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Abstract 

We investigate whether and to what extent multiple encompassing tests may help determine 

weights for forecast averaging in a standard vector autoregressive setting. To this end we 

consider a new test-based procedure, which assigns non-zero weights to candidate models 

that add information not covered by other models. The potential benefits of this procedure 

are explored in extensive Monte Carlo simulations using realistic designs that are adapted to 

U.K. and to French macroeconomic data. The real economic growth rates of these two 

countries serve as the target series to be predicted. Generally, we find that the test-based 

averaging of forecasts yields a performance that is comparable to a simple uniform weighting 

of individual models. In one of our role-model economies, test-based averaging achieves 

some advantages in small samples. In larger samples, pure prediction models outperform 

forecast averages. 
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1 Introduction

It is now well established that forecast combinations often improve forecast

accuracy (Clements and Harvey, 2009). That is, a linear combination of

two or more predictions may yield more accurate forecasts than a prediction

based on a specific model if it successfully extracts useful and independent

information from the component forecasts. A strategy that picks a specific

candidate model ignores this possibility and, consequently, it may result sub-

optimal (Newbold and Harvey, 2002).

Starting from the seminal contribution by Bates and Granger (1969),

econometric researchers have studied various suggestions for the determi-

nation of individual weights in forecast averages, such as uniform weights,

weights derived from information criteria, or weights based on regression over

training samples (for a survey see Clements and Hendry, 1998, and Tim-

merman, 2006). Here, we consider assigning these weights on the basis of

forecast encompassing tests.

The forecast-averaging procedure in focus determines combinations of

model-based forecasts in accordance with the rejection/acceptance decisions

of a multiple encompassing test developed by Harvey and Newbold

(2000). The procedure discards models that are encompassed by their com-

petitors and then forms a new forecast as the arithmetic mean of the predicted

values from the retained models. In extensive Monte Carlo simulations, we

investigate whether and to what extent this procedure may help determine

the weights for forecast averaging in a standard vector autoregressive setting.

Specifically, we consider two simulation designs that are adapted to trivari-

ate core systems for U.K. and French macroeconomic data. Thus, our sim-

ulations rely on potential generating mechanisms for macroeconomic data

rather than on simple but artificial designs. The fact that the data-generating

process (DGP) is a relatively simple trivariate vector autoregression (VAR)

allows studying forecasts in two different types of simulation designs. In the

first design, one of the model classes is the trivariate VAR that contains the

generating mechanism, albeit the parameters are treated as unknown. Har-

vey and Newbold (2005) have demonstrated that the DGP model does

not necessarily forecast-encompass its misspecified rivals in small samples. In

the second design, none of the competing models contains the true structure.

This second design is considered as the more realistic one, since in typical

empirical applications the true data-generating process will be more complex

than any of the utilized prediction models.

Generally, we find that the performance of the test-based averaging of
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forecasts is comparable to a simple uniform weighting of individual models.

The experiment based on the French role-model economy reveals some ad-

vantages for test-based averages in small samples. Benefits of averaging are

strongest for the smallest investigated samples of N = 40. In large samples,

pure prediction models considerably outperform forecast averages, as the en-

compassing tests do not eliminate poor prediction models fast enough for

increasing sample size.

The plan of this paper is as follows. Section 2 describes the new forecast

averaging procedure for combining forecasts. Section 3 outlines the simu-

lation design and the backdrop data. Section 4 reports on the simulation

results. Section 5 concludes.

2 The encompassing test procedure

This section presents the encompassing test procedure used to determine

the weights of combination forecast. The procedure is based on the multiple

forecast encompassing F–test developed by Harvey and Newbold (2000).

Consider M model-based forecasts formed from estimated structures within

M model classes. The aim is to forecast a specific component within a given

vector variable Y . The M candidate models yield series of out-of-sample

forecasts Ŷ
(k)
jt and of forecast errors e

(k)
jt = Yjt − Ŷ

(k)
jt , k = 1, . . . ,M , for any

component j of the considered vector variable.

The simulation experiment studies the prediction of a single specific vari-

able in the vector Y that without loss of generality can be chosen as the

first, Y1t. This allows restricting the evaluation of forecasts to the univariate

mean-squared error criterion. Suppressing the series index, denote the fore-

cast errors series from model k for a given sample of length N as e
(k)
t with

t = N − n + 1, . . . , N , where n is the length of an evaluation sample such

that n << N .

The encompassing test procedure is based on M encompassing regres-

sions:

e
(1)
t = a1(e

(1)
t − e

(2)
t ) + a2(e

(1)
t − e

(3)
t ) + . . . + aM−1(e

(1)
t − e

(M)
t ) + u

(1)
t ,

e
(2)
t = a1(e

(2)
t − e

(1)
t ) + a2(e

(2)
t − e

(3)
t ) + . . . + aM−1(e

(2)
t − e

(M)
t ) + u

(2)
t , (1)

. . .

e
(M)
t = a1(e

(M)
t − e

(1)
(t) ) + a2(e

(M)
t − e

(2)
t ) + . . . + aM−1(e

(M)
t − e

(M−1)
t ) + u

(M)
t .

