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Abstract 

In recent years many empirical studies of environmental Kuznets curves employing unit root 
and cointegration techniques have been conducted for both time series and panel data. 
When using such methods several issues arise: the effects of a short time dimension, in a 
panel context the effects of cross-sectional dependence, and the presence of nonlinear 
transformations of integrated variables. We discuss and illustrate how ignoring these 
problems and applying standard methods leads to questionable results. Using an estimation 
approach that addresses the second and third problem we find no evidence for an inverse U-
shaped relationship between GDP and CO2 emissions. 
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1 Introduction

Besides nuclear energy, hydrocarbon deposits like petroleum, coal and natural gas are cur-

rently the only available large scale primary energy sources. Their utilization as fossil fuels

leads to the emission of – amongst other pollutants – CO2, which is considered the principal

anthropogenic greenhouse gas. Since most economic activities require the use of energy, a

link between economic activity and CO2 emissions appears plausible.

Increased atmospheric CO2 concentration can persist up to thousands of years. It exerts

a warming influence on the lower atmosphere and the surface, i.e. it initiates climate change,

see Peixoto and Ort (1992) or Ramanathan, Cicerone, Singh, and Kiehl (1985). Rational and

efficient climate policy requires reliable understanding and accurate quantification of the link

between economic activity and CO2 emissions.

In this paper we are concerned with the econometric analysis of the relationship between

GDP and emissions. The core of the econometric approach to study the link between GDP and

CO2 emissions usually consists of estimating a reduced form relationship on cross-section, time

series or panel data sets. Estimation techniques as well as variables chosen vary substantially

across studies. Most of the studies focus on a specific conjecture, the so-called ‘Environmental

Kuznets Curve’ (EKC) hypothesis. This hypothesis claims an inverse U–shaped relation

between (the logarithm of per capita) GDP and pollutants. In the specific case of CO2

emissions we speak of the ‘Carbon Kuznets Curve’ (CKC).1

The EKC hypothesis has been initiated by the seminal work of Gene Grossman and

Alan Krueger (1991, 1993, 1995). They postulate, estimate and ascertain an inverse U–

shaped relationship between measures of several pollutants and per capita GDP.2 Summary

discussions of this empirical literature are contained in Stern (2004) or Yandle, Bjattarai, and

Vijayaraghavan (2004), who find more than 100 refereed publications of this type.3

1Note that also specifications in levels instead of logarithms are used in the literature.
2To be precise, Grossman and Krueger actually use a third order polynomial in GDP whereas the quadratic

specification seems to have been initiated by Holtz-Eakin and Selden (1995).
3A prominent alternative approach to study the links between economic activity and environmental dam-

ages in general or emissions in particular is given by ‘Integrated Assessment Models’, pioneered with DICE
of Nordhaus (1992) or MERGE by Manne, Mendelsohn, and Richels (1995). This approach consists of spec-
ifying and calibrating a general equilibrium model of the world economy. The economic model is then linked
with a climate model to integrate the effects of climate change feedbacks into the economic analysis. To a
certain extent the econometric and the integrated assessment model approach can be seen as complements.
Unfortunately, only few authors have tried to combine the two approaches, see McKibbin, Ross, Shackleton,
and Wilcoxen (1999) for one example. Müller-Fürstenberger and Wagner (2006) contains a discussion on the
relation or lack thereof between reduced form econometric findings and relationships derived with structural
models.

1



In the empirical EKC literature there is an ongoing discussion on appropriate specification

and estimation strategies, see Dijkgraaf and Vollebergh (2005) for a comparative discussion

of econometric techniques applied in the literature. It is the aim of this study to contribute

to this discussion by addressing several serious econometric problems that have not been

appropriately handled or have been ignored to a certain extent up to now. We focus on

parametric approaches only. For non-parametric EKC approaches (see e.g. Millimet, List, and

Stengos, 2003), semi-parametric approaches (see e.g. Bertinelli and Strobl, 2005) or versions

based on spline interpolation (see e.g. Schmalensee, Stoker, and Judson, 1998). To illustrate

our arguments, we present computations for a panel data set for the Carbon Kuznets Curve

comprising 107 countries (see Table 7 in Appendix A) over the period 1986–1998.

The discussion is on two – related – levels. The first level is a fundamental discussion

on whether the time series and panel EKC literature is applying the appropriate tools. The

second level is the issue whether the tools applied – abstracting from the first level issue

of appropriateness – are applied correctly or with enough care. Of course, those two issues

are related and there will be substantial overlap in the two levels of discussion. We turn to

both issues below, but can already present the main observation here: The answer is rather

negative on both levels.

When using time series or panel data the issue of stationarity of the variables is of prime

importance for econometric analysis. This is due to the fact that the properties of many

statistical procedures depend crucially upon stationarity or unit root nonstationarity, i.e.

integratedness, of the variables used. Related to this issue is the question of spurious re-

gression (see e.g. Phillips, 1986) versus cointegration, see the discussion below. One part of

the literature, in particular the early literature, completely ignores this issue, see e.g. Gross-

mann and Krueger (1991), Grossmann and Krueger (1995), Holtz-Eakin and Selden (1995)

or Martinez-Zarzoso and Bengochea-Morancho (2004) to name just a few.4

Another part of the literature is mentioning the stationarity versus unit root nonstation-

arity issue, these include inter alia Perman and Stern (2003), Stern (2004); and when allowing

also for breaks Heil and Selden (1999) or Lanne and Liski (2004) (the latter in a time series

context) are two examples. The problem is, however, that three important issues – on both

levels of our discussion - have been ignored thus far. On the first level these are the following
4Two further empirical issues are neglected in this paper, since they are in principle well understood. These

are the homogeneity of the relationship for large heterogeneous panels and the question of stability of estimated
relationships.
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two – given that the variables are indeed unit root nonstationary. First, the usual formula-

tion of the EKC involves squares or even third powers of (log) per capita GDP. If (log) per

capita GDP is integrated, then nonlinear transformations of it, as well as regressions involving

such transformed variables, necessitate a different type of asymptotic theory and also lead

to different properties of estimators. Regression theory with nonlinear transformations of

integrated variables has only recently been studied in Chang, Park, and Phillips (2001), Park

and Phillips (1999) and Park and Phillips (2001). Currently no extension of these methods

to the panel case is available, which posits a fundamental challenge to the empirical EKC

literature.5 To our knowledge this nonlinearity issue has not been discussed at all in the EKC

literature. One study avoiding the above problems is given by Bradford, Fender, Shore, and

Wagner (2005). These authors base their results, using the Grossman and Krueger (1995)

data, on an alternative specification comprising instead of income over time only an average

level and the average growth rate of income. Thus, this study circumvents the problems

arising in regressions containing nonlinear transformations of nonstationary regressors.

Second, in case of nonstationary panel analysis, all the methods used so far in the EKC

literature rely upon the cross-sectional independence assumption. I.e. these, so called ‘first-

generation’ methods assume that the individual countries’ GDP and emissions series are

independent across countries. This rather implausible assumption is required for the first

generation methods to allow for applicability of simple limit arguments (along the cross-

section dimension). In this respect progress has been made in the theoretical literature and

several panel unit root tests that allow for cross-sectional dependence are available. Several

such tests are applied in this study, which seems to be the first application of such ‘second-

generation’ methods in the EKC context.

Third, on the second level of discussion the major issue is the following: The ‘first-

generation’ methods used for nonstationary panels are known to perform very poor for short

panels. This stems from the fact that the properties of the panel unit root and cointegration

tests crucially depend on the properties of the methods used at the individual country level.

