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Abstract 

This paper proposes a strategy to increase the efficiency of forecast combining methods. 
Given the availability of a wide range of forecasting models for the same variable of interest, 
our goal is to apply combining methods to a restricted set of models. To this aim, an 
algorithm procedure based on a widely used encompassing test (Harvey, Leybourne, 
Newbold, 1998) is developed. First, forecasting models are ranked according to a measure 
of predictive accuracy (RMSFE) and, in a consecutive step, each prediction is chosen for 
combining only if it is not encompassed by the competing models. To assess the robustness 
of this procedure, an empirical application to Italian monthly industrial production using ISAE 
short-term forecasting models is provided.  
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1 Introduction

Forecast combination is often used to improve forecast accuracy. A linear combi-
nation of two or more predictions may often yield more accurate forecasts than
using a single prediction to the extent that the component forecasts contain
useful and independent information (Newbold and Harvey, 2002). To generate
independent forecasts two ways could be followed. One is to examine different
data, and the other is to use different forecasting methods. On one hand, the
use of several sources of the data can add useful information and can also ad-
just for biases. On the other hand, forecasting combining methods can reduce
errors arising from faulty assumption, bias, or incorrect data. In this paper, a
new algorithm-based procedure to increase the efficiency of forecasting combin-
ing methods is provided. The algorithm relies on a widely used encompassing
test (Harvey, Leybourne, Newbold, (HLN) 1998). Rather than for evaluating
forecasts, the above statistics is implemented to select a subset of forecasts to
be combined. According to this procedure, overall forecasting models are first
ranked using RMSFE measure and, in a consecutive step, each prediction is
chosen for combining only if it is not encompassed by the competing forecasting
models. A multiple encompassing test (Harvey and Newbold, 2000) is used to
assess the robustness of the models selecting procedure. An empirical applica-
tion to Italian monthly industrial production is provided. We exploit several
short-term forecasting models currently used at ISAE to obtain forecasts up to 6
steps ahead, both in a recursive and rolling regression framework. In a majority
of cases, forecasts deriving from the algorithm procedure outperform those ob-
tained by combining overall models in terms of RMSFE. The paper is organized
as follows. Section 2 presents the seven models under evaluation. In section
3, the linkages between forecast encompassing test and RMSFE are presented.
In section 4, the algorithm procedure and the methods used for combining are
described. Section 5 presents empirical results. Section 6 concludes.

2 Forecasting models

In this section, seven time series models for forecasting the industrial produc-
tion (IPI ) are briefly described: four single-equation models, a dynamic factor
model, a VAR model and an ARIMA model. The econometric specifications
selected for the empirical exercise are based on a collection of coincident and
leading indicators of the short-term pattern of manufacturing activity. This set
of variables consists of both hard and soft data. The former includes time se-
ries related to energy and intermediate inputs as the quantity of raw materials
transported by rails (TONN ), the volume of natural gas demanded by the in-
dustrial sector (snam), the supply of electric energy as a whole (GW ). Soft data
relies on businesses’ production expectations (PP) deriving from ISAE business
surveys and on the purchasing managers’ index PMI. Other than PMI, all the
variables are not seasonally adjusted and, also with the exception of PP, ob-
servations at the end of sample are revised by further data releases. IPI and
related indicators are considered at their latest available updates.
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The general specification of single−equation multivariate models is:

∆12yt = α + γ∆12yt−h +

p∑

j=h

βjx
mh

t−j + δdt + εmh
t (1)

where m denotes the models for each forecasting step (h=1,...,6), ∆12 = (1 −
L12), dt are the deterministic components and εt is the idiosyncratic error term.
Specifically:

1. the SE model includes TONN and the composite index PMI as regressors;

2. in the GW model, the lagged endogenous variable, PMI and the electric
indicator behave as regressors;

3. in the third model GWc, the electricity demand, PMI (both lagged by 1
period) and the variable C̃q,t are included. The last one, which is defined
as the deviation of Cq,t (the current temperature in period q and year t)
from its average level observed in the same month over the latest five years
(Cq,t−1,..., Cq,t−5), is considered since some of the electricity components
could be significantly affected by temperature patterns (the electricity
demand of households and the service sector);

4. the Gas model is based on snam and PMI indicators.

