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Abstract 

Completing data sets that are collected in heterogeneous units is a quite frequent problem. 

Chow and Lin (1971) were the first to develop a united framework for the three problems 

(interpolation, extrapolation and distribution) of predicting times series by related series (the 

'indicators'). This paper develops a spatial Chow-Lin procedure for cross-sectional and panel 

data and compares the classical and Bayesian estimation methods. We outline the error 

covariance structure in a spatial context and derive the BLUE for the ML and Bayesian 

MCMC estimation. Finally, we apply the procedure to Spanish regional GDP data between 

2000-2004. We assume that only NUTS-2 GDP is known and predict GDPat NUTS-3 level 

by using socio-economic and spatial information available at NUTS-3. The spatial 

neighborhood is defined by either km distance, travel-time, contiguity and trade relationships. 

After running some sensitivity analysis, we present the forecast accuracy criteria comparing 

the predicted with the observed values. 
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1. Introduction

The use of regional (i.e. sub-national) statistics for econometric models is

increasingly important for European politics. However, even in the most de-

veloped statistics systems, important data restrictions arise when the aim is

to obtain regional data at a lower temporal or spatial level. From a tempo-

ral perspective, since the 1960’s we are confronted with the unavailability of

appropriate short-term indicators (published on monthly or quarterly basis) at

the regional level. This limitation restricts the possibility of an accurate follow-

up of the regional economy, where an increasing share of the public budget

is being managed. With the aim of overcoming this first limitation, different

interpolation methods have been developed, for example, with the the aim of

estimating quarterly regional accounts (e.g. OECD, 1996; Pavia-Miralles and

Cabrer-Borras, 2007), using both univariate (e.g. Boot et al., 1967; Denton,

1971; Friedman, 1962; Chow and Lin, 1971; Fernandez, 1981; Litterman, 1983)

and multivariate approaches (e.g. Rossi, 1982; Di Fonzo, 1990). On the other

hand, from the territorial view point, it is difficult to find coherent databases

covering even the most basic indicators for sub-national units at different spatial

disaggregation levels (regional, provincial, local or point data). The consequence

are obvious when one takes into account the heterogeneity of space and the effect

of different administrative borders in the spatial concentration of the economic

activity. Several examples could illustrate the importance of this issue. First,

some recent papers in the field of the New Economic Geography point out that

the aggregation bias affecting the measurement of economies of agglomeration
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stems from the type of spatial units usually considered in the data (e.g. Duran-

ton and Overman, 2005, 2008). Another illustrative example can be found in

the studies of regional integration and trade (e.g. Helliwell and Verdier, 2000;

Hillberry, 2002; Poncet, 2003, 2005), where the unavailability of rich databases

covering different spatial levels impede the right evaluation of the integration

processes occurring within a country or a group of countries. The relevance

of this issue is clear in the case of the European Union, where a lot of effort

is being put in the reduction of regional inequalities through the regional and

cohesion policy of the EU. The evaluation of this policy, which accounts for the

largest part of the EU expenses, is critically affected by the availability of good

regional statistics needed for the assignment and surveillance of the EU Funds.

With this aim (among others), during more than a decade, Eurostat publishes

regional data on a range of different statistical topics, collected by the 27 mem-

ber states, but also from the three candidate countries and from the four EFTA

states. Usually, this information is collected at different spatial levels based on

the nomenclature of territorial units for statistics (NUTS).

NUTS data are collected by the individual member states using common

rules and methods. However, not all member states have developed the same

level and speed of skills, especially after 1995 when the harmonized European

economic account system started. This leads to inhomogeneous data quality and

sometimes to holes in the data base, especially of it comes to smaller regional

units. Thus, although in 2003 the NUTS system was acquired as a legal basis,

and is enjoined on any new member country, it is common to find that the data

at the lowest levels of disaggregation (NUTS-3) is missing for some countries

and indicators. Moreover, periodical changes in the NUTS regulation occur

since the regional classification adapts to the new administrative boundaries or

economic circumstances. Consequently, these changes leads to additional dis-
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connections in the time series, which can lead to breaks in the information at the

lowest spatial units under consideration. Therefore, sometimes it is difficult to

obtain stable panel data of all EU regions at the NUTS-3 level covering even the

most basic indicators referred to demographics, labor markets, infrastructure,

prices or productivity. For example, if one downloads the Eurostat information

for regional GDP at the NUTS-3 level for the EU 27, including EFTA and the

candidate countries for the period 1995-2005, one would find that 15% of the

figures are missing. On the top of that, the problems of data restriction at

the NUTS-3 level increases for more disaggregated components of the regional

accounts, either from the supply (Gross Value Added by industries), the de-

mand (investments, public or public expenses) or the income side (salaries or

capital remuneration). Finally, as it has been described above, it could also

be the case that the right spatial level for analyzing a specific economic phe-

nomenon requires the use of data even at a lower level of aggregation as the

NUTS-3. All these facts emphasize the importance of developing spatial inter-

polation methods. Besides the temporal limitation of the data, the problem of

spatial interpolation of sub-national variables has received minor attention by

the official statistics systems. Furthermore, the academic literature available on

this topic is less compact and rooted in the main stream of economic statistics.

Although there is an abundant literature dealing with the problem of spatial

interpolation (from point data to area and vice versa) of physical phenomena

and environmental issues (e.g. Kyriakidis and Yoo, 2005; Yoo and Kyriakidis,

2006; Huerta et al., 2004; Guttorp et al., 1994), the number of references de-

creases when we focus on the interpolation of economic data at the sub-national

level. Among the exceptions, LeSage and Pace (2004) use spatial econometric

techniques to estimate missing dependent data. They predict unobserved house

prices by using the information of sold and unsold houses to increase the estima-
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tion efficiency. LeSage and Pace (2004) predict unobserved spatially dependent

data with observable at the same regional level. Our approach is more related

to the classical temporal Chow-Lin procedure, but where we now observe the

indicators at the disaggregated regional level and need to predict unobserved

dependent variables at the same region.

In this paper we suggest two extensions of theChow and Lin (1971) method,

the workhorse of the current literature on temporal interpolation: First, we will

apply the procedure to regional cross-sectional data using a spatial econometrics

model (see Anselin, 1988) and second we will embed the model into a Bayesian

framework. We address the problem of a regional data set that is completely

observed at an aggregate level (like NUTS-2) and has to be broken down into

smaller regional units (e.g. NUTS-3) conditional on observable indicators. We

propose a spatial econometrics model in a classical or Bayesian framework, the

latter one has to be estimated by MCMC. These methods are developed both

for cross-sectional and panel data.

