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1 Introduction

Since the possibly first contribution to the literature by Dickey et
al. (1984), various authors have developed statistical test procedures
for the discrimination of seasonal unit roots and purely determinis-
tic seasonality in time series (for a survey on this literature and for
the properties of the two model classes, see Ghysels and Osborn,
2001). Like the popular HEGY test by Hylleberg et al. (1990), most
tests were created in a parametric autoregressive framework, where
unit roots are the null and their non-existence is the alternative. The
reverse tests by Caner (1998), Canova and Hansen (1995), and
Tam and Reinsel (1997) can be viewed as semi-parametric, how-
ever, with their null of a deterministic cycle and the background of an
unobserved-components structure, as it is more typical of the litera-
ture on seasonal adjustment rather than seasonal models. Hitherto,
fully non-parametric tests on seasonal unit roots have not been in
usage. It is the aim of this paper to consider this possibility.

For non-seasonal unit roots, So and Shin (2001) and Aparicio et
al. (2006, AES) developed genuine non-parametric testing procedures.
Such tests are most commonly applied in the presence of non-linear
features (for example, see Choi and Moh, 2007). The tests exploit
properties of time series that are not linked to moments but are nev-
ertheless characteristic of integrated versus stationary processes, such
as sign changes, zero crossings, or the occurrence of new extrema. By
construction, sign and extrema features are robust or even entirely
invariant to nonlinear transformations of variables and to occasional
but rare outliers and level shifts. For this reason, nonparametric tests
can be helpful if nonlinear transformations of linear time-series models
are plausible data-generating mechanisms and also if the error process
indicates strong deviations from the normal distribution. The ob-
vious drawback is that nonparametric tests lack power as compared
with parametric tests if the investigated time series indeed conform to
standard assumptions.

A less obvious drawback for nonparametric testing for unit roots
is that the ideas typically rely on properties of pure random walks.
The generalization of random walks to integrated processes imposes
problems, as the serial correlation of increments invalidates the un-
derlying statistical results. Thus, while the frequency of new extrema
in the logarithm of a random walk with positive values is the same as
in an untransformed random walk, it is severely affected if the first
difference of the observed variable follows a stable autoregression. A
suggestion is then to filter the original data in order to remove auto-
correlation. To that aim, one may consider frequency-domain filters
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or conditioning on lags, as in the ‘augmentation’ of the Dickey-Fuller
test. In this paper, we follow the latter route and condition on some
lags determined by an auxiliary regression.

Intuitively, it may appear simple to construct a non-parametric
test for seasonal unit roots on the basis of by-season time-series plots,
as they have been suggested by Franses (1994, 1996) and are being
implemented into major software programs. Usually, occurring inter-
sections among seasons—in most cases, quarters—are interpreted as
evidence on changes in the seasonal pattern. However, this informal
test is unlikely to be very rigorous, as variables with a weak seasonal
pattern will intersect even more frequently. For this reason, we con-
sider a test that parallels the known test procedure by Aparicio et
al. (2006) in a context of possible seasonal unit roots.

This paper is organized as follows. Section 2 sets up the testing
problem of interest and defines the maintained model. Section 3 con-
siders the simple testing idea of monitoring seasonal crossings that
was outlined above. Section 4 introduces our RURS (records unit
root seasonal) test, a seasonal variant of the AES procedure. Sec-
tion 5 presents some Monte Carlo simulations for assessing the size
and power properties of the test. Section 6 considers the issue of ro-
bustness of the test to extended maintained hypotheses. Section 7
addresses the RURS test at the monthly frequency. Section 8 reports
the application of the test to economics examples. Section 9 concludes.

2 The testing problem

We wish to consider time-series variables that are generated by auto-
regressions—possibly with unit roots—that are superseded with de-
terministic cycles and possibly a linear trend function. That is, xt for
t = 1, 2, . . . , n is assumed to follow

xt = x∗
t +

4
∑

j=1

γ∗
j Djt + c∗t, (1)

with the purely stochastic autoregressive process (x∗
t ), where Djt de-

notes the usual seasonal dummy variables. For t = 0, . . . ,−3, xt has
some given non-stochastic starting values. At first, we constrain the
autoregressive lag order to be less equal four, such that the AR(4)
model

x∗
t =

4
∑

j=1

a∗jx
∗
t−j + zt

with white-noise zt and starting values x∗
t = 0 for t ≤ 0 is correctly

specified. The process (zt) is Gaussian white noise in the most re-
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stricted specification. More general conditions will be introduced be-
low.

In the spirit of testing for seasonal unit roots, the focus is not on
the properties of the deterministic cycle. In other words, a model
with γ∗

j = γ∗ is seen as a special case of a model with ‘deterministic
seasonality’ if the purely stochastic part (x∗

t ) does not have seasonal
unit roots.

The presentation here is tuned to the case of quarterly time series
with the periodicity of four. The generalization to the monthly case
or to any other periodicity is straight forward. However, these cases
demand for some complexity in notation and introduce some subtle
problems that will be addressed in Section 7.

In the representation (1), the interpretation of the constant 4−1
∑4

j=1 γ∗
j

is independent of the unit-root event H0 :
∑4

j=1 a∗j = 1. It is an av-
erage mean of the process (xt) following linear de-trending by c∗t.
Potential drift under H0 is handled by the trend coefficient c∗.

The process (xt) has an interesting alternative parameterization
that is sometimes called the ‘spectral’ or ‘cycles’ representation:

∆4xt = µ + a1

(

x
(1)
t−1 + ct

)

+ a2

(

x
(2)
t−1 − γ2(−1)t

)

+a3∆2xt−2 + a4∆2xt−1

− (a3 + a4)
2 (γ3st−2 + γ4st−1) + zt, (2)

with the notation

x
(1)
t = xt + xt−1 + xt−2 + xt−3,

x
(2)
t = xt − xt−1 + xt−2 − xt−3,

∆mxt = xt − xt−m, m = 2, 4,

st = sinπt/2.

It is not difficult to see that equations (1) and (2) describe the
same model class. The equivalence of the customary parameteriza-
tion (a∗1, . . . , a

∗
4) of a fourth-order autoregression and (a1, . . . , a4) is

the basis for the traditional HEGY test. The correspondence between
the drift term c∗ and the intercept µ is rather trivial, and the transi-
tion between (γ∗

j , j = 1, . . . , 4) and (γj , j = 1, . . . , 4) follows from the
details in Smith and Taylor (1999). Note that the parameter di-
mension of representation (2) exactly corresponds to model (1), with
4−1µ denoting the drift under H0 and the added linear trend only
activated under HC

0 .
The handling of the deterministic terms serves as a ‘bridle’ that

contains implausible expansion at the seasonal frequencies. Similar
bridle devices are common in multivariate models (see Johansen,
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1995) to contain trending behavior at the zero frequency in the case
of unit roots. For a similar purpose, Dickey and Fuller (1979)
suggested F–tests for the joint hypothesis of a unit root and zero con-
stant. Note, however, that model (1) does not restrict the trend at
the zero frequency. The effects of constants at the trend frequency
and of deterministic cycles at the seasonal frequencies are different.
A constant together with a unit root at +1 generates a linear trend
in xt, which is not an implausible specification for economic data. A
trigonometric cycle together with a unit root at −1 or at ±i gener-
ates linear expansion of seasonal cycles, which may be regarded as
implausible. See Franses and Kunst (1999) for a similar argument
in multivariate seasonal models.