As a common feature, the deterministic component of the above models consists
of a sequential specification (up to 1 lag) of the month-on-month trading days
variation. The model GWc is supplemented with a set of seasonal dummies,
taking value equal to C̃q,t in the reference month, zero otherwise. The reduced
form of all single-equation models has been achieved applying the following cri-
teria: i) each general unrestricted model (GUM ) is estimated over the period
1997:1-2005:9 (except for GAS model) using up to the 12th lag of the indepen-
dent and dependent variables; ii) the General-to-Specific approach for model
reduction is performed running Pc−Gets (Hendry and Krolzig, 1999; Krolzig
and Hendry, 2001).
To get forecasts for more than one step ahead (h=2,..., 6), each GUM is con-
structed by lagging the available information. The general unrestricted models
up to h=2 still include contemporary values of the explanatory variables. The
explanatory variables are lagged by 1 period if h=3, by 4 months if h=6. This
allows multi-step forecasting in a single-equation context not involving any pre-
diction of the selected indicators (Rünstler and Sédillot, 2003; Rathjens and
Robins, 1993).
In addition, two other models, based on different functional forms, are con-
sidered. Following Stock and Watson (1998, 2002), a dynamic factor model
(Factor) is estimated:

∆12y
mh
t = β0 +

4∑

i=1

BiF̂i,t−h + γ∆12yt−h + ε̂mh
t (2)

where m denotes the models for each step (h=1,...,6) and i = 1, ..., 4 are the
number of estimated factors (F̂it). Lagged values of the dependent variables
also appear as predictors since the error term can be serially correlated. The
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factors are extracted from a large data-set of ISAE business surveys (current
assessments on demand, production and inventories, short-term prospects for
orders, production and prices). The number of factors are computed using the
IC(3) criterion proposed in Bai and Ng (2002) and their estimates are obtained
using the Principal Component method.
In the second model, VECM (Bruno and Lupi, 2004), the indicators are re-
parameterized in seasonal differences, since this proves useful to obtain quasi-
orthogonal regressors. The starting unrestricted model takes the form:

∆∆12yt = α∆12yt−1 +

13∑

j=1

βj∆∆12yt−j + φdt + εt (3)

where yt = (IPIt, TONNt, PPt), ∆ = (1 − L), ∆12 = (1 − L12), dt are the
deterministic components which include, other than the usual specification of
trading days effect, two dichotomous variables that take value 1 in both August
and December if production prospects in the corresponding previous months
(July and November) are positive, −1 if negative. Finally, we get an ARIMA
time series model as a benchmark model. It involves double differencing, both
at regular and seasonal frequencies. According to the Schwarz information cri-
terion for lag length selection, the final specification consists of an ARMA(2,3)
polynomial for the regular part, MA(1)12 for the seasonal frequencies.

3 Forecast encompassing and RMSFE

The aim of this section is to define the theoretical linkages between two most
used criteria for forecast evaluation, the forecast encompassing test and the min-
imizing the RMSFE. Using RMSFE and encompassing tests as complementary
rather than competing forecast criteria stems from a theoretical contribution
of Ericsson (1992). To improve the detection of the predictive ability across
non-nested models, the author shows that the forecast encompassing test is a
sufficient condition for RMSFE dominance, i.e. for minimizing RMSFE of a
given model. The starting point is to consider two alternative non-nested linear
models for the same dependent variable yt, estimated over the sample period
[1, T ]:

M1 : yt = δ′1z1t + ν1t (4)

M2 : yt = δ′2z2t + ν2t (5)

where z1t and z2t do not have regressors in common and are linked by the
relation z1t = Πz2t + ε1t. Substituting into (4) yields the following restrictions
for equation (5)

δ′2 = (δ′1Π) (6)

ν2,t = ν1,t + δ′1ε1,t. (7)

Assuming that the forecasts from the models (4) and (5) are ŷ1j = δ′z1j and
ŷ2j = δ′z2j , (j = T+1,..., T+n), restriction (6) (forecast-model encompassing)
implies that z2j has no power in explaining the forecast error given z1j . This is
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equivalent to testing for γ = 0 in the equation yj = δ′1z1j + γz2j + ν1j . From
restriction (7), we get

E(yj − ŷ2j)
2 = E(yj − ŷ1j)

2 + δ′1Ωδ1 (8)

where E(yj − ŷ1j)
2 is the RMSFE of model 1, E(yj − ŷ2j)

2 is the RMSFE of
model 2 and Ω = E(ε1jε

′
1j). Testing this hypothesis is equivalent to testing for

α = 0 (forecast encompassing) in the equation

yj = δ′tz1j + αŷ2j + ν1j . (9)

As shown in Ericsson (1992), the sufficient condition for this is that γ = 0.
Further, this implies that Ω is a positive definite matrix, so that RMSFE1 <

RMSFE2 (RMSFE dominance). From the above discussion, with not-nested
forecasting models, the sufficient condition to minimize the RMSFE of a given
model is to verify that it encompasses all the other competing models. This
implies to perform the encompassing test only in one direction (model with the
lowest RMSFE against the model with higher RMSFE).

