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Abstract 

For many economic time-series variables that are observed regularly and frequently, for 

example weekly, the underlying activity is not distributed uniformly across the year. For the 

aim of predicting annual data, one may consider temporal aggregation into larger subannual 

units based on an activity time scale instead of calendar time. Such a scheme may strike a 

balance between annual modelling  (which processes little information) and modelling at the 

finest available frequency (which may lead to an excessive parameter dimension), and it 

may also outperform modelling calendar time units (with some months or quarters containing 

more information than others). We suggest an algorithm that performs an approximate 

inversion of the inherent seasonal time deformation. We illustrate the procedure using 

weekly data for temporary staffing services. 
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1 Introduction

We are interested in predicting time-series variables that are avail-

able at a subannual frequency. For example, this frequency—in

the following called the ‘fine’ frequency—could be weeks. The

objective is to predict the annual values, and we generally as-

sume that the variable is a flow, such that the annual value is the

cumulated sum of all weekly values for that year. If the variable

is a stock, this does not change the main arguments, as long as

the average over all weeks is in focus, as that annual value is just

a multiple of the sum. In fact, the empirical example that we

present here corresponds to such a stock case.

Obvious suggestions are to forecast the annual variable on

the basis of an annual model or of a model tuned to the fine

frequency. It is well known that prediction based on the suban-

nual data and on subsequent time aggregation of the multi-step

predictions is not always optimal (see, e.g., Man, 2004). Small

samples and limited degrees of freedom can entail very inefficient

forecasts based on models for the fine frequency. Thus, another

alternative could be a partial time aggregation to a ‘crude’ sub-

annual frequency and to consider time-series modelling on that

frequency. In the example of weekly data availability, the crude

frequency could be months or quarters.

Quite often, however, economic activity is concentrated in spe-

cific parts of the year. For example, tourism in a holiday resort

may be low in November and booming around Christmas and in

summer. Then, much information will be contained in the third

and fourth quarters and little information in the second quarter.
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A forecaster may consider forming pseudo-quarters, aggregating

the first four months into one observation instead of the first

three. This is what will be called regrouping in the following.

We consider an algorithm that aims at spreading the seasonal

variation approximately uniformly across the crude frequency.

We investigate cases where forecasts based on such an artificial

crude data outperform those based on natural splits and some-

times even those based on the fine frequency. This procedure

could be classified as a type-III aggregation procedure in the ter-

minology of Jordà and Marcellino (2004) that aggregates

regularly spaced time points into irregularly spaced time points,

albeit with the ultimate aim of predicting a regularly spaced se-

ries. Thus, the type-III aggregation is followed by a type-II aggre-

gation that aggregates irregularly spaced data to a final regularly

spaced annual series.

Our generating model at the fine frequency builds on the con-

cept of time deformation. Time deformation was introduced to

the econometric literature by Clark (1973) whose ideas were

followed extensively in finance. Stock (1987, 1988) used the

concept for business cycles at a longer and slightly irregular fre-

quency, inspired by the historical work by Burns and Mitchell

(1946). By contrast, we use time deformation to describe seasonal

behavior within a year. The economic clock is assumed to run

faster in certain seasons and to slow down afterwards. The algo-

rithm approximates a reversion of the underlying time deforma-

tion. We demonstrate that the success of this procedure depends

on the specific design.
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We illustrate the procedure using weekly data on temporary

staffing services.

The plan of this paper is as follows. Section 2 reviews some

simple cases of underlying time-series generating laws and evalu-

ates the properties of annual and subannual forecasting schemes

for each example. Section 3 focuses on the concept of time defor-

mation and introduces the time-deformation functions that will

be used in the following section. Section 4 introduces our algo-

rithm that targets an approximate inversion of the underlying

time deformation in given data. Section 5 reports some simula-

tion experiments for time-deformed data. Section 6 analyzes an

empirical application. Section 7 concludes.

2 Some role-model examples

In this section, we analyze some basic seasonal generating processes

and their implications with regard to the prospects of regroup-

ing on prediction. These examples are traditional in the sense

that they do not refer to the concept of time deformation used

in subsequent sections. We convene that the subscript τ denotes

the year and w denotes the season within the year w = 1, . . . , S.

Double subscripts τ, w denote season w in year τ , with the con-

vention that Xτ,1 is preceded by Xτ−1,S, for example. Details on

calculation are deferred to the appendix.

