
Costantini, Mauro; Gunter, Ulrich; Kunst, Robert M.

Working Paper

Forecast combination based on multiple encompassing
tests in a macroeconomic DSGE system

Reihe Ökonomie / Economics Series, No. 251

Provided in Cooperation with:
Institute for Advanced Studies (IHS), Vienna

Suggested Citation: Costantini, Mauro; Gunter, Ulrich; Kunst, Robert M. (2010) : Forecast combination
based on multiple encompassing tests in a macroeconomic DSGE system, Reihe Ökonomie /
Economics Series, No. 251, Institute for Advanced Studies (IHS), Vienna

This Version is available at:
https://hdl.handle.net/10419/72700

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/72700
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 
 

  

Forecast Combination Based 
on Multiple Encompassing 
Tests in a Macroeconomic 

DSGE System

Mauro Costantini, Ulrich Gunter, Robert M. Kunst 

251 

Reihe Ökonomie 

Economics Series 



 



 

 
 

 

  

251 

Reihe Ökonomie 

Economics Series 

 

Forecast Combination Based 
on Multiple Encompassing 
Tests in a Macroeconomic 

DSGE System

Mauro Costantini, Ulrich Gunter, Robert M. Kunst 
 

May 2010 

 

Institut für Höhere Studien (IHS), Wien 
Institute for Advanced Studies, Vienna 



Contact: 
 
Mauro Costantini 
Department of Economics 
University of Vienna, Vienna 
 
Ulrich Gunter 
Department of Economics 
University of Vienna, Vienna 
 
Robert M. Kunst 
Department of Economics and Finance 
Institute for Advanced Studies 
: +43/1/599 91-255 
email: kunst@ihs.ac.at 
and  
Department of Economics 
University of Vienna 

Founded in 1963 by two prominent Austrians living in exile – the sociologist Paul F. Lazarsfeld and the 

economist Oskar Morgenstern – with the financial support from the Ford Foundation, the Austrian

Federal Ministry of Education and the City of Vienna, the Institute for Advanced Studies (IHS) is the

first institution for postgraduate education and research in economics and the social sciences in

Austria. The Economics Series presents research done at the Department of Economics and Finance 

and aims to share “work in progress” in a timely way before formal publication. As usual, authors bear

full responsibility for the content of their contributions.  

 

 

Das Institut für Höhere Studien (IHS) wurde im Jahr 1963 von zwei prominenten Exilösterreichern –

dem Soziologen Paul F. Lazarsfeld und dem Ökonomen Oskar Morgenstern – mit Hilfe der Ford-

Stiftung, des Österreichischen Bundesministeriums für Unterricht und der Stadt Wien gegründet und ist

somit die erste nachuniversitäre Lehr- und Forschungsstätte für die Sozial- und Wirtschafts-

wissenschaften in Österreich. Die Reihe Ökonomie bietet Einblick in die Forschungsarbeit der 

Abteilung für Ökonomie und Finanzwirtschaft und verfolgt das Ziel, abteilungsinterne

Diskussionsbeiträge einer breiteren fachinternen Öffentlichkeit zugänglich zu machen. Die inhaltliche

Verantwortung für die veröffentlichten Beiträge liegt bei den Autoren und Autorinnen. 

 



Abstract 

We use data generated by a macroeconomic DSGE model to study the relative benefits of 

forecast combinations based on forecast-encompassing tests relative to simple uniformly 

weighted forecast averages across rival models. Assumed rival models are four linear 

autoregressive specifications, one of them a more sophisticated factor-augmented vector 

autoregression (FAVAR). The forecaster is assumed not to know the true data-generating 

DSGE model. The results critically depend on the prediction horizon. While one-step 

prediction hardly supports test-based combinations, the test-based procedure attains a clear 

lead at prediction horizons greater than two. 
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1 Introduction

Forecast combination is often used to improve forecast accuracy. A linear combination
of two or more predictions often yields more accurate forecasts than a single prediction
when useful and independent information is taken into account. In this paper we evaluate
the gains in terms of predictive accuracy that can be achieved by combining forecasts
on the basis of a multiple encompassing test developed by Harvey and Newbold (2000)
as compared to combinations based on simple uniform weights. We focus on predicting
macroeconomic output (gross domestic product, GDP), the variable of central interest in
macroeconomic analysis. A novelty of this paper is that we use a DSGE (dynamic stochastic
general equilibrium) model suggested by Smets and Wouters (2003) as the generating
mechanism for our data.