The spectral representation (2) is important for our purposes, as
it directly motivates testing for the aj coefficients in order to check
events of seasonal unit roots. It is obvious that (xt) ‘has a unit root
at +1’ if and only if a1 = 0, and it ‘has a unit root at −1’ iff a2 = 0.
The unit roots at ±i can only occur jointly, and they do so if and
only if (a3, a4) = (0, 0). The spectral representation also serves as a
device for generating alternatives in the reported simulations, where
γj rather than γ∗

j values will be set.
The range of admissible (zt) terms is constrained by the so-called

Berman condition, which suffices for the derivation of extremal prop-
erties. Our first assumption concerns the parametric space that we
wish to investigate as the maintained hypothesis, the second assump-
tion concerns the properties of the errors process. Throughout, we use
B to denote the lag operator.

Assumption 1 There is a representation

(1 − B)m1(1 + B)m2(1 + B2)m3xt = x̃t,

such that (x̃t) is stationary, where mj ∈ {0, 1} for j = 1, . . . , 3. The
representation is unique if mj is defined as the minimum value that
achieves stationarity in x̃t.

The word ‘stationary’ is meant to include the possibility of transi-
tory deviations from strict stationarity due to starting values and to
allow for an added four-periodic deterministic cycle and a linear time
trend. Assumption 1 is roughly equivalent to the following one:

Assumption 1 (′) The polynomial Φ(z) defined by

Φ(z) = 1 − z4 − a1(z + z2 + z3 + z4) − a2(z − z2 + z3 − z4)

−a3(z
2 − z4) − a4(z − z3)
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has no roots outside the set

{z ∈ C : |z| > 1} ∪ {±1,±i},

and all roots within the latter set have multiplicity one.

Note that Φ(z) can be even uniquely defined if the generating law
is an AR process with p > 4, for example by splitting off the roots
with largest modulus. This would take care of the case of more general
stationary but serially correlated zt, for example stationary ARMA.

These assumptions exclude explosive roots, multiple unit roots,
and unit roots at bizarre frequencies. We use the term ‘bizarre’ to
describe unit roots at values different from the main spectral fre-
quencies. For example, the second-order autoregressive model yt =
φ1yt−1 + φ2yt−2 + εt has the well known triangular stability area for
its coefficients. One of the boundaries of the triangle, the open hor-
izontal line segment {(φ1,−1),−2 < φ1 < 2}, describes models with
bizarre frequencies, excepting the point (0,−1). Such unit roots are
rare in empirical applications.

Assumption 1 is satisfied for small negative a1 and small positive
a2 and a3. The coefficient a4 interacts with a3 in a complicated way.
For a3 > 0, the model will remain stable for a relatively wide range of
a4 values.

Assumption 2 If at least one of the values mj is 0, the stationary
process (x̃t) considered in Assumption 1 fulfills a Berman condition. A
stationary process with autocorrelations ck is said to fulfill a Berman
condition if ck log k → 0 as k → ∞.

This condition is adopted by AES to define the alternative model
for their unit-root test. For seasonal tests, it may make sense to
demand this property not only from processes under the ‘total’ alter-
native of stationarity but also from transformed processes that are in
the alternative of some hypothesis but in the null of others. For ex-
ample, (a1, a2, a3, a4) = (0, 1/2, 1/2, 1/2) defines a process with a unit
root at +1 but no other unit root, in the symbols of Assumption 1
(m1, m2, m3) = (1, 0, 0). Its first differences x̃t = ∆xt are stationary
and should have the Berman property.

Obviously, the usage of the liberal Berman condition to define
the properties of the classes of interest entails that the tests are not
designed to discriminate unit roots in the traditional I(1) sense from
fractional alternatives. The Berman condition holds for stationary
ARMA as well as for I(d) with d < 0.5.

Technically, the Berman condition ensures the asymptotic valid-
ity of extremal distributions under the I(0) hypothesis if additionally
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normality is assumed. For non-normal distributions, general mixing
conditions are required. A sufficient mixing condition is the D(un)
condition by Leadbetter and Rootzén (1988).

Depending on appropriate assumptions on the error process (zt)
that should cover stable autoregressions as well as invertible moving-
average processes, the model class defined in (1) is pretty general.
It comprises the seasonal random walk (SRW) for (a1, a2, a3, a4) =
(0, 0, 0, 0) with or without drift, and it also covers I(1) processes with
added deterministic seasonal cycles. It also permits the occurrence
of, for example, a seasonal unit root at −1 but not at ±i together
with a quarterly deterministic seasonal cycle that can be expressed as
the sum of st terms. The bridle excludes processes with expanding
deterministic seasonal variation, and we also do not wish to consider
superlinear trends.

It would be convenient if processes with seasonal unit roots, in
generalization of the usual I(1) hypothesis, could be used as null
hypotheses. Unfortunately, even in the non-seasonal model little is
known about the properties of basic test statistics and their asymp-
totic distributions for general I(1) processes. The tests considered by
AES and by Burridge and Guerre (1996) rely on the assumption
of pure random walks, i.e. cumulative sums of i.i.d. random variables,
under their null. This special case is much too restrictive for typical
econometric applications, where increments show considerable pos-
itive serial correlation. We will introduce a correction that serves
to at least approximately retain the distributional properties for the
random-walk null in the correlated case. Robustness in this direction
will be explored with the help of simulations.

Our test mainly builds on the ‘range unit-root’ (RUR) test that
was suggested by AES. The test bears little relation to the range of
the variables, so we prefer to read its acronym as ‘records unit-root’.
Its idea is to count the ‘records’, i.e. new extrema in the time-series
sequence. Consider the maximum xj,j and the minimum x1,j of j
successive time-series observations xk, k = 1, . . . , j. If a new minimum
or maximum is encountered, as j is increased, this is called a record.
In the following, the number of such records that occur until time
point j will be denoted by R(j), or, to mark the time-series label, as
R(x)(j).

As j increases, the record count R(j) will also increase. For random
walks, it can be shown that R(n) = O(n1/2) as n → ∞. For i.i.d.
sequences, the slower rate R(n) = O(log n) can be established. This
proposition can be generalized to many stationary processes. AES
give as the weakest possible condition the D(un) mixing property that
was mentioned above. At the other end of the scale, for drifting I(1)
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processes, the faster rate R(n) = O(n) holds on quite general grounds.
For a1 = 0 and a2 = a3 = a4 = 1/2, Φ(z) = 1−z and (xt) becomes

a random walk, assuming white noise (zt). For the random walk with
i.i.d. increments, we have the following theorem by AES:

Theorem 1 If (xt) is a random walk with i.i.d. increments, and if
the probability law of these increments fulfills some regularity condi-
tions (p.d.f. is bounded and continuous, second moments are finite,

expectation is zero), the statistic J
(n)
0 = n−1/2R(x)(n) converges to a

well-defined probability law as n → ∞.

AES provide a characterization of the asymptotic distribution and
they show that it is well approximated in samples of moderate size.
Roughly, the unimodal p.d.f. peaks at the value 2 and its left-tail crit-
ical points are around the value of 1. We will refer to this distribution
as the ‘AES distribution’ in the following.