4 Forecast encompassing and combining meth-

ods

The issue of complementarity between RMSFE and encompassing test is used
to develop an algorithm for the efficient selection of non-nested forecasts to
combine. The algorithm considers pseudo out-of-sample forecast as inputs. The
basic idea is to compare all forecasting models with each other using HLN
(1998) encompassing test, to eliminate the encompassed models, and to use
several forecast combining methods for combining the remaining forecasts. The
encompassing algorithm is described as follows:

Step 1. Calculate the RMSFE of the out-of-sample forecast for each model
using out-of-sample forecasts and realized values. Rank the models ac-
cording to their past performance based on RMSFE;

Step 2. Pick the best model (i.e, model with the lowest RMSFE), and test
sequentially whether the best forecasting model encompasses other mod-
els, using the HLN test. If the best model encompasses the alternative
model at some significance level α, delete the alternative model from the
list;

Step 3. Repeat step 2, with the second best model. The list of model includes
only those that are not encompassed by the best model, and the best
model;

Step 4. Continue with the third best model, and so on, until no encompassed
model remains in the list;

Last Step Obtain the algorithm combining forecast (ACF) by using several
forecast combining methods with all models previously selected.
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As regards to empirical application, several issues should be addressed.
First, an initial set of out-of-sample forecast of 24 observation is considered for
applying the HLN (1998) test. Harvey et al. (1998) developed a test of the null
hypothesis of forecast encompassing using the methodology of the test for equal
accuracy discussed in Diebold and Mariano (1995) and Harvey et al. (1997).
Second, in our empirical application, we consider several significance levels α of
the HLN test: 0.01,0.05,0.10, 0.15,0.20,0.25.
Third, a multiple encompassing F-test (Harvey and Newbold, 2000) is applied
to verify the robustness of our models selecting procedure based on the HLN
encompassing test. The F-test would confirm whether, at each step of the
sequence procedure, the best model encompasses or not all the competitors.
Fourth, several methods of forecasts combinations are used. All of the combining
methods take the form of a linear combination of the individual forecast:

ŷh
c,t+h|t = w0,t +

n∑

i=1

wi,tŷ
h
i,t+h|t, (10)

where ŷh
c,t+h|t is a given combination forecast whose weights, {wi,t}

n
i=0, are com-

puted using the individual out-of-sample forecast, n is the number of the models
and h is the forecast horizon. In particular, we consider:
a) three simple combining methods: the mean, median, and trimmed mean. In
the mean case, we set w0,t = 0 and wi,t = 1

n for i=1,...,n in the equation (10);
for the median, we use the sample median of {ŷh

i,t+h|t}
n
i=1; the Trimmed mean

uses w0,t = 0 and wi,t = 0 for the individual models that generate the smallest
and largest forecasts at time t, while wi,t = 1

(n−2) ;

b) the unrestricted OLS combining method (see Granger and Ramanathan,
1984). The combining weights are calculated using OLS regression;
c) the WLS combining method proposed by Diebold and Pauly (1987). We
apply the “t-lambda” method. It consists of a combining method with weights
calculated by WLS estimator. Diebold and Pauly (1987) suggested to use the
weighting matrix Ψ = diag[Ψtt] = [κtγ ], where κ, γ > 0, t = 1, ..., T and T is the
number of observations used in the WLS regression. In our empirical applica-
tion, we use γ = 1 (weights that decrease at constant rate) and γ = 3 (weights
that decrease at increasing rate).
d) the DMSFE (Discount Mean Square Forecast Errors) combining methods.
Following Stock and Watson (2004), the weights in equation (10) depend in-
versely on the historical forecasting performance of the individual models:

wi,t =
λ−1

it∑n
j=1 λ−1

jt

, (11)

where

λi,t =

T+K∑

s=T+1

δT+K−s(yh
s − ŷh

i,s|s−h)2, (12)

w0,t = 0, and δ is a discount factor. When δ = 1, there is no discounting; when
δ < 1, greater importance is attributed to the recent forecast performance of
the individual models. We use δ = 0.9, 1.0.
Finally, to assess the robustness of the algorithm-based procedure we compare
the models by evaluating the relative RMSFE. For each combining method we
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calculate the RMSFE for the algorithm forecast (RMSFEACF) and the RMSFE
from combining all models (RMSFEALL). The relative RMSFE, RMSFEACF

RMSFEALL
,

provides a scale-free metric, where the ratio less than one denotes that the
algorithm forecast outperforms the combining forecast from all models.