Forecast comparisons are often conducted for samples of accounts data taken from
databases for several countries. Costantini and Kunst (2009) use French and U.K. data
in order to investigate whether and to what extent a procedure based on the multiple
encompassing test may help determine the weights for forecast combinations. Results
show some benefits for test-based weighting in one of their two data sets. This approach,
however, has some limitations as the data-generating mechanism remains unknown and
the performance of prediction methods may be affected by sample-specific features such
as extraordinary recessions and booms or abrupt policy changes. For this reason, Monte
Carlo simulations play a crucial role in assessing the empirical value of forecast techniques.
In simulations, designs must be carefully chosen if the results are to be relevant for typical
empirical situations. To this aim, the present paper simulates data from a DSGE model
that has been suggested for European data by Smets and Wouters (2003).

Our interest in using a DSGE model for generating data arises from the ubiquitous usage
of this modelling approach in current macroeconomic practice, which makes it plausible
to view designs of this type as approximating a realistic macroeconomic world. Over the
past two decades, these so-called New Keynesian models have been spreading out in the
macroeconomic literature, varying in their levels of complexity as well as in the specific
focus of application. For example, customized models are used nowadays by virtually every
central bank in the world. These institutions are mainly interested in empirical policy
analysis (see, e.g., Smets and Wouters 2003), forecasting (see, e.g., Smets and Wouters
2004), or both (see Adolfson et al., 2007, for a prominent example of an open-economy
model). In those applications of DSGE models, Bayesian estimation techniques play a
major role (see An and Schorfheide, 2007, for a survey).

Our forecasting evaluation assumes that the forecaster has no knowledge of the underly-
ing DSGE model. She considers four time-series specifications as potential approximations
to the generating mechanism: a univariate autoregression; two bivariate autoregressions
that contain the target variable and one of two main indicator variables, the (nominal)
interest rate and the rate of inflation; and a factor-augmented VAR (FAVAR) model
that adds two or three estimated common factors to output in order to form a three-
or four-dimensional VAR. Among others, Kascha and Mertens (2009) show that vector
autoregressions can be good approximations to the dynamic behavior of DSGE models,
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while Ravenna (2007) criticizes the quality of this approximation. We note that none of
these authors views short-run forecasting as their aim. Anyway, the considered time-series
structures are reasonable and comparatively simple models, such as those customarily em-
ployed by macroeconomic forecasters, and are therefore representative for their potential
approaches.

From the four models, the forecaster is assumed to form weighted averages for the
target variable of output. To this aim, forecast-encompassing regressions (see Section 2)
are run in all directions, encompassed models are eliminated as determined by F-statistics
and a specific significance level, and the surviving models are averaged uniformly. The
multiple encompassing test of Harvey and Newbold (2000) is also considered by Costantini
and Pappalardo (2010), who use this test to corroborate their hierarchical procedure for
forecast combinations that is based on a simple encompassing test of Harvey et al. (1998).
However, the procedure considered here attains complete symmetry with respect to all
rival forecasting models, as the multiple encompassing test is run in all directions.

We evaluate the forecasts for various sample sizes ranging from 40 to 200 observations,
i.e. for a range that may be typical for macroeconomic forecasting, on the basis of the
traditional moment-based criteria MSE (mean squared error) and MAE (mean absolute
error) and also by the incidence of better predictions. For the test procedure, we consider
significance levels ranging from 0—which corresponds to uniform weighting—to 10%. The
results support testing at sharp levels, mainly at 1%. We also find that simple uniform
weighting is difficult to beat and that sample sizes of 200 or more may be needed to firmly
establish the relative merits of test-based weighting in single-step prediction. Results in
favor of uniform weighting relative to more sophisticated methods are well in line with
the forecasting literature (see de Menezes and Bunn, 1993; Clements and Hendry, 1998;
Timmermann, 2006). At larger horizons, however, our results tend to support test-based
weighting even in smaller samples.