If the panel method is based on pooling, then the very poor properties of time series unit root

tests for short time series feed directly into bad properties of pooled panel unit root tests, see
5To be precise: We do not claim that e.g. estimation of a quadratic CKC with integrated regressors by

some panel cointegration estimator is inconsistent. We just want to highlight that the (linear cointegration)
methods are not designed for such problems and that nonlinear transformations of integrated variables have
fundamentally different asymptotic behavior than integrated properties. These two aspects imply that it is up
to now unclear what such results could mean, or which properties such results have.
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Hlouskova and Wagner (2006a) for ample simulation evidence. We show in this paper that by

applying bootstrap methods – ignoring as mentioned above the more fundamental question of

applicability of such first-generation methods at that point – quite different results than based

on asymptotic critical values can be obtained. We have implemented three different bootstrap

algorithms that are briefly described in Appendix B. These are the so called parametric, the

non-parametric and the residual based block (RBB) bootstrap. The RBB bootstrap has been

developed for non-stationary time series by Paparoditis and Politis (2003). The first two

methods obtain white noise bootstrap replications of residuals due to pre-whitening and the

latter is based on re-sampling blocks of residuals to preserve the serial correlation structure.

The difference between the parametric and the non-parametric bootstrap is essentially that

in the former the residuals are drawn from a normal distribution while in the latter they are

re-sampled from the residuals.

It seems that the uncritical use of asymptotic critical values might be a main problem at the

second level of discussion we intend to initiate with this paper. Even stronger, we find that one

can support any desired result concerning unit root and cointegration behavior by choosing the

test (and to a certain extent the bootstrap algorithm) ‘strategically’. Furthermore and related

to the above, standard panel cointegration estimation results of the CKC differ widely across

methods. These findings cast serious doubt on the results reported so far in the literature

– even when ignoring the two first level problems (nonlinear transformations, cross-sectional

correlations). We include this type of discussion to show that, even when ignoring the first

level problems and staying within the standard framework applied up to now, the empirical

(panel and time series) EKC literature is an area where best econometric practice is generally

not observed.

The paper is organized as follows: In Section 2 we briefly discuss the specification of the

CKC and set the stage for the subsequent econometric analysis. In Section 3 we discuss

first- and second-generation panel unit root test results, and in Section 4 we discuss panel

cointegration test results. Section 5 presents the results of CKC estimates based on panel

cointegration methods and based on de-factorized data. Section 6 briefly summarizes and

concludes. Two appendices follow the main text. In Appendix A we describe the data and

their sources. Appendix B briefly describes the implemented bootstrap procedures.
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2 The Carbon Kuznets Curve

In our parametric CKC specification we focus on the logarithms of both per capita GDP,

denoted by yit, and per capita CO2 emissions, denoted by eit.6 Here and throughout the

paper i = 1, . . . , N indicates the country and t = 1, . . . , T is the time index. Qualitatively

similar results have also been obtained when using levels instead of logarithms.

Our sample encompasses 107 countries, listed in Table 7 in Appendix A, over the years

1986–1998. The major region omitted is the former Soviet Union and some other formerly

centrally planned economies. We also exclude countries with implausibly huge jumps in

emissions or GDP, as it is the case for Kuwait for example.7

The basic formulation of the CKC in logarithms we focus on, is given by

ln(eit) = αi + γit + β1 ln (yit) + β2 (ln (yit))
2 + uit, (1)

with uit denoting the stochastic error term, for which depending upon the test or estimation

method applied different assumptions concerning serial correlation have to be made. In this

formulation we include in general both fixed effects, αi, and country specific linear trends,

γit. These linear trends are included to allow for exogenous decarbonization of GDP due to

technical progress and structural change. We have also experimented with specifications that

include time specific fixed effects, but these do not qualitatively change the results. Thus, we

focus in this paper on specifications including fixed effects or fixed effects and trends, since

these are the two common specifications of deterministic components in unit root and cointe-

gration analysis. The above formulation of the CKC posits a strong homogeneity assumption.

The functional form is assumed to be identical across countries, since the coefficients β1 and β2

are restricted to be identical across countries. Heterogeneity across countries is only allowed

via the fixed effects and linear trends. Different αi shift the overall level of the relation-

ship, and different trend slopes γi across countries shift the quadratic relationship differently

across countries over time. This, of course, might be too restrictive for a large panel with

very heterogeneous countries. See e.g. Dijkgraaf and Vollebergh (2005) for a discussion (and

rejection) of homogeneity for a panel of 24 OECD countries.

Equation (1) allows to discuss one major overlooked problem related with potential non-
6Throughout the paper we are usually only concerned with logarithms of per capita GDP and emissions

and will not always mention that explicitly.
7The carbon data have been multiplied by 1000 to convert them into kilos, which results in data of the

same order of magnitude as the GDP data measured in dollars.
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stationarity of emissions and/or GDP, namely that of nonlinear transformations of integrated

regressors. The macro-econometric literature has gathered a lot of evidence that in particular

GDP series are very likely integrated. A stochastic process, xt say, is called integrated, if its

first difference, ∆xt = xt−xt−1 is stationary, but xt is not. Let εt denote a white noise process.

Then the simplest integrated process is given by the random walk, i.e. by accumulated white

noise, xt =
∑t

j=1 εj .8 By construction the first difference of xt is white noise. Now, what

about the first difference of x2
t ? Straightforward computations give ∆x2

t = ∆
(∑t

j=1 εj

)2

equal to ∆x2
t = ε2

t + 2εt
∑t−1

j=1 εj . Thus, as expected, the first difference of the square of an

integrated process is not stationary. The relationship to the CKC is clear: Both the logarithm

of per capita GDP and its square are contained as regressors. However, at most one of them

can be an integrated process. This fact has been overlooked in the CKC literature up to

now.9

The above problem is fundamental and no estimation techniques for panel regressions

with nonlinear transformations of integrated processes are available. Only recently there has

been a series of papers by Peter Phillips and coauthors that addresses this problem for time

series observations. This literature shows that the asymptotic theory required, as well as they

asymptotic properties obtained, generally differ fundamentally from the standard integrated

case.10 However, we nevertheless will present in the sequel unit root and cointegration tests

with the quadratic specification as given in (1) to show that the cointegration techniques have

probably not been applied with enough care. We perform bootstrap inference for unit root

and cointegration tests to show that the asymptotic critical values are bad approximations to

the finite sample critical values. Thus, we argue, that even when being unaware of the first

level problems, a more critical application of standard techniques would lead a researcher in

good faith to use the proper toolkit to be more cautious about the results.

As a benchmark case, where we avoid the issue of nonlinear transformations of integrated

regressors, we also include the linear specification (2) in our analysis. It is only this linear case

for which the panel unit root and cointegration tests can be applied with a sound theoretical
8Here and throughout we ignore issues related to starting values as they are inessential to our discussion.
9Several authors, e.g. Perman and Stern (2003), even present unit root test results on log per capita GDP

and its square. Furthermore they even present ‘cointegration’ estimates of the EKC. This does not have a
sound econometric basis. Consistent estimation techniques for this type of estimation problem have to be
established first.

10Relevant papers are Park and Phillips (1999), Chang, Park, and Phillips (2001) and Park and Phillips
(2001). Current research is concerned with an application of these theoretical results to the EKC/CKC
hypothesis.
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basis, given that log per capita GDP is indeed integrated.

ln(eit) = αi + γit + β1 ln (yit) + uit (2)

The second first level issue is that all the EKC papers that use panel unit root or cointegration

techniques only apply so called ‘first generation’ methods. These methods require that the

regressors and the errors in the individual equations are independent across countries. In this

paper we present the first application of ‘second generation’ panel unit root tests that allow for

cross-sectional dependence. Indeed strong evidence for cross-sectional dependence is found,

discussed in Section 3.2. In the following sections, to parallel the historical development of

methods, we nevertheless will start with reporting the results obtained by bootstrapping first

generation methods. All results, and in particular the first generation results, have to be seen

in the light of the critical issues this paper is concerned about.