5 Empirical results

All models presented in section 2 are estimated over a common sample (except
for GAS model, which estimation sample begins in 2002:1, the remaining models
are estimated over the common time interval 1997:7-2005:9) and usual diagnos-
tics to evaluate in-sample correct specification have been performed (results are
not reported for space reasons and are available upon request). The forecasting
exercise is carried out using both the recursive and rolling schemes. This lat-
ter framework is generally used when there are concerns about turning points
and biases from the use of older information: it plays the role of a sensitivity
analysis with respect to the results of the combination obtained through the
encompassing algorithm. The dimension of the rolling window is different for
each model to account for the different time span over which the indicators are
available (starting in 1979 for TONN, in 1991 for IPI and PP, in 1997 for PMI,
in 2001 for snam).
In Table 1 the RMSFE of the out-sample forecasts for each model is reported.
On the basis of these results, the models are ranked from the best to the worst
for each forecast horizon (see Table 2). Different results in terms of the ranked
models are found for recursive and rolling estimation respectively. Looking at
the first-step ahead horizon, SE model is firstly ranked in both estimation frame-
works but its forecasting accuracy worsens for successive steps ahead. When the
recursive scheme is considered, the GWc model shows higher rankings at several
prediction steps. Its performance is slightly better than the rolling estimates for
h=1, 2. When 6 steps ahead are considered, the VAR model is characterized
by significantly higher performances and outperforms all the other models, as
it’s generally expected. Its predictive ability slightly improves in the rolling
schemes, due to the cutting down of the older observations, in presence of the
long lag structure of model equations.
On the basis of the rank classification, the HLN test is applied to eliminate
models that are encompassed by others. Findings are reported in Tables 3-4.
Given the number of steps ahead and the estimation scheme, the number of
models selected for combination depends on the significance level. The lower is
the significance level α, the stronger is the selection between competing models
through the encompassing filtering. As α rises, a larger number of forecasts is
selected for combination. Looking at the first-step ahead horizon, at 25% signif-
icance level, four models are selected both in the recursive (SE, GW, GWc, Gas)
and rolling (SE, VAR, Gas, GWc) scheme. Lowering α, the selected models re-
duces to three (the fourth model is ruled out in each scheme, respectively) and,
for α = 0.01, only the SE model is selected in both estimation frameworks. In
the recursive scheme, the selected models are GWc and SE for h=2 (irrespec-
tive of the significance levels), GWc and Gas for h=3 (VAR is only chosen when
α = 0.25). As regards to rolling estimates, four models enter the combination
for h=2 and α ∈ [0.05, 0.25] (GW, GWc, Gas, Factor). Models based on the
electricity indicator are taken for when h=3 and trim down to GW as α ≤ 0.15.
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At six-step horizon, the VAR model outperforms all the other models.
The multiple encompassing F-test would seem to confirm HLN test findings
(similar results are found using MS∗ test. They are available upon request).
Selection models results are reported in Table 5. The F-test is applied to each
best model at each step of the sequence algorithm and is performed against all
other competing models. For each significance level, the rejection of the null
indicates that the rival models (at least, some of them) are not encompassed
by the best model. Looking at the first-step horizon for recursive scheme, the
multiple encompassing F-test supports the HLN tests results at each algorithm
procedure step since the null hypothesis that the best model encompasses all the
competitors is always rejected at the same significance level. In this sense, the
multiple encompassing test reveals the robustness of our algorithm procedure in
selecting models that are not encompassed. Similar results are found for rolling
scheme. As regards the second step-horizon for the recursive scheme, the multi-
ple encompassing F-test confirms results based on HLN test. The only difference
is found in the first step of the algorithm procedure. The multiple encompass-
ing F-test reject the null at 5% level instead of 1% as in the HLN test. In the
rolling scheme, for h=1,2, the F-test results show higher probability than that
one of HLN test. Thus there is greater tendency to accept the null hypothesis
of encompassing since the number of observations remains constant in
the use of rolling estimation window. For h=3,6, multiple encompassing F-test
confirms the HLN test results.
To assess the robustness of the algorithm-based procedure we compare the mod-
els by evaluating the relative RMSFE (Table 6). Results are statistically signif-
icant in many cases at 5% level and, only in few cases, the ratio is larger than
one. These findings confirm the goodness of the algorithm procedure. Irrespec-
tive of the combination methods and of the number of steps ahead, the best
results in terms of relative RMSFE are obtained for higher significance levels,
hence allowing for the averaging of a large number of models. At the low signif-
icance levels, very few forecasts are considered for combination and the overall
forecast benefits less from the advantages of combining. A significant improve-
ment in this framework is that the relative RMSFEh (h=1,...,6) remains roughly
constant below unity almost for the majority of combination methods and sig-
nificance levels: this result is a key feature of the filtering algorithm. Moreover,
the several combination methods can be ranked in terms of relative RMSFE.
In the recursive scheme, the basic linear pooling methodologies (Mean, Median
and Tmean) have performed remarkably better than other combination meth-
ods. This result is fully consistent with the prevailing evidence in the empirical
literature. The relative RMSFE in the case of simple averaging (Mean) ranges
in 0.908-0.924 for h=1, in 0.937-0.942 when h=3. Apart from simple linear
averaging methods, relative RMSFE is minimized through discounted combina-
tion algorithms (DMSFE), in which the weights are estimated so to be mostly
affected by recent past model performance (Newbold and Harvey, 2002). The
worst results are obtained applying OLS and WLS procedures, the only ones
for which the relative RMSFE is greater than 1. Recent literature has stressed
the lower performance of these combining methods (Newbold, Zumwalt and
Kannan, 1987).
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6 Conclusions