The paper is organized as follows. Section 2 outlines the Maximum Likeli-

hood (ML) model of the spatial Chow-Lin (CL) method for cross-sectional data.

The classical (BLUE) estimator for the spatial autoregressive model (SAR) is

derived, along with the error covariance matrix needed for the improved pre-

diction of the missing values, which leads to the so-called spatial gain terms

for predictions. In section 3 we extend the approach to a spatial panel model

assuming a seemingly unrelated type of covariance structure. The next two sec-

tions (4 and 5) consider Bayesian approaches for the spatial Chow-Lin method

for cross-sectional and panel data. In these sections the MCMC algorithms and

predictions densities are formalized. Applied examples for the procedures are

given in section 6. We apply the spatial cross-sectional and panel Chow-Lin

method to Spanish NUTS-2 and NUTS-3 data. As we observe all data on the
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disaggregated level, we will evaluate the quality of the spatial Chow-Lin method

by comparing the predicted values for the NUTS-3 GDP to their observed values

and calculate the usual forecast accuracy criteria. A final section concludes.

2. The maximum likelihood Chow-Lin method for completing cross-

sectional data

2.1. The Chow-Lin Method

High frequency time series data of the economy is a valuable information for

policy makers. However, such data on a monthly or quarterly basis are rarely

available. In the past a lot of attempts have been made to interpolate missing

high frequency data by using related series that are known. Friedman (1962)

suggested relating the series in a linear regression framework. The three prob-

lems in connection of missing data are known by statisticians as interpolation,

extrapolation and the distributional problem of time series by related series.

Interpolation is used to generate higher frequency level (or stock) data, while

extrapolation extends given series outside the sample period, and in the dis-

tribution framwork one allocates lower frequency flow data, such as GDP (see

Fernandez, 1981), to higher frequency observations. The path-breaking paper

by Chow and Lin (1971) embedded the missing data problem to a predictive sys-

tem framework of aggregate and disaggregate data, leading to boost in research

on this topic.

Assuming a linear relationship for the high frequency data y = Xβ+ε, where

y is a (T × 1) vector of unobserved high frequency data, X is a (T × k) matrix

of observed regressors, β is a (k × 1) vector of regression coefficients and ε is

a vector of random disturbances, with mean E(ε) = 0 and covariance matrix

E(εε′) = σΩ, Chow and Lin (1971) showed that the BLUE for the regression

parameter β̂ and the unobserved high frequency data ŷ is given by:
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β̂ = (X ′C ′(CΩC ′)−1CX)−1X ′C ′(CΩC ′)−1y (1)

ŷ = Xβ̂ + ΩC ′(CΩC ′)−1(y − CXβ̂), (2)

where C is a n×N aggregation matrix consisting of 0’s and 1’s, indicating

which cells have to be aggregated together. The essential part in the equation

1 and 2 is the residual covariance matrix Ω, which has to be estimated. The

Chow-Lin construction of the BLUE requires knowledge or assumptions about

this error covariance matrix. In the literature assumptions like random walk,

white noise, Markov random walk or autoregressive process of order one have

been suggested and tested (e.g. Fernandez, 1981; Di Fonzo, 1990; Litterman,

1983; Pavia-Miralles et al., 2003). Some authors extended the framework for

the multivariate case (e.g. Rossi, 1982; Di Fonzo, 1990) covering time and space

for example (e.g. Pavia-Miralles and Cabrer-Borras, 2007). Usually, constraints

are imposed to restrict the predicted unobserved series to add up to the observed

lower frequency series, e.g. by specifying penalty functions (e.g. Denton, 1971).

In this case, the discrepancy between the sum of the predicted high frequency

observations and the corresponding low frequency observation is divided up over

the high frequency data through some assumptions (for example pro rata).

There are various problems that may arise when applying the Chow-Lin

procedure empirically. First, one has to find a suitable set of observable high

frequency indicators. Predicted outcomes may heavily rely on the indicators

chosen and their statistical properties. Seasonally adjusting the data and ag-

gregating multi-collinear variables improves the quality the results (see Pavia-

Miralles and Cabrer-Borras, 2007, for Monte Carlo evidence). Another crucial

fact is, of course, the design of the residual covariance matrix and the restrictions

imposed.
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2.2. The spatial extension of the classical Chow-Lin method

Consider a cross-sectional model of n regions where we fit a spatial autore-

gressive (SAR) model for the disaggregated units

y = ρWy +Xβ + ε, ε ∼ N [0, σ2In]. (3)

The reduced form is obtained by the spread matrix R = In − ρW for an appro-

priately chosen weight matrix W:

y = R−1Xβ +R−1ε, R−1ε ∼ N [0, σ2(R′R)−1]. (4)

The aggregation of the reduced form model is obtained by multiplying with the

N × n matrix C

Cy = CR−1Xβ + CR−1ε, CR−1ε ∼ N [0, σ2C(R′R)−1C ′]. (5)

We will write shorter for the covariance matrix:

σ2Σρ = σ2C(R′R)−1C ′. (6)

In the Chow-Lin framework, the aggregated model is always observed with

complete data. Therefore, we can estimate it by standard maximum likelihood

methods, although the estimates can be quite unreliable because only fewer ob-

servations are available in an aggregate level. Based on the coefficients estimate

of the aggregated model we can forecast the missing values at the disaggregate

level. This is possible in two ways: the first way neglects the system frame-

work of the Chow-Lin method, i.e. the seemingly unrelated correlation of the

aggregated and the disaggregated model and is therefore the usual univariate

regression forecasts, in this paper called Chow-Lin without gain. This simple or
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’no-gain’ forecasts is given by the point forecast at the observed low-frequency

indicator X (the mean of the conditional model 3):

y = R−1
ρ̂ Xβ̂, (7)

with the estimated spread matrix Rρ̂ = In− ρ̂W . For the no-gain prediction, all

theX variables at the disaggregated level have to be known for all n regions. The

second method uses the spatial correlation structure between the aggregated and

the disaggregated model and we obtain forecasts with the gain, i.e. conditional

normal estimates, where we condition the disaggregated forecasts on the known

values of the aggregated model. This leads to the formula that is similar to the

temporal Chow-Lin method:

ŷj = Xj β̂ +Gê, (8)

where the Gê is the ”gain-in-mean” term and is an improvement of the naive

or simple forecast of the missing y-value at j: ŷj . The gain is the product of

the estimated aggregated error vector ê = ya−Xaρβ̂ and the ’gain matrix’, first

used by Goldberger (1962)

G = Ω−1
ρ C ′(CΩ−1

ρ C ′)−1. (9)

Ω is the covariance matrix link between the aggregated and the disaggregated

model and the index a just is a reminder that it is the regressor matrix of the

aggregated model. It also depends on the estimated ρ. Note that if ρ = 0

then Ωa,ρ = IT and the gain matrix reduces to a transposed projection matrix:

G = C ′(CC ′)−1 which amounts to an (’inverse pointing’) averaging matrix
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because CC ′ gives a diagonal matrix with the number of subregions for each

aggregated region. Thus, the gain component Gê is a vector which is in the

ρ = 0 case a down-weighted aggregated residual of the aggregated fit: A large

residual will be smoothed out over n subregions and 1/n-th is added to the

simple (no-gain) forecasts. For example, if a certain region has a residual that

lies below average, then all the disaggregated forecasts with gains will have

their simple forecasts corrected downward. The same will happen in the other

direction, when the aggregated residual is positive.