Example 1. Assume Zτ =
∑S

w=1
Xτ,w, where (Xτ,w) is a

random walk such that Xτ,w = Xτ,w−1+ετ,w. (ετ,w) is independent

white noise with variance σ2
ε . Then, as shown in the appendix, the
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conditional expectation forecast formed at time point (τ, S) for

Zτ+1 will be SXτ,S when it is based on the subannual information.

The mean squared error of the subannual forecast is σ2
ε

∑S
j=1

j2.

If only annual information is available, Zτ − Zτ−1 follows a first-

order MA process. The MSE of the naive annual forecast Zτ

is σ2
ε(

∑S
j=1

j2 +
∑S−1

j=1
j2), which can exceed the subannual MSE

substantially for larger S. The optimal annual forecast yields an

only slightly smaller MSE, typically still much in excess of the

subannual MSE. Now suppose we can regroup into two groups.

Then, the optimal prediction grouping will consist of
∑S−1

w=1
Xτ,w

in the first group and Xτ,S in the second group. The last season is

isolated, as it contains the most recent information that is most

useful for predicting the upcoming year. The forecast based on

the last season only corresponds exactly to the forecast based on

the full subannual information.

Example 2. Assume Xτ,w = Xτ−1,w+ετ,w, a seasonal random

walk, otherwise keep the design of example 1. Then, the forecast

based on annual data and the forecast based on subannual data

are identical, such that seasonal information has no additional

value. This result is invariant to any regrouping of the seasonals.

Example 3. Assume Xτ,w = δw + ετ,w, purely deterministic

seasonality. Then, the conditional expectation forecasts based on

annual as well as subannual data are identically
∑S

w=1
δw, which

yields a forecast variance of Sσ2
ε . Again, the result is invariant to

any regrouping.

Example 4. Assume S = 4, and Xτ,w is generated by a

periodic process that is a seasonal random walk for w = 1, 2
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and white noise for w = 3, 4. Quarterly data entail a MSE of

4σ2
ε . If only annual data are available, the MSE increases to

around 5.236σ2
ε , as derived in the appendix. Forecasts based on

regrouping fall in between these two benchmarks. Traditional

semesters, with the first semester formed from quarters 1 and

2, yield a seasonal random walk for the first semester and white

noise for the second semester. The MSE is the same as in the

quarterly case. Grouping the first quarter separately from the

three other quarters yields a seasonal random walk for the first

quarter and an ARIMA(0,1,1) for the second group formed from

quarters 2–4. The resulting forecast has a variance of 5σ2
ε , closer

to the inefficient annual than to the efficient quarterly.

Example 5. Modify the conditions in Example 4 such that

the seasonal random walk in the first two quarters is replaced by

a random walk that adds a white-noise term to the first quar-

ter for the second quarter and another white-noise term to the

second quarter for the first quarter of the next year. In this de-

sign, the optimal forecast for the next year based on quarters just

uses twice Xτ−1,2 and achieves a forecast error variance of 7σ2
ε .

By contrast, for the forecast based on annual data error variance

increases palpably to 10σ2
ε . Here, grouping plays a role. Direct

semester grouping yields an ARIMA(0,1,1) model with the im-

plied forecast error of 7.84σ2
ε . By contrast, splitting the year into

a first quarter and the remainder yields a forecast that is difficult

to evaluate analytically, due to the complex correlation structure

among forecast errors. We used some Monte Carlo that indeed

conformed to the analytical results for the other cases. For the
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regrouped prediction, it yields an error variance well above 9σ2
ε .

The intuitively beneficial regrouping entails an inefficient fore-

cast that is closer to the uninformative annual than to the most

informative quarterly prediction.

Clearly, the reaction to regrouping the subannual observations

is quite heterogeneous across data-generating processes. While no

general recommendation can be given based on these examples,

it appears that strong and homoskedastic seasonality usually en-

tails robustness to regrouping, while strong serial correlation with

weak seasonal cycles may lead to considerable sensitivity to re-

grouping. Collecting subannual observations with similar time-

series dynamics can be beneficial for regrouping schemes, and

seasonal heteroskedasticity can also be influential.