In this paper, a new algorithm-based procedure to increase the efficiency of
forecasting combining methods is provided. The algorithm considers pseudo
out-of-sample forecast as inputs. Results from Ericsson (1992), who shows that
the forecast encompassing of a given model versus the other non-nested mod-
els is a sufficient condition for minimizing RMSFE, are used in the algorithm
procedure. The basic idea is to compare all forecasting models with each other
using the Harvey et al. (1998) encompassing test, to eliminate those are encom-
passed by others, and to use several forecast combining methods for combining
the remaining forecasts. To assess the robustness of this procedure, an em-
pirical application to Italian monthly industrial production using seven ISAE
short-term forecasting models is provided. Results confirm the goodness of the
algorithm we proposed.
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Table 1: Forecast errors measures. Recursive and Rolling estimation
Models (recursive) RMSFE(1) RMSFE(2) RMSFE(3) RMSFE(6)

GW 0.0192 0.0211 0.0388 0.0423

Gas 0.0205 0.0203 0.0214 0.0270

GWc 0.0201 0.0168 0.0202 0.0222

SE 0.0180 0.0182 0.0399 0.0379

VAR 0.0236 0.0240 0.0243 0.0206

ARIMA 0.0297 0.0265 0.0391 0.0413

Factor 0.0279 0.0210 0.0372 0.0368

Models (rolling) RMSFE(1) RMSFE(2) RMSFE(3) RMSFE(6)

GW 0.0375 0.0194 0.0202 0.0248

Gas 0.0342 0.0207 0.0215 0.0254

GWc 0.0344 0.0206 0.0207 0.0230

SE 0.0178 0.0422 0.0412 0.0352

VAR 0.0314 0.0315 0.0303 0.0213

ARIMA 0.0367 0.0353 0.0353 0.0354

Factor 0.0388 0.0272 0.0400 0.0367

Table 2: Rank Classification. Recursive and Rolling estimation

Recursive Rolling
rank h=1 h=2 h=3 h=6 h=1 h=2 h=3 h=6

1 SE GWc GWc VAR SE GW GW VAR

2 GW SE Gas GWc VAR GWc GWc GWc

3 GWc Gas VAR Gas Gas Gas Gas GW

4 Gas Factor Factor Factor GWc Factor VAR Gas

5 VAR GW GW SE ARIMA VAR ARIMA SE

6 Factor VAR SE ARIMA GW ARIMA Factor ARIMA

7 ARIMA ARIMA ARIMA GW Factor SE SE Factor
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Table 3: Encompassing (HLN) test results. Recursive estimation.