The plan of this paper is as follows. Section 2 outlines all methods: the forecast-
encompassing test, the weighting scheme based on that test, and the rival prediction models
that are to be combined. Section 3 details the DSGE model specification and the simulation
design. Section 4 presents the results of the prediction evaluation. Section 5 concludes.

2 Methodology

2.1 Encompassing tests procedure for forecasting combination

This section presents the encompassing test procedure used to determine the weights in
the combination forecast. The procedure is based on the multiple forecast encompassing
F–test developed by Harvey and Newbold (2000).

Consider M forecasting models that deliver out-of-sample prediction errors e
(k)
t , k =

1, . . . ,M for a given target variable Y , with t running over an evaluation sample that is
usually a portion of the sample of available observations. Then, the encompassing test
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procedure uses M encompassing regressions:
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These homogeneous regressions yield M regression F statistics. A model k is said to
forecast-encompass its rivals if the F statistic in the regression with dependent variable
e
(k)
t is insignificant at a specific level of significance. Following the evidence of the forecast-

encompassing tests, weighted average forecasts are obtained according to the following rule.
If F–tests reject or accept their null hypotheses in all M regressions, a new forecast will
be formed as a uniformly weighted average of all model-based predictions. If some, say
m < M , F–tests reject their null, only those M −m models that encompass their rivals
are combined. In this case, each of the surviving models receives a weight of (M −m)−1.

2.2 The forecasting models

Forecasts are based on four classes of time-series models and on combinations of represen-
tatives from these four classes that have been estimated from the data by least squares
after determining lag orders by information criteria. As information criteria, we employ
the AIC criterion by Akaike and the BIC criterion by Schwarz (see Lütkepohl, 2005).

The first model class is a univariate autoregressive model for the targeted output series.
The second and third model are two bivariate vector autoregressive models (VAR). Model
#2 contains output and inflation, and model #3 contains output and the nominal interest
rate. This choice of added variables has been motivated by the fact that inflation and the
interest rate are often viewed as main economic business-cycle indicators and they are also
most often reported in the media as compared with the remaining variables of the DSGE
system.

The fourth and last model class is a factor-augmented VAR (FAVAR) model. Suppose
that Yt is the target variable to be predicted (GDP), while Ft is a vector of unobserved
factors that are assumed as related to a matrix of observed variables X by the linear
identity F = XΛ with unknown Λ, such that the column dimension of F is considerably
smaller than that of X. A FAVAR model can be described as follows:

Φ(L)

[

Yt

Ft

]

= εt, (2)

where Φ(L) = I − Φ1L − . . . − ΦpL
p is a conformable lag polynomial of finite order p.

I denotes the identity matrix. Equation (2) defines a VAR in (Yt, F
′

t )
′. This system

reduces to a standard univariate autoregression for Yt if the terms in Φ(L) that relate Yt

to Ft−j, j = 1, . . . , p are all zero. Equation (2) cannot be estimated directly, as the factors
Ft are unobserved.
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The proper estimation of the models requires the use of factor analysis (see Stock and
Watson, 1998, 2000). To this end, we assume that the factors summarize the information
contained in a larger set of economic time series. The estimation procedure consists of
two steps. In the first step, the number of factors is estimated using principal component
analysis. In this step, the BIC(3) criterion developed by Bai and Ng (2002) is applied to
determine the number of factors, i.e. the dimension of F . In the second step, the FAVAR
model is estimated by a standard VAR method with Ft replaced by the estimate F̂t that
is available from the first step.

Thus, in our forecast experiments, the FAVAR forecasts rely on VAR models for the
target output series and two or three additional factors that have been selected automat-
ically from combinations of the nine remaining observable variables of the DSGE system
that is detailed in Section 3. The choice of the numbers two and three has been motivated
by the fact that it is customary not to use more than a maximum of three factors if nine
series are available. In fact, we use two or three as upper bounds on the factor dimension
but the internally used information criteria always select the maximum dimension. This
indicates that the variables in the DSGE system are quite heterogeneous and that the
information in the system cannot be easily condensed to a low dimension.