These homogeneous regressions yield M regression F statistics. A model

k is said to forecast-encompass its rivals if the F statistic in the regression
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with dependent variable e
(k)
t is insignificant at a specific level of significance.

Following the evidence of the forecast-encompassing tests, weighted average

forecasts are obtained according to the following rule. If F–tests reject or ac-

cept the null hypotheses in all M regressions, a new forecast will be formed as

a uniformly weighted average of all model-based predictions M−1
∑M

k=1 Ŷ
(k)
t .

If some F–tests reject their null, only those models that encompass their

rivals are combined in a uniform average forecast.

3 The simulation experiment

3.1 The data

As pointed out in the introduction, we consider two simulation designs. These

designs are adapted to trivariate systems for U.K. and French macroeconomic

data. All data used in the experiment is taken from the OECD Main Eco-

nomic Indicators.

We selected the U.K. and France, as these are—together with Germany,

which fails to offer long series due to the unification episode—the two largest

and most important European economies. The systems include gross domes-

tic product (GDP), the consumer price index (CPI), and the unemployment

rate. Forecasting institutions customarily use such low-dimensional purely

data-based core systems to obtain extrapolation benchmarks for their econo-

metric or judgmental official forecasts. The choice of variables is guided by

the fact that real economic growth, CPI inflation, and the unemployment

rate are the three variables that are most often reported in the media and

are also maybe the only economic quantities that are known to a general

audience. Out of the three variables, our predictions particularly target real

economic growth (growth of real GDP), as this is often regarded as the most

important target variable of economic policy.

With regard to the U.K., we use: GDP at constant price (volume level),

the CPI, and the registered unemployment rate. All series are available at

a quarterly frequency and cover the period 1960:1 to 2008:2. According to

the source, GDP and the registered unemployment rate have been seasonally

adjusted. We prefer the registered unemployment rate to the conventional

unemployment rate based on questionnaires, as it covers a much longer time

period.

With respect to French data, availability of comparable data restricts

the analysis to a much shorter time range, 1978:1-2008:3. Only the CPI
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series would have been available from 1960. The definition of the GDP

volume index is comparable to its U.K. equivalent. Because the OECD Main

Economic Indicators database does not supply a registered unemployment

rate, we use the harmonized unemployment rate. According to the source,

GDP and the unemployment rate have been seasonally adjusted. It should be

noted that the French data does not include the first price oil shock episode,

which may be of interest with regard to enhancing the robustness of our

results.

The empirical analysis uses the growth rates of GDP (X) and of CPI (P ).

For GDP, data are transformed to first differences of logarithms multiplied by

four—a quarterly indicator of annual real growth rates. Figure 1 shows that

this variable is quite volatile for the U.K. and much less for France. Due to its

seasonally adjusted nature, this transformation is preferable to the difference

log Xt − log Xt−4, which would imply a repeated de-seasonalization of the

series. By contrast, inflation is calculated as πt = log Pt − log Pt−4 in order

to eliminate potential seasonality. Finally, unemployment Ut is used without

any further transformation. In symbols, we use Yt = (4∆ log Xt, πt, Ut)
′ or

simply Yt = (Y1t, Y2t, Y3t)
′.

Inflation and the unemployment rate are often subjected to statistical

unit-root tests that fail to reject their null, such that both variables are often

considered I(1). They are admittedly borderline cases, and for short-term

forecasting not too much is lost by viewing these variables as stationary, as

long as the implied multivariate time-series models are stable. Generally,

we found that structures fitted to the data, such as our backdrop trivariate

second-order vector autoregression, are indeed stable in the sense that all

their roots are outside the unit circle.

We note that the U.K. and French data only serve as the basis for our

simulation experiment. We do not assume that we identify the true data-

generating process for these series nor do we intend to really forecast the

British or French economies.

3.2 The data-based simulation design

For the design of the simulation experiments, trivariate vector autoregressive

(VAR) models are fitted to the data. To identify the lag order of the VAR

models, we apply the BIC criterion according to Schwarz (1978). This

4
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Figure 1: Growth rate of real GDP, CPI inflation, and unemployment rate, for

the U.K. (left) and for France (right).
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results in a VAR(2) model of the form:

Yt = µ +
2

∑

j=1

ΦjYt−j + εt,

for t = 3, . . . , N .

Parameter estimates for the U.K. data are:

µ = (1.414, 0.146, 0.047)′,

Φ1 =





−0.141 −0.221 −0.739

0.012 1.406 −0.359

−0.021 0.007 1.712



 ,

Φ2 =





−0.025 0.062 0.785

−0.020 −0.428 0.342

−0.020 0.005 −0.718



 . (2)

In (2), all numbers have been rounded to three decimal digits, while the actual

simulation design uses estimates at the machine precision. For these numbers

at highest precision, the estimated VAR model has six polynomial roots, two

real roots at 0.43 and at 0.95, a complex root pair with a small imaginary

part at 0.90, and a mainly imaginary root pair with low modulus of 0.22.

In summary, the estimated VAR structure is stable. Some of its coefficient

parameters may be statistically insignificant, such that simplification steps

may be rewarding.

