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1 Introductiony

Vector autoregressions (VAR) have become a useful part of the toolbox of
empirical economists. VARs are used for both model estimation and evalu-
ation, as well as for a-theoretical data analysis. In practical applications in
macroeconomics, VAR models are often estimated using data for a particu-
lar cross-sectional unit (typically a country), ignoring any possible interna-
tional linkages. If international linkages are present, this would imply that
the single country models would have to include higher order time lags in
order to be able to capture the complicated international feedbacks. Fur-
thermore, the coe¢ cient estimates would not have the same interpretation
as in a closed-economy model. On the other hand, a model that explicitly
includes international linkages would yield coe¢ cient estimates that are eas-
ier to interpret and would have a better descriptive power, i.e. it would be
able to describe the data equally well but with a smaller number of time
lags. The literature that combines several VARs into a panel VAR model1

assumes that the regressors do not include any contemporaneous endogenous
variables and hence also su¤ers from the same criticism.
As an answer to these challenges, there is a growing volume of empiri-

cal literature that combines VAR models for several countries into so called
global VAR (GVAR) model.2 The di¤erent VAR models for each country are
linked by inclusion of a foreign variable which is constructed as a weighted
average of endogenous variables in other countries. The estimation strategy
follows the suggestion of Pesaran, Schuermann and Weiner (2002) who esti-
mate the model on a country-by-country basis ignoring the endogeneity of
the foreign variable. This approach is based on the argument that as the
number of countries in the sample grows (N ! 1), the foreign variable
becomes �weakly exogenous�.
However, the conditions for �weak exogeneity�might not be satis�ed in

many empirical settings, e.g. when using trade weights and there remain
important trading partners even as the number of countries in the sample
increases. Furthermore, in many situations, the asymptotic guidance should

yI would like to thank Michael Binder, Ingmar Prucha, Søren Johansen, Jan Magnus
and seminar participants at Copenhagen, Tilburg and SUNY Albany universities for com-
ments and suggestions. Any remaining errors and omissions are of course my responsibility.

1See e.g. Binder, Pesaran and Hsiao (2005), or Binder, Mutl, Pesaran and Hsiao (2002).
2Pesaran Schuermann and Weiner (2002), Pesaran, Smith and Smith (2005), Dees, di

Maurio, Pesaran and Smith (2004), Pesaran and Smith (2006) to mention a few.
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be derived keeping the number of countries �xed (N �xed, T !1). In this
paper I also argue that the �weak exogeneity�concept leads to asymptotic
results that might not serve as a useful small sample guidance even when N is
large. As a result, it is of interest to be able estimate the model consistently
taking the endogeneity of the foreign variables into account. I provide a rel-
atively simple instrumental variable procedure and show that it is consistent
and asymtotically normal.
In the next section I present the model, explicitly state assumptions under

which I derive the large sample results and discuss the conditions under which
the GVAR model is stable. Section 3 then outlines the estimation procedure
and provides the asymptotic results. Finally, Section 4 o¤ers conclusions.
Proofs of the claims made in the paper are contained in the appendix.

2 Model

Consider the following global VAR model as proposed by Pesaran et al.
(2002). There are N countries and for each country the following vector
autoregressive model is assumed to hold:

xit
k�1

= ai0
k�1

+ ai1
k�1
t+ �i

k�k
xi;t�1
k�1

+�i0
k�k
x�it
k�1

+�i1
k�k
x�i;t�1
k�1

+ "it
k�1
; (2.1)

where xit is a k � 1 vector of endogenous variables in a country i, at time t,
ai0 and ai1 are k�1 vector of parameters, �i, �i0, and �i1 are k�k matrices
of parameters, "it is a k � 1 vector of innovations, and

x�it
k�1

=
NX
j=1

Wij
k�k

xjt
k�1
; (2.2)

is so called foreign variable which is constructed as a (country speci�c)
weighted average of endogenous variables in other countries where Wij are
k � k matrices of observable weights. Pesaran et al. (2002) propose to es-
timate the model on a country-by-country basis, arguing that as N ! 1,
under their set of assumptions, Cov

h�PN
j=1Wijxit

�
; "it

i
! 0 and this is

what is then referred to as weak exogeneity of the foreign variable.
However, when the conditions under which is obtained are too restric-

tive, there is also an asymptotic bias. To examine the endogeneity of the
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foreign variable x�it, we need to solve the entire (global) model. Stacking over
countries the model can be written as

xt
Nk�1

= a0
Nk�1

+ a1
Nk�1

t+ �
Nk�Nk

xt�1
Nk�1

+ �0
Nk�Nk

W
Nk�Nk

xt
Nk�1

+ �1
Nk�Nk

W
Nk�Nk

xt�1
Nk�1

+ "t
Nk�1

;