It follows that the FAVAR formed using this procedure has a dimension of three or four.
On the whole, we consider four variants of our simulation design: AIC and BIC selection
of lag orders and two or three additional factors in the FAVAR.

For a given considered sample size of N , all models are estimated for samples of size
3N/4 to N − h − 1 using expanding windows, with h = 1, . . . , 4 denoting the prediction
horizon. Then, the next observation at position t = 3N/4 + h, . . . , N − h is forecasted. In
the following, these prediction experiments will be referred to as the predictions using the
basic rival models. Note that an original sample of size N = 200 yields one-step forecasts
based on 150 observations up to 198 observations. Thus, the reported accuracy measures
average estimates of different quality. However, our design represents the action taken
by a forecaster who observes 199 data points and targets the forecast for the observation
at N = 200 by optimizing her combinations of the basic rival forecasts to this aim. In
other words, the report of the forecasts from the basic rival models is to be seen as an
intermediate step.

For each of the 10,000 replications, we consider combinations of forecasts based on
weighted averages of the four basic rival models for the observations at time points t = N .
These combinations are determined by the forecast-encompassing tests outlined above. For
the F tests, we consider significance levels of k ∗ 0.01 with k = 0, . . . , 10. Note that k = 0
corresponds to a uniform average, as no F statistic can be significant at the 0% level and
hence models always encompass all other models. By contrast, k = 10 corresponds to a
significance level of 10%. At a level of 10%, models rarely forecast-encompass rival models.
However, it will be seen that even at such a liberal level the exclusion of poor rivals is the
exception rather than the rule. We do not consider even more liberal levels, as these are
unlikely to be of practical use and we have also seen in some unreported experiments that
they do not improve predictive accuracy.
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3 A medium-scale DSGE model as data-generating

process

Smets and Wouters (2003) originally developed a medium-scale DSGE model of the Euro
area and estimated it based on quarterly data and Bayesian techniques. Our objective,
however, is to use this closed-economy model in order to create artificial data.

The subsequent ten expectational difference equations constitute the log-linear repre-
sentation of this fully micro-founded model. For a deliberate derivation of these equations
see Smets and Wouters (2003). All variables are given in percentage deviations from the
non-stochastic steady state, denoted by hats. The endogenous variables are consumption
Ĉ, real wage ŵ, capital K̂, investment Î, real value of installed capital Q̂, output Ŷ , labor
L̂, inflation π̂, rental rate of capital r̂k, and gross nominal interest rate R̂. For a description
of all model parameters appearing below see Table 1.

The economy is inhabited by a continuum of measure 1 of infinitely-lived households
who maximize the present value of expected future utilities. The optimal intertemporal
allocation of consumption characterized by external habit formation is therefore given by:

Ĉt =
h

1 + h
Ĉt−1 +

1

1 + h
Et[Ĉt+1] −

1 − h

(1 + h)σc

(R̂t − Et[π̂t+1]) +
1 − h

(1 + h)σc

εb
t . (3)

Households are monopolistically competitive suppliers of labor and face nominal rigidities
in terms of Calvo (1983) contracts when resetting their nominal wage. Hence, we ob-
tain a New Keynesian Phillips curve for the real wage, which is characterized by partial
indexation:

ŵt =
β

1 + β
Et[ŵt+1] +

1

1 + β
ŵt−1 +

β

1 + β
Et[π̂t+1] −

1 + βγw

1 + β
π̂t +

γw

1 + β
π̂t−1

−
1

1 + β

(1 − βξw)(1 − ξw)

[1 + (1+λw)σl

λw
]ξw

[ŵt − σlL̂t −
σc

1 − h
(Ĉt − hĈt−1) + εl

t] + ηw
t . (4)

Capital is also owned by households and accumulates according to:

K̂t = (1 − τ)K̂t−1 + τ Ît−1. (5)

Investment, which is subject to adjustment costs, evolves as follows:

Ît =
1

1 + β
Ît−1 +

β

1 + β
Et[Ît+1] +

ϕ

1 + β
Q̂t + εi

t. (6)