The effect of a spatial ρ is a ’spatial smearing out’ of these 1/n discounted

aggregated residual to the spatial neighbors. Thus, these point forecasts for

the disaggregated model are called ’with gain’ in this paper. First the model

and estimators are derived and then a feasible estimator for the prediction is

constructed. In section 4 we outline the Bayesian extension to the problem.

3. The maximum likelihood Chow-Lin method for completing panel

data

In this section we consider a T × N panel matrix Y ′ = [y1., ..., yt.], where

each row t can be considered as a spatial cross-sectional model. Thus, for the

T time points we assume the same model as in (3):

yt = ρWyt +Xtβ + εt, εt ∼ N [0, σ2In]. (10)

The reduced form is obtained by the spread matrix R = In − ρW for an appro-

priately chosen weight matrix W:

yt = R−1Xtβ +R−1εt, (11)

9



with R−1εt ∼ N [0, σ2(R′R)−1]. Since we assume that the regression coefficients

X are independent of time, we can construct a stacked regression system of the

T equations. This is equivalent to vectorizing the (T ×N) panel matrix Y into

one (TN×1) column vector: y = vec(Y ). The same can be done for the residual

matrix: ε = vecE. The (TN ×K) regressor matrix X need to be stacked:

y =


y1

...

yT

 , X =


X1

...

XT

 , W̃ = diag(W1, ...,WT ).

Then the stacked regression system can be written as the system before in (3):

y = ρW̃y +Xβ + ε, ε ∼ N [0, σΩ⊗ In]. (12)

The spatial neighborhood matrix now is defined by a Kronecker product,

since the neighborhood matrix W is assumed to be constant across time W̃ =

I ⊗W 1. The Ω : T × T matrix is the covariance matrix between the T time

points. If we standardize Ω to a correlation matrix then we obtain in the off-

diagonal elements the average time correlations across the cross-sections. The

reduced form of the stacked system is given by

y = R̃−1Xβ + R̃−1ε, R̃−1ε ∼ N [0, σ2Ω⊗ (R′R)−1].

Note that the covariance matrix of the term R̃−1ε is given by

σ2Ωρ = (R̃′(Ω⊗ IN )R̃)−1 = Ω⊗ (R′R)−1. (13)

1If the neighborhood matrix can vary with time we can use a block diagonal matrix:
W̃ = diag(W1, ..., WT ). The only difference to the above assumptions is that we assume a
seemingly unrelated (SUR) type of covariance structure.
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since the stacked spread matrix

R̃ = I ⊗ I − ρI ⊗W = I ⊗Rρ (14)

with the spread matrix Rρ defined in the usual way Rρ = I − ρW . The C-

aggregated reduced form is obtained by multiplying with the NT × n matrix

C̃ = IT ⊗ C

C̃y = C̃R̃−1Xβ + C̃R̃−1ε, C̃R̃−1ε ∼ N [0,Ωρ = σ2Ω⊗ Σρ].

Notice that the terms in the aggregated X matrix can be simplified: ỹ =

C̃y = vecY C ′ or ỹt = Cyt, since C is a (N ×N) matrix. and

Xa = C̃R̃−1X = I ⊗ CR−1X

which factors for each regressor block into Xa,t = CR−1Xt, t = 1, ..., T .

We find that the covariance matrix of C̃R̃−1 is given by:

Ωρ = (R̃′(Ω⊗ IN )R̃)−1 = Ω⊗ σ2(R′R)−1 = Ω⊗ σ2Σρ. (15)

where Σρ is given as in (6). Thus, we see that the covariance matrix is just a

Kronecker product between the SUR covariance matrix Ω and the usual spread

precision Σρ = (R′R)−1. We can simply adapt the usual SAR algorithms for

a GLS estimation of the stacked spatial panel Chow-Lin model. Note that the

covariance matrix can be estimated as Ω̂ = EaE
′
a/N : T ×T with Ea = Ya− Ŷa :

T ×N and Ŷa = [X1β̂, ..., XN β̂].

The simple or non-gain point forecasts are given by the mean of the regression
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model (3):

yt = R−1
ρ̂ Xtβ̂, t = 1, ..., T. (16)

where Rρ̂ is given as before in (14). This is because the R̃ matrix is a block

diagonal matrix.

The conditional Chow-Lin predictions are given by

ŷt = Xtβ̂ +Gêa,t t = 1, ..., T (17)

where the Gêa,t is an improvement of the estimated aggregated error term êa =

(ya −Xaρβ̂) using the ’gain matrix’

Ga = Σ−1
ρ C ′(CΣ−1

ρ C ′)−1 = IT ⊗G, (18)

and Σρ is the same disaggregated covariance matrix as in the univariate case.

Interestingly, the Σρ matrix cancels out, because of (15) we have Ω−1
ρ C ′ =

Ω−1 ⊗ (R′R) and reduces Ga = IT ⊗ G with the univariate G given in (18).

Thus, Σρ plays no role in the Chow-Lin gain of the spatial panel completion

model. The gain matrix G is constant over time and depends only on the spread

matrix R and the aggregation matrix C.

Is there a difference between stacked and simple Chow-Lin forecast? First of all,

there is a better statistical basis as more data are used in the estimation process.

But surprisingly, the correlation matrix between time points (Ω) seems not to

be directly involved in the prediction process. But, as we will see in the next

section, the Ω matrix is part in the 2-step estimation process, which is outlined

in the next section. Thus, there is an indirect influence of the time correlations

in the panel model on the predictions. If this bit of extra information will
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improve the forecasts can not be decided on a theoretical basis. We will need

forecast criteria and experience if this is the case. Note that in the Bayesian

model, the Chow-Lin completion depends on the Ω matrix. In general, a better

fit leads to better forecasts. It needs to be seen if this observation is also true

for the Chow-Lin case: Bayesian methods and feasible GLS methods usually do

not produce better R2 but might smooth out extreme observations that disturb

the link between the aggregated and the disaggregated fit in a spatial Chow-Lin

model.