When there are no unit roots, i.e. if all roots of Φ(z) are confined
to the set {z ∈ C : |z| > 1}, AES prove another result:

Theorem 2 If (xt) is a stationary Berman process, the statistic J
(n)
0

converges to 0 in probability as n → ∞.

This theorem establishes the consistency of the RUR test that
relies on the statistic J0 with regard to its left tail against a stationary
alternative. In fact, the test is also consistent in its right tail against
a drifting alternative. However, this property will not be in focus in
this paper. We further note that it is obvious that the procedure may
have little power in the presence of sub-linear trends

Rather than in testing H0 : (a1, . . . , a4) = (0, 1/2, 1/2, 1/2), we
will be concerned with testing the more general hypotheses

H0+ : a1 = 0,

H0− : a2 = 0,

H0i : a3 = a4 = 0, (3)

which correspond to unit roots at +1 (m1 = 1), at −1 (m2 = 1)
and at ±i (m3 = 1), respectively. In the following, we will address
the hypotheses by these roots of Φ(z) and also alternatively by the
corresponding angular frequencies at ω = 0, ω = π, and ω = π/2.

Before we will fully introduce an adequate test for the hypotheses
H0+, H0−, H0i that parallels the AES idea, we consider a suggestion
from the literature in the following section.
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3 Non-parametric tests based on quar-

ter graphs

Several monographs on seasonality recommend plots of time series by
quarters (see, e.g., Franses, 1994, 1996, or Ghysels and Osborn,
2001). Apparently, the frequency of rank changes among quarters is
viewed as an indicator that eases the classification of the time series
with respect to the main seasonal models. One may presume that
seasonal unit-root processes entail infrequent rank changes, while de-
terministic seasonality might imply few changes when it is pronounced,
and very frequent changes when it is weak.

Table 1 displays the rank changes counted in a small Monte Carlo
experiment. First, seasonal random walks (SRW) were generated from
zero starting values, and changes in ranking were counted. Then,
random walks were generated with an added seasonal pattern that
was fixed within one trajectory and drawn from four further normal
random numbers. In ‘RW+’, the same variance was used for the
increments and the seasonal pattern. In ‘RW++’, the variance of the
seasonal pattern was 100 times the variance of the increments, which is
not unusual in some empirical examples. 10,000 replications were used
to determine quantiles of the empirical distribution and the mean.

The results conform to expectations and indicate that counting
rank changes cannot be a very reliable test. For the weak seasonal
pattern in RW+, the average frequency of rank changes is close to
n/2, while for the strong seasonal pattern in RW++, the distribution
is very asymmetric and its mean is of a magnitude that is comparable
to the case of a seasonal random walk.

4 The RURS test

4.1 Records in ranges of seasonals

The results by AES on the RUR test suggest using the record count
as a tool for discriminating stationary and integrated variables. The
fact that the limit distribution for the random walk has an established
although not simple form suggests using the random walk as a null hy-
pothesis and rejecting for too small values—which are representative
of the stationary alternative—as well as for too large values—which
may represent processes with a deterministic drift. However, econo-
mists are rarely interested in testing for the existence of a drift and
prefer to test for unit roots that reflect permanent effects of shocks.
Therefore, we will use the tests in their one-sided versions and ex-
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Table 1: Changes of ranking in simulated trajectories.

model 5% 10% median 90% 95% mean

SRW n = 100 6.0 7.0 14.0 24.0 27.0 15.06
SRW n = 500 17.0 21.0 37.0 58.0 65.0 38.41
SRW n = 1000 25.0 31.0 54.0 84.0 94.0 56.15
RW+ n = 100 22 26 43 64 69 44.4
RW+ n = 500 127 144 224 319 340 227.8
RW+ n = 1000 256 292 449 637 680 456.4
RW++ n = 100 0 0 3 14 19 5.80
RW++ n = 500 0 0 17 69 93 29.4
RW++ n = 1000 0 0 34 139 193 59.35

Note: SRW denotes that the generating model is a seasonal random walk. RW+ denotes

a random walk with an added deterministic cycle that is drawn with the same variance as

the increments. RW++ denotes that the seasonal standard error is ten times the standard

deviation of the increments. Columns headed by percentages collect empirical quantiles.

tract potential deterministic time trends, in analogy to So and Shin
(2001).

If xt is an SRW xt = xt−4 + εt rather than a random walk, the
autoregressive operator contains four unit roots at ±1,±i. Within
the model class defined by (2) and Assumptions 1 and 2, one may
be interested in considering the three null hypotheses H0+, H0−, H0i.
These hypotheses can be addressed after transforming the original
SRW in order to eliminate all other unit roots that are not under
immediate consideration.

First, the four-quarter moving average

x
(1)
t = xt + xt−1 + xt−2 + xt−3

is a pure random walk if xt is a SRW. Parametric unit-root tests or

the RUR test can then be applied to x
(1)
t . This statistic is denoted by

J1 here and is designed to test for H0+. The properties of the RUR
statistic under H0+ depend on the validity of the other unit-root hy-
potheses H0− and H0i. For example, if xt is a random walk, it should

be classified under H0+ but the increments of x
(1)
t are autocorrelated

and follow a third-order non-invertible moving-average process. The
limiting distribution of the RUR statistic is not known for this case.

For technical reasons, we convene the notation x
[1]
t = x

(1)
t .

Second, the four-quarter alternating moving average

x
(2)
t = xt − xt−1 + xt−2 − xt−3
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is a ‘mirror’ random walk x
(2)
t = −x

(2)
t−1 + εt if (xt) is a SRW. The

adjusted process x
[2]
t = (−1)tx

(2)
t is a regular random walk and can

be subjected to the RUR test. The corresponding RUR statistic is

denoted by J2 here and is designed to test for H0−. The process (x
[2]
t )

contains a unit root at +1 even if (xt) is not a SRW, as long as (xt)
conforms to H0−. Then, however, again the distribution of the RUR
statistic will change.

Third, the second-order difference

∆2xt = xt − xt−2

follows the simple law ∆2xt = −∆2xt−2+εt if xt really is a SRW. Two

separate random walks x
[3]
t and x

[4]
t can be constructed by sampling

only every other observation and multiplying every other observation
of either process by −1. Again, these two random walks can be sub-
jected to RUR tests, and the RUR statistics will follow the AES dis-
tribution for either process. These statistics are denoted by J3 and J4

and they are designed to test for H0i. However, they will deviate from
the AES distribution if the original xt contains a unit root at ±i but
is not a SRW. Note that the sample size is halved for this test. In the
following, the collection of the four tests based on Jj , j = 1, . . . , 4 for
the unit-root hypotheses H0+, H0−, H0i will be called the RURS test,
for ‘records unit-root seasonal’.

Table 2 gives simulated quantiles for all four statistics if the gener-
ating process is a SRW. The quantiles correspond well to those given
by AES. Statistics J1 and J2 as well as J3 and J4 have almost iden-
tical empirical distributions even in fairly small samples, and their
simulation results are given only once.

4.2 Lag augmentation

We first summarize the fundamental asymptotic properties in a theo-
rem.

