
The likelihood function is given by the aggregated reduced form of the spatial
internal flow (ARF-SIF) model for Cy,; =y,

v, ~N[CR™ X464, CR_ (Q®s*V)R ™ . (82)

Then the joint posterior distribution of the disaggregated model parameter
O4 can be simulated numerically by MCMC.

Theorem 5 (MCMC in the internal flow model). The MCMC in the spa-
tial internal flow (SIF) model for the disaggregated model parameter is imple-
mented as follows (for simplicity the d-index is omitted from the parameters)

1. Draw B from N [B | bux, Hix]
2. Draw p by a Metropolis step: pnew = pora + N[0, 7]
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3. Draw 0=2 from T[072 | 82,04 /2, Nsx /2]
4. Draw Q7" from p(Q71 | Y,0° = Wr[Q ! | (Ve Qi) 1, ]
5. Repeat until convergence.

Proof 5 (Proof of Theorem 5).
(a) The fed for the beta regression coefficients is

p(Bly,09) = N[B|b.,HJ] -N[Cy|CR 'Xf,0°V,,)]

NB | bus, Hus], (83)
with the parameters
H! = H'+0¢?X'R7'C'V,]CR'X,
b.. = H,[H.'b,+0 *X'R'"'C'V,, Cy], (84)
using (78). These formulas can be written as
H! = H'+0°Mguy,
b.. = Hu[H'b.+0*Mgpy], (85)

where the moment matrices are given as before, but now the contain an
additional spatial transformations, since the regressors are filtered by the
tnverse spread matric R =R ®I,:

C(R'®IL,)vecX) = (Co@Ca)vecX R ™ = vecCo X, R'™IC)  for k=1,...
The regressor matrix is constructed as

Xap = (vecXqp1,vecXgp 2, ..., vecXq) i)

~ 1
with the elements vecX,, r = CR vecXy and the K x K moment matrices
(of aggregated filtered regressors) are given by

ved' Xap 1
Mgz = (Qu®@V,) X, | = (86)
ved X K
trX,, Q7 Xap VL trX,, kQ Xap1 Vo'
(87)
trX,, k0 ' Xa Vb trX e Qo Xy Vo
and for the cross-product moment vector we find
X, 19,1V, !
Mgy = (X5,(Q ® Vo) 7'Y,) = (88)
trX,, Q1 Y,V !

Note that these matrices have usually small dimensions, since the number
of indicators is limited and can be easily built up by a loop in a computer
program.
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Note 2. If we assume a centered g-prior as in (81), then the posterior
moments are simply given by

H = g 'k +0 *Mgpg, (89)
b = o0 *HuMgpy. (90)

The fcd for the residual variance o2 we find
p(o™? |y, 0°) =T[o™? | si, ], (91)

With Nyws = Ny + 1 and sz*n** = sin* + ESS, 4 where the error sum of
squares ESS, » uses aggregated residuals (78) and is given by

ESSp = (v, — CR™'XP)'V,, (y, — CR™'Xf). (92)
Using matrix notation we find
ESS, s = (ved U)V, JvecU, (93)

with the aggregated residual matriz U, = (uy,...,uy) : N x N is computed
by

u, =vecU, =y, —CR™'X3 or u = Yai— Xap,iBi, for i=1,..,N.(94)

The fed for the spatial p coefficient For the generation of the p’s we use a
Metropolis step:

prew = pord + N(0,72]  with = min [17 p(pnew)}

p(pold)7

the acceptance ratio and where p(p) is the (kernel of) the full conditional
for p, in our case the kernel is just stemming from the likelihood function:

_1 1
po) = Vapl deap (-~ 55555, )

— 1 1
|RQ 1R’| zexp (_WESSP7¢) s
because from (78) we find

Vol x |CR™ (@@ V)R ¢/

and ESS, 4 given in (92) contains p.
The fed for the correlation parameter ¢
For the ¢ we use a Metropolis step: ¢new = Gora + N[0, 73] with the ac-

ceptance ratio a = min {1, %} where p(@) is the (kernel of) the full

conditional for ¢, in our case the kernel is just stemming from the likelihood
function:

) = IV [“Feap (= 525850, (95)
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because from (78) we get
Vol # < |[CR ™ (Qe V)R /|2

and ESS, 4 given in (92) contains ¢.
(e) The fed for the SUR covariance matriz €

P Y,0°) = W[ | (ra) " 1, (96)
a (N-dim.) Wishart distribution with v, = vy + N d.f. and
Q.. =Q,+U'U, (97)
where U is the residual matriz as in (94).

5.1. The Bayesian origin spatial internal flow (O-SIF) model

We estimate the spatial origin flow (O-SIF or oSIF) model in the same way
as the spatial cross-sectional model in Polasek et al. (2009). The model assumes
that we have a disaggregated cross-sectional vector y; : n x 1 at a certain point
in time, which is not observed, but we can observe a shorter, aggregated vector
Y, = Cy,; : N x 1 and C is the N x n aggregation matrix consisting of 0’s
and 1’s, indicating which cells have to be aggregated together. We consider the
disaggregated spatial regression model

Vo= pWay, + XaBi+eq, ea~N[0,03L,]. (98)

The reduced form is obtained by the spread matrix R for an appropriately
chosen weight matrix Wy : R =1, — psWy

Ya=R'X4fs+R s, R7'eq~N[0,05(R'R)™']. (99)

The prior distribution for the parameters 6, = (3,, Ud_2, pa) is proportional
to

p(Bayo; % pa) o p(Ba) ploy?) (100)
= N[ﬂd | IB*>H*] . F(ng | ‘957”*)7

since we assume a uniform prior for p, ~ U[—1,1]. The C-aggregation of the
reduced form model is obtained by multiplying with the N x n matrix C

Cyqa=CR X484+ CR ey, CR ey ~N[0,02C(R'R)"IC'].  (101)

We will write shorter for the covariance matrix:
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03%(pa) = o3C(RLRy) 1. (102)

We see that (101) is a completely observed model for the disaggregated
parameters 6; but estimated with an aggregated y, = Cyq variable. The joint
distribution of 84 = (B4, pa,c3) and the aggregated data y, of this oSIF model
is given by

P(0a.ya) = NICR™' Xaba, 035 (pa)] - N1Ba | B, HL] - Tlog? | s2,n.. (103)

Note that the parameters of the aggregated model 6, can be estimated in
the RF model for the aggregated data. Since the data set and the model differ,
the results of the estimation are different.

Yo =R 'X.8, + R ey, R'ey, ~N[0,2, =c2(R'R)7!]. (104)

The prior distribution for the parameters 8, = (3,,0, 2, pa) is proportional
to

P(Ba:057%pa) o< p(Ba) - plog?)
= N[ﬁa | ﬂ*7H*] 'F(Ja_Q | 83777/*)7

since we have assumed a uniform prior for p, ~ U[—1, 1].
The MCMC for this model follows the same steps as in Theorem (5) but
now with the parameters 6, since the joint distribution is

P00 ya) = NIR; ' XaBa, 052 (pa)] - N[Ba | B, Hu] - T(og? | 7, m.).  (105)

We will write shorter for the covariance matrix:

723(pa) = 05 (RRa) .

The prior distribution for the parameters 8; = (3, ad_2, pa4) is proportional
to

p(Ba,0g% pa) o< p(Ba) -plog?)
= N[ﬂd | 5*7H*] : F(Ud_z | Si,’ﬂ*),
since we assume a uniform prior for pg ~ U[—1,1].
In case of the heteroskedastic model we have the parameter vector 64 =

(B, 052, pd;, 4, Vg) and the prior distribution has to be enlarged by 2 Wishart
distributions:

p(Oa) o p(Ba057, pa)p(Qa)p(Va)
= p(00) W] Q) mIWIVE | (V) ).
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5.2. MCMC for the oSIF Chow-Lin model