3 Time deformation

In a sense, the concept of time deformation is ubiquitous in ob-

served economic variables. Economic activity on stock markets,

for example, is low while the stock market is closed, such that

it may give the impression that time is running faster while the

stock exchange is operating. Similarly, heating is less needed in

summer, such that the economic time of heating is running faster

in winter, slowing down in spring and coming to a standstill on a

hot day.

Following a seminal contribution by Clark (1973), the con-

cept has been applied often to financial data with high observa-

tional frequency (for example, see Ghysels et al., 1995), and
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less often to business cycles (see Stock, 1987, 1988) or to intra-

year seasonal variation (Jordà and Marcellino, 2004). For

a theoretical exposition of results on a class of time-deformation

models, see also Jiang et al. (2006).

Seasonal variation, however, has the advantage that the start-

ing points and ends of the intervals of concern are exogenous, at

the begin and end of calendar years. By contrast, limits of busi-

ness cycles are more difficult to determine, and the definition of

troughs and peaks may be subject to some subjective expertise,

such as the known NBER chronology.

Within the time interval of concern—in the case of seasonality,

one year—a deformation function s = g(t) defines the transfor-

mation of calendar time t to economic time s. Typically, the

function should be invertible, continuous, and monotonic. It may

be acceptable to admit violations of strict monotonicity and to

allow for episodes without any economic activity.

An example of a deformation function is plotted in Figure 1.

The graph depicts the function

s = t0.2

on the unit interval. Dotted lines signal the points where one,

two, and three quarters of calendar time have elapsed. The first

quarter is the most active, and actually almost 80% of economic

activity is located in the first three months of the year, if the unit

interval is equated to a calendar year.

A comparable plot for the time deformation function

s =
arcsin t

π/2
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Figure 1: The deformation function t0.2 in [0, 1].

is given as Figure 2. Economic activity is assumed to run faster

toward the end of the year rather than at the beginning. Gener-

ally, time deformation appears to be less radical than for Figure

1.

These two deformation functions will serve as role models for

the generating processes in the simulations. It is easy to gen-

eralize these functions to allow for several high-activity episodes

through the year but we wish to keep the design as simple as

possible.

4 The algorithm

Assume a time-series variable Xτ,w is observed at a subannual

‘fine’ frequency S1, such that observations Xτ,w are available for
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Figure 2: The deformation function arcsin t
π/2

in [0, 1].

τ = 1, . . . , T and w = 1, . . . , S1. An annual variable Zτ is defined

as a time aggregate:

Zτ =

S1
∑

w=1

Xτ,w, τ = 1, . . . , T.

For example, S1 = 52 represents weekly availability and S1 = 12

corresponds to monthly data.

The objective is to forecast the next annual value ZT+1, i.e. to

find a function of the observed values that approximates ZT+1 as

closely as possible. Considered criteria for prediction accuracy are

the mean squared error (MSE), the mean absolute error (MAE),

and the relative ranking among rival predictors.

A traditional approach for model-based prediction is mod-

elling on an annual basis:

Zτ = f(Zτ−1, Zτ−2, . . .) + ετ ,
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usually with a linear function f(.), and plugging in the estimated

structure to approximate conditional expectations:

Ẑτ,I = f̂(Zτ−1, Zτ−2, . . .).

This forecast will be called forecast I in the following, and we will

focus on autoregressive f models with a lag order determined by

information criteria.

Alternatively, modelling may rely on the S1 frequency, using

xw in short for xτ,w:

xw = f(xw−1, xw−2, . . .) + εw.

In order to capture the seasonal variation in the data, the f func-

tion may contain seasonal dummy variables for the S1 seasons.

In practice, with unknown parameters, this approach requires the

estimation of S1 parameters on top of the p coefficients of an au-

toregressive specification. Once the model has been estimated

from data, forecasts at horizons 1 to S1 can be generated by it-

eratively using

x̂w = f̂(xw−1, xw−2, . . . ; δw),

where δw denotes the seasonal dummy variables. This first yields

x̂T+1,1. At horizon 2, the unobserved first argument xT+1,1 is

replaced by the one-step forecast, and this scheme is followed

until x̂T,S1
is attained. Finally, time aggregation yields

Ẑτ,II =

S1
∑

w=1

x̂τ,w.