3 Panel Unit Root Tests

The time dimension of the sample with only 13 years necessitates the application of panel unit

root tests. The section is split in two subsections. In subsection 3.1 we discuss first generation

tests that rely upon the assumption of cross-sectional independence. So far, only this type

of test has been used in the EKC literature. In particular we show that a straightforward

application of such tests can be misleading, since the finite sample distribution of the test

statistics can differ substantially from the asymptotic distribution. This implies that inference

based on the asymptotic critical values can be misleading, see Hlouskova and Wagner (2006a)

for large scale simulation evidence in this respect. Panel unit root tests should therefore only

be applied with great care.

In subsection 3.2 we report results obtained by applying second-generation panel unit

root tests. We find strong evidence for cross-sectional correlation. Of course, these second

generation methods should be applied first, and only when no cross-sectional correlation is

found, one can resort to first generation methods. We revert this logical sequence to show

that conditionally upon staying in the first generation framework, much more care than is

common in the literature should be taken.

7



3.1 First Generation Tests

Let xit denote the variable we want to test for a unit root, i.e. we want to test the null

hypothesis H0 : ρi = 1 for all i = 1, . . . , N in

xit = ρixit−1 + αi + γit + uit (3)

where uit are stationary processes assumed to be cross-sectionally independent.11 The tests

applied differ with respect to the alternative hypothesis. The first alternative is the homoge-

nous alternative H1
1 : ρi = ρ < 1 (and bigger than -1) for i = 1, . . . , N . The heterogeneous

alternative is given by H2
1 : ρi < 1 for i = 1, . . . , N1 and ρi = 1 for i = N1 +1, . . . , N .12 Espe-

cially for heterogeneous panels the alternative H2
1 might be the more relevant one. However,

in the literature both alternatives have been used. In our data set we observe no systematic

differences in the results between tests with the homogenous and the heterogeneous alterna-

tive, see the results below and in Table 1.

In general, some correction for serial correlation in uit will be necessary. Two main

approaches are followed in all tests, either a non-parametric correction in the spirit of Phillips

and Perron (1988) or in the spirit of the augmented Dickey Fuller (ADF) principle. The ADF

correction adds lagged differences of the variable (∆xit−j)to the regression to achieve serially

uncorrelated errors.

The following tests have been implemented:13 The test of Levin, Lin, and Chu (2002)

(LL), which is after suitable first step corrections a pooled ADF test. The second is the

test of Breitung (2000) (UB), which is a pooled ADF type test based on a simple bias

correction. These two tests, due to their pooled estimation of ρ, test against the homogenous

alternative. We have implemented three tests with the heterogeneous alternative. Two of

them are developed by Im, Pesaran, and Shin (1997, 2003). One is given by essentially the

group-mean of individual ADF t-statistics (IPS), and the other is a group-mean LM statistic

(IPS − LM). Finally, we present one test based on the Fisher (1932) test principle. The

idea of Fisher is to use the fact that under the null hypothesis the p-values of a continuous

test statistic are uniformly distributed over the unit interval. Then, minus two times the

logarithm of the p–values is distributed as χ2
2. This implies that the sum of N independent

11Note that also time specific effects θt can be included.
12With limN→∞ N1

N
> 0.

13We abstain here from a discussion of the limit theory underlying the asymptotic results. Most of the
results are based on sequential limit theory, where first T → ∞ followed by T → ∞.
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transformed p–values is distributed as χ2
2N .14 We follow the work of Maddala and Wu (1999)

(MW ) and implement this idea by using the ADF test for each cross-sectional unit.

We furthermore report the Harris and Tzavalis (1999) test results. Their test is identical

to the Levin, Lin, and Chu (2002) test, except for that Harris and Tzavalis derive the exact

finite T test distribution. This may be advantageous for our short panel. The exact test

distribution comes, however, at a high price. Harris and Tzavalis derive their results only

for the case when uit is white noise. All tests except for MW , which is χ2
2N distributed, are

asymptotically standard normally distributed. We perform tests with both the homogenous

and the heterogeneous alternative to see whether there are big differences in the test behavior

across these two tests. This, however, does not appear to be the case.

As mentioned already, it is known that for panels of the size available in this study (with

T only equal to 13), the asymptotic distributions of panel unit root and panel cointegration

tests provide poor approximations to the small sample distributions (see e.g. Hlouskova and

Wagner, 2006a). Hence, the notorious size and power problems for which unit root tests

are known in the time series context also appear in short panels. In Figure 1 we display

the asymptotic null distribution (the standard normal distribution) and the bootstrap null

distributions (from the non-parametric bootstrap) when testing for a unit root in CO2 emis-

sions including only fixed effects in the test specification, for the five asymptotically standard

normally distributed tests. The figure shows substantial differences between the bootstrap

approximations to the finite sample distribution of the tests and their asymptotic distribu-

tion. Thus, basing inference on the asymptotic critical values can lead to substantial size

distortions. The discrepancy between the asymptotic and the bootstrap critical values can

also be seen in Table 1, where the 5% bootstrap critical values are displayed in brackets. They

vary substantially both across tests and also across the two variables. In most cases they are

far away from the asymptotic critical values ±1.645, respectively 249.128 for the Maddala

and Wu test.

It is customary practice in unit root testing to test in specifications with and without

linear trends included. A linear trend in the test equation, when there is no trend in the data

generating process reduces the power of the tests. Conversely, omitting a trend when there is a

trend in the data, induces a bias in the tests towards the null hypothesis. Graphical inspection
14By appropriate scaling and for N → ∞, Choi (2001) derives asymptotically standard normally distributed

tests based on this idea.
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Figure 1: Bootstrap test statistic distributions for CO2 for 5 asymptotically standard normally
distributed panel unit root tests.
The results are based on the non-parametric bootstrap with 5000 replications. Fixed effects
are included.

of the data leads us to conclude that for CO2 emissions the specification without trend might

be sufficient, whereas for GDP the specification with trend might be more appropriate. The

nature of the trend component of GDP is a widely discussed topic in macro-econometrics.

Both, unit root nonstationarity with its underlying stochastic trend or trend-stationarity

with usually a linear deterministic trend are plausible and widely used specifications. This

uncertainty concerning the trend specification for GDP manifests itself also in our panel test

results, see below. For completeness we report both types of results for both variables. The

first block in Table 1 displays the results for the parametric bootstrap, the second for the

non-parametric bootstrap and the third for the RBB bootstrap. Within each of the blocks,

the first block-row shows the results with fixed effects and the second the results when both

fixed effects and linear trends are included.
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Let us start with (the logarithm of per capita) CO2 emissions. For all three bootstrap

methods and for the majority of tests the null hypothesis of a unit root is not rejected. Only

for the parametric bootstrap and the specification with intercepts and trends, and for the

non-parametric bootstrap with intercepts the unit root hypothesis is rejected for three of the

six tests. In the latter case the rejection of the null with the MW test is a borderline case

with a test statistic of 310.781 and a bootstrap critical value of 309.904. Importantly, in the

specification with only intercepts, the parametric and the RBB bootstrap lead to non-rejection

of the unit root hypothesis for all six tests. A further important observation is that these two

bootstraps indicate incorrect rejection of the null for three of the six tests when inference is

based on the asymptotic critical values. This exemplifies again the potential pitfalls of using

asymptotic critical values for the short panel at hand. Summing up, there is some evidence

for unit root nonstationarity of CO2 emissions, when using first generation panel unit root

tests. Note, however, that by choosing the ‘appropriate’ test and by using the asymptotic

critical values the rejection of the unit root null hypothesis can be ‘achieved’.