(2.3)
where (m = 0; 1):

xt = (x01t; :::;x
0
Nt)

0
; (2.4)

am = (a01m; :::; a
0
Nm)

0
;

� = diag (�1; :::;�N) ;

�m = diag (�1m; :::;�Nm) ;

W = (Wij)
i=1;::;N
j=1;::N ;

"t = ("01t; :::; "
0
Nt)

0
:

The solution of the stacked model is obtained (I will show later that this
expression is well de�ned, based on an explicit set of assumptions) as

xt = (IkN ��0W)�1 (a0 + a1t+�xt�1 +�1Wxt�1 + "t) : (2.5)

Provided that the the innovations "t are independent in the time dimension,
the endogeneity of the regressorsWxt follows from

E (Wxt"t) =W (IkN ��0W)�1E ("t"
0
t) : (2.6)

Pesaran et al. (2002) assume that the weight matricesWij are diagonal with
Wij = diag

�
w1ij; ::; w

k
ij

�
and that

NX
j=0

�
wmij
�2 ! 0; as N !1, for all i and m. (2.7)

However, this implies that asymptotically the foreign variables have no ex-
planatory power in the model. Asymptotic properties of such model should
not be used as a small sample guidance for our estimators if we actually ex-
pect some degree of cross-sectional dependence in our model. A more reason-
able assumption is to require some limit on the amount of the cross-sectional
interdependence in the model but leave some room for cross-sectional de-
pendence to survive even in the limit. A typical assumption in the spatial
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econometrics literature is to require that

NX
j=0

��wmij �� � c <1, for all i and m; (2.8)

where the constant c does not depend on the sample size N . This is clearly
a weaker assumption but it turns out to be powerful enough to allow us to
derive asymptotic properties of our model.
It also has to be noted that at least some practical applications use data

in which the number of time series is larger than the number of cross-sections.
Furthermore, the general statement of the GVAR model allows for the slope
coe¢ cients to vary across the cross-sections. Both of these observations sug-
gest that it would be of interest to derive the asymptotic distribution of the
estimators holding N constant. In this case the asymptotic (with respect to
N) weak endogeneity argument no longer applies.

2.1 Assumptions

Here I spell out explicitly the general assumptions that are maintained through-
out the paper.

Assumption 1 The disturbances "it are generated from

"t
Nk�1

= Rt;N
Nk�Nk

�t
Nk�1

; (2.9)

where �t = (�1t; :::;�Nt) where �it = (�1it; :::; �kit)
0 is a k � 1 vector of

innovations and:

(a) The innovations �mit are totally independent (with respect to i,t and m
indexes) and have uniformly bounded absolute 4+ � moments for some
� > 0.

(b) The sequence of Nk�Nk matrices Rt;N has uniformly bounded absolute
row sums, i.e. denoting rij;t;N the ij-th element of Rt;N it holds that

NkX
j=1

jrij;t;N j � kr <1; (2.10)

where the constant kr does not depend on T or N .
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Assumption 1 allows for a general heterogeneity structure within a given
time period. However, it imposes the restriction that the disturbances at
di¤erent time periods are independent. The part (a) is a standard restriction
required for deriving asymptotic results, while part (b) guarantees that the
amount of heterogeneity in the disturbances is asymptotically limited as the
number of countries in the sample increases. The following assumption then
guarantees that the degree of international interactions in the data does not
explode as the sample size (number of countries) increases:

Assumption 2 (a) The sequence of the weight matrices W has uniformly
bounded absolute row and column sums, i.e. denoting wij;qm the (q;m)�
th element ofWij, it holds that

NX
j=1

kX
m=1

jwij;qmj � kw <1; (2.11)

where the constant kw does not depend on T or N and the choice of
indexes i and q (but can potentially depend on other parameters of the
model).

(b) Furthermore, the sequences of matrices (IkN ��0W)�1 and�
IkN � (IkN ��0W)�1 (�+�1W)

��1
are well de�ned (the inverses

exist) and have uniformly bounded absolute row and column sums.

(c) The parameter space is uniformly bounded, i.e. the matrices �, �0,
and �1 have uniformly bounded absolute row sums and the vectors a0
and a1 have elements uniformly bounded in absolute value.

The existence of the inverses in the above assumption will be guaranteed
by the following assumptions that imposes stability of the process in both N
and T dimensions. However the absolute summability is still an additional
condition. It proves to be useful to de�ne the following notation. Let A be
any square n� n matrix with real entries. I denote its spectral radius as

� (A) := max fj�j : � is an eigenvalue of Ag : (2.12)

Assumption 3 The spectral radius of (�0W) is uniformly less than one,
i.e. � (�0W) � k < 1, where the constant k does not depend on N or T .
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Assumption 4 The spectral radius of (�+�1W) and of
(IkN ��0W)�1 (�+�1W) are uniformly less than one.