3.1. The 2-step feasible GLS estimator

In the section we show how we can extend the ’mixed SAR’ estimation of

LeSage(1999) to incorporate the estimation of the SUR covariance matrix. The

2-step feasible GLS estimator has to be estimated by the following steps:

• OLS estimation in the model y = Xβ0 + u0

• OLS estimation in the model Wy = Xβ1 + u1

• Compute OLS residuals e0 = y −Xβ̂0 and e1 = y −Xβ̂1

• ρ̂: Maximize the concentrated likelihood function

L(ρ) = ln(1/n)(e0 − ρe1)′(e0 − ρe1)n/2 + ln|I − ρW̃ |

• Compute β̂ = β̂0 − ρβ̂1 and σ̂2 = (e0 − ρe1)′(e0 − ρe1)/nT

• Compute Ω̂ = Ê′Ê/n with ê = vec(Ê) and ê = y − ρ̂Wy −Xβ̂

• GLS estimation in the model y = Xβ0 + u0 with Σ̂ = Ω̂⊗ In

• GLS estimation in the model Wy = Xβ1 + u1 with Σ̂ = Ω̂⊗ In

• Compute the GLS residuals e0 = y −Xβ̂0 and e1 = y −Xβ̂1
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• ρ̂: Maximize the concentrated likelihood function

L(ρ) = ln(1/n)(e0 − ρe1)′(e0 − ρe1)n/2 + ln|I − ρW̃ |

• Compute β̂GLS = β̂0 − ρβ̂1 and σ̂2
GLS = (e0 − ρe1)′(e0 − ρe1)/nT

Finally the GLS estimates β̂GLS can be used for Chow-Lin predictions of the

missing low-frequency data.

4. The Bayesian Chow-Lin model for completing cross-sectional data

We consider a cross-sectional spatial autoregressive (SAR) model as in (10)

y = ρWy +Xβ + ε, ε ∼ N [0, σ2In].

The model assumes that we have a cross-sectional vector y = yt : N × 1 at a

certain point in time t, which is not observed, but we can observe a shorter,

aggregated vector Cy : n× 1. We consider the disaggregation spatial regression

model

y = ρWy +Xβ + ε, εt ∼ N [0, σ2In]. (19)

The reduced form is obtained by the spread matrix R for an appropriately

chosen weight matrix W: R = In − ρW

y = R−1Xβ +R−1ε, R−1ε ∼ N [0, σ2(R′R)−1]. (20)

The prior distribution for the parameters θ = (β, σ−2, ρ) is proportional to

p(β, σ−2, ρ) ∝ p(β) · p(σ−2) = N [β | β∗, H∗] · Γ(σ−2 | s2∗, n∗),
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since we assume a uniform prior for ρ ∼ U [−1, 1]. The C-aggregation of the

reduced form model is obtained by multiplying with the N × n matrix C

Cyt = CR−1Xβ + CR−1εt, CR−1εt ∼ N [0, σ2C(R′R)−1C ′]. (21)

We will write shorter for the covariance matrix:

σ2Ωρ = σ2C(R′R)−1C ′. (22)

The joint distribution of θ = (β, ρ, σ2) of this model is given by

p(θ | y) = N [CR−1Xβ, σ2Ωρ] · N [β | β∗, H∗] · Γ(σ−2 | s2∗, n∗) (23)

4.1. MCMC for the SAR-CSCL model

Consider the SAR cross-sectional Chow-Lin (SAR-CSCL) model and let us

denote the 3 conditional distributions by p(ρ | θc), p(β | θc), and p(σ2 | θc) where

θ = (ρ, β, σ2) denotes all the parameter of the model and θc the complementary

parameters in the f.c.d.’s, respectively. The MCMC procedure consists of 3

blocks of sampling, as is shown in the next theorem:

Theorem 1 (MCMC in the SAR-CSCL model). The MCMC es-
timation for the SAR-CSCL model involves the following iterations:

Step 1. Draw β from N [β | b∗∗,H∗∗]
Step 2. Draw ρi by a Metropolis step: ρnew = ρold +N(0, τ2)
Step 3. Draw σ−2 from Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2]
Step 4. Repeat until convergence.

Proof 1 (Proof of Theorem 1).

(a) The fcd for the beta regression coefficients is

p(β | y, θc) = N [β | b∗, H∗] ·N [Cy | CR−1Xβ, σ2C(R′R)−1C ′]
= N [β | b∗∗, H∗∗]
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with the parameters

H−1
∗∗ = H−1

∗ b∗ + σ−2X ′R′−1C ′Ω−1
ρ CR−1X,

b∗∗ = H∗∗[H−1
∗ b∗ + σ−2X ′R′−1C ′Ω−1

ρ Cy]

(b) For the fcd of the residual variance we find

p(σ−2 | y, θc) = Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2] (24)

with n∗∗ = n∗ + n and s2∗∗n∗∗ = s2∗n∗ + ESSρ and where the error sum of
squares ESSρ is given by

ESSρ = (Cy − CR−1Xβ)′Ω−1
ρ (Cy − CR−1Xβ). (25)

(c) For the fcd of the spatial ρ we use a Metropolis step:

ρnew = ρold +N(0, τ2) with α = min

[
1,
p(ρnew)
p(ρold)

]
,

the acceptance ratio, and where p(ρ) is the (kernel of) the full conditional
for ρ, in our case the kernel is just stemming from the likelihood function:

p(ρ) = |Ωρ|−
1
2 exp(− 1

σ2
ESSρ), (26)

with ESSρ given in (25).

From the MCMC simulation we obtain a numerical sample of the posterior

distribution p(β, ρ, σ−2 | y).