We now turn to (the logarithm of real per capita) GDP. Starting with the specification

including trends we see that three (parametric), two (non-parametric) and six (RBB) tests do

not reject the null hypothesis of a unit root when the bootstrap critical values are used. Based

on the RBB bootstrap the test decisions differ for three tests when based on the asymptotic

critical values and when based on the bootstrap critical values. Thus, quite surprisingly more

than for CO2 emissions, the unit root tests lead to an unclear picture for per capita GDP.

The same ambiguity prevails when including only fixed effects in the tests. Again, depending

upon the choice of unit root test, bootstrap or asymptotic critical values, evidence for unit

root stationarity or trend stationarity can be ‘generated’ by first generation panel unit root

tests.

3.2 Second Generation Tests

In this subsection we now discuss the results obtained with several second generation panel

unit root tests that allow for cross-sectional correlation.15 Since there is no natural ordering

in the cross-sectional dimension as compared to the time dimension, the first issue is to find

tractable specifications of models for cross-sectional dependence in non-stationary panels.
15We do not report bootstrap inference on these second generation methods. To our knowledge an analysis of

the small sample performance of these tests is still lacking. The construction of consistent bootstrap methods
for cross-sectionally correlated nonstationary panels is furthermore itself an interesting question.
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There are two main strands that have been followed in the literature, one is a factor model

approach, the other is based – more classical for the panel literature – on error components

models.

Let us turn to the idea of the factor model approach first. In this set-up the cross-sectional

correlation is due to common factors that are loaded in all the individual country variables,

e.g.

xit = ρixit−1 + λ′
iFt + uit (4)

Here Ft ∈ R
k are the common factors and λi ∈ R

k are the so called factor loadings. In

general the factors can be either stationary or integrated. After de-factoring the data, i.e.

subtracting the factor component contained in the variables in each country, panel unit root

tests (of the first generation type) can be applied to the asymptotically cross-sectionally

uncorrelated de-factored data.

The most general approach in this spirit is due to Bai and Ng (2004). They provide

estimation criteria for the number of factors, as well as – in the case of more than one

common factor – tests for the number of common trends in the factors.16 Thus, the factors

are allowed to be stationary or integrated of order 1. After subtracting the estimated factor

component, Bai and Ng (2004) propose Fisher type panel unit root tests in the spirit of

Maddala and Wu (1999) and Choi (2001). The first one is asymptotically χ2 distributed,

BNχ2 and the second is asymptotically standard normally distributed, BNN . The two tests

are specified against the heterogeneous alternative. See the results in Table 2. The number of

common factors is estimated to be three for CO2 and four for GDP. These estimation results

are based on the information criterion BIC3, see Bai and Ng (2004) for details. The two

tests for common trends within the common factors, CT and CTAR, result in three common

trends, except for GDP when both fixed effects and individual trends are included (where four

common trends are found).17 Thus, essentially all common factors seem to be nonstationary.

Let us next turn to the unit root tests on the de-factored data (only implemented for the

fixed effects specification). Somewhat surprisingly the null hypothesis is not rejected for

CO2 emissions, but is clearly rejected for GDP by both tests. Thus, it seems that some

nonstationary idiosyncratic component is present in the CO2 emissions series.
16Testing for common trends can be seen as the multivariate analogue to testing for unit roots. In case of a

single common factor, a unit root test for this common factor is sufficient, of course.
17The two tests for the number of common trends differ in the treatment of serial correlation. In CT a

non-parametric correction is performed, whereas CTAR is based on a vector autoregressive model fitted to the

13



NoCF BNN BNχ2 CT CTAR

Fixed Effects
CO2 3 -1.66 179.63 3 3

(0.95) (0.96)
GDP 4 10.60 433.29 3 3

(0.00) (0.00)
Fixed Effects and Trends

CO2 3 – – 3 3
GDP 4 – – 4 4

Table 2: Results of Bai and Ng (2004) PANIC analysis. NoCF indicates the estimated
number of common factors according to BIC3. BNN and BNχ2 denote the unit root tests on
the de-factored data. CT and CTAR denote the estimated number of common trends within
the common factors.
The p–values are displayed in brackets, with 0.00 indicating p–values smaller than 0.005.

Bai and Ng (2004) present the most general factor model approach to non-stationary

panels currently available and the only one that allows for testing also the stochastic properties

of the common factors. For completeness we also report the results obtained with two more

restricted factor model approaches, due to Moon and Perron (2004) and Pesaran (2003). Moon

and Perron (2004) present pooled t-type test statistics based on de-factored data (where we

use the factors estimated according to Bai and Ng). We report two asymptotically standard

normally distributed tests with serial correlation correction in the spirit of Phillips and Perron

(1988), denoted with MPa and MPb. Pesaran (2003) provides an extension of the Im, Pesaran,

and Shin (2003) test to allow for one factor with heterogeneous loadings. His procedure, which

is a suitably cross-sectionally augmented IPS Dickey Fuller type test, works by including cross-

section averages of the level and of lagged differences to the IPS-type regression. Pesaran

(2003) considers two versions: the procedure just described, denoted with C − IPS and a

truncated, robust version C − IPS∗. For both of his tests the distribution is non-standard

and has to be obtained by simulation methods.

The results from these factor model approaches are contained in the upper block of Table 3.

The null hypothesis of a unit root is rejected in all cases (at least when testing at 6%) except

for CO2 when individual specific trends are included. Thus, all factor based unit root tests

reject the unit root null hypothesis on de-factored GDP. This seems to indicate that there are

global common stochastic factors (respectively trends, compare the results obtained with the

common factors.

14



Fixed Effects Fixed Effects & Trends
CO2 GDP CO2 GDP

MPa -22.70 -17.00 -7.79 -11.58
(0.00) (0.00) (0.00) (0.00)

MPb -13.33 -15.70 -14.71 -27.63
(0.00) (0.00) (0.00) (0.00)

C − IPS -2.09 -2.12 -1.83 -2.76
(0.06) (0.05) (0.95) (0.04)

C − IPS∗ -2.08 -2.11 -1.83 -2.74
(0.06) (0.05) (0.95) (0.04)

Cp 9.62 5.80 6.94 2.97
(0.00) (0.00) (0.00) (0.00)

CZ -8.98 -6.46 -6.79 -3.87
(0.00) (0.00) (0.00) (0.00)

CL∗ -9.06 -6.15 -6.95 -3.82
(0.00) (0.00) (0.00) (0.00)

NL − IV1 1.84 12.79 -0.24 -1.01
(0.97) (1.00) (0.41) (0.16)

NL − IV2 8.43 13.43 0.21 -0.71
(1.00) (1.00) (0.58) (0.24)

NL − IV3 3.84 11.64 0.99 1.47
(1.00) (1.00) (0.84) (0.93)

Table 3: Results of second generation panel unit root tests. The left block-column contains
the results when only fixed effects are included. The right block-column contains the results
when both fixed effects and individual specific linear trends are included.
In brackets the p–values are displayed, with 0.00 indicating p–values smaller than 0.005.

Bai and Ng methodology) in the GDP country data for our 107 countries. Note again that

the results obtained by applying the Moon and Perron test and the Pesaran test are strictly

speaking only valid if there is only one factor. For our very short panel, it may however be

appropriate to compare the results obtained by several methods.