After vectorizing the flow matrices we obtain a cross-sectional Chow-Lin
SIF model (oSIF) for the parameters 64 given in (101) and let us denote the
3 conditional distributions by p(pa | 6°),p(B4 | 6¢), and p(c? | 6°) where 04 =
(pd, Bd,02) denotes all the parameter of the model and §¢ the complementary
parameters in the f.c.d.’s, respectively. The MCMC procedure consists of 3
blocks of sampling, as is shown in the next theorem:

Theorem 6 (MCMC in the homoskedastic oSIF model). The MCMC es-
timation for the oSIF Chow-Lin model involves the following iterations:

Step 1. Draw By from N [B, | bux, Hii]

Step 2. Draw p; by a Metropolis step: pnew = pora + N0, 72]
Step 3. Draw o;2 from T[o;? | s2,, M)

Step 4. Repeat until convergence.

Proof 6 (Proof of Theorem 6).
(a) The fcd for the beta regression coefficients is
p(,@d ‘ ya’ac) = N[/Bd|b*7H*] ' (106)
Ny, | CR™'X4f4,05C(R'R)~'C"]
N[/Bd ‘ b**vH**]a

with the parameters
H;! = H;'b,+0,°X'R'C'S(py) 'CRIX,
b.. = H.[H'b, +0;2X'RC'S(pa) y,].

(b) For the fed for the inverse variance we find

Pl | ¥a,0%) = Tlog? | s2.,mel, (107)

With Nys = Ny +n and si*n** = szn* + ESS,, and where the error sum of
squares ESS,, is given by

ESS, = (v, — CR™'Xafa)'Z(p) (v, — CR™'Xafl). (108)

(c) For the fed of the spatial pg we use a Metropolis step:

P(Prew) }

Pnew = Pold +N(0, 7'2) with o = min |:]_,
P(pola)

being the acceptance ratio and where p(pq) is the (kernel of ) the full con-

ditional for pgq, in our case the kernel is just stemming from the likelihood
function:

1 1
p(pa) = |X(pa)l Zewp(—pESSpd),
d

with ESS,, given in (92).
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From the MCMC simulation run we obtain a numerical sample of the pos-
terior distribution p(34, pd, a;z | ¥a)-

Theorem 7 (MCMC in the heteroskedastic oSIF model). The MCMC
estimation for the oSIF Chow-Lin model involves the following iterations:

Step 1. Draw B, from N [B, | b, H.i]

Step 2. Draw p; by a Metropolis step: ppew = pota +N(0,72)
Step 3. Draw o;2 from T[o;? | s2,, 1]

Step 4. Draw Q;l from W[Q;l | (Qusbins) L, K]

Step 5. Draw v;' from WIV;' | (Vaulis) ™1, Vi)

Step 6. Repeat until convergence.

Proof 7 (Proof of Theorem 7). Add to the iteration cycle of the homoskedas-
tic oSIF model the following 2 draws

1. The fed for the precision matrix Q;l. The posterior d.f. are given by
Kxx = Ks + 1 and the scale matriz by

Qorbine = Qukin + U’

with U = Y, - )A’a and the matriz Y contains the current predicted values
of the RF.

2. The fed for the precision matrix Vgl. The posterior d.f. are given by
Vix = Vsx+n and the scale matriz by V sV, = V. +U'U withU = Ya—Ya
as before.

6. Application to trade flows in European regions

The following section demonstrates the method of the origin-destination
Chow-Lin procedure. We predict the regional NUTS-2 origin/destination im-
port flows for a sample of 10 EU-27 countries by a classical trade gravity model
(see for example Frankel and Romer (1999)). The aggregate trade data for the
year 2006 is taken from the Eurostat external trade database. As explaining
factors we use origin and destination population and GDP as well as the Eu-
clidean distances between the countries and regions. The regional GDP and
population data was obtained from Eurostat.