Recursive h=1 h=2 h=3 h=6

1◦ step Best Model: SE Best Model: GWc Best Model: GWc Best Model: VAR

p − values
(Models)

0.150
(SE/GW)

0.004
(GWc/GW)

0.220
(Gwc/GW)

0.278
(VAR/GW)

0.112
(SE/Gas)

0.073
(GWc/Gas)

0.005
(GWc/Gas)

0.422
(VAR/Gas)

0.103
(SE/GWc)

0.061
(GWc/SE)

0.230
(GWc/SE)

0.286
(VAR/Gwc)

0.183
(SE/VAR)

0.561
(GWc/VAR)

0.375
(GWc/VAR)

0.336
(VAR/SE)

0.426
(SE/ARIMA)

0.794
(GWc/ARIMA)

0.009
(GWc/ARIMA)

0.381
(VAR/ARIMA)

0.052
(SE/Factor)

0.880
(GWc/Factor)

0.465
(GWc/Factor)

0.261
(VAR/Factor)

2◦ step Best Model: GW Best Model: SE Best Model: Gas Best Model: -
p − values
(Models)

α = 0.25 0.167
(GW/Gas)

0.508
(SE/GW)

0.194
(Gas/GW)

0.033
(GW/GWc)

0.409
(SE/Gas)

0.420
(Gas/ARIMA)

0.031
(GW/VAR)

0.190
(Gas/SE)

0.075
(GW/Factor)

α = 0.20 0.167
(GW/Gas)

0.508
(SE/GW)

0.420
(Gas/ARIMA)

0.033
(GW/GWc)

0.409
(SE/Gas)

0.031
(GW/VAR)

0.075
(GW/Factor)

α = 0.15 0.167
(GW/Gas)

0.508
(SE/GW)

0.420
(Gas/ARIMA)

0.033
(GW/GWc)

0.409
(SE/Gas)

0.075
(GW/Factor)

α = 0.10 0.075
(GW/Factor)

0.508
(SE/GW)

0.420
(Gas/ARIMA)

0.490
(SE/Gas)

α = 0.05, 0.01 - 0.508
(SE/GW)

0.420
(Gas/ARIMA)

3◦ step Best Model: GWc Best Model: - Best Model: VAR Best Model: -
p − values
(Models)

α = 0.25 0.220
(GWc/Gas)

0.373
(VAR/GW)

0.322
(GWc/VAR)

0.279
(VAR/SE)

0.151
(GWc/Factor)

α = 0.20 0.220
(GWc/Gas)

0.322
(GWc/VAR)

0.151
(GWc/Factor)

α = 0.15, 0.10 0.151
(GWc/Factor)

4◦ step Best Model: Gas Best Model: - Best Model: - Best Model: -
p − values
(Models)

α = 0.25, 0.20 0.273
(Gas/Factor)
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Table 4: Encompassing (HLN) test results. Rolling estimation.

Rolling h=1 h=2 h=3 h=6

1◦ step Best Model Best Model Best Model Best Model

SE GW GW V AR

p − values
(Models)

0.154
(SE/GW)

0.874
(GW/Gas)

0.657
(GW/Gas)

0.269
(VAR/GW)

0.070
(SE/Gas)

0.279
(GW/GWc)

0.290
(GW/GWc)

0.546
(VAR/Gas)

0.243
(SE/GWc)

0.256
(GW/SE)

0.274
(GW/SE)

0.256
(VAR/Gwc)

0.065
(SE/VAR)

0.306
(GW/VAR)

0.331
(GW/VAR)

0.597
(VAR/SE)

0.595
(SE/ARIMA)

0.502
(GW/ARIMA)

0.214
(GW/ARIMA)

0.304
(VAR/ARIMA)

0.206
(SE/Factor)

0.019
(GW/Factor)

0.197
(GW/Factor)

0.359
(VAR/Factor)

2◦ step Best Model: VAR Best Model: GWc Best Mode: GWc Best Model: -
p − values
(Models)

α = 0.25 0.086
(VAR/GW)

0.007
(GWc/Factor)

0.707
(GWc/ARIMA)

0.049
(VAR/Gas)

0.467
(GWc/Factor)

0.085
(VAR/GWc)

0.029
(VAR/Factor)

α = 0.20 0.086
(VAR/GW)

0.007
(GWc/Factor)

0.467
(GWc/Factor)