Finally to be able to demonstrate that the observable process is a well-
de�ned transformation of the underlying innovations, we need an assumption
about the initial starting values of the process:

Assumption 5 The initial observations x0 are drawn from

x0
Nk�1

= R0
Nk�Nk

�
Nk�1

; (2.13)

where

(a) The innovations collected in the Nk� 1 vector � are totally independent
of each other as well as of innovations �t for t > 0 and the elements
of � have uniformly bounded absolute 4 + � moments for some � > 0.

(b) The sequence of Nk �Nk matrices R0 has uniformly bounded absolute
row sums, i.e.

NkX
j=1

jrij;0j � k0 <1; (2.14)

where the constant k0 does not depend on N and T .

Of course the above assumption would be satis�ed if the data generating
process is stable and the initial observations were drawn from the stationary
distribution of the process, see e.g. Proposition 1 below.

2.2 Stability Conditions

Inspecting the solution to the global model given in (2.5), it follows that to
determine whether the model is stable, it is not su¢ cient to examine the sta-
bility of the country-by-country models separately, ignoring the endogeneity
of x�it, i.e. to examine the eigenvalues of �i (and �1). Instead, the stability
of the global model is determined by the spectral radius of

(IkN ��0W)�1 (�+�1W) : (2.15)
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Hence it does not su¢ ce to impose stability of each country model (i.e. re-
quire that � (�) < 1). Accounting for the autocorrelation in the foreign
variable (i.e. imposing that � (�+�1W) < 1) is also not su¢ cient. In-
stead, the stability of the process also depends on the strength of the con-
temporaneous global links in the model (i.e. on the parameters collected in
�0) and it must be determined by the spectral radius of the entire matrix
(IkN ��0W)�1 (�+�1). In general when both N and T are allowed to
tend to in�nity, the claim that this is su¢ cient is not straightforward and is
demonstrated in the proof of the following proposition:

Proposition 1 Under Assumptions 1-5, xt has well de�ned uniformly bounded
absolute 4 + � moments for some � > 0. Furthermore, if a1 = 0, then in the
limit as T !1, xT converges in quadratic means to a random variable x1
which has well de�ned �nite absolute 4 + � moments for some � > 0 with

E (x1) =
�
IkN � (IkN ��0W)�1 (�+�1)

��1
(IkN ��0W)�1 a0: (2.16)

If additionally limT!1E ("t"
0
t) = 
", we have

vech [V C (x1)] =
�
IN2k2 �

�
A (IkN ��0W)�1 
A (IkN ��0W)�1

�	�1
�D � vech (
") ; (2.17)

where
A = (IkN ��0W)�1 (�+�1W) (2.18)

and D is a duplication matrix such that vec (
") = D � vech (
").

Proof: See the Appendix.

The asymptotic results in the above proposition can be useful in specifying
the initial distribution of the initial values of the process x0. Of course in
the presence of deterministic time trends (a1 6= 0), the limiting moments of
xT only exist when appropriately normalizing by T�

3
2 , see the discussion in

Hamilton (1994), Chapter 16.

I now examine the su¢ cient conditions for stability in more detail. Note
that for any matrix norm, the spectral radius � (A) is smaller than the norm
kAk (e.g. Theorem 5.6.9. in Horn and Johnson, 1985). Hence using the
submultiplicative property of the matrix norm, we have that

�
�
(IkN ��0W)�1�

�
�

(IkN ��0W)�1 (�+�1W)
 (2.19)

�
(IkN ��0W)�1

 � k�+�1Wk :
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Convenient matrix norms can be, for example, the maximum absolute row
sum of a matrix de�ned as

kAk1 = max
1�i�n

nX
j=1

jaijj ; (2.20)

or the spectral norm

kAk2 = max
1�i�n

np
� : � is an eigenvalue of A0A

o
; (2.21)

Note that from Assumption 3 and Lemma 5.6.10 in Horn and Johnson
(1985), we have by Corollary 5.6.16 in Horn and Johnson that the inverse
(IkN ��0W)�1 can be expanded as an in�nite sum. Therefore, (any) norm
of (IkN ��0W)�1 can be bounded from above by(IkN ��0W)�1

 � 1X
s=0

(kWk � k�0k)s : (2.22)

Often the weight matrices are row normalized. In this case we have that
kWk1 = 1 and hence(IkN ��0W)�1


1
�

1X
s=0

k�0ks1 (2.23)

=
1

1� k�0k1
=

1

1�max1�i�N fk�i0k1g
:

Note to satisfy Assumption 3 (in the case of kWk1 = 1) we can, for
example, require that 0 � max1�i�N fk�i0k1g < 1. However, if there are
global feedbacks in the model, we have max1�i�N fk�i0k1g > 0 and hence

1

1�max1�i�N fk�i0k1g
> 1: (2.24)

In this case the requirement that k�+�1Wk1 < 1 (which is a stronger
requirement than � (�+�1W) < 1) does not necessarily guarantee that the
process is stable.3

3This is motivated by the fact that the requirement k�+�1Wk1 < 1 is a su¢ cient
condition for � (�+�1W) < 1.
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The following proposition provides a su¢ cient condition under which the
process is stable

Proposition 2 Assume that the maximum absolute row sums ofW are less
or equal to kw, i.e. kWk1 � kw. Suppose that

k�k1 + kw (k�0k1 + k�1k1) < 1: (2.25)

Then the spectral radius of (IkN ��0W)�1 (�+�1W) is less than one.

Proof: see Appendix.

The above proposition provides a simpler alternative to checking the
eigenvalues of the entire matrix (IkN ��0W)�1 (�+�1). Note that when
the weights are normalized to add up to one, we have kw = 1 and it suf-
�ces to check whether for all country models it holds that the row sums of
j�j+ j�i0j+ j�i1j are less than one. Note however that the above proposition
provides only a su¢ cient condition for stability. Necessary condition is that
the spectral radius of (IkN ��0W)�1 (�+�1) is less than one.

3 Estimation Procedure and Large Sample
Results

The stacked model can be written compactly as

xt = �0Wxt + �
Nk�4Nk

� Zt
4Nk�1

+ "t; (3.1)

with

�
Nk�4Nk

=

NX
i=1

�
ENii
N�N


 �i
k�4k

�
; �i

k�4k
=
�
ai0 ai1 �i �i1

�
; (3.2)

and

Zt
4Nk�1

=

NX
i=1

�
eNi
N�1


 Zit
4k�1

�
; Zit

4k�1
=
�
�0k; �

0
kt;x

0
i;t�1;x

�0
i;t�1

�0
; (3.3)

where ENij is an N � N matrix of zeros with an entry of one at the ij-th
position, by eNi a N � 1 vector of zeros with an entry of one at the i-th
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position and by �k a k � 1 vector of ones. Note that using this notation, the
model for each country can be written as

xit = �i0x
�
it + �i

k�4k
� Zit
4k�1

+ "it: (3.4)

Given Assumption 3, the inverse of (INk ��0W) exists (cf. Lemma
5.6.10 and Corollary 5.6.16 in Horn and Johnson, 1985) and the solution to
the global model is then

xt = (INk ��0W)�1 (�Zt + "t) : (3.5)

Based on the discussion in Amemiya (1986), ideal instruments for x�t =
Wxt would then beW (INk ��0W)�1 �Zt. Observe that we can expand the
inverse (INk ��0W)�1 by its in�nite sum approximation (see e.g. Corollary
5.6.16 in Horn and Johnson, 1985):

(INk ��0W)�1 =
1X
s=0

(�0W)s : (3.6)

When �0 and � are scalars, the optimal instruments forWxtwould beWZt,
W2Zt, ... However, in the general case of a VAR model, the instrument set
is more complicated.
Note that we can write

�0
Nk�Nk

=
NX
i=1

�
ENii
N�N


�i0
k�k

�
; W

Nk�Nk
=

kX
l=1

kX
m=1

�
Wlm
N�N


 Eklm
k�k

�
; (3.7)

where the N � N matrices Wlm are weights that relate the m-th foreign
variable in the l-th equation of the domestic system.
The solution to the model implies then that the stacked foreign variable

is

x�t =Wxt =W

" 1X
s=0

(�0W)s
#
(�Zt + "t)

=
kX
p=1

kX
q=1

�
Wpq 
 Ekpq

� 1X
s=0

"
NX
i=1

�
ENii 
�i0

� kX
l=1

kX
m=1

�
Wlm 
 Eklm

�#s

�
"
NX
i=1

�
ENii 
 �i

�#
Zt +W (INk ��0W)�1 "t (3.8)