The corresponding equation for the real value of installed capital reads:

Q̂t = −(R̂t − Et[π̂t+1]) +
1 − τ

1 − τ + r̄k
Et[Q̂t+1] +

r̄k

1 − τ + r̄k
Et[r̂

k
t+1] + ηq

t . (7)

Moreover, there is also a continuum of measure 1 of monopolistically competitive inter-
mediate goods producers who maximize the present value of expected future profits while
facing the subsequent production function:

Ŷt = φεa
t + φαK̂t−1 + φαψr̂k

t + φ(1 − α)L̂t. (8)
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Their labor demand equation is therefore given by:

L̂t = −ŵt + (1 + ψ)r̂k
t + K̂t−1. (9)

Similar to households, intermediate goods producers face nominal rigidities in terms of
Calvo (1983) contracts when resetting their price. Hence, we obtain the standard New
Keynesian Phillips curve, which again is characterized by partial indexation:

π̂t =
β

1 + βγp

Et[π̂t+1] +
γp

1 + βγp

π̂t−1

+
1

1 + βγp

(1 − βξp)(1 − ξp)

ξp
[αr̂k

t + (1 − α)ŵt − εa
t ] + ηp

t . (10)

The goods market equilibrium condition reads:

Ŷt = (1 − τky − gy)Ĉt + τky Ît + εg
t . (11)

Finally, monetary policy is assumed to be implemented by the following Taylor-type
interest-rate rule:

R̂t = ρR̂t−1 +(1− ρ)[π̄t + rπ(π̂t−1 − π̄t)+ ryŶt]+ r∆π(π̂t − π̂t−1)+ r∆y(Ŷt − Ŷt−1)+ ηr
t . (12)

Differing from the original article, we assume that the interest-rate rule depends on actual
output only, but not on hypothetical potential output.

Equations (3)–(12) contain six macroeconomic shocks that are assumed to follow in-
dependent stationary AR(1) processes of the form εt = ρεt−1 + ηt with ρ ∈ (0, 1) and η
i.i.d. ∼ N(0, ς2η ). More specifically, there is a consumption preference shock εb in equation
(3), a labor supply shock εl in equation (4), an investment shock εi in equation (6), a
productivity shock εa in equation (10), a government spending shock εg in equation (11),
and an inflation objective shock π̄ in equation (12).

In addition, there are four shocks assumed to follow i.i.d. processes ∼ N(0, ς2η ). More
precisely, there is a real-wage mark-up shock ηw in equation (4), an equity-premium shock
ηq in equation (7), a price mark-up shock ηp in equation (10), and an interest-rate shock
ηr in equation (12).

The several parameters values given in Table 1 correspond to the maxima of the pos-
terior distributions of the parameters in case those were estimated in Smets and Wouters
(2003) or to the values that were kept fixed during Bayesian estimation, respectively. All
parameter values guarantee that the Blanchard and Kahn (1980) conditions are satisfied,
which means that there are six eigenvalues of the coefficient matrix of the equation system
(3)–(12) larger than 1 in modulus for its six forward-looking variables (Ĉ, ŵ, Î, Q̂, π̂, r̂k).
Hence, there is a unique stationary solution to the equation system (3)–(12).

We obtain the artificial data by employing the Dynare preprocessor for Matlab, which is
downloadable in its current version from http://www.cepremap.cnrs.fr/dynare/. Start-
ing from the non-stochastic steady state, we generate 2,000 time series of length 1,100 for
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Table 1: Parameters of the DSGE model and their values.