0.049
(VAR/Gas)

α = 0.15, 0.10 0.049
(VAR/Gas)

0.007
(GWc/Factor)

α = 0.05 - 0.007
(GWc/Factor)

α = 0.01 - -
3◦ step Best Model: Gas Best Model: Gas Best Model: - Best Model: -
p − values
(Models)

α = 0.25 0.776
(Gas/GW)

0.144
(Gas/Factor)

0.243
(Gas/GWc)

0.075
(Gas/Factor)

α = 0.20, 0.15, 0.10 0.776
(Gas/GW)

0.144
(Gas/Factor)

α = 0.05 0.144
(Gas/Factor)

4◦ step Best Model: GWc Best Model - Best Model - Best Model -
p − values
(Models)

α = 0.25 0.600
(GWc/Factor)
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Table 5: Encompassing (HN) test results. Recursive and Rolling estimation.

Recursive h=1 h=2 h=3 h=6

1◦ step Best Model: SE Best Model: GWc Best Model: GWc Best Model: VAR

F − test
(p−values)

3.16
(0.069)

3.96
(0.041)

5.89
(0.018)

0.94
(0.380)

2◦ step Best Model: GW Best Model: SE Best Model: Gas Best Model: -

F − test
(p−values)

4.12
(0.034)

0.63
(0.543)

2.65
(0.183)

3◦ step Best Model: GWc Best Model: − Best Model: VAR Best Model: -

F − test
(p−values)

2.12
(0.182)

0.87
(0.452)

4◦ step Best Model: Gas Best Model: − Best Model: − Best Model: -

F − test
(p−values)

1.45
(0.281)

Rolling h=1 h=2 h=3 h=6

1◦ step Best Model: SE Best Model: GW Best Model: GW Best Model: VAR

F − test
(p−values)

1.96
(0.064)

3.87
(0.044)

1.85
(0.210)

0.76
(0.517)

2◦ step Best Model: VAR Best Model: GWc Best Model: GWc Best Model: -

F − test
(p−values)

2.80
(0.092)

2.14
(0.180)

0.35
(0.643)

3◦ step Best Model: Gas Best Model: Gas Best Model: VAR Best Model: -

F − test
(p−values)

1.80
(0.99)

1.31
(0.298)

4◦ step Best Model: GWc Best Model: − Best Model: − Best Model: -

F − test
(p−values)

0.26
(0.763)

13



Table 6: Relative RMSFE results. Recursive and Rolling estimation.

Recursive Rolling

Combining method h=1 h=2 h=3 h=6 h=1 h=2 h=3 h=6

Mean

α = 0.25 0.908∗∗∗ 0.933∗∗ 0.937∗∗ - 0.924∗∗ 0.931∗∗ 0.937∗∗ -
α = 0.20 0.908∗∗∗ 0.933∗∗ 0.937∗∗ - 0.928∗∗ 0.931∗∗ 0.397∗∗ -
α = 0.15 0.924∗∗ 0.933∗∗ 0.942∗∗ - 0.928∗∗ 0.931∗∗ - -
α = 0.10 0.924∗∗ 0.933∗∗ 0.942∗∗ - 0.928∗∗ 0.931∗∗ - -
α = 0.05 - 0.933∗∗ 0.942∗∗ - - 0.931∗∗ - -
α = 0.01 - 0.933∗∗ 0.942∗∗ - - - - -
Median

α = 0.25 0.930∗∗ 0.942∗∗ 0.938∗∗ - 0.940∗∗ 0.943∗∗ 0.944∗∗ -
α = 0.20 0.930∗∗ 0.942∗∗ 0.938∗∗ - 0.949∗∗ 0.943∗∗ 0.944∗∗ -
α = 0.15 0.934∗∗ 0.942∗∗ 0.943∗∗ - 0.949∗∗ 0.943∗∗ - -
α = 0.10 0.934∗∗ 0.942∗∗ 0.943∗∗ - 0.949∗∗ 0.943∗∗ - -
α = 0.05 - 0.942∗∗ 0.943∗∗ - - 0.943∗∗ - -
α = 0.01 - 0.942∗∗ 0.943∗∗ - - - - -
Tmean