Theorem 3 Under assumptions 1 and 2, the following two properties
hold:

(a) If (xt) is a seasonal random walk with regular i.i.d. increments
and thus is an element of H0+∩H0−∩H0i, the distribution of all
statistics Jj , j = 1, . . . , 4 converges to the law indicated by AES;

(b) If (xt) is in the alternative of any of the three hypotheses H0+,
H0−, H0i, the corresponding test statistic Jj will converge to 0
as n → ∞.
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Table 2: RURS test. Simulated quantiles from 10,000 replications.

model 1% 5% 10% median 90% 95% 99%

SRW n = 1000 ±1 0.95 1.14 1.23 1.67 2.24 2.40 2.75
±i 1.07 1.25 1.38 2.06 2.99 3.35 4.11

SRW n = 500 ±1 0.94 1.11 1.20 1.65 2.18 2.41 2.72
±i 1.01 1.26 1.39 2.02 2.97 3.28 3.91

SRW n = 100 ±1 0.78 0.98 1.08 1.57 2.16 2.26 2.65
±i 0.84 1.12 1.26 1.82 2.66 3.08 3.50

Note: SRW denotes that the generating model is a seasonal random walk. Rows ±1

correspond to the J1 and J2 statistic with identical performance, while rows ±i correspond

to the J3 and J4 statistics.

The proof of this theorem is obvious from AES. For an SRW, all

transforms (x
[j]
t ), j = 1, . . . , 4 are random walks, and under the alter-

natives the Berman conditions will hold even for dynamic transforms
of the processes that obey Berman’s conditions because of assumption
2. Note that the theorem is silent, for example, on the properties of
Jj , j 6= 2 on H0+ ∩ Hc

0−, and even on processes in H0+ ∩ H0− ∩ H0i

that are not pure SRW.
Unfortunately, even for the standard RUR test by AES very little

can be said about general I(1) processes that serve as the null hy-
pothesis. While the limiting distribution is valid for nonlinear trans-
formations of random walks, it is invalidated by deviations from the
i.i.d. assumption on increments. A simple simulation shows that the
AES distribution becomes indeed completely distorted if increments
are serially correlated.

Thus, the test is not similar unless the null hypothesis is restricted
to the very special case of a SRW with i.i.d. increments. In order to
achieve approximate similarity for the more general null hypotheses
of interest, we suggest a parametric autoregressive correction in the
spirit of the ADF test. To this aim, we first consider the four variables

x
[j]
t , j = 1, . . . , 4

x
[1]
t = x

(1)
t , t = 1, . . . , n,

x
[2]
t = (−1)tx

(2)
t , t = 1, . . . , n,

x
[3]
t = (−1)t∆2x2t, t = 1, . . . , n/2,

x
[4]
t = (−1)t∆2x2t−1, t = 1, . . . , n/2. (4)

11



Ideally, all of these variables follow random walks and their first dif-
ferences are i.i.d. white noise. If there is low-order autoregressive
autocorrelation, then the residuals

uj,t = ∆x
[j]
t − µ −

p
∑

k=1

φk∆x
[j]
t−k

will be white noise. In practice, these true residuals will be replaced
by least-squares regression residuals û, although alternative estimation
techniques may deserve consideration. In a final step, the residuals ûj,t

can be accumulated again, and the cumulative sums,

x̃
[j]
t = x[j]

p +
t

∑

r=p+1

ûj,r, (5)

say, are then subjected to the original RUR test.
There is a danger that the ‘augmenting’ correction does more harm

than good. If the analyzed process is really an ARIMA(p,1,0) in the
familiar Box-Jenkins notation, consistent information criteria will find
the true p, and at least for large n the procedure will yield a pure ran-
dom walk. Unfortunately, if the original series does not have unit
roots at all different frequencies, the process at hand will have a non-
invertible ARIMA(p,1,q) structure and fitting autoregressions will re-
sult in large p and will nonetheless be unable to correct completely.
This again will hamper the power of the test in case the alternative
model at the investigated frequency holds.

Therefore, we tend to take care that p remains reasonably low.
Parsimonious criteria such as the consistent BIC rather than liberal
ones like AIC are an obvious choice. Also, we restrict the maximum
order in the BIC search by a slow function of the sample size. Some
experimentation with different upper bounds shows that, for moderate
n, a bound of n1/4 appears to be a good choice. In particular, n1/4

yields better power properties than customary bounds proportional to
n1/3 at values distant from the null, where the augmentation tends to
over-correct, at little expense for the size properties.

Essentially, we find indications for good performance but we also
find critical issues in extensive simulations that we can only partially
report. For example, Figure 1 demonstrates that the procedure works
well with respect to the null distribution around the mode. The de-
sign for this simulation is a SRW with first-order autoregressive er-
rors, and the evaluated test statistic is the one for the root at −1.
The picture shows that the 10%, 50%, and 90% quantiles of the null
distribution are unaffected by the autoregressive coefficient, even for
non-stationary cases such as +1 and −1.

12



Figure 1: 10%, 50%, and 90% quantiles for the uncorrected (solid) and for the

augmentation-corrected (dashed) RURS statistic J
(n)
2 if it is calculated from trajecto-

ries of length n = 100 from the data-generation process ∆4xt = φ∆4xt−1 + εt and φ is
varied over the interval [−1, 1]. φ values on the abscissa.

The situation is comparable in the presence of moving-average er-
rors, as Figure 2 demonstrates. The generation process is defined as
xt = xt−4 + εt + θεt−1, and θ varies over the interval [−1, 1]. Because
the seasonal differences are a first-order moving average process, sta-
tistics J3 and J4 are unaffected. For J1, θ = −1 actually defines a
process without a unit root at +1, as the unit roots in the autoregres-
sive and the moving-average operator cancel. Similarly, for J2, θ = 1
defines an element of the alternative.

Both figures show that the uncorrected statistic J
(100)
2 is severely

distorted. For the augmentation-corrected statistic, shown quantiles
remain flat over all negative θ values and react for larger positive
values. Whereas the resilience in the negative area is to be appreciated,
the reduced sensitivity in the positive area points to a loss in power
relative to the uncorrected original statistic. For example, the 1%
quantile falls from the value θ = 0 to θ = 1 by a sizeable amount of
0.5 in the uncorrected case, while this difference reduces to 0.4 in the
corrected case.

Similar simulations were conducted for the statistics J1, J3, J4, and
the performance was comparable to the H0− case reported in Figures
1 and 2.

We note that the inclusion of a constant in the set of conditioning
regressors, even if BIC suggests no augmentation, results in eliminat-
ing a possible drift as well as all seasonal deterministic terms. The
latter property is grounded in the transformations that are used in
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Figure 2: 10%, 50%, and 90% quantiles for the uncorrected (solid) and for the

augmentation-corrected (dashed) RURS statistic J
(n)
2 if it is calculated from trajecto-

ries of length n = 100 from the data-generation process ∆4xt = εt + θεt−1 and θ is varied
over the interval [−1, 1]. θ values on the abscissa.

constructing x
[j]
t , j = 1, . . . , 4, which together with the sign-change

and sample-split operations eliminate all cycles of length 2 and 4 ob-

servations. We also note that the constructed processes x
[j]
t do not

necessarily have zero mean, as the cumulation is started from actual
starting values. It is obvious, however, that the counting of records
is unaffected by universal level shifts. It is exactly these robustness
properties that have motivated the usage of non-parametric tests like
RUR in the presence of potential features that are so typical for many
economic time series, such as local aberrations, outliers, and local level
shifts.