This forecast will be called forecast II in the following.
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An intermediate approach may rely on a ‘crude’ frequency

S2 that is assumed to be an integer factor of S1. For example, if

S1 = 52, then S2 = 4 or S2 = 2 are possible values. S1 = 12 would

admit S2 = 2, 3, 4. Using S2 instead of S1 may be motivated by

the promise of a simpler model structure and thus more efficient

forecasts. We shall see that indeed forecasts based on slightly

cruder frequencies tend to dominate those based on extremely

fine frequencies.

The traditional approach is to aggregate the data at frequency

S1 to the cruder frequency S2 by keeping equidistant time points.

Then, a modelling technique analogous to forecast II results in

a forecast III. This requires the estimation of S2 < S1 dummy

coefficients, and the resulting gain in degrees of freedom can be

used to extend the lag order of the autoregression.

Finally, the regrouping approach proceeds as follows. Like

model III, it is also based on the frequency S2. However, it starts

from seasonal variance estimates

σ̂2
w =

1

T − 1

T
∑

τ=1

(xτ,w − x̄w)2, w = 1, . . . , S1.

The sum of these variance estimates σ̂2 measures the dispersion

in the observed variable, although of course it is not tantamount

to the straightforward sample variance. For ease of notation, we

will not use hats in the following. We now aim at distributing this

variation σ2 uniformly across the year. This is done as follows.

The first artificial observation xτ ;1 accumulates all original data

points xτ,w, w = 1, . . . , K, such that

K = min{k :
k−1
∑

t=1

σ2
w +

1

2
σ2

k >
σ2

S2

.}
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The observation xτ,K+1 at frequency S1 starts the second artificial

observation xτ ;2. This scheme is followed in analogy until all

observations are regrouped, for all τ = 1, . . . , T . The forecast

based on this algorithm will be called forecast IV in the following.

The intuition behind our regrouping scheme and, in particu-

lar, our definition of K is simple. The basic aim is to distribute

the variance contributions uniformly across the crude-frequency

units. As long as the sum of the fine-frequency variance contri-

butions is less than the proportional share, fine-frequency data

are accumulated. When the accumulated sum of variances trans-

gresses this proportional share, the marginal component is al-

lotted either to the ‘old’ regrouped data point or a new one is

started, depending on whether its half value is less or larger than

the remaining discrepancy.

A difference in calculating forecast IV relative to forecast II

and III is that no seasonal dummy constants are used in con-

structing the time-series models. We experimented with adding

dummy constants but this led to a deterioration of predictive

accuracy in all experiments. This is also well in line with the

original intention of regrouping as a crude means of reverting the

time deformation in the data, which by construction should result

in a non-seasonal time series.

5 Monte Carlo evidence

As Section 2 demonstrates, the reaction of forecast precision to

time aggregation can be quite heterogeneous. The simulation ex-
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periments reported in this section provide additional insight into

such reaction patterns. Intuitively, a procedure that aims at re-

verting time deformation should show its strongest performance

with data generated by time deformation. The Monte Carlo sim-

ulations show whether this intuition is well grounded.

Denoting economic time by s, we simulate the first-order au-

toregressive process

Xs = φXs−1 + εs,

with Gaussian N(0, 1) errors ε. In the basic version of the design,

we set φ = 0.99, such that the process becomes strongly correlated

but it is still stable.

To this process, we apply one of several time-deformation spec-

ifications with different continuous and monotonic one-one func-

tions g(t), [0, 1] → [0, 1]. The deformation function

s =
2

π
arcsin t, t ∈ [0, 1],

accumulates fast at the beginning and end of the year and in-

creases more slowly in ‘summer’. The deformation function

s = tδ, t ∈ [0, 1],

behaves differently for δ < 1 and δ > 1. For large δ, it speeds up

economic activity toward the end of the year, while it focuses on

the beginning for δ < 1. We choose δ = 0.2 for a basic design.

In our simulations, we assume that data are generated though

not observed at the calendar time represented by t. Observed

data are at the ‘fine frequency’ S1. The transformation from the

basic economic-time process to calendar time works as follows.

13



As long as t = g−1(s) < S−1
1 , the observations Xs are aggregated

into the first fine seasonal unit, those in the interval t = g−1(s) ∈
(S−1

1 , 2S−1
1 ] into the second fine unit, and so on.

5.1 Months and quarters

All processes are generated for 5 to 15 years, with some reason-

able burn-in. Then, we predict the following year by each of

the outlined prediction models: the annual model, the monthly

model (S1 = 12), the quarterly model (S2 = 4), and regrouped

pseudo-quarters.