Choi (2006) presents test statistics based on an error component model. His tests are

based on eliminating both the deterministic components and the cross-sectional correlations

by applying cross-sectional demeaning and GLS de-trending to the data.18 Based on these

preliminary steps Choi proposes three group-mean tests based on the Fisher test principle,

which differ in scaling and aggregation of the p-values of the individual tests. All three test

statistics, Cp, CZ and CL∗ , are asymptotically standard normally distributed. The individ-

18This model structure can, equivalently, be interpreted as a factor model with one factor and identical
loadings for all units.
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ual test underlying the implementation of this idea in the present study is the augmented

Dickey-Fuller test. The results are quite clear: The null hypothesis of a unit root is rejected

throughout variables and specifications.

Finally, Chang (2002) presents panel unit root tests that handle cross-sectional correlation

by applying nonlinear instrumental variable estimation of the (usual) individual augmented

Dickey-Fuller regressions. The instruments are given by integrable functions of the lagged

levels of the variable and the test statistic is given by the standardized sum of the individual

t-statistics. We present the results for three different instrument generating functions, termed

NL−IVi for i = 1, 2, 3. The results are completely different from the other second generation

panel unit root test results: The null hypothesis of a unit root is not rejected by any of the

three tests for both variables and both specifications of the deterministic components. The

difference in results may be explained by the Im and Pesaran (2003) comment on the Chang

nonlinear IV tests. Im and Pesaran (2003) show that the asymptotic behavior established in

Chang (2002) holds only for N lnT/
√

T → 0, which requires N being very small compared

to T . This is of course not the case in our data set with N = 107 countries and T = 13 years.

Thus, the results of the Chang NL-IV tests should be interpreted very carefully.

3.3 Conclusions from Panel Unit Root Analysis

There seems to be evidence for cross-sectional correlation for both variables. The results

obtained with the method of Bai and Ng (2004) indicate the presence of three to four inte-

grated common factors. The general conclusion from the second generation tests, except for

the Chang tests, is that after subtracting the common factors, the idiosyncratic components

may well be stationary. The evidence in that direction is stronger for GDP than for CO2

emissions.

The evidence for cross-sectional correlation fundamentally weakens the basis of the results

obtained by applying first generation tests. Thus, for these tests we only want to highlight

again the main conclusions that can be made even without resorting to second generation

methods. First, the bootstrap test distributions differ substantially from the asymptotic

test distributions. This implies that test results based on bootstrap critical values can often

differ from test results based on asymptotic critical values. Second, by choosing the unit

root test and/or the bootstrap strategically any conclusion can be ‘supported’. This large

uncertainty around the results should urge researchers to be much more cautious than usual

16



in the empirical EKC literature.

4 Panel Cointegration Tests

In this section we present panel cointegration tests for cross-sectionally uncorrelated panels.

We do this to show, similarly to the panel unit root tests, that a more careful application of

these methods would lead researchers to be skeptical about the validity of their results. This

second level discussion is, of course overshadowed by the two first level problems.

We test for the null of no cointegration in both the linear (2) and the quadratic (1)

specification of the relationship between the logarithm of per capita CO2 emissions and the

logarithm of per capita GDP. We test in quadratic version solely to show that a careful

statistical analysis with the available (but inappropriate) tools of panel cointegration would

already lead to ambiguous results. In particular we show that the test results depend highly

upon the test applied and whether the asymptotic or some bootstrap critical values are

chosen. These observations, which can be made by just using standard methods, should

lead the researcher to draw only very cautious conclusions. Of course, we know from the

discussion in Section 2 that cointegration in the usual sense is not defined in equation (1).

This observation has been ignored in the empirical literature and several published papers,

e.g., Perman and Stern (2003) discuss ‘cointegration’ in the quadratic specification based on

unit root testing for emissions, GDP and the square of GDP.

We have in total performed ten cointegration tests, seven of them developed in Pedroni

(2004) and three in Kao (1999). Similar bootstrap procedures as for the panel unit root tests

are applied, see the description in Appendix B. The results obtained by applying the three

tests developed by Kao are not displayed but are available from the authors upon request in

a separate appendix.19

All tests are formulated for the null hypothesis of no cointegration, see Hlouskova and

Wagner (2006b) for a discussion and a simulation based performance analysis including all
19Kao (1999) derives tests similar to three of the pooled tests of Pedroni for homogenous panels when only

fixed effects are included. A panel is called homogenous, if the serial correlation pattern is identical across
units. Kao’s three tests, Kρ, Kt and Kdf , are based on the spurious least squares dummy variable (LSDV)
estimator of the cointegrating regression. We have also performed these tests, since tests based on a cross-
sectional homogeneity assumption might perform comparatively well even when the serial correlation patterns
differ across units. This may be so, because no individual specific correlation corrections, that may be very
inaccurate in short panels, have to be performed. Kao’s tests are after scaling and centering appropriately
asymptotically standard normally distributed and left sided. The results are qualitatively similar to the results
obtained with Pedroni’s tests.

17



the panel cointegration tests used in this paper. The tests are based on the residuals of the

so called cointegrating regression, in our example in the linear case given by (2):20

ln(eit) = αi + γit + β1 ln (yit) + uit

If both log emissions and log GDP are integrated, the possibility for cointegration between the

two variables arises. Cointegration means that there exists a linear combination of the vari-

ables that is stationary. Thus, the null hypothesis of no cointegration in the above equation

is equivalent to the hypothesis of a unit root in the residuals, ûit say, of the cointegrating re-

gression. The usual specifications concerning deterministic variables have been implemented.

In Table 4 we report test results when including only fixed effects and when including fixed

effects and individual specific trends.

Pedroni (2004) develops four pooled tests and three group-mean tests. Three of the four

pooled tests are based on a first order autoregression and correction factors in the spirit of

Phillips and Ouliaris (1990). These are a variance-ratio statistic, PPσ; a test statistic based

on the estimated first-order correlation coefficient, PPρ; and a test based on the t-value of the

correlation coefficient, PPt. The fourth test is based on an augmented Dickey-Fuller type test

statistic, PPdf , in which the correction for serial correlation is achieved by augmenting the

test equation by lagged differenced residuals of the cointegrating regression. Thus, this test

is a panel cointegration analogue of the panel unit root test of Levin, Lin, and Chu (2002).

For these four tests the alternative hypothesis is stationarity with a homogeneity restriction

on the first order correlation in all cross-section units.

To allow for a slightly less restrictive alternative, Pedroni (2004) develops three group-

mean tests. For these tests the alternative allows for completely heterogeneous correlation

patterns in the different cross-section members. Pedroni discusses the group-mean analogues

of all but the variance-ratio test statistic. Similarly to the pooled tests, we denote them with

PGρ, PGt and PGdf . We report both the pooled and group-mean test results to see whether

the test behavior differs systematically between these two types of tests.

After centering and scaling the test statistics by suitable correction factors, to correct

for serial correlation of the residuals and for potential endogeneity of the regressors in the

cointegrating regression, all test statistics are asymptotically standard normally distributed.
20For such a short panel as given here, systems based methods like the one developed in Groen and Kleibergen

(2003) are not applicable.
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Figures similar to Figure 1 are available from the authors upon request. Again substantial

differences between the asymptotic critical values and the bootstrap critical values emerge.

The first block in Table 4 corresponds to the parametric bootstrap, the second to the

non-parametric bootstrap and the third to the RBB bootstrap. Within each block, the first

block-row corresponds to the linear specification and the second to the quadratic specification.

Both, the linear and the quadratic specification have been tested with fixed effects and with

fixed effects and individual specific linear trends. Just to be sure, note again, that testing for

cointegration in the quadratic formulation lacks theoretical econometric foundations.