A critical issue that may deserve further study, however, is the
occurrence of outliers and the reaction of the augmenting step. It
is known from the time-series literature that least-squares estimation
is robust to innovations outliers but is critically affected by additive
outliers (see also Kleiner et al., 1976). Hence, whereas the correction
works well for non-normal distributions of innovations, it is easy to
construct examples where it fails for added outliers. If added outliers
are a known feature of a data set, it may be advisable to replace the
least-squares estimator by a robust procedure.

Table 3 reports a casual power simulation that can be compared to
the results on the graphical test of Section 3. The RW+ design of Ta-
ble 1 is used at the sample sizes n = 100, 500, 1000. For this process, J1

should not reject, while Jj , j = 2, . . . , 4 should reject the non-existing
seasonal unit roots. This case is particularly interesting, as processes
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(x
[j]
t ) by construction have non-invertible moving-average parts that

are a handicap for autoregressive augmentation. Augmentations are
sizeable, double-digit lag orders are the rule for n = 1000. Table 3
demonstrates that power properties at the seasonal roots are accept-
able but that the BIC augmentation is slightly too weak to preserve
the size for the test based on J1. Experiments with stronger augmen-
tation, however, indicate a severe loss of power for the seasonal tests
for H0− and H0i and tend to discourage more liberal augmentation.

Table 3: Power of RURS test. Simulated quantiles from 10,000 replications

and rejection frequencies.

model 10% median 90% r(0.01) r(0.05) r(0.1)

RW+ n = 100 J1 0.98 1.47 2.06 0.02 0.07 0.18
J2 0.78 1.08 1.57 0.10 0.26 0.52
J3, J4 0.56 0.98 1.40 0.27 0.62 0.77

RW+ n = 500 J1 0.95 1.38 1.96 0.13 0.23 0.30
J2 0.62 0.85 1.11 0.70 0.88 0.94
J3, J4 0.44 0.63 0.88 0.98 1.00 1.00

RW+ n = 1000 J1 0.88 1.36 1.96 0.14 0.30 0.36
J2 0.57 0.76 0.95 0.92 0.99 1.00
J3, J4 0.36 0.49 0.67 1.00 1.00 1.00

Note: RW+ denotes that the generating model is a random walk with added seasonal

constants drawn from a N(0, 1) distribution. Row J3, J4 corresponds to both the J3 and

J4 statistic with almost identical performance. r(p) denotes rejection frequency when the

RURS test is used at a significance level of p.

A more systematic study of size and power properties will be the
topic of Section 5.

4.3 Forward and backward

In order to increase the power of their RUR statistic, AES suggest to
run the test in both directions, that is to count records from t = 1
to t = n and also from t = n to t = 1, and then to average the two
thus obtained test statistics. Indeed, the laws of motion of random
walks as well as of stationary processes have known time reversibility
properties, and the additional information can serve in improving test
performance.

In line with the AES notation, we denote the thus obtained RURS-
fb (‘fb’ for ‘forward-backward’) statistics by J∗j , j = 1, . . . , 4. We also
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keep the convention by AES to define these statistics via

J∗j = 2−1/2(Jj + J ′
j),

rather than by the arithmetic mean, where J ′
j denotes the reverse

version of Jj . Note that, if Jj and J ′
j were independent, this definition

would increase scales by a factor
√

2. Table 4 provides a collection of
corresponding significance points.

Table 4: Empirical null distribution of the RURS-fb test statistic.

statistic n 1% 2.5% 5% 10%

J∗1, J∗2 100 0.81 1.03 1.18 1.77
J∗3, J∗4 100 1.07 1.28 1.49 1.92
J∗1, J∗2 200 0.82 1.08 1.23 1.85
J∗3, J∗4 200 1.11 1.40 1.47 1.99
J∗1, J∗2 300 0.88 1.08 1.25 1.88
J∗3, J∗4 300 1.19 1.43 1.55 2.08
J∗1, J∗2 400 0.90 1.11 1.26 1.87
J∗3, J∗4 400 1.18 1.44 1.54 2.10
J∗1, J∗2 500 0.90 1.12 1.28 1.89
J∗3, J∗4 500 1.23 1.42 1.56 2.15
J∗1, J∗2 600 0.91 1.11 1.26 1.90
J∗3, J∗4 600 1.25 1.46 1.58 2.13

Note: Simulated quantiles from 20,000 replications of seasonal random walks. n is sample

size, columns denoted ‘p%’ denote quantiles of the empirical distribution.

In the remainder of the paper, the focus will be on this RURS-fb
version.

5 Simulation evidence

5.1 Some remarks on distributions

In our simulations, we generally found that the empirical distribution
does not coincide with the one reported by AES, neither at the fre-
quency zero nor at ±i. In this subsection, we attempt to explain the
discrepancies.

Firstly, the limit distribution derived by AES builds on properties
of Brownian motion. In a rough interpretation, the limit law describes
the probability of range expansions over a Brownian motion process.
This is not an accurate statement, as the concept of range expansion
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Figure 3: Empirical densities of the RUR statistic for 500 observations. Random walk
and drift-adjusted random walk, 20000 replications, Epanechnikov kernel estimation.

makes little sense for a continuous-time process but it comes close to
the asymptotic behavior.

By contrast, the intermediate augmenting step eliminates all trends
and drifts in any random-walk trajectory. Therefore, the limit law
does not build on a Brownian motion but rather on a Brownian bridge.
Figure 3 compares the empirical distributions of the RUR statistic for
random walks and for adjusted random walks. The adjustment will re-
duce findings of new extrema for many cases. Roughly, random walks
sometimes expand near-monotonically and then extrema are becoming
much sparser after correction. Conversely, sometimes random walks
tend to generate pseudo-cycles, in which case extrema may become
even more frequent after adjustment. The first effect appears to be
stronger.

Second, the distribution of the RURS statistics does not even cor-
respond to the Brownian bridge version due to the effects of the aug-
menting step.

A technical detail concerns the handling of the first few observa-

tions x
[j]
t for t < p (see equation (5)). We experimented with keeping

them within the extrema search and also with excluding them. On
the whole, we recommend running the search for records after exclud-
ing the starting observations, as these may mask other extrema in the
presence of outliers.

Figure 4 conveys an impression of the empirical distributions for
the actual statistics that are used in the RURS test.
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Figure 4: Empirical densities of the RURS statistic for 500 observations. Seasonal
random walk, 20000 replications, Epanechnikov kernel estimation.

5.2 Size and power

In our size simulations, we compare the properties of the HEGY test
and of the RURS test in its forward-backward (fb) variant. Quarterly
seasonal random walks are generated in 10,000 replications for the
(extended) sample sizes n = 100 to n = 600. These numbers corre-
spond to 25 to 150 years and they are designed to cover the typical
applications of economic relevance.