10



=
kX
p=1

kX
q=1

1X
s=0

NX
i=1

kX
n11=1

kX
n12=1

NX
n13=1

NX
n14=1

:::

kX
ns1=1

kX
ns2=1

NX
ns3=1

NX
ns4=1�

Wpq

�
ENn13n14Wn11n12 � ::: � ENns3ns4Wns1ns2

�
ENii


Ekpq
�
�i0E

k
n11n12

� ::: ��i0Ekns1ns2
�
�i
�
Zt

+W (INk ��0W)�1 "t

=
kX
p=1

kX
q=1

1X
s=0

NX
i=1

kX
n11=1

kX
n12=1

NX
n13=1

NX
n14=1

:::
kX

ns1=1

kX
ns2=1

NX
ns3=1

NX
ns4=1�

Wpq

�
ENn13n14Wn11n12 � ::: � ENns3ns4Wns1ns2E

N
ii

�

 Ik

�
�
�
IN 
 Ekpq

�
�i0E

k
n11n12

� ::: ��i0Ekns1ns2�i
��
Zt

+W (INk ��0W)�1 "t:

To facilitate manageable notation, we associate a single number, say m
to a given values of the indexes p; q; s; i; n11; :::; ns4 and denote a matrix of
unknown transformed parameters

�m
k�4k

= Ekpq�i0E
k
n11n12

� ::: ��i0Ekns1ns2
k�k

�i
k�4k

; (3.9)

an observed matrix of transformed powers of the spatial weights

fWm
Nk�Nk

=

"
Wpq

�
ENn13n14Wn11n12 � ::: � ENns3ns4Wns1ns2E

N
ii

�
N�N


 Ik
k�k

#
: (3.10)

Using this simpli�ed notation, the foreign variable becomes

x�t
Nk�1

=
X
m

fWm
Nk�Nk

(IN 
�m)
Nk�4Nk

Zt
4Nk�1

+W (INk ��0W)�1 "t (3.11)

=
X
m

�
Z0t 
 fWm

�
vec (IN 
�m)

+W (INk ��0W)�1 "t

=
X
m

�
Z0t 
 fWm

�
Nk�4N2k2

T�
4N2k2�4k2

vec�m
4k2�1

+W (INk ��0W)�1 "t;
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where T� is a 4N2k2 � 4k2 matrix of constants given by (see Magnus and
Neudecker, 1988, page 48)

T�
4N2k2�4k2

=

264�IN 
 K4k;N
4Nk�4Nk

�
4N2k�4N2k

(vecIN 
 I4k)
4N2k�4k

375
 Ik; (3.12)

where Kpq is a commutation matrix.
Thus a valid set of instrument for x�t can be constructed by selecting

some indexes m1; :::;mn, corresponding to a set of values of the indexes
p; q; s; i; n11; :::; ns4 in the expression (3.8), and stacking the instruments

Htm
Nk�4k2

=
�
Z0t 
 fWm

�
Nk�4N2k2

T
4N2k2�4k2

; (3.13)

so that the matrix of instruments

Ht
Nk�4k2n

= [Ht;m1 ; ::;Ht;mn ] ; (3.14)

has independent columns. Based on the arguments in Kelejian and Prucha
(1998), at least the quadratic approximation should be used and hence at
the minimum the instruments should contain terms for which s is at least 2.
Denote the set of stacked instruments for the di¤erent time periods by

H
TNk�4k2n

= (H0
1; :::;H

0
T )
0
: (3.15)

In the �rst step of the procedure, the projected values of x� = (x�01 ; :::;x
�0
T )
0are

calculated as

bx�
TNk�1

= PH
TNk�TNk

� x�
TNk�1

; (3.16)

PH
TNk�TNk

= H0 (HH0)
�1
H:

In the second step, we regress xt on the predicted values of the endoge-
nous variables and on the exogenous variables. This amounts to estimating
country-by-country regressions using the predicted instead of the true values
of the foreign variable). Note that the model for country i can be written as

xit = �i0x
�
it + �iZit + "it; (3.17)
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and hence the instrumental variable estimator is�e�i0; e�i� = " TX
t=1

xit (bx�0it ;Z0it)
#"

TX
t=1

�
x�it
Zit

�
(bx�0it ;Z0it)

#�1
: (3.18)

To be able to state conveniently large sample results, I now restrict at-
tention to a model without deterministic time trend, i.e. to the case a1 = 0.
In this case, the matrix of weakly exogenous regressors at time t for country
i becomes

Zit
3k�1

=
�
�0k;x

0
i;t�1;x

0�
i;t�1

�0
: (3.19)

It proves to be convenient to work with the model stacked over the time
periods. Note that the model without deterministic trends can be rewritten
as

xt
Nk�1

=
NX
i=1

�
ENii
N�N


�i0
k�k

�
x�t
Nk�1

+
NX
i=1

�
ENii 
�i1

�
x�t�1+

NX
i=1

�
ENii 
�i

�
xt�1+"t:

(3.20)
After vectorizing the right-hand side, we obtain

xt
Nk�1

=
NX
i=1

(x�0t 
 IkN)
Nk�N2k2

Ti
N2k2�k2

� vec�i0
k2�1

(3.21)