Let us start with the linear specification, which is ‘only’ subject to the first level problem

of cross-sectional correlation. There is some variability of results across bootstrap methods

and again in a variety of cases bootstrap inference leads to different conclusions than resorting

to the asymptotic critical values. This happens in particular for the RBB bootstrap. For the

quadratic specification, i.e. the Kuznets curve in its usual formulation, roughly the same

observations as for the linear specification can be made, ignoring again the problem that a

correct econometric foundation is lacking due to the nonlinear transformation. Again the

RBB bootstrap leads to the fewest rejections of the null hypothesis. The null hypothesis

of no cointegration is more often rejected for the linear formulation than for the quadratic

specification. Note that no systematic differences between the pooled and the group-mean

tests occur.

The above results provide some weak evidence for the presence of a cointegrating rela-

tionship between GDP and emissions. However, as for the panel unit root tests, by choosing

the test and the bootstrap strategically, any ‘conclusion’ can be supported. This ‘volatility’

of the results should lead researchers to be more cautious than what is usually observed.
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5 Estimation of the Carbon Kuznets Curve with Panel Coin-
tegration Methods and Using De-factored Observations

We finally turn to estimating the CKC relationship. In the first subsection we estimate the

CKC with panel cointegration methods that correspond to the first generation panel unit root

and cointegration tests. These methods are of course subject to the two first level critiques. As

for the panel unit root and cointegration tests, we include results based on this type of methods

to show that by careful application the conclusions one could draw, even when staying in this

framework, are very weak. In the second subsection we estimate the CKC relationship on

de-factored data. These are, up to potentially bad small sample performance of the Bai and

Ng (2004) procedure, stationary. Thus, for these data standard panel regression techniques

are applicable. Note also that the de-factored data are (asymptotically) cross-sectionally

uncorrelated.

5.1 Panel Cointegration Estimation

Two types of estimators for the cointegrating relationship in panels are applied: fully mod-

ified ordinary least squares (FM-OLS) and dynamic ordinary least squares (D-OLS). Both

estimation methods are panel extensions of well known time series concepts. FM-OLS was

introduced by Phillips and Hansen (1990) and D-OLS is due to Saikkonen (1991). Both meth-

ods allow for serial correlation in the residuals and for endogeneity of the regressors in the

cointegrating regression. The panel extensions of FM-OLS are discussed in detail in Phillips

and Moon (1999), nesting the discussions in Pedroni (2000) and Kao and Chiang (2000). As

in the time series case, the idea of FM-OLS is to obtain in the first step OLS estimates of

long-run variance matrices. In the second step another regression is run on corrected variables,

with the correction factors being functions of the estimated long-run variance matrices. The

idea of D-OLS is to correct for serial correlation and endogeneity by augmenting the cointe-

grating regression by leads and lags of first differences of the regressors. The panel extensions

of D-OLS are discussed in Kao and Chiang (2000) and Mark and Sul (2003). Both methods,

FM-OLS and D-OLS, yield asymptotically normally distributed (for first T followed by N to

infinity) estimated cointegrating vectors, which implies that χ2 inference via e.g. Wald tests

can be conducted. Note for completeness that various versions of both FM-OLS and D-OLS in

weighted or unweighted fashions have been implemented, see Hlouskova and Wagner (2006b)

for a description. These differ i.a. in how the correction factors are computed.
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Fixed Effects
FM-OLS D-OLS wD-OLS LSDV

ln yit 0.461 1.401 0.478 0.508
(23.358) (4.431) (14.119) (3.948)

(ln yit)2 0.046 -0.030 0.216 0.014
(2.3221) (-1.338) (6.387) (1.5797)

Fixed Effects and Trends
FM-OLS D-OLS wD-OLS LSDV

ln yit 0.341 1.860 0.663 0.239
(17.282) (8.969) (19.584) (1.252)

(ln yit)2 0.208 -0.092 0.205 0.012
(10.548) (-5.805) (6.069) (0.855)

Table 5: Estimation results for equation (1) including fixed effects only in the upper block
and fixed effects and linear trends in the lower panel. Fixed effects, respectively fixed effects
and trend slopes are not reported. In brackets the t-statistics are displayed.
Note that the results (coefficients and t-values) in this table do not have a theoretical under-
pinning due to the use of nonlinear transformations of integrated processes.

Let us start with a discussion of the results obtained when estimating the linear formu-

lation (2). Note again that the linear specification is ‘only’ subject to the problem of cross-

sectional correlation, i.e. only to one of the first level problems. In the specification including

only fixed effects, the coefficient of log per capita GDP is between 0.6 and 0.8, depending

upon estimation method. For the specification including unit specific trends, the estimated

coefficient on log per capita GDP varies between 0.4 and 0.8, depending upon estimation

method. The null hypothesis of a unit GDP elasticity of emissions, i.e the null hypothesis

H0 : β1 = 1 in equation (2), is rejected for all estimation methods and specifications.

We now turn to the estimation results obtained for the quadratic formulation (1), which

is subject to both first level problems. Table 5 reports one FM-OLS estimation result and

two different versions of D-OLS estimation results, abbreviated by D-OLS and wD-OLS, due

to Mark and Sul (2003) and Kao and Chiang (2000). We report two different D-OLS results to

show that various D-OLS implementations deliver substantially differing results. For the FM-

OLS estimates less variability across versions occurs than for the D-OLS estimates. Thus, only

the results of one FM-OLS variant are reported. Important in this respect is the observation

that such a large variability of estimated coefficients across methods might already by itself

indicate underlying problems. The results obtained by applying the D-OLS estimator of Kao

and Chiang (2000) are very different from the rather similar FM-OLS and wD-OLS estimation
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results. Only the D-OLS estimates have a negative coefficient for squared log GDP. Thus,

only the results derived with this estimator imply an inverse U–shape. The ‘turning point’

of these inverse U–shapes, however, is highly implausible. It is at about 17.3 million dollars

for the fixed effects case and at about 220 dollars for the fixed effects and trends case. Both

numbers are neither sensible nor useful and should lead to reconsider the usefulness of the

estimation methods for the problem at hand (or the usefulness of the specification).

The final column in Table 5 reports the estimation results based on the LSDV estimator,

to see which kind of results are obtained when ignoring the nonstationarity issue altogether.

When only fixed effects are included, the difference to the FM-OLS and wD-OLS estimators

are not too large. However, when fixed effects and trends are included, the differences to the

cointegration results become substantial. Furthermore, no coefficient appears to be significant

in that case. By choosing other estimators for stationary panels, all kinds of results can be

generated. Thus, also when ignoring issues of nonstationarity a researcher can or cannot come

to the conclusion of the prevalence of a relationship between emission and GDP, depending

upon the specification of the deterministic component and the estimation method.

5.2 Estimation with De-Factored Observations

We finally report the estimation results based on the de-factored observations, using the ap-

proach developed by Bai and Ng (2004) for de-factoring the data. Remember from Section 3

that three respectively four common factors have been found, all of which seem to be nonsta-

tionary, according to the Bai and Ng tests. An application of the unit root tests of Bai and

Ng (2004) to the de-factored data indicates that the idiosyncratic components are stationary.

This implies that for the de-factored data standard regression theory developed for stationary

variables applies. The results are displayed in Table 6. We present two estimation results.

The first applies if de-factorization is performed in the model with only fixed effects (DF −2)

and the second when de-factorization is performed in the model with fixed effects and trends

(DF − 3). The preferred specifications of the estimated CKCs contain in both cases fixed

country and time effects.21 GLS estimation with cross section weights is performed to allow

for different error variances across countries.

Since the data are de-factored here, the size of the coefficients cannot be directly compared

with the results of Table 5, ignoring for the moment that the results presented in Table 5 are
21In the first case, when including trends in the regression, significant coefficients emerge for some countries.