In detail, HEGY statistics are calculated from regressions

∆4xt = µ +
4

∑

j=1

γjD
∗
tj + a1x

(1)
t−1 + a2x

(2)
t−1 + a3∆2xt−2 + a4∆2xt−1

+

p
∑

j=1

ζj∆4xt−j + ut, (6)

where the t–statistics on a1 and a2 and the F–statistics on (a3, a4)
constitute the HEGY statistics on the three frequencies of concern.
The lag order p is found by minimizing BIC in the Schwarz variant,
just as described before for the RURS test.

Characteristics of the empirical distributions are obtained from
these null simulations. Because of the BIC–guided lag orders, they
differ slightly from the small-sample quantiles reported in the litera-
ture.

Next, instead of seasonal random walks, we simulate seasonally
integrated processes of the type

xt = xt−4 + φ∆4xt−1 + εt,
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Figure 5: Empirical rejection frequency of unit-root null hypotheses using HEGY t–
and F–tests for 200 observations at nominal 5% significance level. Solid curve for t1, long
dashes for t2, and short dashes for F34. Generating model is ∆4yt = φ∆4yt−1 + εt with
N(0,1) errors εt, φ on the abscissa axis, 10000 replications.

with φ varying over the range [−1, 1]. Note that these processes would
demand for a lag augmentation of p = 1 and that they have additional
unit roots for the cases φ = ±1.

Generally, the lag order search yields the expected results, with es-
timated p only slightly above 0 for n = 200 and φ = 0 and increasing
smoothly to mean estimates of p̂ = 1 as φ deviates from zero. Nev-
ertheless, size distortions can be considerable. The exemplary Figure
5 shows rejection frequencies for the nominal 5% points for n = 200.
The frequency-zero t1 test is oversized for small negative φ values, the
t2 test for small positive φ values, and the F34 test for all small values,
irrespective of their sign. By contrast, the performance at the extreme
values φ = ±1 is surprisingly good. The main qualitative features in
Figure 5 persist at larger n.

The corresponding performance for the RURS test in its fb variant
is shown in Figure 6 and is less convincing. The test under-rejects in
some areas but this is of minor importance. The empirical distribution
is discrete, and many values of the test statistic exactly match the
significance points. For the same reason, the test for the ‘annual’ unit
root at ±i shows a slight positive size bias that can be ignored. By
contrast, the positive size bias for positive autocorrelation and the unit
root at +1 and for negative autocorrelation at −1 is considerable and
persists for larger samples. The augmenting step effectively improves
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Figure 6: Empirical rejection frequency of unit-root null hypotheses using RURS-fb tests
for 200 observations at nominal 5% significance level. Solid curve for ω = 0, long dashes
for ω = π, and short dashes for ω = π/2. Generating model is ∆4yt = φ∆4yt−1 + εt with
N(0,1) errors εt, φ on the abscissa axis, 20,000 replications.

upon the original size bias but comes far from eliminating it, due to
the small-sample bias of time-series coefficient estimates.

In the power simulations, we used the alternatives

∆4xt = a1x
(1)
t−1 + εt

for a1 ∈ (−1, 0] and

∆4xt = a2x
(2)
t−1 + εt

for a2 ∈ [0, 1). Excepting the boundary cases a1 = 0 and a2 = 0,
the former alternative model is not in H0+ but in H0− ∩H0i, and the
latter model is in H0+ ∩ H0i but not in H0−. Again, we used 20,000
replications and evaluated rejection frequencies for the RURS-fb and
the HEGY tests against the significance points that were obtained
from the size simulations.

For n = 200, the RURS-fb test yields the power curves depicted in
Figures 7 and 8. The rejection frequency surpasses 20% as the value
of a1 or a2 reaches 0.3 but it does not increase beyond that as the
coefficients increase further. These graphs confirm the observation by
AES that records tests have acceptable power close to the null but
they are dominated by parametric tests at a larger distance from the
null.
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Figure 7: Empirical rejection frequency of unit-root null hypotheses using RURS-fb tests
for 200 observations at nominal 5% significance level. Solid curve for ω = 0, long dashes

for ω = π, and short dashes for ω = π/2. Generating model is ∆4xt = a1x
(1)
t−1 + εt with

N(0,1) errors εt, a1 on the abscissa axis, 20,000 replications.

Figure 8: Empirical rejection frequency of unit-root null hypotheses using RURS-fb tests
for 200 observations at nominal 5% significance level. Solid curve for ω = 0, long dashes

for ω = π, and short dashes for ω = π/2. Generating model is ∆4xt = a2x
(2)
t−1 + εt with

N(0,1) errors εt, a2 on the abscissa axis, 20000 replications.
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Figure 9: Empirical rejection frequency of unit-root null hypotheses at ω = π using
RURS-fb tests for 500 observations at nominal 5% significance level. Upper bound for
augmentation varies. Solid curve for the case with no augmentation, dashes for N = n1/4,

and short dashes for N = 2n1/3. Generating model is ∆4xt = a2x
(2)
t−1 + εt with N(0,1)

errors εt, a2 on the abscissa axis, 20000 replications.

Note that these graphs were generated with the upper bound for
conditioning lags of 2n1/3. For n1/4, power becomes monotonic, and
this feature is reproduced for larger n, such as n = 500 or n = 1000.
For these larger samples, the RURS-fb test power indeed increases,
thus corroborating our conjecture that the augmented version of the
test is indeed consistent.

For moderate sample sizes, our simulations point to a severe lack
of power for the nonparametric test even more if the test is compared
to the parametric HEGY test. Even for n = 200, the HEGY test
has an 86% rejection rate for values as small as a1 = 0.1. This com-
parative impression is mitigated if deterministic seasonal patterns are
introduced. For example, the design

∆4xt = a2(x
(2)
t−1 − γ2(−1)t) + εt

tends to decrease HEGY power, while RURS-fb power, although still
low, is not affected.
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6 Extending the null and alternative

The application of nonparametric tests is typically motivated by their
‘robustness’, which formally means that the null and alternative of the
test can be extended without affecting the properties of the test ‘too
much’. Particularly in the econometric literature, such extensions are
rarely discussed and they are viewed as ‘obvious’.

For example, if a random walk is subjected to ‘structural breaks’, a
‘robust’ test is casually defined as a test whose null distribution is not
too much affected, such that it does not reject the random walk null.
Similarly, a robust test would reject the random-walk or unit-root
hypothesis for stationary processes to which deterministic elements
such as breaking trends or outliers are added. We emphasize that it
is not immediately obvious that such properties on extended null and
alternative hypotheses are to be seen as beneficial.

A systematic extension of the investigated hypotheses was sug-
gested by Burridge and Guerre (1996) who, following earlier work
by Granger and Hallman (1991), consider extending the null of
I(1) processes to all monotonic and continuous functions of I(1) processes.
Under the alternative, a transformation of a strictly stationary ergodic
process is stationary anyway.

Adopting this casual definition of natural extensions for our pur-
poses, we would see it as beneficial if the null distribution of the RURS
test statistic were immune to monotonic transformations of seasonally
integrated variables. For example, a logit transform of a process in
H0+ ∩ H0i should generate the typical null distribution for the sta-
tistics J∗1 and J∗3, J∗4, while J∗2 should be sensitive to violations of
H0−. We evaluate the test performance in this direction by a small
Monte Carlo experiment.