+
NX
i=1

�
x�0t�1 
 IkN

�
Ti � vec�i1

+
NX
i=1

�
x0t�1 
 IkN

�
Ti � vec�i + "t;

where Ti is an N2k2 � k2 transformation matrix of constants given by

Ti
N2k2�k2

=

"
(IN 
KkN)
N2k�N2k

�
vecENii 
 Ik

�
N2k�k

#

 Ik; (3.22)

whereKkN is a kN�kN commutation matrix (see e.g. Magnus and Neudecker,
1988, chapter 3.7).
Stacking over time periods leads to

x
TNk�1

= Y
TNk�3Nk2

� �
3Nk2�1

+ "
TNk�1

; (3.23)

13



where x = (x01; :::;x
0
T )
0, Y = (Y0

1; :::;Y
0
T )
0 and " = ("01; :::; "

0
T )
0 with the

matrix Y collecting the data:

Yt
Nk�3Nk2

=

24 (x�0t 
 IkN) (T1; ::;TN) :�
x�0t�1 
 IkN

�
(T1; ::;TN) :�

x0t�1 
 IkN
�
(T1; ::;TN)

35 ; (3.24)

where : denotes horizontal stacking, and the vector � collecting the parame-
ters:

�
3Nk2�1

=

24 (vec�10)0 : : (vec�N0)
0 :

(vec�11)
0 : : (vec�N1)

0 :
(vec�1)

0 : : (vec�N)
0

350 : (3.25)

Note that the instrumental variable estimator can be equivalently written
as b�2SLS

3Nk2�1
=
�bY0Y

�
3Nk2�3Nk2

�1 bY0
3Nk2�TNk

� x
TNk�1

; (3.26)

where bY is the same as Y except that x�t in the de�nition of Yt is replaced
by bx�t . Observe that bY is hence

bY
TNk�3Nk2

=

0BBBB@
266664
0B@ bx�10

...cx�T 0
1CA

T�Nk

;

0B@ x00
...

x0T�1

1CA
T�Nk

;

0B@ x�00
...

x�0T�1

1CA
T�Nk

377775
 IkN
1CCCCA E

3N2k2�3Nk2
;

(3.27)
where I de�ne the transformation matrices E as

E
3N2k2�3Nk2

= I3 
 (T1; :::;TN)
N2k2�Nk2

: (3.28)

The asymptotic distribution of the estimator depends on the choice of
instruments. To �x ideas, I assume that the instruments are chosen so that
asymptotically they perfectly approximate the expectations of the dependent
variable:4

4See e.g. the series type e¢ cient IV estimator introduced in Kelejian, Prucha and
Yuzefovich (2004).
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Assumption 6 The instruments collected in H are such that

p lim
T!1

(NT )�1 bY0Y = lim
T!1

(NT )�1E (Y)0E (Y) = �; (3.29)

where � is invertible, and
p
NT bY0"�

p
NTE (Y)0 " =op (1) : (3.30)

The theorem below summarizes the main asymptotic results:

Theorem 1 Under Assumptions 1-6 and if the limit

�Y " = lim
T!1

E (Y)RE (��0)R0E (Y) ; (3.31)

exists and is strictly positive de�nite, we have that

p
NT

�b�2SLS � �� D! N (03Nk2 ;	) as T !1; (3.32)

where
	 = ��Y "�

0: (3.33)

Proof: See the Appendix.

4 Conclusion

Although the endogeneity of the foreign variable is normally taken into ac-
count in the empirical implementations of GVAR models when constructing
impulse responses, it is commonly ignored when estimating the model. In
this paper I have argued that GVAR models should be estimated taking the
endogeneity of the foreign variables into account. I showed that a simple
IV estimation procedure has desirable large sample properties and that it
is easily implementable. This paper also provides easy to check stability
conditions.
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A Appendix - Proofs of Claims

The following lemma is useful in evaluating in�nite sums of sequences of
matrices:

Lemma A1 Let A, B and C be square matrices with same dimensions and
let kAk and kBk be less than one for some matrix norm. Then the matrix
S =

P1
n=0A

nCBn is well de�ned and

vec (S) = [I� (B0 
A)]�1 vec (C) . (A.1)

Furthermore, the �nite sum St =
Pt

n=0A
nCBn can be expressed as

St = S�At+1SBt+1: (A.2)

Proof : We have that

kSt+1k � kStk = kAnCBnk � kAkn kCk kBkn ! 0; (A.3)

and hence the series kStk is Cauchy and converges to, say kSk. By Theorem
5.6.15 in Horn and Johnson it must be that the entries in St converge to the
entries in S. To derive the expression for S, note that

ASB= A

 1X
n=0

AnCBn

!
B =

 1X
n=1

AnCBn

!