Parameter Value Description

β 0.99 Intertemporal discount factor
τ 0.025 Depreciation rate of capital
α 0.3 Capital output ratio
ψ 1/0.169 Inverse elasticity of capital utilization cost
γp 0.469 Degree of partial indexation of price
γw 0.763 Degree of partial indexation of real wage
λw 0.5 Mark-up in real wage setting
ξp 0.908 Degree of Calvo price stickiness
ξw 0.737 Degree of Calvo real-wage stickiness
σl 2.4 Inverse elasticity of labor supply
σc 1.353 Coefficient of relative risk aversion in consumption
h 0.573 Degree of habit formation in consumption
φ 1.408 1 + share of fixed cost in production
ϕ 1/6.771 Inverse of investment adjustment cost
r̄k 1/β − 1 + τ Steady-state rental rate of capital
invy 0.22 Share of investment to output
ky invy/τ Share of capital to output
cy 0.6 Share of consumption to output
gy 1 − cy − invy Share of government spending to output
rπ 1.684 Inflation coefficient
r∆π 0.14 Inflation growth coefficient
ry 0.099 Output coefficient
r∆y 0.159 Output growth coefficient
ρ 0.961 Degree of interest-rate smoothing
ρεl 0.889 Autocorrelation coefficient for labor supply shock
ρεa 0.823 Autocorrelation coefficient for productivity shock
ρεb 0.855 Autocorrelation coefficient for consumption preference shock
ρεg 0.949 Autocorrelation coefficient for government spending shock
ρπ̄ 0.924 Autocorrelation coefficient for inflation objective shock
ρεi 0.927 Autocorrelation coefficient for investment shock
ςηl 3.52 Standard deviation of labor supply shock
ςηa 0.598 Standard deviation of productivity shock
ςηb 0.336 Standard deviation of consumption preference shock
ςηg 0.325 Standard deviation of government spending shock
ςηπ̄ 0.017 Standard deviation of inflation objective shock
ςηi 0.085 Standard deviation of investment shock
ςηr 0.081 Standard deviation of interest-rate shock
ςηp 0.16 Standard deviation of price mark-up shock
ςηw 0.289 Standard deviation of real-wage mark-up shock
ςηq 0.604 Standard deviation of equity-premium shock
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each variable using the pure perturbation algorithm developed by Schmitt-Grohé and Uribe
(2004). Whereas the first 100 observations of each time series are discarded as starting
values, the remaining 1,000 observations are separated into five shorter time series of length
200, such that 10,000 replications for our forecasting experiments are available. For the
smaller sample sizes reported, only the first N observations of the time series are used.
This sample size N is varied over 20 ∗ j for j = 2, 3, . . . , 10. Samples smaller than N = 40
permit no useful forecasting evaluation, due to the relatively high dimension of the system.

Some control experiments showed that even for N = 200 the influence of dependence
among time series taken from the same replication does not affect the results. However,
we avoided extending the sample size beyond 200, when the time-series samples would
overlap.

4 Results

This section consists of three parts. First, we focus on the relative forecasting performance
of the four basic rival models. The second subsection looks at the weights that these rival
models obtain in the test-based forecast combinations. In the third part, we consider the
forecasting performance of the combined forecast in detail.

4.1 Performance of the rival models

Based on the evaluation of mean squared errors, the graphs in Figure 1 show that the
factor VAR model dominates at larger sample sizes in all designs, that is for AIC as well as
BIC and for two as well as three factors. Unreported control experiments have shown that
this is not true for FAVAR variants that do not explicitly include the predicted variable
as an additional factor. In other words, the factor search is unable to locate the most
important variable for forecasting, the target variable itself, as it concentrates on variance
contributions. However, it is successful in adding factors to the list, while we do not have
proof that this choice is optimal with regard to prediction.

In small samples, the univariate autoregression dominates but it loses ground as the
sample size increases. Among the two bivariate VAR models, a clear ranking is recogniz-
able. Model #3 with output and nominal interest rate achieves a more precise prediction
for output than model #2 with output and inflation. This ranking is due to the structure
of the DSGE model that assumes stronger links between output and the interest rate than
between output and inflation.

Figure 1 restricts attention to single-step prediction. Results for longer horizons are
very similar and are not reported. They are available upon request.