The variable x is defined as the logit of y, i.e.

xt =
exp yt

1 + exp yt
, (7)

∆4yt = a2y
(2)
t−1 + εt. (8)

The coefficient a2 is varied over (-1,0].
Figure 10 shows that the performance of the seasonal test statis-

tics J∗j , j = 3, 4 is hardly affected by the logit transformation. The
test based on J∗2 has notoriously low power. The test based on J∗1

tends to reject H0+, while the data generating process is, in a sense,
a member of H0+. The test construction involves a dynamic filter
that operates on a nonlinear transformation, which is not the same as
the transformation of the filtered data. For large |a2|, the test rejects
the unit root at +1, although it exists in the extended definition, and
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Figure 10: Empirical rejection frequency of unit-root null hypotheses using RURS-
fb tests for 200 observations at nominal 5% significance level. Solid curve for ω = 0,
long dashes for ω = π, and short dashes for ω = π/2. Generating model is the logit

transformation of x for ∆4xt = a2x
(2)
t−1 + εt with N(0,1) errors εt. a2 on the abscissa axis,

20000 replications.

tends to accept the unit root at −1, even though it does not exist in
the data generating process.

The same features—low power for deviations from H0− and exces-
sive size for the test on H0+—concern the parametric HEGY test. At
least with regard to the logit transformation, neither of the two test
concepts has the kind of robustness that may be in the spirit of the
extended hypothesis definition of Granger and Hallman (1991).

Another, albeit more promising, experiment concerns the robust-
ness of tests to outliers. Figure 11 reports an arguably extreme design,
in which a value of 10.0 was added to the generated series at the lo-
cation n/2. Otherwise, the design is identical to the hitherto used

process ∆4xt = a2x
(2)
t−1 + εt with a2 ∈ [−1, 0]. The performance of the

parametric HEGY test is affected severely. The test rejects in nearly
all replications even for a comparatively large sample of n = 500.
Note that it does not only reject H0−, which it is supposed to reject
for a2 6= 0, it also rejects at the null case a2 = 0, and it also rejects
H0+, which is supposed to be valid for the extended interpretation
of the model. By contrast, the nonparametric RURS-fb test displays
its—concededly low—power curve at π and hardly any size bias at 0.

We also ran comparable experiments with smaller added outliers
and with structural breaks, and these generally correspond to this
pattern. The parametric tests over-reject the hypotheses H0+ and
H0i, whereas the RURS-fb test is immune to the ‘aliasing’ feature
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Figure 11: Empirical rejection frequency of hypothesis H0+ (left panels) and H0− (right

panels) at nominal 10% significance level. Data generation process is ∆4xt = a2x
(2)
t−1 + εt

with N(0,1) errors εt. Top panels for RURS-fb test and bottom panels for HEGY test.
Solid curve for 100 observations, dashes for 300, and short dashes for 500 observations.
20000 replications.

and attains reasonable power properties, as the sample size increases.
Note that both testing procedures involve a least-squares regression
step that can be replaced by a robust regression procedure. This
modification tends to improve the statistical properties of both tests.
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7 The monthly version of the RURS

test

It is straight forward to generalize the basic model of equation (1) to

xt = x∗
t +

12
∑

j=1

γ∗
j Djt + c∗t, (9)

for the process x∗
t now generated by a twelfth-order autoregression.

The representation by cycles (or ‘spectral’ representation) in equation
(2) can then be modified accordingly. For the monthly case, the model
contains 12 ‘spectral’ coefficients, an unrestricted intercept, and 11
‘spectral’ constants. The contribution of the deterministic cycles is
contained by quadratic expressions that de-activate the contribution
in the presence of corresponding seasonal unit roots.

In detail, we consider the representation:

∆12xt = µ + a0

(

x
(0)
t−1 + ct

)

+ a6

(

x
(6)
t−1 − γ6(−1)t

)

+
5

∑

j=1

{

ajx
(j,α)
t−1 + bjx

(j,β)
t−1

+ (aj + bj)
2

(

γj,1 cos
jπ

6
+ γj,2 sin

jπ

6

)}

+ zt, (10)

with the notation

x
(0)
t =

11
∑

j=0

xt−j ,

x
(6)
t =

11
∑

j=0

(−1)jxt−j ,

∆mxt = xt − xt−m,

x
(j,α)
t = −∇j

(

cos
jπ

6
− B

)

xt,

x
(j,β)
t = −∇j

(

sin
jπ

6

)

xt,

∇j = (1 − B2)
5

∏

k=1,k 6=j

(

1 − 2 cos
kπ

6
+ B2

)

.

Details of this representation were analyzed by Smith and Tay-
lor (1999), and the model was used for developing HEGY-type tests
by Beaulieu and Miron (1993). Again, (a0, a1, . . . , a6, b1, . . . , b5) =
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(0, . . . , 0) defines a process with unit roots at all frequencies, a seasonal
random walk if additionally µ = 0 and white-noise (zt) is assumed.

The objective of testing is obvious. Apart from analyzing the in-
herited hypotheses H0+ = H00 : a0 = 0, H0− = H06 : a6 = 0, and
H0i = H03 : a3 = b3 = 0, we also wish to consider the hypotheses
H0j : aj = bj = 0 at j = 1, 2, 4, 5 that correspond to the angular
frequencies π/6, π/3, 2π/3, 5π/6.

In analogy to the quarterly case, parametric testing based on re-
gressions yields HEGY-type F–statistics on aj = bj = 0 for j =
1. . . . , 5, and t–statistics on a0 = 0 and a6 = 0. These hypotheses are
then equivalent to seasonal unit-root events at frequencies ω = jπ/6
for j = 0, . . . , 6.

Similarly, time-series operators that eliminate unit roots at all fre-
quencies excepting a specific one can be used to construct RURS and
RURS-fb statistics. For the backdrop example of a seasonal random

walk, however, only the cases x
(j)
t for j = 0, 3, 6 are random walks or

are simple transforms thereof. In all other cases, these series will not
be random walks. The non-trivial fact that random elements of the
type n−1/2x

(j)
t obey functional limit theorems with standard Brown-

ian motion limits has been proofed by Chan and Wei (1988). As
a consequence, the asymptotic properties of extremal statistics such
as Jj and J∗j will quantitatively match those of the RUR statistics.
Small-sample quantiles, however, vary somewhat across frequencies,
and a detailed analysis of their limit distribution has not yet been
conducted.

Table 5: Empirical significance points for the monthly RURS test statistics

for n = 100.

statistic frequency n 1% 5% 10% median

J0 0 100 0.995 1.194 1.293 2.059
J1 π/6 100 0.697 0.995 1.095 1.806
J2 π/3 100 0.498 0.796 0.995 1.678
J3 π/2 100 0.885 1.180 1.327 1.959
J4 2π/3 100 0.597 0.896 0.995 1.816
J5 5π/6 100 0.498 0.697 0.896 1.601
J6 π 100 0.995 1.194 1.393 2.058

Note: Empirical quantiles from 10,000 replications. Generating model is the SRW xt =

xt−12 + εt with i.i.d. N(0,1) errors.