The aggregate trade flows are first estimated using the OLS estimation al-
gorithm of LeSage (1998). We use the following gravity specification for the
estimation of the trade flows:

logY;; = a+ Bi1logGDP;+ B2log GDP; (109)
+’)/1 log POR + Y2 log POPJ + 0 IOg Distij + €ij,

with Y;; being the trade flow from region ¢ to region j, GDP;, (GDPF;) is
the Gross Domestic Product of the origin (destination) region, POP is the
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population and Dist;; is the Euclidean distance between region ¢ and region j.
The results of this estimation are given in Table 1. The signs of the coefficients
are as expected by theory. GDP and population of the destination region act
as an attraction factor for trade flows. Conversely, the population of the origin
acts as a proxy for the demand of the exporting regions. The more is demanded
locally, the less is exported. GDP of the origin region can be interpreted as a
supply factor for potential exports. Distance serves as a proxy for transport
costs of trade and has the expected negative impact. All coefficients are highly
significant and the R? is of sufficient size.

Table 1: OLS Chow-Lin flow estimation results

variable coef std. err.
constant -1.461 2.402
GDP origin 2.124 0.237 FF*
GDP destination  0.753 0.237  ***
POP origin -1.248 0.214 ¥
POP destination  0.152 0.214
Distance -1.116 0.135  ***
adj. R? 0.79
Nobs 90

Using the non-spatial Chow-Lin flow predictor, the import flows have been
disaggregated as shown in Figure 1. As the sum of the logs is not equal to the log
of the sum we notice that the Chow-Lin summation property, i.e. that the sum
of the disaggregates equals the aggregates, does not hold for the exponentiated
(antilog) values of the flows.

The lowest flows are from the Spanish autonomous region Melilla in North
Africa (with region number 42), the highest import flows are observed for the
Greek region Attiki (Athens).

Embedding the Chow-Lin procedure in the spatial framework, we define
the spatial weight matrix W as the row-normalized inverse Euclidean distances
between the countries or regions. The results of the aggregate D-SIF (i.e. the
Westination-matrix has been constructed by Iy ® W) estimation are given in
Table 2. We receive a significant spatial effect and the size of the remaining
coefficients is reduced.

Using the SAR GLS Chow-Lin flow predictor, the import flows can be disag-
gregated as shown in Figure 2 in form of a matrix contour plot. The predicted
flow pattern is rather similar to the non-spatial. As no information is available
on observed regional trade flows, no evaluation measures can be computed so
far.
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Figure 1: Predicted log import flows, 2006
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Table 2: SAR Chow-Lin flow estimation results

variable coef std. err.
constant -6.109 2.187  FF*
GDP origin 1.040 0.279 FFX
GDP destination  0.858 0.200 ***
POP origin -0.596 0.213  ox
POP destination  0.176 0.179
Distance -1.005 0.118 ***
Spatial Lag 0.481 0.086  ***
adj. R? 0.77
Nobs 90
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Figure 2: Predicted NUTS-2 log import flows, 2006 - SAR
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7. Conclusions

This paper has shown that the Chow-Lin method can be applied in a classical
or Bayesian framework for completing data in spatial internal flow (SIF) models,
i.e. for origin and destination (O-D) data. The spatial models rely on a spatial
lag polynomial that takes into account the neighborhood relationships at all
origins and destinations. The Bayesian approach is based on MCMC and has
the advantage that the problem of missing data can be easily implemented in
quite flexible MCMC programs. At the end of the paper, we demonstrated
the non-spatial and spatial internal flow model with an application to European
trade flow data within a gravity framework. Unfortunately, no regional observed
trade flow data is available, so we are not able to evaluate the accuracy of the
forecasts.

In further research, we will consider models where we can observe external
flows, i.e. flows from the current N aggregate units to other units outside the N
current units where we know only the aggregated sum of the flows. Such models
are called spatial external flows (SEF) models and details will be presented in
an upcoming paper. The basic ideas for spatial Chow-Lin (SCL) models were
discussed in Polasek and Sellner (2008).
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