4.2 Weights in the combination forecasts

The univariate model is best for small samples, the FAVAR is best for large samples. Thus,
one may expect that the FAVAR model receives a stronger weight in the encompassing-test
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Figure 1: MSE for the four competing forecast models in single-step prediction. Solid curve
stands for FAVAR, dashed for the univariate AR model, dotted and dash-dotted for bivariate
VAR models. Left graphs for AIC search, right graphs for BIC search, top graphs for two factors
FAVAR, bottom row for three factors.
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weighting procedure, as the samples get larger.1 Figure 2 shows that this is indeed the case.
There are slight differences between the AIC and BIC search, as reaction is monotonic for
AIC at all sample sizes. Note that even for BIC order selection the competing and less
informative models outperform the FAVAR model in small samples with respect to the MSE
criterion (see Figure 1). However, this behavior does not entail forecast encompassing any
more, due to the heavily penalized and thus typically low lag orders.

50
100

150
200 0.00

0.02

0.04

0.06

0.08

0.10

0.25

0.30

0.35

50
100

150
200 0.00

0.02

0.04

0.06

0.08

0.10

0.25

0.30

0.35

0.40

50
100

150
200 0.00

0.02

0.04

0.06

0.08

0.10

0.15

0.20

0.25

0.30

0.35

50
100

150
200 0.00

0.02

0.04

0.06

0.08

0.100.25

0.30

0.35

0.40

Figure 2: Weights allotted to the FAVAR model in dependence of the sample size and of the
significance level for the encompassing test in single-step prediction. Arrangement of graphs as
in Figure 1.

As the significance level increases, weights diverge from the uniform pattern. We note,
however, that even at 10% and N = 200 the weight allotted to the FAVAR model does
not exceed around 40%. This value is an average over many replications with uniform
weighting and comparatively few where weights of 1/3, of 1/2, or even of one are allotted
to FAVAR.

1Ericsson (1992) showed that the null hypothesis of the forecast encompassing test is a sufficient con-
dition for forecast MSE dominance.
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When the prediction horizon grows, the main features of Figure 2 continue to hold,
with one noteworthy exception. For larger samples, Figure 2 shows a smooth increase of
the weight allotted to the FAVAR model with rising significance level. At larger horizons,
this slope steepens, such that even at the 1% level a considerable weight is attained for
FAVAR. This stronger discrimination among rival models affects the accuracy comparison
to be reported in the next subsection.

4.3 Performance of test-based weighting

In order to evaluate the implications of the test-based method for forecasting, we use three
criteria: the mean squared error (MSE), the mean absolute error (MAE), and the winning
incidence. Generally, the MAE yields similar qualitative results as the MSE and we do not
show the MAE results in detail.

Figures 3 to 6 shows ratios of the MSE achieved by the test-based weighting relative
to the benchmark of a uniformly weighted forecast, depending on the sample size. Values
below one indicate an advantage for the test-based procedure. In order not to overload
the graphs, they contain results for N ∈ {40, 80, 120, 160, 200} only, while all simulation
results are available for N = 40 + k ∗ 20, k = 0, . . . , 8. The intermediate values always
correspond to roughly interpolated curves, so little information is lost here.

For single-step prediction (see Figure 3), differences among models are small and remain
in the range of 2% at the maximum values. In small samples, uniform weighting clearly
outperforms the test-based weighting scheme. Performance is often monotonic in the sense
that a looser significance level and thus a greater divergence from uniformity implies further
deterioration. However, it is known from Figure 2 that these differences to uniformity are
small. At larger samples, the differences among significance levels decrease, and there
are several occasions where the test-based weighting achieves values below one and thus
appears to be preferable. The AIC experiments are slightly more friendly to the test-based
rules than the BIC experiments. In one case, there is a noteworthy non-monotonic reaction.

The qualitative results are robust if the mean absolute error (MAE) replaces the MSE
as the prediction criterion. While the performance for two factors is indeed almost identical
to the MSE evaluation, it is slightly less favorable to test-based weighting for three factors.
For brevity, these results are not shown in detail.

If the step size increases, the occurrence of ties among the procedures becomes less
prominent. This, in turn, leads to a clearer separation with regard to the accuracy ensuing
from prediction models. The weight allotted to the best model, in large samples the FAVAR
model, increases.

The graphs for the case of two-step predictions, Figure 4, show that this stronger
emphasis on the FAVAR model leads to an improvement in accuracy for the largest sample
size N = 200 and for the smallest sample size N = 40, while no gains are recognizable for
intermediate cases.