=

 1X
n=0

AnCBn

!
�C = S�C: (A.4)

After vectorizing and solving for vec (S) we obtain the claim in the Lemma.
To derive the expression for the �nite sum, we write

St = S�
1X

n=t+1

AnCBn = S�At+1

 1X
n=0

AnCBn

!
Bt+1

= S�At+1SBt+1: (A.5)
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A.1 Proof of Proposition 1

Given Assumption 3, the matrix (I��0W) is invertible (cf. Lemma 5.6.10
and Corollary 5.6.16 in Horn and Johnson, 1985) and the endogenous variable
xt can be expressed as

xt = (IkN ��0W)�1 (a0 + a1t+�xt�1 +�1Wxt�1 + "t) : (A.6)

By backward substitution, we then obtain

xt = b1t + b2t + b3t + b4t; (A.7)

where

b1t =
t�1X
s=0

�
(IkN ��0W)�1 (�+�1W)

�s
(IkN ��0W)�1 a0;

b2t =
t�1X
s=0

�
(IkN ��0W)�1 (�+�1W)

�s
(IkN ��0W)�1 a1s;

b3t =
t�1X
s=0

�
(IkN ��0W)�1 (�+�1W)

�s
(IkN ��0W)�1 "s;

b4t =
�
(IkN ��0W)�1 (�+�1W)

�t
x0: (A.8)

Given Assumption 2b, we then have b1t and b2t have elements uniformly
bounded in absolute value. I demonstrate that the sequences of stochastic
vectors b3t and b4t have elements with uniformly bounded absolute 4 + �
moments for some � > 0. The claim in the Proposition then follows from
Minkowski�s inequality.
To simplify notation, de�ne A = (IkN ��0W)�1 (�+�1W) and con-

sider the stochastic term b3t:

b3t =
t�1X
s=0

As (IkN ��0W)�1 "s: (A.9)

Note that given Assumption 1, the random vector �t and the sequence of
matrices Rt;N satisfy the conditions of Lemma B2 in Mutl (2006). Therefore,
the elements of the random vector "t have uniformly bounded absolute 4+ �
moments for some � > 0. From Assumption 2, we have that the absolute
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row sums of As (IkN ��0W)�1 are uniformly bounded in absolute value.
Hence by repeated application of the Lemma B2 in Mutl (2006), we have
that As (IkN ��0W)�1 "s has elements with uniformly bounded absolute
4 + � moments for some � > 0. By Minkowski inequality we then have that
b3t has elements with uniformly bounded absolute 4 + � moments for some
� > 0.
Next, consider the stochastic term b4t = Atx0. Again, by Assumption

2, the matrix At has uniformly bounded absolute row sums and hence given
Assumption 5, we have by the same Lemma B2 that the elements of b4t have
uniformly bounded absolute 4 + � moments for some � > 0.

We now turn to the asymptotic moments of xt as t!1, assuming that
a1 = 0. Using Lemma A1 and Theorem 5.6.12 in Horn and Johnson, it
follows that b1t converges to

b1 = lim
t!1

b1t = lim
t!1

(IkN �A)�1
�
IkN �At

�
(IkN ��0W)�1 a0

= (IkN �A)�1 (IkN ��0W)�1 a0: (A.10)

Given Assumption 2b, it follows that b1 has elements uniformly bounded
in absolute value and it su¢ ces to show that the elements of b3t and b4t
converge in quadratic means to random variables b3 and b4 with �nite 4 +
� moments (note that trivially by Assumption 1 the elements of b3t are
independent of the elements of b4t).
Denote the matrix B3s = As (IkN ��0W)�1Rs and note that from As-

sumptions 1 and 2b it follows that
1X
s=0

kB3sk1 �
As (IkN ��0W)�1


1
� kr (A.11)

� kAsk1 � k1kr =
(INk �A)�11 � k1kr � k2k1kr <1;

where kr is the uniform bound for absolute row sums of matrices Rt, and k1
and k2 are uniform bounds for absolute row sums of matrices (IkN ��0W)�1

and (IkN �A)�1. Given Assumption 1, the elements of b3t satisfy conditions
of Lemma B1 in Mutl (2006) and hence converge in quadratic means to a
random variable with uniformly bounded absolute 4 + � moments for some
� > 0.
Finally, note that form Assumption 4 and Theorem 5.6.12 it follows that

lim
t!1

At = 0, (A.12)
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and hence given Assumption 5, we have that elements of b4t converge in
quadratic means to zero.
Therefore the random variable x1 is well de�ned and we have

x1 = lim
t!1

B0ta0 +
1X
s=0

As (IkN ��0W)�1 "s (A.13)

= (IkN �A)�1 (IkN ��0W)�1 a0 +

1X
s=0

As (IkN ��0W)�1 "s:

Hence
E (x1) = (IkN �A)�1 (IkN ��0W)�1 a0; (A.14)

and using the independence of "t and "s for t 6= s:

V C (x1) =
1X
s=0

As (IkN ��0W)�1
" (IkN �W0�00)
�1
As0: (A.15)

Finally, using Lemma A1, we �nd that

vech [V C (x1)] (A.16)

=
�
IN2k2 �

�
A (IkN ��0W)�1 
A (IkN ��0W)�1

�	�1
D � vech (
") ;

where D is a duplication matrix.