However, the specification with time effects is preferred.
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DF − 2 DF − 3
ln yit 0.389 0.472

(6.223) (6.961)
(ln yit)2 1.130 3.290

(1.830) (3.566)

Table 6: Estimation results for equation (1) on de-factored data. Estimation is performed by
GLS. In brackets robust t-statistics are displayed.

subject to the problems discussed throughout the paper. Both coefficients are positive and

significant, the coefficient on squared log per capita GDP in DF − 2 only at 7%. Thus, there

is no evidence for an inverse U–shaped relationship as postulated by the CKC hypothesis.

Of course, these results are subject to the properties of de-factorization for short samples,

which are yet not well understood. Apart from this problem, however, these estimates are the

only ones presented in this paper that are based on an asymptotically well founded estimation

theory, given that the data are indeed unit root nonstationary. Therefore, with all reservation

necessary, we tentatively conclude that within our panel data set no evidence for an inverse

U–shape relation between log per capita GDP and log per capita CO2 emissions is present

(after de-factoring the data).

6 Summary and Conclusions

In this paper we discuss three important econometric problems associated with the Environ-

mental Kuznets Curve, that arise when the data are of the unit root nonstationary type.

We exemplify the discussion for the Carbon Kuznets Curve, relating per capita GDP to per

capita emissions of CO2, on a panel comprising 107 countries over the years 1986–1998.

The three problems are grouped in two first level problems and one second level problem.

The two first level problems are the use of nonlinear transformations of integrated processes as

regressors and cross-sectional dependence in nonstationary panels. The second level problem

is the poor performance of (panel) unit root and cointegration techniques for short time series

or panels.

Let us start with the first level problems. The discussion in Section 2 shows that nonlinear

transformations – like the square – of an integrated process are in general not integrated.

This implies that the usual unit root and cointegration techniques cannot be applied for the

EKC and CKC, if log per capita GDP is indeed integrated. This point has been completely
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overlooked in the empirical EKC and CKC literature up to now, even in that part of the

literature that acknowledges the potential presence of integrated processes. We do not solve

the problem in this study, since up to now no estimation techniques for panels containing

nonlinear transformations of integrated processes are available. Currently only results for

the time series case, developed by Peter Phillips and co-authors, are available. Ongoing

research is investigating the applicability of (panel extensions of) these methods to EKC/CKC

estimation.

To address the second of the first level problems, cross-sectional dependence in nonsta-

tionary panels, the literature offers several approaches in the meantime. Prior to this study,

only so called first generation panel unit root and cointegration techniques have been ap-

plied, which all rely upon cross-sectional independence. In the CKC case this amounts to

independence of both GDP and CO2 emissions across countries. We present in this paper

the first application of second generation methods that allow for cross-sectional correlation in

the EKC/CKC context. The results obtained with the method of Bai and Ng (2004) indicate

that non-stationary common factors may well be present in both GDP and emissions. The

results also indicate that the idiosyncratic components (i.e. the de-factored data) are sta-

tionary. In this respect the evidence is stronger for GDP than for emissions. Based on these

findings we estimate the CKC on de-factored data, which are cross-sectionally uncorrelated

and, see above, also stationary. Thus, standard panel regression techniques are applicable to

the de-factored data and also the nonlinearly transformed regressor does not pose additional

problems in the stationary context. We find no evidence for an inverse U–shape relationship.

These results are, of course, subject to potentially bad small sample performance of the Bai

and Ng de-factoring procedure, potential failure of the homogeneity assumption across coun-

tries and potential structural instabilities over time. The first issue is not yet understood

in practice and the second and third issue have not been discussed in detail in this paper,

since the focus in this paper is solely on the implications of unit root nonstationarity on the

estimation of Environmental Kuznets Curves.

The second level problem is the, in our opinion, relatively uncritical use of unit root

and cointegration methods in the EKC/CKC literature. It is known that unit root and

cointegration techniques perform poor for short time series. This poor performance translates

into poor performance for short panels, see Hlouskova and Wagner (2004a,b) for simulation

evidence. Staying within the first generation framework (and thus ignoring the first level
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problems!), we show that careful application of the methods indicates that the results should

be interpreted with caution. By implementing three different bootstrap algorithms we show

that (three different estimates of) the finite sample distributions differ substantially from the

asymptotic distributions. This implies that inference based on the asymptotic critical values

can be highly misleading. Thus, we conclude that by ‘strategic’ choice of the unit root and

cointegration tests any conclusion can be ‘supported’. This holds, to a lesser extent, even

when resorting to bootstrapping, where the RBB bootstrap results differ in several cases from

the other two. This finding, however, may be due to the short time dimension that poses

a challenge to block re-sampling based bootstrap schemes. The results for the two other

bootstrap algorithms are rather similar.

Ignoring the first level problems also for estimation, we estimate the CKC with panel

cointegration estimators. This exercise leads to highly variable results across different vari-

ants of estimators, with less variability across the FM-OLS variants than across the D-OLS

variants. From this variability we conclude that also estimation results obtained within the

first generation framework should have been interpreted with much more caution than has

been done in the literature.

Summing up we conclude – a bit polemically – that a large part of the empirical EKC

and CKC literature up to now has been plagued by using inappropriate methods in a sloppy

manner. Hence, the title of the paper. However, recent progress made in the theoretical

literature will soon equip the empirical researcher with the necessary tools to clear the sky.
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Appendix: Data and Sources

Our analysis is based on balanced panel data for 107 countries for the period 1986–1998 listed

in Table 7. The former Soviet Union and some eastern European countries are omitted from

the sample because of missing data. Other countries like Kuwait are omitted because of large

jumps in the emissions data.

Per capita CO2 emissions are taken from the Carbon Dioxide Information Analysis Center

(CDIAC) data set (see http://cidia.eds.ornl.gov/trends/emis/emcont.html). They

are measured in metric tons of CO2. We transform them to kilograms to achieve variables of

comparable magnitude as the per capita GDP series. Per capita GDP is measured in constant

1995 US$ and taken from the World Bank Development Indicators 2003.

Albania Ecuador Liberia Seychelles
Algeria Egypt Luxembourg Singapore
Antigua Barbuda El Salvador Macao Solomon Islands
Argentina Fiji Malaysia South Africa
Australia Finland Malta Spain
Austria France Mauritania Sri Lanka
Bahamas French Guiana Mauritius St. Lucia
Bahrain Gabon Mexico St. Vincent and Grenadines
Barbados Germany Mongolia Suriname
Belgium Greece Morocco Swaziland
Belize Grenada Netherlands Sweden
Bolivia Guatemala New Caledonia Switzerland
Botswana Guyana New Zealand Syrian Arab. Rep.
Brazil Honduras Nicaragua Thailand
Brunei Hong Kong Nigeria Tonga
Bulgaria Hungary Norway Trinidad and Tobago
Cameroon Iceland Oman Tunisia
Canada India Pakistan Turkey
Chile Indonesia Panama United Arab. Emirates
China Iran Papua New Guinea United Kingdom
Colombia Ireland Paraguay United States
Costa Rica Israel Peru Uruguay
Cyprus Italy Philippines Venezuela
Denmark Jamaica Portugal Vietnam
Djibouti Japan Puerto Rico Zambia
Dominica Jordan Romania Zimbabwe
Dominican Rep. Korea Rep. Saudi Arabia

Table 7: List of countries included in the computations.
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Appendix B: Bootstrap Algorithms

Bootstrapping the first generation panel unit root and panel cointegration tests used in this

paper requires to take two issues into consideration. First, unit root nonstationarity of certain

quantities (all tests applied have the null of a unit root in the panel, and correspondingly of

no cointegration). Second, the serial correlation allowed for in the innovation processes uit.

