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Informational opacity and honest certification

Martin Pollrich∗ and Lilo Wagner†

April 10, 2013

Abstract

This paper studies the interaction of information disclosure and reputational con-

cerns in certification markets. We argue that by revealing less precise information a

certifier reduces the threat of capture. Opaque disclosure rules may reduce profits but

also constrain feasible bribes. For large discount factors a certifier is unconstrained in

the choice of a disclosure rule and full disclosure maximizes profits. For intermediate

discount factors, only less precise, such as noisy, disclosure rules are implementable.

Our results suggest that contrary to the common view, coarse disclosure may be so-

cially desirable. A ban may provoke market failure especially in industries where

certifier reputational rents are low.
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1 Introduction

In markets that exhibit informational asymmetries, product quality is typically reduced. This

in turn may provoke a breakdown of trade. The lack of credible communication between

informed and uninformed parties may result in the emergence of certification intermediaries.

Certifiers inspect products whose characteristics are private information to agents, and pub-

licly reveal this information. Examples abound: rating agencies, eco-labels, wine certificates

or technical inspections. Often however, results are revealed on a coarse scale, although the

information at hand would allow for a more precise disclosure.

We provide a new explanation for such opaqueness. We show that partially revealing rules

can serve as a safeguard against fraud: certifiers may be tempted to accept bribes for releasing

favorable certificates. This behavior, which we call capture, enables the certifier to extract

payments other than the certification fee. If consumers are aware of this threat of capture,

then the certifier must find ways to credibly commit to honesty. We show that one way to

do so is to employ an opaque disclosure rule. Opaqueness reduces the producer’s willingness

to pay for bribery, because a more opaque disclosure rule lowers differences in the values

of certificates. Hence, opaqueness can be welfare enhancing since it may prevent market

failure. This result is surprising because it contradicts the commonly held view that reducing

informational asymmetries is socially desirable per se.

We show our result in a model with moral hazard where, in each period, short-lived producers

first have to make an investment choice, which in turn determines the probability distribution

of their product’s quality. Thus, the payoffs assigned to each quality outcome determine the

incentives to invest. The long-lived certifier has two instruments at his disposal: a flat

certification fee and the disclosure rule. Consumers experience the true quality of a product

only after consumption. If it does not match the awarded certificate, capture is detected.

This makes the certifier face a classical reputation dilemma because he trades off short-run

gains from capture against regular future profits.

We characterize feasible disclosure rules in this setting. Our major finding is that for suffi-
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ciently low discount factors, honest certification requires partial disclosure of quality infor-

mation, which in our model implies noisy disclosure. In the short run, a certifier may gain

from making a capture offer that is acceptable for at least some producers. The maximum

producer willingness to pay for bribes is directly affected by the publicly announced disclo-

sure rule. It is greatest for full disclosure and can be substantially reduced by revealing less

precise information. But if consumers detect a bribe and therefore lose trust, a certifier gives

up his future profits. Static certifier profits are maximal for full disclosure and any deviation

will typically reduce the long-run loss from losing credibility. As will be shown, the first

effect exceeds the latter.

We moreover obtain the counterintuitive result that a threat of capture increases social wel-

fare.1 Whenever information is fully revealed, sharing profits necessarily reduces producer

investments as compared to the first-best level, obtained under complete information. We

show that whenever capture offers are made before a certifier observes the true quality level,

these are such that they are accepted by either all producers or only by low quality producers.

If the highest threat of capture stems from offers that are accepted by all producers and the

disclosure rule is noisy, credibility can be maintained by making honest certification more

attractive to high quality producers. This in turn increases equilibrium investment levels as

compared to full information disclosure.

Related literature. A stream of literature seeks to explain why certifiers often choose to only

partially reveal quality information. Lizzeri (1999) finds that it is optimal for a monopolistic

certifier in a static adverse selection environment to reveal almost no information. In this

setting, this result is robust to introducing capture because a no revelation policy simply

annihilates producer incentives to bribe. In the presence of moral hazard however, infor-

mation revelation is necessary to create incentives for the provision of quality. Albano and

Lizzeri (2001) study optimal disclosure rules in a static model of both moral hazard and