The corresponding estimates for the French data are:

µ = (−0.698, 0.617, 0.102)′,

Φ1 =





0.237 0.241 0.035

−0.009 1.253 0.023

−0.068 0.136 1.478



 ,

Φ2 =





0.292 −0.191 0.077

0.026 −0.318 −0.082

−0.037 −0.113 −0.482



 . (3)

This model has four real roots at the locations −0.426, 0.253, 0.543, 0.835,

and an almost real complex root pair at 0.882 ± 0.019i. There are sev-

eral noteworthy differences to the U.K. model. First, evidence on cycles is

much weaker, excepting the semi-annual cycle imposed by the negative root.

Second, dynamic dependence between GDP growth and inflation is less pro-

nounced, while the connection of GDP growth and unemployment is stronger

6



than in the British case. These subtle aspects are not so easy to recognize

from the coefficient structure but they will become obvious in the prediction

experiments.

Note that a lag order of two is common or even ‘recommended’ for

role-model macroeconomic systems (see, for example, Juselius, 2006, or

Lütkepohl, 2005). Alternatively, the popular AIC would yield a much

higher lag order, which may indicate that linear VAR models do not capture

the dynamics of the observed data too well. The visual correspondence of

simulated trajectories with the actual data is satisfactory. From starting val-

ues at the end of the actual data, 2008, we now simulate artificial samples

(‘pseudo-samples’) of given length by drawing errors from a normal distribu-

tion with variance-covariance matrix Σ for both countries’ data. With regard

to the U.K. data, the variance-covariance matrix takes the following form:

Σ =





2.468 −0.137 −0.076

−0.137 0.169 0.007

−0.076 0.007 0.015



 , (4)

which corresponds to the maximum-likelihood estimate from the VAR resid-

uals. At the same time, the diagonal entries of Σ serve as lower boundaries

for mean square forecast errors. It should be noted that restricting all sim-

ulations to Gaussian random variables ensures that the robustness issues

studied by Harvey and Newbold (2000) do not arise.

The analogous matrix for the French data is

Σ =





0.423 0.015 −0.015

0.015 0.035 −0.004

−0.015 −0.004 0.021



 , (5)

which indicates that variation in the GDP growth rate is far lower in the,

concededly also shorter, French series that avoids the turbulence of the OPEC

shocks in the 1970s.

The sample size is varied from N = 40 to N = 500, such that it covers

the typical sample sizes of economic interest. We note that the sample of the

original U.K. data has N = 194 and that of the French data has N = 122.

This may already be at the upper bound of usual macroeconomic analysis,

as many empirical researchers tend to consider the possibility of structural

breaks and institutional change and focus on shorter samples. We wish to

keep the long samples of N = 500 to obtain some evidence on large-sample

performance, i.e. when estimates get close to their true values or at least

asymptotic limits.
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From each pseudo-sample, we keep the last N/4 observations for evalu-

ating predictions. All predictions are based on time-series models with esti-

mated coefficients. For 40 observations, the lower bound of 30 observations

appears to be a binding constraint for useful estimation. The last N/4 − 1

observations are then predicted from expanding windows of t = 1, . . . , n

with n varying from 3N/4 to N − 2. Thus, the last forecast is based on a

more precisely estimated structure than the first, and performance within

one pseudo-sample may be dependent. The comparatively large number of

10,000 replications mitigates such potentially disturbing effects. Note that

the last observation is not contained in this stage of the prediction experi-

ment. It is reserved for the second stage.

Each experiment considers four rival prediction models, M = 4 in the

notation of section 2. The four models yield series of forecast errors e
(k)
jt =

Yjt − Ŷ
(k)
jt for k = 1, . . . , 4 and j = 1, 2, 3. In our analysis, we are interested

only in the prediction of the first variable (j = 1), GDP growth. In order

to determine the weights of the combination forecast, the encompassing test

procedure described in section 2 is applied. We run M = 4 encompassing

regressions for the GDP growth forecast errors, e1t = et. In the first encom-

passing regression, e
(1)
t is the dependent variable:

e
(1)
t = a1(e

(2)
t − e

(1)
t ) + a2(e

(3)
t − e

(1)
t ) + a3(e

(4)
t − e

(1)
t ) + ut. (6)

The dependent variable of the second regression is the forecast error of the

second model e
(2)
t :

e
(2)
t = a1(e

(1)
t − e

(2)
t ) + a2(e

(3)
t − e

(2)
t ) + a3(e

(4)
t − e

(2)
t ) + ut.

In all these regressions, t runs from 1 + 3N/4 to N − 1. These two encom-

passing regressions are followed by two more analogous regressions with e
(k)
t ,

k = 3, 4 on the left side. When the corresponding regression F statistic in

(6) is insignificant at a specific level of significance, the first model is said to

forecast-encompass its rivals. In our analysis we evaluate the procedure at

the customary significance levels of 1%, 5%, and 10%.

Following the evidence of the forecast-encompassing tests procedure, weighted

average forecasts are then formed according to the following rule: if all four

tests reject or all accept their null hypotheses, the forecast will be a uniformly

weighted average of all models; if some F–tests reject their null, only those

models that encompass their rivals will be used in an otherwise uniform aver-

age. The encompassing tests are applied to the N/4−1 predictions that were

generated in the first stage. They determine a weighted prediction average

8



for the observation at position N . To assess the performance of the encom-

passing test procedure, we compare the mean square errors derived from the

forecast combination based on the simple uniform weights and those based

on the weights selected by the encompassing rule.