Both issues can be handled by resorting to appropriate bootstrap procedures. Bootstrap

procedures for unit root nonstationary processes are in the meantime relatively well under-

stood, see e.g. Paparoditis and Politis (2003). In our application we have to take into account

in addition the small time dimension of our panels. For this reason, one part of our bootstrap

procedures fits an autoregression to the residuals of the unit root test equation respectively of

the cointegrating regression. Bootstrapping is then based on the residuals from these autore-

gressive approximations, which resemble white noise. For our case with T = 13 this might

be preferable to some block-bootstrap procedure. For comparison, however, we have also

implemented the so called residual based block bootstrap (RBB) procedure of Paparoditis and

Politis (2003), which has certain asymptotical (for T → ∞) advantages in terms of power

compared to the other procedures implemented, compare Paparoditis and Politis (2005).

In the panel case we have to consider bootstrapping in such a way that cross-sectional

correlation is preserved. A simple way of achieving this is to re-sample the residuals with the

same re-sampling schemes for all units. In this respect the simulation results of Hlouskova

and Wagner (2006a, 2006b) indicate that the tests are robust to a certain amount of short-

run dependence. Note, however, that none of the first generation tests has been designed for

cross-sectionally correlated panels.

Note that the panel unit root tests and panel cointegration tests are implemented for

two different specifications concerning the deterministic components. One, where only fixed

effects are contained in the test equation respectively the cointegrating regression and the

other where both fixed effects and individual trends are contained. We only discuss the

second case in this appendix, the other case follows trivially.

Let us now discuss the bootstrapping algorithms implemented for the panel unit root tests

and let us start with the autoregression based algorithms. Denote with yit ∈ R the panel data

observed for i = 1, . . . , N and t = 1, . . . , T . Then for each unit the following equation is
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estimated by OLS:

∆yit = γi0 +
pi∑

j=1

γij∆yit−j + uit (5)

with ∆ denoting the first difference operator. The lag lengths pi are allowed to vary across

the individual units in order to whiten the residuals uit. Denote with ûit the residuals of

equation (5). Then the following two bootstrap procedures are based on the autoregression

residuals.

(i) Parametric: The bootstrap residuals are given by u∗
it = σ̂iεit, where σ̂2

i denotes the

estimated variance of ûit and εit ∼ N(0, 1).

(ii) Non-parametric:22 Denote with ût =
[

û1t, . . . , ûNt

]′ and generate the bootstrap

residuals u∗
t by re-sampling ût, t = p + 2, . . . , T with replacement. By re-sampling the

whole vector, contemporaneous correlation across units (stemming from the residuals)

is preserved in the bootstrap series.

Given u∗
it the bootstrap data themselves are generated from

y∗it =
{

yit t = 1, . . . , pi + 1
γ̂i0 + y∗it−1 +

∑pi
j=1 γ̂ij∆y∗it−j + u∗

it t = pi + 2, . . . , T
(6)

As indicated above Paparoditis and Politis (2003) propose a different bootstrap algorithm, the

RBB bootstrap, based on unrestricted residuals. By unrestricted residuals we mean residuals

which are not generated from an equation like (5) where a unit root is imposed, due to

estimation in first differences, but from an unrestricted first order autoregression. Higher order

serial correlation is not dealt with by fitting an autoregression, but by bootstrapping blocks,

with the block-length increasing with sample size at a sufficient rate.23 The implementation

of the RBB bootstrap is as follows:

(i) Estimate the equation yit = γi0 + ρiyit−1 + uit by OLS (for each unit).

(ii) Calculate the centered residuals

ũit = (yit − ρ̂iyit−1) − 1
T − 1

T∑
τ=2

(yiτ − ρ̂iyiτ−1).

22For notational simplicity we assume pi = p for all units here in the discussion.
23For an autoregression based implementation of this idea of using unrestricted residuals see Paparoditis

and Politis (2005).
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(iii) Choose the block-length b and draw j0, . . . , jk−1 from the discrete uniform distribution

over the set {1, . . . , T − b} with k = �T−1
b �. Here �x� denotes the integer part of x. By

taking the same realizations jm for all cross-sections, the cross-sectional correlation is

preserved in the bootstrap data.

(iv) Denoting with m = � t−2
b � and with s = t − mb − 1, the bootstrap data are given by:

y∗it =
{

yi1 t = 1
γ̂i0 + y∗it−1 + ũijm+s t = 2, . . . , kb + 1

(7)

Note again for completeness that for the tests that only allow for an intercept in the

test equation γ̂i0 above is replaced by zero.

For the panel cointegration tests used in this study we also apply three bootstrap algo-

rithms. These are essentially multivariate extensions of the above. The starting point for the

autoregression based bootstrap procedures is now given by

yit = αi + δit + X ′
itβi + uit (8)

Xit = Ai + Xit−1 + εit (9)

for i = 1, . . . , N, t = 1, . . . , T . Now αi, δi ∈ R, Xit = [xit1, . . . , xitk]′ and Ai, βi ∈ R
k. Note for

completeness that for the test proposed by Kao (1999) βi = β holds for all units. Under the

null hypothesis of no cointegration between yit and Xit it follows that uit is integrated and

that εit is stationary.

We estimate24 the above equations (8) and (9) to obtain the estimated residuals v̂it =

[ûit, ε̂
′
it]

′ from

ûit = yit − α̂i − δ̂it − X ′
itβ̂i

ε̂it = ∆Xit − Âi

Under the null hypothesis vit ∈ R
k+1 is a process whose first coordinate is integrated and

whose other coordinates are stationary. These known restrictions can be incorporated into the

autoregressive modelling to obtain white noise residuals by fitting a vector error correction

model which incorporates the exact knowledge about the cointegrating space. This is achieved

by estimating:

v̂it = Biε̂it−1 +
pi∑

j=1

Γj∆v̂it−j + µit (10)

24Estimation proceeds by unit specific OLS estimation, except for the method of Kao (1999), which rests
upon the LSDV estimator to obtain an estimate β̂ identical across units.
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with Bi ∈ R
k+1×k. The residuals from equation (10), µ̂it say, resemble white noise due to

appropriate choice of the lag lengths pi.

As in the univariate case for the panel unit root tests, two bootstrap versions are imple-

mented based on µ̂it.

(i) Parametric: Estimate the variance-covariance matrix of µ̂it, Σ̂i say. Denote its lower

triangular Cholesky factor by L̂i and generate the bootstrap residuals µ∗
it = L̂iηit with

ηit ∼ N(0, Ik+1).

(ii) Non-parametric: µ∗
it is given by re-sampling µ̂it. By choosing the same re-sampling

scheme for all cross-sectional units, the contemporaneous correlation structure is pre-

served.

The bootstrap series y∗it and X∗
it are generated by first inserting µ∗

it in (10) and by then

inserting the resulting v∗it in (8) and (9).

The multivariate implementation of the RBB bootstrap is based on an unrestricted VAR(1)

for Zit = [yit, X
′
it]

′ as follows.

(i) Estimate the first order VAR Zit = Ai0 + Ai1Zit−1 + vit.

(ii) Compute the centered residuals

ṽit = (Zit − Âi1Zit−1) − 1
T − 1

T∑
τ=2

(Ziτ − Âi1Ziτ−1).

Choose the block-length b and draw j0, . . . , jk−1 from the discrete uniform distribution

over the set {1, . . . , T − b} with k = �T−1
b � and �x� denotes the integer part of x. By

taking the same realizations jm for all cross-sections, the cross-sectional correlation is

preserved in the bootstrap data.

(iv) Denoting with m = � t−2
b � and with s = t − mb − 1, the bootstrap data are given by:

Z∗
it =

{
Zi1 t = 1
Âi0 + Z∗

it−1 + ṽijm+s t = 2, . . . , kb + 1
(11)

Note again for completeness that for the tests that only allow for an intercept in the

test equation Âi0 above is replaced by zero.
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