Extending the prediction horizon to three yields the graphs given as Figure 5. Test-
based weighting dominates uniform weights at most sample sizes and specifications. The
significance level of 1%, i.e. the sharpest level, is clearly supported over the looser levels
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Figure 3: Ratios of test-based weighting MSE divided by the MSE from uniform weighting.
Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80, dotted curve
for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 4: Ratios of test-based weighting MSE to MSE from uniform weighting in two-step
prediction. Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80,
dotted curve for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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Figure 5: Ratios of test-based weighting MSE to MSE from uniform weighting in three-step
prediction. Ordering of graphs see Figure 1. Solid curve for N = 40, short dashes for N = 80,
dotted curve for N = 120, dash-dotted for N = 160, long dashes for N = 200.
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for the encompassing test. These features are confirmed and slightly enhanced by the four-
step predictions summarized in Figure 6. Here, test-based weighting dominates in all four
variants for all sample sizes, with only one exception. Advantages for test-based weighting
are most pronounced in the smallest and largest samples.

The criteria MAE and MSE are summary statistics, and they are based on moments
of the error distributions. A lower MSE may be attained by a forecast that is actually
worse in many replications but wins few of them at a sizeable margin. Therefore, we also
consider the direct ranking of squared errors across significance levels. The incidence of a
minimum among all levels could indicate which level is more likely to generate the best
forecast. There are many ties among these significance levels, however, so we only report
the direct comparison between the 1% test-based weighting and the uniform benchmark in
more detail. Figure 7 shows the frequencies of each of these two models of generating the
smaller prediction error.
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Figure 7: Frequency of a smaller absolute forecast error due to uniform weighting (gray curves)
or 1% test-based weighting (black curves). Forecasts at horizons one (solid), two (dashed), three
(dotted), and four (dash-dotted). Ordering of graphs see Figure 1.
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For one-step forecasts, Figure 7 clearly demonstrates that the differences in MSE re-
ported above are due to comparatively few replications. Ties are many even for large
samples (around 70%) and are the rule for small samples (around 90%). The direct com-
parison is not generally favorable for the test-based scheme. Uniform weighting wins for
some cases even at N = 200. On the other hand, the dominance of uniform weighting
that follows from the MSE graphs is not replicated here, and test-based weighting appears
competitive even for small samples.

In line with the MSE graphs, also the ‘winning frequency’ for the test-based scheme
improves at larger forecast horizons. At two steps, the two schemes are comparable, with
a slight advantage for the encompassing test, and at three and four steps the test-based
procedure gains a sizeable margin. Also note that ties become less frequent and their
frequency falls to around 30% at horizon four and larger samples.

In summary, at larger prediction horizons test-based weighting becomes increasingly
attractive. At short horizons, the merits of test-based weighting are most pronounced for
very small samples, where the accuracy of prediction is low, and at larger samples, where
weighting becomes reliable. Unfortunately, many empirical samples may belong to the
intermediate region, where the prediction horizon must exceed two in order to provide a
clear support for weights based on the encompassing test.
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5 Conclusion

Our forecast evaluations generally confirm the traded wisdom in the forecasting literature
that uniform weighting of rival model forecasts is difficult to beat in typical forecasting
situations. Large sample sizes are needed to reliably eliminate inferior rival models from
forecasting combinations. In many situations of empirical relevance, the information con-
tained in slightly worse predictions as marked by individual MSE performance may still
be helpful for increasing the precision of the combination.

Forecast-encompassing tests imply a reasonable weighting of individual models in our
experiments. Univariate models yield the best forecasts in small samples, and sophisticated
higher-dimensional models receive a small weight. With increasing sample size, our exper-
iments clearly show that the factor-augmented VAR achieves the best predictive accuracy
and thus it receives the largest weights in test-based combinations. The benefits with
respect to an optimized combination forecast, however, turn out to be more difficult to
exploit. At the one-step horizon, the test-based combination forecast fails to show a clear
dominance over a simple uniform weighting procedure even in large samples. Only at hori-
zons of three and beyond does the dominance of test-based weighting become convincing.
A noteworthy general result is that, for the encompassing test, the sharpest significance
level of 1% yields the best results.
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