4 Evaluating prediction by sets of rival mod-

els and combinations

This section reports two simulation experiments that investigate the perfor-

mance of the encompassing test procedure in a realistic environment. In the

first experiment, one model class contains the data-generating structure (see

Harvey and Newbold (2000) for a simulation experiment in the case of

two competing models). In the second one, all models are ‘misspecified’.

4.1 A set that includes the generating model

All our forecasts are model-based. They are versions of Ŷt defined by

Ŷt = µ̂ +

p
∑

j=1

ÂjYt−j, (7)

where Â denotes an estimate of a coefficient matrix. In the following, we

use two forms of notation to denote predictions. If no confusion about the

prediction horizon can arise, Ŷt denotes a forecast for Yt using data up to

t − 1. Alternatively, Ŷt−h(h) is an h–step prediction using information until

and including time point t − h for the time point t. This latter notation

corresponds to the one used by Chatfield (2001). Note that, for one-step

forecasts, Ŷt = Ŷt−1(1).

In our first experiment, we use four model structures: the trivariate au-

toregression; two bivariate autoregressions, one for the target GDP growth

series and inflation (V AR2π) and one for GDP growth and unemployment

(V AR2u); and a univariate autoregression. These models can be expressed

by respective restrictions on the matrices Âj for all j as follows: unrestricted

matrices; elements at (1,3) equal 0; elements at (1,2) equal 0; elements at

(1,2) and at (1,3) equal 0.

Empirically, lag structures are determined by minimizing BIC, where a

maximum lag order pmax is set depending on N . In detail, pmax = 4 for

N = 40, pmax = 8 for N = 100, 200, and pmax = 12 for N = 500. These
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maxima are not often binding, as the BIC search typically finds low lag

orders.

In all experiments, we ran unreported control simulations, in which we

substituted AIC lag-order searches for BIC lag-order searches. Generally,

AIC yields worse results. In small samples, AIC tends to identify too large

lag orders, and this tendency is even more pronounced in multivariate rather

than univariate models. For this reason, the univariate AR model dominates

all its rival models convincingly. The critical issue may be related to the ap-

proximation in small samples that has given rise to ‘corrected’ versions, such

as AICu and AICc (see McQuarrie and Tsai, 1998). While such modifi-

cations mitigate the underlying problem somewhat, we feel that the stronger

penalty of BIC is the better choice in our modelling environment. This is

seemingly in contradiction to the traded wisdom that AIC is to optimize

asymptotic forecast performance at the cost of over-estimating lag orders.

The first model class contains the DGP. All other models are in the

strict sense ‘misspecified’, as the univariate or bivariate marginal models

of a trivariate VAR are ARMA rather than autoregressive and would typi-

cally impose an infinite lag order for autoregressive approximations. Clearly,

in small samples such approximations can be helpful for prediction, and this

presumption will generally be corroborated in the experiments.

Due to the BIC search for lag orders, the four models are non-nested.

Thus the anomalies described, for example, by Clark and McCracken

(2001) should not arise. In nested models, forecasts based on different mod-

els coincide in large samples, which invalidates the standard distributions of

encompassing statistics. In our model set with different dimensions, how-

ever, the higher-dimensional prediction models have lower lag orders than

the lower-dimensional models.

The upper panel of Table 1 evaluates the prediction performance of these

four models for the U.K. design. While in the large samples (N = 500) the

data-generating model class outperforms all its rivals, the bivariate model

that includes inflation shows a better performance for moderate samples

(N = 100), and the parsimonious univariate autoregression is preferred for

very small samples. The lower panel gives the results for the France design.

These are comparable, with the preferred V AR2u model substituting the

V AR2π model.

Table 2 reports the performance of the forecast combinations based on

the simple uniform weights and of those based on the weights selected by the

encompassing rule. In both designs, differences in terms of forecast accuracy

are very small. The encompassing test-based weighting beats the uniform

10



Table 1: Mean squared errors (MSE) for candidate models.

N V AR3 V AR2 π V AR2 u AR

U.K. design

40 3.5014 3.0063 3.3283 2.9148∗

100 2.7667 2.6689∗ 2.7648 2.7508

200 2.5905 2.5842∗ 2.6416 2.6988

500 2.5155∗ 2.5397 2.5908 2.6746

σ2 2.468

France design

40 0.5794 0.5523 0.5421 0.5125∗

100 0.4777 0.4786 0.4573∗ 0.4639

200 0.4434 0.4493 0.4400∗ 0.4450

500 0.4310∗ 0.4394 0.4320 0.4379

σ2 0.423

Note: N is the sample size. V AR3 denotes the trivariate VAR; V AR2 is

the bivariate VAR, with its two versions, including GDP growth and π or u;

AR denotes the univariate autoregression. σ2 is the theoretical error variance

that serves as a lower bound. Asterisks mark the optimum among comparable

predictions.
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weighting at N = 500 only.