4.2. Completing data by prediction

We obtain the posterior predictive distribution in the following way, by in-

tegrating over the conditional predictive distribution with the posterior distri-

bution

p(yp | y) =
∫ ∫ ∫

p(yp | β, σ−2)p(β, ρ, σ−2 | y)dβdρdσ−2

where the posterior normal-gamma density p(β, ρ, σ−2 | y) is found numeri-

cally by the MCMC sample, yielding a posterior sample of the θ parameters:

ΘMCMC = {(βj , ρj , σ2
j ), j = 1, ..., J}. Next we compute a numerical predic-
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tive sample of the unknown vector y by drawing from the reduced form (which

depends on the matrix W and on the known regressors X):

y(j) ∼ N [R−1
j Xβj + gj , σ

2
j [(R′jRj)

−1 −Gj ]], (27)

with Rj = In − ρjW, j = 1, ..., J and g is the gain vector and G is the gain

matrix for the mean and variance matrix, respectively, which are defined by

Gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1C(R′jRj)
−1], (28)

gj = (R′jRj)
−1C ′[C(R′jRj)

−1C ′]−1(yagg − ŷagg,j)], (29)

where we use the aggregated residuals êagg = yagg − ŷagg and the current pre-

dictions ŷagg,j = R−1
agg,jXaggβj .

5. The Bayesian Chow-Lin model for completing panel data

We consider a panel spatial autoregressive model as in (10)

yt = ρWyt +Xtβ + εt, ε ∼ N [0,Ω⊗ σ2In]

with the residuals ε = vecE from the stacked residual matrix E : T × n . The

prior information for the parameters θ = (ρ, β, σ2,Ω) is blockwise independent

p(ρ) = U(−1, 1); p(β) = N(β∗, H∗); p(σ−2) = Γ(s2∗, n∗), p(Ω
−1) = W (Ω∗, ν∗),

where U is a uniform, W a Wishart and Γ a Gamma-2 distribution. Consider

the SAR panel Chow-Lin model (in short SAR-PCL) and let us denote the 3

conditional distributions by p(ρ | θc), p(β | θc), and p(σ2 | θc) where θc denotes

the complementary parameters for the f.c.d.’s, respectively.
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The MCMC procedure consists of 4 blocks of sampling, as given in the next

theorem:

Theorem 2 (MCMC in the SAR-PCL model).
The MCMC estimation for the SAR-PCL model involves the following iterations:

Step 1. Draw β from N [β | b∗∗,H∗∗]
Step 2. Draw ρ by a Metropolis step: ρnew = ρold +N(0, τ2)
Step 3. Draw σ−2 from Γ[σ−2 | s2∗∗, n∗∗]
Step 4. Draw Ω−1 from W [σ−2 | Ω∗∗, ν∗∗]
Step 5. Repeat until convergence.

Proof 2 (Proof of Theorem 2). The first 3 fcd’s are the same as in Theorem
1. We now show that the fcd for the Ω−1 is derived in the following way. Recall
that the reduced form of the panel SAR model is given by

y ∼ N [R−1Xβ,Ω⊗ σ2(R′R)−1]. (30)

This leads to the likelihood function

p(Ω−1 | y) = |Ω⊗ σ2(R′R)−1|−1/2exp{− 1
2σ2

e′(Ω⊗ σ2(R′R)−1)−1e}, (31)

with e = y−R−1Xβ = vec(E) the vectorisation of the residual matrix E : T×n.
This leads to the compact form

p(Ω−1 | y) = |Ω|−n/2σ−nT |R|exp{− 1
2σ2

trEΩE′(R′R)−1}. (32)

Now this expression has to be combined with the kernel of the prior distribution

p(Ω−1 | y) ∝ |Ω|−ν∗/2exp{− 1
2σ2

trΩ∗Ω} = W (Ω∗∗, ν∗∗). (33)

and yields a Wishart distribution with ν∗∗ = ν∗+n and Ω∗∗ = Ω∗+E′(R′R)−1E.

5.1. Completing data by prediction

We obtain the posterior predictive distribution in the same way as before:

Using the above MCMC procedure we obtain a posterior sample of the θ pa-

rameters: ΘMCMC = {(βj , ρj , σ2
j ,Ωj), j = 1, ..., J}. Again, from this MCMC

output we find a predictive sample y by drawing from the reduced form (which

depends on the matrix W and on the known regressors X):

y(j) ∼ N [R−1
j Xβj + gj ,Ωj ⊗ σ2

j [(R′jRj)
−1 −Gj ]], (34)
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with Rj = (In − ρjW ), j = 1, ..., J and g and G defined as in equation 29 and

28 respectively.

6. Application of the spatial Chow-Lin to Spanish regions

In this section, the performance of the classical and Bayesian Chow-Lin

method is evaluated using actual data for the Spanish GDP at NUTS-2 and

NUTS-3 level2. Spain has 18 regions (NUTS-2) and 52 provinces (NUTS-3).

The associated C matrix is constructed from the knowledge of the hierarchical

structure of the NUTS-2 to NUTS-3 regions. Note that, in contrast to the

temporal Chow-Lin method where each aggregated period (year) has the same

number of disaggregated stretches (4 quarters, 12 months etc.), in the spatial

framework the number of provinces (NUTS-3) varies for each region (NUTS-

2). In Spain, the number of provinces by regions range between 1 and 9, and

7 regions are single unit regions, having just 1 province. This heterogeneity in

terms of size and administrative structure makes Spanish regions a real challenge

and testing ground for spatial Chow-Lin methods.

6.1. The Spanish sub-national data

The regressors used for the aggregate model are described in Table 1. Note

that the indicators should be available at the NUTS-2 and NUTS-3 level. Usu-

ally, due to the data limitation problems described above, the number and

quality of indicators available at this spatial level is lower than for the NUTS-2

level. However, in the Spanish case it is possible to obtain some reliable indica-

tor variables that are able to proxy the GDP by the demand and supply side.

All regressors enter in log levels to explain GDP (NUTS-2) for the year 2004

2All data and the hierarchical C-Matrix for spanish provinces are available from the authors
upon request.
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(or the years 2000-2004 in the panel case). The NUTS-2 GDP series were cal-

culated by aggregating NUTS-3 GDP. Therefore, it is possible to compare the

Chow-Lin predicted values with the actual data available. As a spatial weight

matrix W = W1 we use the row normalized matrix for the inverse distances

between the NUTS-3 provinces.

In addition, we have used three alternative spatial weight matrices: W2 is de-

fined as the row normalized matrix for the inverse of the minimum travel time

between provinces, computed by means of GIS software for the actual Spanish

transport network and considering the speed and legal restrictions for trucks in

Spain (from Gutierrez-Puebla et al. 2007). W3 is defined as a row normalized

matrix for the interregional trade flows between the NUTS-3 provinces as well

as between the NUTS-2 regions (these trade matrices come from the Spanish

c-intereg database: www.c-intereg.es). W4 is defined as a the row normalized

first order contiguity matrix.