Figure 3 gives exemplary time plots of the two basic generat-

ing processes. Fine seasonal intervals were set at S1 = 12, while

the basic process was generated at 250 units per year. Thus,

the design corresponds to business days in economic time and

measurement in calendar months. These plots demonstrate the

rather extreme patterns of seasonal variation, with activity con-

centrated in specific parts of the year, while they also emphasize

the irregular and non-repetitive nature of the seasonal cycle.

Figure 4 depicts the relative predictive accuracy, with the an-

nual model used as a benchmark. As the sample size increases,

simple aggregate annual data (model I) tend to yield acceptable

predictions, and gains for any disaggregation become the excep-

tion. For small samples, disaggregation effects can be substantial.

In the t0.2 design, regrouping (model IV) yields similar results as

the rival models II and III, while regrouping dominates defini-

tively in the arc-sine design.

Related experiments are depicted in Figure 5, where model III

14



Figure 3: 16 years of generated monthly data. Deformation functions are s =

t0.2, t ∈ [0, 1] and s = arcsin 2t
π , t ∈ [0, 1].
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is used as a benchmark. In the left graph, the nonlinearity para-

meter is allowed to vary from δ = 0.2 to δ = 0.6. Only for the

designs with more extreme deformation, gains for regrouping are

recognizable. In the right graph, the experiment for the arc-sine

generator was repeated with AIC instead of BIC as the lag selec-

tion criterion. The regrouping algorithm is substantially better

than model III, and even better than the fine-seasons model II,

as shown in Figure 4. The AIC version is actually better than the

BIC version for most sample sizes, and it also tends to underscore

the benefits of regrouping.

In summary, the simulations for the case of months and quar-

ters are a bit disappointing for tδ deformation and more sup-

portive of regrouping for arc-sine deformation. This distinction

matches intuition insofar as the main activity is concentrated to-

ward the end of the year in the latter case, such that the most

informative last month typically also becomes the last pseudo-

quarter, an important cornerstone for predicting the coming year.

Conversely, in the former case the main activity in the first month

has much less relevance for the next year.

5.2 Weeks and quarters

All processes are generated for 5 to 15 years, with some reason-

able burn-in. Then, we predict the following year by each of the

outlined prediction models: the annual model, the weekly model

(S1 = 52), the quarterly model (S2 = 4), and regrouped pseudo-

quarters. The frequency S1 = 52 was chosen appropriately, such

that it is divisible by the quarterly frequency.

17
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We note that the basic generating model is identical to the pre-

vious subsection but the finest available frequency has changed.

Figure 6 shows that the additional information from the weekly

observations is difficult to exploit. The weekly model is inferior

at all sample sizes. For the arc-sine generating model, this inferi-

ority is so pronounced that its MSE ratio had to be omitted from

the graph. By contrast, the regrouping algorithm works well. For

geometric deformation, it achieves the values set by the annual

model, thus beating the forecast based on calendar quarters by a

wide margin. For arc-sine deformation, regrouping is preferable

to all rivals, including the annual model.
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is for forecast based on weeks (upper plot only), dotted curve for quarters, and

gray curve for regrouped pseudo-quarters.
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6 An empirical application

Weekly data on numbers of people who are under contract of

Randstad temporary staffing services are available for the years

1967–2008, i.e. for 42 years. When years had 53 weeks, the data

have been adjusted such that 52 weeks per year emerge through-

out. Figure 7 displays a time-series plot of the Randstad data.

The trending impression of the data insinuates some transfor-

mation, as estimated autoregressions may tend to have unstable

roots, which is often detrimental for prediction. For this reason,

we also considered first differences of the original data, as they

are shown in Figure 8. Clearly, the extremely leptokurtic and het-

eroskedastic appearance of this data suggests that its prediction

could be difficult.

First, we apply the forecasting procedures as outlined above to

the original data. We generate out-of-sample one-step autoregres-

sive forecasts for the last 14 years of the sample, using expanding

windows. Thus, the forecast for the year 2008 uses 41 years of

observations, while the forecast for the year 1995 uses 28 years.

All empirical results are summarized in Table 1.