While accuracy smoothly improves as T rises from 40 to 200, there is

a drop in accuracy for the largest sample of T = 500. Note that it has

no parallel in the performance of the pure models reported in Table 1. We

also note that for N = 100 and N = 200 weighted model averages are

slightly better than pure models—notwithstanding the mentioned limited

comparability between pure and weighted predictions—while this order is

reversed for N = 500. Potential sources for this feature are the dependence

within the replications and also the fact that even the test-based weighting

eliminates poor forecasting models rather slowly as N increases (see Table

3).

Table 2: Mean squared errors (MSE) for weighted averages.

N uniform 1% 5% 10%

U.K. design

40 2.8955∗ 2.8959 2.8985 2.9094

100 2.6587∗ 2.6650 2.6714 2.6748

200 2.5681∗ 2.5727 2.5788 2.5802

500 2.6242 2.6231∗ 2.6267 2.6293

σ2 2.468

France design

40 0.4943∗ 0.4944 0.4958 0.4977

100 0.4577∗ 0.4579 0.4587 0.4603

200 0.4378∗ 0.4380 0.4387 0.4391

500 0.4474 0.4473 0.4473∗ 0.4473

σ2 0.423

Note: Asterisks mark the optimum among comparable predictions.

Typically, the weights are almost uniform for the significance level of 1%

and become more specific, as the significance becomes looser. For the case of

10%, i.e. for the specification with the strongest deviation from uniformity,

Table 3 gives the average weights. For small samples, even these weights are

close to the uniform distribution with 0.25 allotted to each model. Even at

the largest sample size N = 500, the ‘true’ model class achieves less than

40% but starts dominating its rivals.

In the U.K. design, the univariate model is often encompassed and its av-

erage weight drops below 10% for N = 500. The unsatisfactory performance

of the implied average (see Table 2) shows that it is still too often in the set of

12



non-encompassed models and thus deteriorates the prediction MSE relative

to the pure trivariate model. In the French design, a similar remark applies

to the bivariate model with inflation, whose performance as a pure model

tends to be palpably poorer than that of the rival models. Nonetheless, it

still receives a weight of almost 20% .

Table 3: Test-based procedure weights for models at 10% significance level

N V AR3 V AR2 π V AR2 u AR

U.K. design

40 0.229 0.261 0.239 0.271

100 0.238 0.274 0.238 0.250

200 0.276 0.290 0.235 0.199

500 0.393 0.320 0.195 0.092

France design

40 0.237 0.246 0.251 0.265

100 0.232 0.229 0.276 0.263

200 0.256 0.221 0.272 0.250

500 0.324 0.182 0.290 0.204

4.2 A set that excludes the generating model

In our second experiment, we omit the generating trivariate model from the

forecasting structures. We replace it with a bivariate model V AR2Sπ that

contains the target GDP growth rate and the rate of inflation. There are two

differences with respect to the basic VAR model V AR2π. First, lag orders

are searched for ‘own’ lags and for ‘foreign’ lags independently. In terms

of the restrictions on coefficient matrices, this model corresponds to zero

restrictions on the (1,3), (2,1), and (2,3) elements of Â. This specification

allows for a longer lag length in the diagonal of the VAR structure (see Sims,

1972). Second, the inflation rate is modelled as a fully ‘exogenous’ variable in

the sense that it is modelled univariately and the potential dynamic feedback

from output to inflation is ignored. This implies the following structure

Y1,t = µ1 +

p1
∑

j=1

ajY1,t−j +

p2
∑

j=1

bjY2,t−j + εt,1,

Y2,t = µ2 +

p3
∑

j=1

cjY1,t−j + εt,2, (8)
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where Y1 denotes GDP growth and Y2 indicates inflation. Lag orders pj,

j = 1, . . . , 3, are separately determined by BIC minima for the two equations.

Table 4: Mean squared errors (MSE) for candidate models.

N V AR2S π V AR2 π V AR2 u AR

U.K. design

40 2.9723 3.0063 3.3238 2.9148∗

100 2.6209∗ 2.6689 2.7648 2.7508

200 2.5545∗ 2.5842 2.6416 2.6988

500 2.5281∗ 2.5397 2.5908 2.6748

σ2 2.468

France design

40 0.5627 0.5523 0.5421 0.5125∗

100 0.4867 0.4786 0.4573∗ 0.4639

200 0.4578 0.4493 0.4400∗ 0.4450

500 0.4396 0.4394 0.4320∗ 0.4379

σ2 0.423

Note: V AR2π denotes the bivariate VAR model with GDP growth and infla-

tion, V AR2Sπ is similar but uses exogenous inflation, V AR2u is the bivariate

VAR with GDP growth and the unemployment rate, and AR is the univari-

ate AR model. σ2 is the true errors variance. Asterisks mark the optimum

among comparable predictions.

Table 4 reports results on the forecast accuracy for the four basic models.

In the U.K. design, the univariate model dominates for very small samples

(N = 40), but the bivariate model with the sophisticated lag search outper-

forms all other models for N = 100 and larger samples. The lower panel of

Table 4 gives parallel results for the French data design. We already noted

that the link between inflation and GDP growth is weaker than in the British

case, and that the link between growth and unemployment is much stronger.