6.2. Alternative specifications for the cross-section classical model

We start with the estimation of a cross-sectional SAR model and the classical

Chow-Lin prediction. The first aim is to find an appropriate aggregated SAR

model, using different indicator variables, which should be correlated with the

‘GDP’, both at the regional and provincial level. Table 2 shows the results

obtained for the best 5 models3, using the SAR program of LeSage (1997).

The variables used in the first two models perform reasonably well, with the

exception of ‘Income’. In these two models the spatial term ρ is positive, but

not always significant. As we will see later, these two specifications, based on

the role of employment and international trade for explaining ‘GDP’ can easily

be improved.

3Due to space limitations, we omit the results for variables like ‘capital-stock’, ‘number of
trucks’ and ’number of banks’, which did not improve the results.
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Before that, we focus on the next three models, which are characterized by

the use of fiscal variables (‘Vat’, ‘IncTax’), and - surprisingly - show a negative

ρ that captures the spatial autocorrelation effect (although not significant for

Model 4). Contrary to the intuition that spatial income effects lead to positive

spillovers between neighbors, the sign obtained in these three models is negative,

indicating the presence of an inverse relation between rich GDP provinces and

poorer neighbors. Such a negative and significant ρ obtained for Model 3 and

5 can be interpreted as a form of sub-national ‘core-periphery’ structure (see

Krugman, 1991) for Spanish provinces, and for some subregions, even within

those. This phenomenon is a kind of a ’polycentric-periphery’ relationship, and

can be seen in Figure 1, where some rich provinces like Madrid are surrounded

by poor regions, and a few rich provinces are contiguous (Barcelona-Tarragona-

Saragossa, Alicante-Valencia-Castellón, Seville-Cádiz-Málaga).

In order to test if a negative spatial correlation is generated by the ‘rich-

tower-provinces’ and ‘flat-surroundings’ leading to a ‘core-periphery’ effect, we

estimate two alternative specifications whose results are summarized in Table 3.

In Model 6, we include a dummy variable ‘Caprov’ with 1 for capital provinces

and 0 otherwise. Now, all the variables are significant and again we obtain a

negative and significant ρ with a much higher coefficient than in Model 5, where

‘the capital effect’ was not controlled for. However, when we move to Model

7, and the ‘Caprov’ is substituted by another dummy variable ‘Rforal’ that

takes value 1 when the province belongs to an special fiscal regime within Spain

and 0 otherwise, the ρ become non-significant. Thus, the cancellation of the

negative and significant spatial effect in Model 7 points out to the presence of

a problematic bias in the fiscal variables included (there is no alternative fiscal

variables available of the same relevance and level of disaggregation). Therefore,

leaving this issue for further research, we focus in three new specifications that
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explore the potential of the variables included in Model 1.

First, Model 8 consists of 3 variables (‘Employment’, international ‘Exports’

and ‘Imports’) that are able to explain by a R2 = 99.96% of the spatial dis-

tribution of the ‘GDP’. Once that ‘Income’ is removed (by definition, it was

also affected by the ‘fiscal bias’), all the variables are highly significant and the

spatial correlation effect is positive and significant, indicating that the ‘GDP’ in

a region is positively correlated with the one on their nearest neighbors. Then,

in order to test if the two largest regions -‘Madrid’ and ‘Barcelona’- are causing

decrements or improvements in the spatial model, we include two agglomera-

tion dummy variables that take value 1 for Madrid alone (Capi) - or Madrid

and Barcelona (Mad Bar), and 0 otherwise. Now, Model 9 and 10 slightly

improve the results compared to Model 8. In both specifications, the agglom-

eration dummy variables improve the significance of the coefficients, including

the spatial term, which has higher positive coefficients and levels of significance.

To explore the robustness with respect to the neighborhood matrix W, Table

4 shows the results for three alternative measures of ‘proximity’ defined in 6.1.

As expected, the results for the inverse distances and travel times are very

similar, obtaining high levels of significance for all variables, with the exception

of the ‘Mad Bar’ dummy in the former. However, the results vary considerably

when proximity is measured by ‘interregional trade’ and ‘contiguity’. In both

cases, international ‘Exports’ and ‘Mad Bar’ become non-significant and the

spatial effect almost disappears (low coefficients and z-values). Although this

issue requires further research, it seems that the positive spatial autocorrelation

effect acts in a middle ground between the ‘gravity relation’ explaining the

Spanish interregional trade 4 and the ‘first order contiguity’ affected by the

4In previous papers (Llano et al. 2009; Requena et al. 2009), the interregional trade
in Spain has been analyzed using gravity equations and found important flows between dis-
tant regions, like between Catalonia-Andalusia, Catalonia-Madrid or Madrid-Valencia. In the
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’polycentric-periphery’ relationship suggested above.

6.3. Alternative methods of estimation

Based on Model 8 and Model 10, we estimate three additional specifications,

a Bayesian cross-sectional model, a classic and a Bayesian panel model. In Table

5, we have listed the results for both specifications using classic and Bayesian

cross-sectional SAR models. For both models, we obtain high R2 and levels of

significance for all variables. The sign for all the variables is the right one, and

the ρ always have a positive coefficient within the range of 0.11 to 0.13, which

is of about the same size as in Vayá et al. (2004). Table 6 shows the results

obtained for the classic and Bayesian panel SAR models. Although the R2 is

slightly lower than for the cross-section models, the level of significance for all

the variables increases as well as the importance of the spatial effect, whose

positive coefficients vary from 0.12 to 0.14. In all cases, the ‘Mad Bar’ variable

shows negative coefficients with acceptable significance levels, pointing out to

higher levels of concentration in employment and international trade in Madrid

and Barcelona than in terms of ‘GDP’. Probably this result is connected with

differences in productivity (GDP/employment ratios by regions) and the higher

concentration of traders and headquarters in these two regions, which tends to

overvalue their amount of imports and exports.

6.4. Evaluation of the spatial Chow-Lin method

The evaluation of the spatial Chow-Lin (CL) follows the evaluation methods

for predictions in statistical models. This follows from the fact that unknown

y’s have to be predicted while the predictors are fully observed. In the Spanish

case we are in the fortunate position of knowing the disaggregated y-values,

gravity equation, proximity just explains part of the bilateral trade, and the pull and push
factors linked to the origin and destination regions explain the rest.
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so we can compute the prediction accuracy. This is done for the classical and

Bayesian prediction as well as for the method with and without the Gain (8 and

9) term. After that we compute some forecast criteria to evaluate the 4 different

predictions. To evaluate the accuracy of the ML and Bayesian prediction we

chose three criteria from the forecasting literature (see e.g. Chatfield, 2001): the

Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the

Mean Absolute Percentage Error (MAPE)5. The results are shown in Table 8.