A.2 Proof of Proposition 2

Observe that by (2.22) and the assumption in the proposition we have

�
�
(IkN ��0W)�1�

�
�

(IkN ��0W)�1

1
� k�+�1Wk1

�
" 1X
s=0

(kw k�0k1)
s

#
[k�k1 + kw k�1k1]

=
k�k1 + kw k�1k1
1� kw k�0k1

: (A.17)

Next note that from the condition in the proposition (k�k1 + kw k�1k1 +
kw k�0k1 < 1) it follows that k�k1 + kw k�1k1 < 1 � kw k�0k1 and thus
(observe that the condition also implies that kw k�0k1 < 1, thus also 1 �
kw k�0k1 > 0)

k�k1 + kw k�1k1
1� kw k�0k1

< 1; (A.18)

which proves the claim.
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A.3 Proof of Theorem 1

Using the expression (3.26), we have

p
TN

�b�2SLS � �� =  bY0Y

TN

!�1 bY0"p
TN

!
: (A.19)

Given Assumption 6, it remains to be shown that

(TN)�1=2E (Y)0 " =(TN)�1=2E (Y)0R� (A.20)

converges in distribution. I now verify that E (Y)0R and � satisfy con-
ditions of a central limit theorem for triangular arrays of linear-quadratic
forms, given for example in Theorem A1 in Mutl (2006). Observe that by
Assumption 1(a), conditions A1 and A3 in in Mutl (2006) are satis�ed. It
then remains to be demonstrated that the elements of the E (Y)0R, denoted
by
�
E (Y)0R

�
i
, with i = 1; ::; NT , satisfy

sup
N
(NT )�1

NTX
i=1

���E (Y)0R�
i

��2+� <1; (A.21)

for some � > 0 and that the smallest eigenvalue of E (Y)0RE (��)RE (Y)
is uniformly bounded away from zero.

Observe that by backward substitution as in the proof of Proposition 1,
we obtain (with a1 = 0) that

E (xt) = E (b1t) + E (b3t) + E (b4t) : (A.22)

Given Assumption 3, we have from Lemma A1

t�1X
s=0

�
(IkN ��0W)�1 (�+�1W)

�s
a0 (A.23)

=
�
IkN � (IkN ��0W)�1 (�+�1W)

��1
a0

�
�
(IkN ��0W)�1 (�+�1W)

�t
a0:

It then follows from Assumption 2(b) and (c), it follows that E (b1t) has
elements uniformly bounded in absolute value. By the same argument, it
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follows from Assumption 1 that E (b3t) also has elements uniformly bounded
in absolute value. From Assumption 5, it follows that the elementsE (x0) =
R0E (�) are uniformly bounded in absolute value. By Assumptions 3, the se-
quence of matrices

�
(IkN ��0W)�1 (�+�1W)

�t
has row and column sums

uniformly bounded in absolute value and, therefore, E (b4t) has elements
uniformly bounded in absolute value as well. Therefore, we conclude that
E (xt) has elements uniformly bounded in absolute value.
Observe that by Assumption 1(b), the sequence of matrices R has col-

umn sums uniformly bounded in absolute value and, therefore, the vector
E (Y)0R has elements uniformly bounded in absolute value and hence satis-
�es condition (A.21) above.

Finally, note that it is assumed in the Theorem that
�Y " = limT!1E (Y)

0RE (��0)R0E (Y) exists and is strictly positive def-
inite. Hence by there is a sample size N0 such that for N > N0 we have
that �min

�
E (Y)0RE (��)RE (Y)

�
> 0. Therefore, we can conclude that

the conditions of the central limit theorem are satis�ed and

(�Y ")
�1=2E (Y)0 "

d! N (03Nk2�1; INT ) : (A.24)

Given the second part of Assumption 6, we have that bY0"p
TN

!
d! N (03Nk2�1;�Y ") : (A.25)

From the �rst part of Assumption 6 it then follows by Corollary 5 in Pötscher
and Prucha (2001) that

p
TN

�b�2SLS � �� d! N (03Nk2�1;�Y ") : (A.26)
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