Thus, the sophisticated model V AR2Sπ appears less promising, and this con-

jecture is confirmed by Table 4. As in the U.K. design, the univariate model

outperforms its rivals for the small sample of N = 40, while the bivariate

model with unemployment achieves the best accuracy for N = 100 and larger

N . It would be an obvious suggestion to perform the sophisticated lag search

on the other bivariate combination V AR2u, but we wanted to keep designs

for the two countries comparable as much as possible.

The upper panel of Table 5 shows that the weighted average based on
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encompassing tests is marginally worse than the uniformly weighted average

for the U.K. design. For N = 40, both types of model averages beat even the

best individual model, which corroborates the idea of model averaging, in the

sense that each model picks up some dynamics that others miss, such that

each of them contributes to improving the prediction. The lower panel of

Table 5 gives comparable results for the French design. Test-based averages

are better than simple uniform averages in this case, and the local optimum

appears to be at the 1% significance level, excepting the largest sample size.

Only for N = 40, do the averaged forecasts outperform the pure strategies

of Table 4.

Table 6 shows the corresponding average weights for all models at the

significance level of 10%. Apparently, weights are approximately uniform for

N = 100 and N = 200. At N = 40, the univariate model still has a larger

weight on average than its rivals. At N = 500, the univariate autoregression

falls behind for the U.K. design, while it still receives a sizeable weight for

France. In both designs, the relative weight on the ‘preferred’ model increases

monotonically, as N rises. It is only the preferred model that differs: for

the U.K. V AR2Sπ, for France V AR2Su. For brevity, we do not report the

weights for the other significance levels. By construction, these tend to be

more uniform than the 10% weights.

In this simulation experiment, a technical problem arises in small and in

large samples: the selected lag orders often coincide for the model V AR2π

and V AR2Sπ with respective sophisticated and block search. This occurs in

19% of the U.K. design cases for N = 40 and still in 4% for N = 100. For

the French-data design, where the link between output growth and inflation

is weaker, this feature re-increases for large N , and both searches lead to

identical lag orders in 97% of all replications at N = 500. In these cases, we

chose to exclude one of the two identical forecasts, say V AR2Sπ, and to run

the encompassing search over the remaining three models.

Table 5 indicates that the prediction error re-increases as N increases

from 200 to 500, in analogy to our first experiment reported in Table 2. This

observation holds for both designs and points to problems in the large-sample

asymptotic behavior of the weighting search. Uniform weighting suffers from

the large weight given to the comparatively poor univariate predictions, and

also test-based weighting may gain from modifications in the significance

level. Contrary to typical statistical recommendations, increasing the signifi-

cance level beyond 10% in larger samples may help to drop inferior prediction

models from the weighted average. In further unreported experiments, we

found that the performance of test-based weighted forecasts improves con-
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Table 5: Mean squared errors (MSE) for weighted averages.

N uniform 1% 5% 10%

U.K. design

40 2.8177∗ 2.8236 2.8300 2.8360

100 2.6403∗ 2.6456 2.6532 2.6562

200 2.5652∗ 2.5673 2.5790 2.5802

500 2.6276∗ 2.6319 2.6356 2.6375

σ2 2.468

France design

40 0.4970 0.4939∗ 0.4953 0.4967

100 0.4618 0.4603∗ 0.4605 0.4608

200 0.4419 0.4413∗ 0.4414 0.4415

500 0.4511 0.4501 0.4499 0.4497∗

σ2 0.423

Note: see Table 4.

Table 6: Average weights for rival prediction models in the 10% decision.

N V AR2S π V AR2 π V AR2 u AR

U.K. design

40 0.139 0.291 0.273 0.297

100 0.238 0.269 0.248 0.246

200 0.297 0.271 0.242 0.190

500 0.355 0.307 0.234 0.103

France design

40 0.096 0.292 0.303 0.308

100 0.132 0.261 0.314 0.292

200 0.081 0.274 0.347 0.298

500 0.005 0.279 0.418 0.299

Note: see Table 4.
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siderably at extremely loose significance levels for N = 500.

At conventional significance levels, test-based weighting does not out-

perform the uniform control average for the U.K. design. With respect to

the French data design, however, test-based weighting outperforms uniform

weighting. The average weights (see Table 6) reveal that the model V AR2Sπ

is selected slightly less often in small samples than the other candidates. In

large samples, it gives identical forecasts to V AR2π and is, as mentioned

before, excluded from the race.

It should be noted that the comparability of the MSE reported in Table

4 and 5 is limited, as the former values are averages over 10, 000(N/4 − 1)

squared errors, while the latter values just average 10,000 replications. This

discrepancy is strongest for large N . When N = 500, the Table 4 values

summarize predictions based on 375 up to 498 observations, while Table 5

uses independent samples of 499 observations. For this reason, the slightly

larger numbers in Table 5 do not prove convincingly that model averages are

generally worse than pure models.

4.3 Iterated multi-step prediction

This subsection extends the previous analysis for the one-step horizon to

multiple-step ahead forecasts. The focus is now exclusively on the simulation

design that excludes the generating model class, as we feel it is the more

realistic one and therefore of more practical relevance. In most empirical

applications, it is plausible to assume that the data-generating model is far

more complex than any of the utilized prediction models.