Averaging squared errors across the 14 predicted annual fore-

casts yields the expected large numbers. In relative terms, the

forecast based on weekly observations has an MSE that is 1.9

times as large as the annual forecast MSE, while the forecast

based on quarters has an MSE that is only 0.31 the annual fore-

cast MSE. According to this crude evaluation, the regrouping

algorithm wins with 0.25 times the annual MSE. However, the

variation across years is so sizeable that this summary measure
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Figure 7: Weekly data for Randstad staffing services for the years 1967–2008.

Figure 8: First differences of the Randstad data depicted in Figure 7.
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Table 1: Forecasting annual values 1995–2008 of the Randstad data.

annual weeks quarters pseudo-quarters
levels:
MSE 8.7e+10 1.6e+11 2.7e+10 2.2e+10
# wins 2 3 4 5
ave. rank 2.86 3.07 2.14 1.93
differences:
MSE 4.61e+7 4.99e+7 3.77e+7 3.82e+7
# wins 2 5 3 4
ave. rank 2.64 3.50 2.00 1.86

Note: MSE is the average squared error across the predicted years; ‘# wins’ is the

number of cases where the respective model achieves the smallest error; ‘ave. rank’

is the average rank across all 14 cases.

is unreliable. It is of more interest that the regrouping technique

achieves a better accuracy than calendar quarters in 9 out of 14

years. The regrouping algorithm loses the duel in the years 2002–

2003 and 2005–2007. In 5 years, it achieves the best forecast of

all four models, while it never comes in last.

Next, we apply the same prediction models to the differenced

data. In a naive average MSE evaluation, calendar quarters and

regrouped quarters achieve 0.81 and 0.82 of the annual average

MSE. Again, performance across years is quite heterogeneous.

In a direct comparison, regrouped predictions are better than

calendar quarters in 10 out of 14 cases and are best of all four

models in four cases. This time, it is the earlier years that show

a slight preference for traditional calendar quarters.
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7 Summary and conclusion

We demonstrate that the potential benefits of ‘seasonal gerry-

mandering’ in the sense of regrouping higher-frequency observa-

tions into lower-frequency aggregates that conform to economic

time rather than calendar time depend on the underlying data-

generating process. Regular or even deterministic seasonal vari-

ation yields poor prospects for such procedures, while existing

seasonal time deformation may be more supportive.

In our simulation experiments, we find that seasonal regroup-

ing yields good results for prediction within specific sample-size

windows of less than ten years. Whereas the value of this time

horizon may be sensitive to the assumed autocorrelation, the pat-

tern is likely to be systematic. In large samples, fine-frequency

structures can be estimated consistently and reliably, such that

the finest frequency often entails the most precise prediction. In

very small samples, simple models with low parameter dimen-

sion typically yield the best forecasts. The window between the

small-sample and the large-sample case is of interest here.

In our empirical application, we see some benefits for the re-

grouping procedure, which may indicate that the sample is actu-

ally within the mentioned size window. We opine that the many

irregularities of the data example are typical for similar applica-

tions to economics data.
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Appendix

This appendix contains detailed derivations for the examples of

Section 2. Most of them rely on the feature that prediction based

on data at the generating frequency entails a straightforward eval-

uation of variances, while first differences of annual data follow

first-order moving-average processes. The minimum forecast vari-

ance is then slightly smaller than the variance of the first differ-

ences. The role-model case of the Lemma 1 can be used with

little variation in all examples.

Lemma 1 Assume the random walk with independent increments

Xτ,w = Xτ,w−1 + εt and its annual aggregate Zτ =
∑S

w=1
Xτ,w.

The forecast error variance using the annual aggregate is given as

S(S2 − 1)2σ2
ε

6{2S2 + 1 − S
√

3(S2 + 2)}
,

denoting σ2
ε = varεt.

Proof. With an insubstantial modification, this is the situa-

tion analyzed by Working (1960), who obtained the main result

that Zτ − Zτ−1 = ητ follows a first-order moving-average process

ητ = ξτ + θξτ−1 with first-order correlation

ρ1 =
S2 − 1

2(2S2 + 1)
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and variance

var(ητ ) =
S(2S2 + 1)

3
= σ2

η.

For some of our arguments, it is convenient to note that this

expression follows from a triangular weighted sum of errors via

σ2
η = σ2

ε(
S

∑

w=1

w2 +
S−1
∑

w=1

w2),

a two-sided weighted sum of error variances at the generating

frequency. Solving the quadratic equation ρ1 = θ/(1 + θ2) yields

θ =
2S2 + 1 − S

√

3(S2 + 2)

S2 − 1
.