Note that there is no direct counterpart to the processes x
[j]
t at

j different from 0, 3, 6 in the monthly test. The processes x
(j)
t will
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not even be random walks under
⋂6

j=0 H0j . There are two obvious
suggestions to conduct the accumulation step after identification of a
lag order and collecting residuals. The first is to accumulate according
to the law of motion under the null, which leads to processes with
a pure seasonal unit root at given periodicity. This suggestion was
followed for Table 5.

Table 5 gives the empirical significance points for the case n = 100.
As for the quarterly case, power performance is satisfactory against
stationary alternatives of the type xt = φxt−12 + εt with |φ| < 1 but
much less so if individual unit-root hypotheses are considered.

Table 6: Empirical significance points for the monthly RURS-fb test statistics

for n = 200.

statistic frequency n 1% 5% 10% median

J0 0 200 1.439 1.652 1.812 2.345
J1 π/6 200 1.439 1.652 1.759 2.345
J2 π/3 200 1.439 1.652 1.759 2.345
J3 π/2 200 1.410 1.632 1.773 2.337
J4 2π/3 200 1.439 1.652 1.759 2.345
J5 5π/6 200 1.439 1.652 1.759 2.345
J6 π 200 1.439 1.652 1.812 2.345

Note: Empirical quantiles from 10,000 replications. Generating model is the SRW xt =

xt−12 + εt with i.i.d. N(0,1) errors.

An alternative suggestion is to accumulate the residuals to ran-
dom walks under their nulls H0j , i.e. in exact analogy to equation (5)
in the quarterly model. This variant leads to identical significance
points across frequencies, excepting ω = π/2, where less effective ob-
servations are utilized. Otherwise, unreported power simulations did
not find any consistent evidence in favor of either version.

Table 6 gives empirical quantiles for the RURS-fb version of the
test at n = 200. These simulations are based on the random-walk ac-
cumulation method in the augmenting step as described above, which
yields almost perfect homogeneity across frequencies. These quantiles
experience little changes if the sample size is modified, thus they can
serve as benchmarks for tests at various empirically relevant n.

8 Empirical applications

Figure 12 shows the price of Belgian barley, in quarterly observations
from 1971 to the first quarter of 2003. The series has a clearly recog-
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Figure 12: Belgian barley prices, 1971:1–2003:1, quarterly observations.

nizable seasonal structure but it is subject to many irregularities.
There are 129 observations, so we utilize the quantiles from Table

2 for n = 100. The BIC search procedure finds lags of p = 6 for the J1

and the J2 test but only p = 3 and p = 4 for the J3 and J4 tests. The
calculated statistics are J1 = 2.03, J2 = 1.85, J3 = J4 = 1.00. The
unit roots at +1 and at −1 are supported while the unit-root pair at
±i is rejected at the 5% although not at the 1% level. Therefore, the
RURS test indicates that the observed seasonal variation is composed
of a deterministic component at the annual frequency and a persis-
tently changing semi-annual component. The finding of a unit root at
+1 conforms to intuition.

By contrast, the application of traditional parametric tests leads to
unclear results. The HEGY test rejects unit roots at −1 and also at ±i
at the 5% level, while the CH tests by Canova and Hansen (1995)
tend to reject deterministic seasonality. Also, these tests are sensitive
to transformations of the original data, for example by logarithms,
while the RURS test is robust in this direction.

For the monthly version of the test, we analyze the Austrian un-
employment rate shown in Figure 13 from January 1950 to December
2005. The series displays strong seasonal variation, and the cycles do
not appear to be constant over time.

For the unemployment rate, the corresponding RURS statistics
are, ordered from the lowest frequency to the Nyqvist frequency: 0.89,
(0.70, 0.43), (0.31, 0.35), (0.94, 0.78), (0.86, 1.01), (0.58, 0.47), 0.70.
Here, statistics for the same frequency have been collected in parenthe-
ses. A comparison with Table 5 shows that most values are significant
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Figure 13: Austrian unemployment rate, 1950:1–2005:12, monthly observations.

at 5% , excepting the frequency 2π/3. Three hypotheses are even re-
jected at the 1% level, including the long-run root at +1. This result
indicates that the seasonality of the unemployment rate is primar-
ily deterministic and that most apparent pattern changes can be well
described by an unspecified nonlinear transformation of a stationary
variable with an added deterministic cycle.

The fb version of the RURS test insinuates a slightly different
conclusion. Test statistics are 2.85, 2.40, 2.93, 1.493, 2.958, 2.958,
1.340. Seasonal unit roots are accepted at most frequencies, including
the long-run frequency, but not at −1 and at ±i. In other words, there
is a random-walk type trend in the data, and the main backbone of the
annual seasonal cycle is purely deterministic, while the subtle details
of variation from month to month experience persistent changes over
the observation period.

The conclusion of the parametric HEGY test differs from both
RURS versions. The HEGY test does not reject unit roots at the low
frequencies but rejects them at π/2, i.e. at four-month cycles, and at
all higher frequencies. The parametric test sees the unemployment
rate as driven by longer stochastic waves and by short-run cycles of
fixed structure and considerable importance. Of course, the true data
generating process for this variable is unknown. We presume that
the RURS and RURS-fb results are more credible, however, as these
tests allow for nonlinear transformations. Additionally, the HEGY-
test classification of the bounded rate as a traditional I(1) process
does not make much sense.
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9 Concluding remarks

Nonparametric unit-root tests, such as the RUR test by AES, are a
welcome addendum to the toolbox of time-series analysis. While these
tests cannot be as reliable as their parametric counterparts for regular
well-behaved Gaussian linear processes, many economic variables in-
dicate that they do not conform to these standard assumptions. Then,
however, nonparametric procedures that circumvent moment estima-
tion show their advantages.

We conjecture that tests for seasonality suffer from such irregu-
larities even more commonly than tests for trend behavior. Seasonal
cycles are subject to sudden and also gradual changes, then shift back
to their original form or disappear for a few years before turning up
in a different shape. Therefore, if the concept of seasonal unit roots
is of interest to the researcher, there is sufficient motivation for tools
beyond traditional tests.

While the traditional plot of time series decomposed into quarters
aids a lot in getting a feeling for the data, we find that the visual im-
pression is difficult to quantify in a statistical test procedure. Rather,
we consider a generalization of the recently developed RUR (records
unit roots) test by AES to the RURS test for seasonal unit roots.
We suggest to utilize a parametric correction in its calculation, as
the test is sensitive to autocorrelation under its null hypothesis. In
simulations, we find some support for our augmentation correction.
The optimal tradeoff between size properties that would demand for
stronger augmentation and power properties that would demand for
less augmentation is unknown as yet.

In particular for mixtures of the null hypothesis at one seasonal
frequency and the alternative at other frequencies did we find disap-
pointingly low power for the RURS test. For this reason, we would not
recommend to replace currently used parametric test by nonparamet-
ric tests, not even if features such as breaks, outliers, and nonlinear
transformations are suspected. As an additional information, these
tests may prove useful to researchers, however.

The development of nonparametric tests is much more informal
and guided by creative intuition than that of parametric tests that live
in a world dictated by likelihood theory. The occurrence of records
in the range of a time series is only one out of many conceivable
criteria that can be used for discriminating I(1) from I(0) processes.
The study of records is attractive, as the corresponding statistics have
been shown to be invariant to distributional properties and robust
to outliers. These important results, however, do not rule out the
continuing search for new procedures.
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