Traditionally, there are two ways to tackle the problem of multi-step

prediction using linear time-series models. The first one is to plug in the

predictions at smaller step sizes for the unknown data. This method is of-

ten called iterative prediction. The second one is to gauge model selection

specifically to the task of multi-step prediction by restricting the first few

lags to zero. This method is often called direct prediction (see, for example,

Marcellino et al., 2006), and we will report on it in the next subsection.

In this subsection, we focus on iterated prediction. Table 7 gives the re-

sults for horizons 2 to 4 for both designs. As N increases, the emphasis shifts

from the univariate AR model to the preferred structures for both countries,

i.e. to the V AR2Sπ model for the U.K. and the V AR2u for France. Fore-

cast errors increase only moderately with the horizon, reflecting the strong

autocorrelation in economic growth.

Table 8 summarizes the corresponding statistics for combined forecasts.
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Table 7: Mean squared errors (MSE) for candidate models.

N V AR2S π V AR2 π V AR2 u AR

U.K. design

horizon 2

40 2.8588 2.8724 3.1710 2.8195∗

100 2.6061∗ 2.6356 2.7349 2.7148

200 2.5633 2.5808∗ 2.6434 2.6846

500 2.5495∗ 2.5564 2.6082 2.6722

horizon 3

40 2.8799 2.8752 3.1982 2.8208∗

100 2.6185∗ 2.6287 2.7284 2.7190

200 2.5762∗ 2.5808 2.6462 2.6878

500 2.5621∗ 2.5645 2.6169 2.6759

horizon 4

40 2.9220 2.9180 3.3131 2.8285∗

100 2.6392∗ 2.6496 2.7514 2.7210

200 2.5921∗ 2.5956 2.6621 2.6888

500 2.5769∗ 2.5781 2.6309 2.6773

France design

horizon 2

40 0.6140 0.6003 0.5755 0.5454∗

100 0.5208 0.5129 0.4850∗ 0.4932

200 0.4889 0.4809 0.4669∗ 0.4755

500 0.4707 0.4705 0.4586∗ 0.4688

horizon 3

40 0.7151 0.6965 0.6583 0.6201∗

100 0.5798 0.5775 0.5474∗ 0.5520

200 0.5488 0.5459 0.5246∗ 0.5368

500 0.5325 0.5323 0.5133∗ 0.5298

horizon 4

40 0.7588 0.7371 0.6864 0.6448∗

100 0.5949 0.5947 0.5601∗ 0.5659

200 0.5625 0.5610 0.5361∗ 0.5505

500 0.5465 0.5463 0.5242∗ 0.5434

Note: see Table 4.
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Table 8: MSE for averaged prediction.

N uniform 1% 5% 10%

U.K. design

horizon 2

40 2.7750∗ 2.7761 2.7795 2.7817

100 2.6441∗ 2.6454 2.6493 2.6539

200 2.5800∗ 2.5828 2.5862 2.5885

500 2.6559∗ 2.6559∗ 2.6633 2.6667

horizon 3

40 2.7648∗ 2.7667 2.7684 2.7745

100 2.6524∗ 2.6544 2.6598 2.6574

200 2.5917∗ 2.5945 2.5994 2.6032

500 2.6603 2.6601∗ 2.6643 2.6655

horizon 4

40 2.7944∗ 2.7945 2.7978 2.8054

100 2.6648∗ 2.6665 2.6700 2.6742

200 2.6029∗ 2.6059 2.6093 2.6100

500 2.6714∗ 2.6732 2.6770 2.6778

France design

horizon 2

40 0.5252 0.5251 0.5244∗ 0.5255

100 0.4938 0.4932∗ 0.4933 0.4941

200 0.4721 0.4721 0.4712∗ 0.4716

500 0.4804 0.4789 0.4786 0.4783∗

horizon 3

40 0.5900 0.5885 0.5877 0.5866∗

100 0.5509 0.5505 0.5498 0.5494∗

200 0.5313 0.5298∗ 0.5299 0.5304

500 0.5293 0.5255∗ 0.5264 0.5268

horizon 4

40 0.6134 0.6094 0.6076 0.6053∗

100 0.5635 0.5612 0.5606∗ 0.5617

200 0.5438 0.5422 0.5413 0.5412∗

500 0.5429 0.5388∗ 0.5405 0.5404

Note: see Table 4.
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Generally, the multi-step evidence conforms qualitatively to the single-step

results reported in subsection 4.2. With respect to the U.K. design, uniform

weighting dominates test-based weighting at the investigated significance lev-

els at the smaller sample sizes. At N = 500, test-based weighting is on a par

with uniform weights, whereas its performance again deteriorates relative to

smaller samples and pure models. For the French design, test-based weights

tend to outperform the uniform benchmark but performance is flat across

significance levels, giving no recommendation on behalf of risk levels.

4.4 Multi-step prediction by direct modelling

As an alternative to the traditional plug-in method of h–step forecasting,

some authors consider ‘direct’ models of the form

Yt = µ +

p
∑

j=h

ΦjYt−j + εt, (9)

which are subset models of the ordinary VAR(p) with the restriction Φj = 0

for j < h. Among these models, an optimum lag order p can again be

determined by information criteria, and the value Ŷt(h) calculated as

Ŷt(h) = µ̂ +

p
∑

j=h

Φ̂jYt+h−j−1 (10)

serves as an h–step predictor of Yt+h. The evidence on the relative advantages

of this method is fragile, and many studies appear to give some preference

to the plug-in method (see Marcellino et al., 2006, and Schorfheide,

2005).