According to the three criteria (RMSE, MAE and MAPE), the rankings of

the models are the same. Moreover, the forecasts including the ‘gain term’,

which is a function of the spatial autocorrelation, always outperform the equiv-

alent methods ‘without the gain’. According to these rankings, the best method

is the Bayesian cross section and panel data model ‘with gain’, followed by the

classical cross-section and the classical panel model, both ‘with gain’. This

shows that a spatial model will considerable improve the Chow-Lin forecasts

for disaggregate data, while ignoring the spatial correlation - i.e. applying a

conventional regression model instead - will lead to a considerable accuracy loss

for the predicted data.

Finally, to visualize the comparisons, Figures 2 to 5 show overlay plots of

the classical and Bayesian Chow-Lin predictions for model 10, with and without

gain, together with the observed data, using the cross-sectional and the panel

data specification. Figures 3 and 5 show clearly that the Bayesian spatial Chow-

Lin forecasts lie closer to the observed values than classical predictions or non-

spatial methods (denoted as ’no gain’) in Figure 4.

5The formulas are RMSE = 1
N

√∑N
i=1(y − ŷ)2, MAE = 1

N

∑N
i=1 |y − ŷ| and MAPE =

1
N

∑N
i=1 |

y−ŷ
y
| respectively.
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7. Conclusions

Regional econometric work in Europe has become increasingly important,

especially since the integration process of the European Union puts a lot of

weight on policies for regional coherence. For such evaluations NUTS data

are the main source of information. They are collected by Eurostat and the

individual member states using common rules and methods. But not all member

states have developed the same level of skills, especially since 1995 after the

harmonized European national accounting system has started. This leads to

inhomogeneous data quality and sometimes to holes in the database if smaller

regional units are needed. In order to apply many modern panel methods one

has to complete such data sets. While the simplest method is interpolation, this

gives not always satisfactory results.

In this study, we develop a new spatial Chow-Lin procedure similar to the

original one used in the field of time series interpolation. The procedure uses the

indicators at the disaggregated regional level to predict the disaggregated un-

observed dependent variable, conditional on the complete aggregated observed

model. We showed that the spatial Chow-Lin method can be formulated in a

Bayesian framework and can be also used for completing data in a spatial panel

model.

To evaluate the new method, we forecasted the GDP for the 52 Spanish

provinces (at NUTS-3 level), but based only on the information for the 18

Spanish regions (i.e. NUTS-2 GDP as dependent variable), while the forecasts

are based on high frequency socio-economic indicators at the NUTS-3 level.

Then, to compare the results obtained with the actual series available at the

NUTS-3 level, we computed forecast criteria. Interestingly, we found models also

with a significant negative spatial autocorrelation effects by including the fiscal

variable ‘Income Tax’, but the R2 fit is lower than for models with positive
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rhos’s. Moreover, the Chow-Lin results improve if we control for the centers

Madrid and Barcelona, because spatial spillovers are sensitive to the definition

of the spatial neighborhood matrices and the concept of ‘proximity’.

Finally, we point out that a significant spatial lag parameter leads to an

improvement (through the so called gain term) in the spatial Chow-Lin predic-

tion of the disaggregated data. The Bayesian MCMC method yield the best

result among the 10 models in the forecast experiment. This seems to be true

for the Bayesian and classical estimation methods or cross-sectional and panel

data. Our new method has shown that it pays to get a good spatial model if

one is interested in good predictions of missing data in a cross-sectional or panel

model. A non-trivial condition for finding a good model is the existence of good

indicators, the removal of outliers and the skill to find the appropriate weight

matrix to estimate the spatial effects. In future research we will explore these

modeling possibilities in more detail and extend the spatial Chow-Lin method

to complete large blocks of data at the national and European level, including

flow data such as inter-regional trade or migration flows.
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8. Tables and Figures

Table 1: Description and source of the variables in the database

Variable Description Source
Area Area of provinces in square km INEa

Pop Population by provinces in 1,000 INE
Emp Employment by provinces (in 1,000 people) INE
Kstock Capital stock by provinces FBBVA-IVIEb

Export International exports of goods by provinces AEATc

Import International imports of goods by provinces AEAT
Vat Value Added Tax revenue by provinces AEAT
IncTax Income tax revenue by provinces AEAT
Income IncTax by provinces per capita Own calc.- INE
Trucks Number of heavy trucks by provinces La Caixad

Banks Number of banks in each province La Caixa
Mad Bar Dummy for Madrid and Barcelona Own calc.
Capi Dummy for Madrid only Own calc.
Caprov Dummy: 1 for all capital provinces Own calc.
Rforal Dummy: 1 for provinces with special tax system Own calc.

awww.ine.es
bwww.fbbva.es,www.ivie.es
cwww.aeat.es
dwww.lacaixa.es
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Table 2: Cross sectional SAR model: classic estimates for GDP 2004, NUTS-2 and NUTS-3

Models Model 1 Model 2 Model 3 Model 4 Model 5
R-squared 0.9996 0.9993 0.9876 0.9984 0.9970
Rbar-squared 0.9995 0.9992 0.9868 0.9981 0.9966
σ2 0.1601 0.2880 4.4160 0.6816 1.1769
Nobs, Nvars 18, 5 18, 4 18, 2 18, 3 18, 3
log-likelihood -2.8197 -8.1271 -32.9083 -15.8589 -20.8297
coefficientsa

constant -2.7265 -5.2255 19.3336 3.2634 9.0523
(0.0922) (0.0083) (0.0004) (0.1688) (0.0040)

log(Emp) 0.3789 0.4203 1.3351 0.9390
(0.0000) (0.0000) (0.0000) (0.0000)

log(Pop) 0.6325
(0.0000)

log(Exports) 0.2110 0.5039
(0.0000) (0.0000)

log(Imports) 0.3091
(0.0001)

log(IncTax) 0.5769 0.2662
(0.0000) (0.0000)

log(Vat) 0.0351
(0.6914)

log(Income) 0.0257 0.0079
(0.4069) (0.8467)

ρ 0.0908 0.1919 -0.6349 -0.0969 -0.3089
(0.1164) (0.0052) (0.0010) (0.2456) (0.0043)

az-probabilities in parentheses
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Table 3: Cross-sectional SAR model: classic estimates for GDP, 2004 (NUTS-2 and NUTS-3)