The variance var(ξτ ) = σ2
ξ corresponds to the minimum forecast

variance and evolves from evaluating

σ2
ξ =

σ2
η

1 + θ2
.�

Working (1960) remarks that, for larger S, ρ1 approaches

0.25, and even the smallest S = 2 yields ρ1 = 1/6. Also note that

θ ≈ ρ1, and that σ2
ξ is only slightly smaller than σ2

η, the forecast

variance due to the naive forecast Zτ that incorrectly assumes

that it follows a random walk.

Example 1. First assume disaggregated data are available.

Then

Ẑτ+1 = E(Zτ+1|Xτ,s, . . . , Xτ,1, . . .)

= E(
S

∑

w=1

Xτ+1,w|Xτ,s, . . .) = SXτ,S,
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and thus

E(Zτ+1 − Ẑτ+1)
2

= E{SXτ,S +
S

∑

w=1

(S − w + 1)ετ+1,w − SXτ,S}2

= E{
S

∑

w=1

(S − w + 1)ετ+1,w}2 = σ2
ε

S
∑

w=1

w2.

If only annual data are available, Lemma 1 can be applied di-

rectly. From the proof of the Lemma, observe that σ2
ξ consider-

ably exceeds the above expression that is a one-sided weighted

sum. The correction factor is too close to one to compensate this

discrepancy.

Example 2. In this case, Zτ − Zτ−1 is independent white

noise at the annual frequency, and both the forecast for annual

and for disaggregated data are clearly given as Ẑτ+1 = Zτ .

Example 3. Denote the information set formed by past ob-

servations {Xs, s ≤ τ} by Hτ (X). By definition,

Zτ =
S

∑

w=1

(δw + ετ,w)

and hence

E(Zτ+1|Hτ ) =
S

∑

w=1

δw.

The conditional expectation is identical if data Xτ,w are available,

and hence also the concomitant prediction error variance does not

change.

Example 4. First consider the annual variable. All calcula-

tions closely follow the proof of Lemma 1. Here,

Zτ+1 − Zτ =
4

∑

w=1

ετ+1,w −
2

∑

w=1

ετ,w,
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an MA(1) process ητ = ξτ + θξτ−1 with variance 6σ2
ε , first-order

covariance −2σ2
ε , and hence first-order correlation ρ1 = −1/3.

The implied MA coefficient follows from equating

θ

1 + θ2
= −1

3
,

which yields θ = −0.5 ∗ (3 −
√

5) ≈ −0.382. The MSE is the

variance of the implied white noise ξt or

σ2
ξ = 6σ2

ε/(1 + θ2) ≈ 5.236σ2
ε .

The conditional expectation of Zτ+1 based on quarterly data is

Xτ,1 + Xτ,2, which yields a prediction error of just

Zτ+1 − Xτ,1 + Xτ,2 =
4

∑

w=1

ετ+1,w,

with variance 4σ2
ε .

Example 5. The generating process

Xτ,w =



















Xτ−1,2 + ετ,1, w = 1,

Xτ,1 + ετ,2, w = 2,

ετ,w, w = 3, 4,

has the forecast based on quarterly data

E(Zτ+1|Xτ,4, Xτ,3, . . .) = 2Xτ,2

with error variance

E(Zτ+1 − 2Xτ,2)
2 = E(2ετ+1,1 + ετ+1,2 + ετ+1,3 + ετ+1,4)

2

= 7σ2
ε .

By contrast, if only annual data are available, Zτ − Zτ−1 = ητ

again follows a first-order MA process

ητ = 2ετ,1 +
4

∑

w=2

ετ,w + ετ−1,2 −
4

∑

w=3

ετ−1,w,
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with variance σ2
η = 10σ2

ε , ρ1 = −0.1, and concomitant θ ≈
−0.1010. This results in a prediction error variance of around

9.899σ2
ε . The two regrouping variants can be evaluated similarly

but calculations become a bit involved. As outlined in the text,

they were determined by calculation and confirmed by Monte

Carlo at 7.84σ2
ε for semesters and at slightly above 9σ2

ε for group-

ing into the first quarter and the remaining quarters as pseudo-

semesters.
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