Tables 9 and 10 show that the direct modelling method is less efficient

than iterated forecasting at all horizons for both the U.K. and French design.

The differences between the two approaches, however, are not homogeneous

across sample sizes, and direct modelling shows its relatively best perfor-

mance at N = 40. Again, MSE values for the averaged predictions provide

uncertain recommendations with regard to the optimum significance levels.

5 Conclusion

This paper considers a method of forecast averaging that determines the

weights for forecast combinations in accordance with the rejection/acceptance
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Table 9: Mean squared errors (MSE) for candidate models by direct mod-

elling.

N V AR2S π V AR2 π V AR2 u AR V AR2S π V AR2 π V AR2 u AR

U.K. design France design

horizon 2

40 3.358 3.277 3.652 2.925∗ 0.652 0.648 0.608∗ 0.608

100 2.655∗ 2.691 2.781 2.732 0.573 0.575 0.553∗ 0.564

200 2.595∗ 2.617 2.674 2.686 0.558 0.559 0.538∗ 0.555

500 2.571∗ 2.578 2.630 2.667 0.552 0.551 0.531∗ 0.551

horizon 3

40 3.349 3.366 3.573 2.984∗ 0.731 0.726 0.666 0.656∗

100 2.706∗ 2.730 2.806 2.754 0.605 0.606 0.578∗ 0.584

200 2.637∗ 2.653 2.699 2.705 0.576 0.579 0.557∗ 0.570

500 2.611∗ 2.616 2.655 2.685 0.564 0.567 0.545∗ 0.563

horizon 4

40 3.399 3.412 3.553 3.034∗ 0.750 0.750 0.679 0.672∗

100 2.757∗ 2.776 2.835 2.766 0.622 0.623 0.594 0.593∗

200 2.677∗ 2.690 2.713 2.710 0.586 0.587 0.567∗ 0.575

500 2.648∗ 2.649 2.665 2.690 0.571 0.573 0.553∗ 0.568

Note: see Table 4.
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Table 10: MSE for averaged prediction by direct modelling.

N uniform 1% 5% 10% uniform 1% 5% 10%

U.K. design France design

horizon 2

40 2.847∗ 2.856 2.860 2.860 0.577 0.573∗ 0.574 0.575

100 2.673∗ 2.678 2.680 2.684 0.562 0.560 0.561 0.560∗

200 2.601∗ 2.603 2.609 2.610 0.549 0.548 0.547∗ 0.547

500 2.661∗ 2.663 2.667 2.669 0.548 0.545 0.544 0.544∗

horizon 3

40 2.897 2.894 2.892∗ 2.899 0.625 0.616 0.613 0.612∗

100 2.712∗ 2.714 2.716 2.721 0.579 0.575∗ 0.575 0.575

200 2.630∗ 2.632 2.638 2.639 0.561 0.558∗ 0.559 0.559

500 2.691∗ 2.694 2.693 2.699 0.561 0.559 0.559∗ 0.559

horizon 4

40 2.899 2.888∗ 2.891 2.888 0.637 0.622 0.619 0.617∗

100 2.755∗ 2.755 2.756 2.762 0.592 0.583∗ 0.584 0.585

200 2.657∗ 2.659 2.662 2.665 0.571 0.567∗ 0.569 0.569

500 2.719∗ 2.721 2.729 2.733 0.571 0.569∗ 0.569 0.571

Note: see Table 4.
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decision of a multiple encompassing test developed by Harvey and New-

bold (2000). Using simulation designs that are adapted to trivariate systems

for U.K. and French data, we investigate the implications of this method on

the accuracy of forecasts in a vector autoregressive framework. While one

simulation design considers a model that contains the data-generating mech-

anism, in a second design all models are ‘misspecified’.

In the design that includes the generating model class, univariate mod-

els dominate at the smallest sample size, while only at the largest sample,

N = 500, does the trivariate structure outperform its rival models. This re-

sult seems to be relevant, as the three variables in our core models are known

to have relatively strong dynamic interdependence. Regarding the forecast

combination, model averaging shows its strength when the sample size is

small, while in larger samples model averages become less attractive. By

construction, naive uniform averaging assigns considerable weights to infe-

rior rivals, and even the test-based weighting procedure discards the inferior

model quite slowly.

If the simulation design excludes the generating model, averaging again

gains the best performance in small samples, while in larger samples averag-

ing becomes unattractive and even leads to a deterioration in performance

as the sample size grows. In the experiment based on French data, the test-

based weighting scheme outperforms naive averages at all sample sizes.

All simulation experiments consider three customary significance levels

for the encompassing test in the averaging procedure. Unfortunately, our

results do not provide any clear recommendation regarding the optimum

significance level. The performance of our procedure in different data-based

designs and in even larger samples than N = 500 may be of interest in this

regard. We leave such experiments for our future research work.
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