Models Model 6 Model 7 Model 8 Model 9 Model 10
R-squared 0.9978 0.9999 0.9996 0.9996 0.9997
Rbar-squared 0.9973 0.9999 0.9995 0.9995 0.9996
σ2 0.8643 0.0229 0.1662 0.1662 0.1410
Nobs, Nvars 18, 4 18, 4 18, 4 18, 5 18, 5
log-likelihood -18.0950 14.6908 -3.1638 -2.9429 -1.6849
coefficientsa

constant 14.2439 0.3951 -3.5358 -3.8550 -3.9274
(0.0000) (0.4581) (0.0067) (0.0046) (0.0012)

log(IncTax) 0.2403 0.4180
(0.0000) (0.0000)

log(Emp) 1.0061 0.5680 0.3732 0.3798 0.4010
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

log(Exports) 0.2271 0.2357 0.2265
(0.0049) (0.0034) (0.0023)

log(Imports) 0.2991 0.2881 0.2900
(0.0002) (0.0004) (0.0001)

Capi -0.3099
(0.5003)

Mad Bar -0.5362
(0.0725)

Caprov -2.8482
(0.0118)

Rforal 2.4237
(0.0000)

ρ -0.4039 -0.0165 0.1189 0.1317 0.1347
(0.0000) (0.3637) (0.0119) (0.0084) (0.0023)

az-probabilities in parentheses
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Table 4: Cross-sectional SAR model: classic and Bayesian estimates. GDP, 2004

Models Model 10
Estimation W1=distance W2=time W3=trade W4=contiguity
R-squared 0.9997 0.9996 0.9995 0.9995
Rbar-squared 0.9996 0.9995 0.9994 0.9993
σ2

sige, ESS/(n-k) 0.1410 0.1507 0.1922 0.2101
ndraws,nomit 5000,500 5000,500 5000,500 5000,500
Nobs, Nvars 18, 5 18, 5 18, 5 18, 5
log-likelihood -1.6849 -2.2779 -4.4620 -5.2598
coefficientsa

constant -3.9274 -3.2070 -1.5668 -0.3309
(0.0012) (0.0034) (0.1151) (0.2145)

log(Emp) 0.4010 0.3937 0.4278 0.4349
(0.0000) (0.0000) (0.0000) (0.0000)

log(Exports) 0.2265 0.1881 0.1099 0.1109
(0.0023) (0.0089) (0.1359) (0.1556)

log(Imports) 0.2900 0.3318 0.3941 0.3881
(0.0001) (0.0000) (0.0000) (0.0000)

Mad Bar -0.5362 -0.4494 -0.4119 -0.3854
(0.0725) (0.1403) (0.2315) (0.2863)

ρ 0.1347 0.1039 0.0333 0.0020
(0.0023) (0.0064) (0.1799) (0.6903)

az-probabilities in parentheses; ESS = error sum of squares
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Table 5: Cross-sectional SAR model: classic and Bayesian estimates. GDP, 2004

Models Model 8 Model 10
Estimation Classic Bayesian Classic Bayesian
R-squared 0.9996 0.9996 0.9997 0.9997
Rbar-squared 0.9996 0.9995 0.9996 0.9996
σ2 0.1662 0.1410
sige, ESS/(n-k) 0.2169 0.1951
ndraws,nomit 5000,500 5000,500
Nobs, Nvars 18, 4 18, 4 18, 5 18, 5
log-likelihood -3.1638 -1.6849
coefficientsa

constant -3.5358 -3.4639 -3.9274 -3.8971
(0.0003) (0.0253) (0.0012) (0.0117)

log(Emp) 0.3732 0.3492 0.4010 0.4084
(0.0000) (0.0000) (0.0000) (0.0015)

log(Exports) 0.2271 0.2492 0.2265 0.2377
(0.0049) (0.0204) (0.0023) (0.0191)

log(Imports) 0.2991 0.2843 0.2900 0.2747
(0.0002) (0.0077) (0.0001) (0.0055)

Mad Bar -0.5362 -0.5490
(0.0725) (0.0831)

ρ 0.1189 0.1185 0.1347 0.1360
(0.0119) (0.0324) (0.0023) (0.0166)

az-probabilities in parentheses; ESS = error sum of squares
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Table 6: Panel data SAR models: GLS and Bayesian estimates for GDP, 2000-2004

Models Model 8 Model 10
Estimation Classic Bayesian Classic Bayesian
R-squared 0.9995 0.9995 0.9996 0.9995
Rbar-squared 0.9995 0.9995 0.9995 0.9995
σ2 0.2073 0.1782
sige, ESS/(n-k) 0.2230 0.2003
ndraws,nomit 500,50 500,50
Nobs, Nvars 90, 4 90, 4 90, 5 90, 5
log-likelihood -25.7614 -18.9705
coefficientsa

constant -3.7695 -3.4991 -4.1362 -4.0264
(0.0000) (0.0000) (0.0000) (0.0000)

log(Emp) 0.4193 0.4066 0.4516 0.4873
(0.0000) (0.0000) (0.0000) (0.0000)

log(Exports) 0.2392 0.2414 0.2321 0.2208
(0.0000) (0.0000) (0.0000) (0.0000)

log(Imports) 0.2653 0.2662 0.2611 0.2576
(0.0000) (0.0000) (0.0000) (0.0000)

Mad Bar -0.5765 -0.6526
(0.0001) (0.0000)

ρ 0.1299 0.1223 0.1449 0.1443
(0.0000) (0.0000) (0.0000) (0.0000)

az-probabilities in parentheses

Table 7: Chow-Lin Prediction Accuracy: Classical vs. Bayesian estimates

RMSEa MAEb MAPEc

Cross-section Classical gain 1.242 0.098 0.905
no gain 1.338 0.140 1.285

Bayesian gain 0.820 0.067 0.618
no gain 2.930 0.321 2.905

Panel-data Classical gain 3.166 0.348 3.146
no gain 3.209 0.352 3.187

Bayesian gain 0.822 0.067 d 0.621
no gain 3.100 0.340 3.078

aRoot Mean Squared Error
bMean Absolute Error
cMean Absolute Percentage Error
dMinimum
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Figure 1: Geographical distribution of GDP 2004 for the Spanish provinces (NUTS-3)

Figure 2: Overlay Comparison: Classical cross-sectional GDP predictions with and without
gain across NUTS-3 regions
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Figure 3: Overlay Comparison: Bayesian cross-section predictions with and without gain and
across NUTS-3 regions
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Figure 4: Overlay Comparison: Classical panel-data predictions with and without gain across
NUTS-3 regions
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Figure 5: Overlay Comparison: Bayesian panel-data predictions with and without gain across
NUTS-3 regions
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