α = 0.25 0.931∗∗ 0.941∗∗ 0.942∗∗ - 0.944∗∗ 0.941∗∗ 0.941∗ -
α = 0.20 0.931∗∗ 0.941∗∗ 0.942∗∗ - 0.954∗∗ 0.941∗∗ 0.941∗ -
α = 0.15 0.939∗∗ 0.941∗∗ 0.947∗∗ - 0.954∗∗ 0.941∗ - -
α = 0.10 0.939∗∗ 0.941∗∗ 0.947∗∗ - 0.954∗∗ 0.941∗ - -
α = 0.05 - 0.941∗∗ 0.947∗∗ - - 0.941∗∗ - -
α = 0.01 - 0.941∗∗ 0.947∗∗ - - - - -
OLS

α = 0.25 0.979∗∗ 0.990∗∗ 0.985∗∗ - 0.954∗∗ 0.985∗∗ 0.987∗∗ -
α = 0.20 0.979∗∗ 0.990∗∗ 0.985∗∗ - 0.967∗∗ 0.985∗∗ 0.987∗∗ -
α = 0.15 0.997∗ 0.990∗∗ 0.990∗∗ - 0.967∗∗ 0.985∗∗ - -
α = 0.10 0.997∗ 0.990∗∗ 0.990∗∗ - 0.967∗∗ 0.985∗∗ - -
α = 0.05 - 0.990∗∗ 0.990∗∗ - - 0.985∗∗ - -
α = 0.01 - 0.990∗∗ 0.990∗∗ - - - - -

Continued overleaf

14



Table 6: Continued.
Recursive Rolling

Combining method h=1 h=2 h=3 h=6 h=1 h=2 h=3 h=6

WLS (γ = 1)

α = 0.25 0.981∗∗ 0.998∗ 0.971∗ - 1.003 0.996∗ 0.998∗ -
α = 0.20 0.981∗∗ 0.998∗∗ 0.971∗ - 1.002 0.996∗ 0.998∗ -
α = 0.15 0.986∗∗ 0.998∗∗ 0.976∗ - 1.002 0.996∗ - -
α = 0.10 0.986∗∗ 0.998∗∗ 0.976∗ - 1.002 0.996∗ - -
α = 0.05 - 0.998∗∗ 0.976∗ - - 0.996∗ - -
α = 0.01 - 0.998∗∗ 0.976∗ - - - - -
WLS (γ = 3)

α = 0.25 0.982 0.993∗ 1.035 - 1.007 1.017 1.010 -
α = 0.20 0.982 0.993∗ 1.035 - 1.013 1.017 1.010 -
α = 0.15 0.995 0.993∗ 1.041 - 1.013 1.017 - -
α = 0.10 0.995 0.993∗ 1.041 - 1.013 1.017 - -
α = 0.05 - 0.993∗ 1.041 - - 1.017 - -
α = 0.01 - 0.993∗ 1.041 - - - - -
DMSFE (δ = 1)

α = 0.25 0.948∗∗ 0.959∗∗ 0.960∗∗ - 0.963∗∗ 0.953∗∗ 0.958∗∗ -
α = 0.20 0.948∗∗ 0.959∗∗ 0.960∗∗ - 0.974∗∗ 0.953∗∗ 0.958∗∗ -
α = 0.15 0.969∗∗ 0.959∗∗ 0.965∗∗ - 0.974∗∗ 0.953∗∗ - -
α = 0.10 0.969∗∗ 0.959∗∗ 0.965∗∗ - 0.974∗∗ 0.953∗∗ - -
α = 0.05 - 0.959∗∗ 0.965∗∗ - - 0.953∗ - -
α = 0.01 - 0.959∗∗ 0.965∗∗ - - - - -
DMSFE (δ = 0.9)

α = 0.25 0.948∗∗ 0.956∗∗ 0.959∗∗ - 0.954∗∗ 0.939∗∗ 0.944∗∗ -
α = 0.20 0.948∗∗ 0.956∗∗ 0.959∗∗ - 0.967∗∗ 0.939∗∗ 0.944∗∗ -
α = 0.15 0.995∗∗ 0.956∗∗ 0.964∗∗ - 0.967∗∗ 0.939∗∗ - -
α = 0.10 0.995∗∗ 0.956∗∗ 0.964∗∗ - 0.967∗∗ 0.939∗∗ - -
α = 0.05 - 0.956∗∗ 0.964∗∗ - - 0.939∗∗ - -
α = 0.01 - 0.956∗∗ 0.964∗∗ - - - - -

Notes: *, **, *** Indicates rejection of the null hypothesis of equal forecasting accuracy

at 10%, 5%, 1%.
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