1We analyze a belief system that substantially restricts the set of feasible disclosure rules. For different
belief systems and sufficiently low discount factors, other (opaque) rules may be chosen by the certifier. The
effect on social welfare is therefore not a general result.
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adverse selection. In their setting, a certifier chooses to employ noisy disclosure if his set of

actions is restricted to flat fees. According to Farhi et al. (2012), opaqueness in certification

markets is caused by information averse sellers. In Dubey and Geanakoplos (2010), it is

shown that coarse grading schemes can help to induce all students to employ effort if they

are disparate and care about their status in class. Kartasheva and Yilmaz (2012) explain

imprecise ratings in a model with partially informed investors and heterogeneous liquidity

needs of issuers. A static adverse selection model where quality is not fully observable by the

seller is analyzed by Faure-Grimaud et al. (2009). They identify conditions under which the

ownership of certification results is left to firms and under which firms reveal their ratings.

The threat of capture in certification markets has been analyzed by Strausz (2005). In a pure

adverse selection setting with full disclosure, he analyzes the effects of a threat of capture on

certification prices. He finds that in order to maintain credibility, for low discount factors,

a certifier raises fees above the static monopoly price. This result is consistent with our

finding in that as less information is disclosed, the certification fee generates a cut-off value

that specifies a minimal certified producer quality. A larger fee increases this cut-off but this

implies that less information is revealed in equilibrium. Although this effect is also present

in Strausz (2005), he however does not explicitely point it out. As in the present paper,

credibility is maintained by reducing the maximal willingness to bribe. In Strausz (2005),

this is affected by the value of not being certified, which, in turn, is an increasing function

of the certification fee.

There is a rich literature on reputation building in markets with informational asymme-

tries. For example, Shapiro (1983) analyzes the forces at work when sellers build reputation.

Biglaiser (1993) investigates the role of market intermediaries when sellers are unable to

build their own reputation. Examples of works that treat reputational concerns of rating

agencies are Mathis et al. (2009) and Bolton et al. (2012). In contrast to the present paper,

these works follow the asymmetric information approach to reputations, where certifiers are
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assumed to always be committed (i.e. honest) with positive probability.2 This, however,

restricts the set of allowed certification fees and disclosure rules for non-committed certifiers.

The reason is that a departure from the equilibrium strategy immediately reveals the certifier

type. Instead of assuming that testing by the certifier is imperfect as is done in those works,

we show how imperfect testing may endogenously arise in equilibrium.

Levin (2003) extends the standard moral hazard setting to situations where contractual

agreements are enforceable only to a certain degree and where reciprocal relations are long-

term. The optimal contract derived by Levin has a coarse structure, which parallels our

finding of coarse disclosure being optimal.

The remainder of the paper is organized as follows. Section 2 presents the model. Section

3 analyzes the static game in the absence of bribery. In section 4, we treat the general case

of certification under the threat of capture. Section 5 concludes. All proofs are presented in

the appendix.

2 The setup

We consider a dynamic framework in discrete time. In each period t = 1, 2, . . . ,∞, a short-

lived monopolistic producer is born. He produces a single unit of quality qt ∈ {ql, qh}, where

0 ≤ ql < qh. In the following, we refer to a high type producer if his product quality is qh and

to a low type producer otherwise. Prior to production, a producer chooses some investment

level et ∈ [0, 1]. Quality is stochastic and the probability of the produced good being of

high quality qh is given by Prob(qt = qh|et) = et. This probability function is independent

of t, i.e. quality levels are independent across time. Investment costs are given by the

function k(·). We assume k(·) to be increasing and strictly convex. For technical reasons we

assume a non-negative third derivative, so that the certifier’s profit function is concave and

to guarantee interior solutions we additionally assume k′(0) ≤ ql and k′(1) ≥ qh.

Consumers’ reservation prices equal (expected) qualities. Both investment and quality level

2See Mailath and Samuelson (2012, Chapter IV) for a discussion of this approach.
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begin of period t

producer chooses et

producer learns qt

good sold in auction

consumers learn qt

begin of period t+ 1

Figure 1: Timing in one period without certification

are private information to the producer. Consumers observe the product quality only after

consumption. All other components of the model are common knowledge. The equilibrium

concept we use throughout the paper is that of perfect Bayesian equilibrium.

Each producer is short-lived and leaves the market at the end of a period. Goods are sold

in a second-price auction.3 Figure 1 summarizes the timing in period t.

To simplify notation, we set ql ≡ 0 and define v := qh − ql. In the benchmark of complete

information high quality goods are sold in the second-price auction at price v and low quality

goods are sold at price 0. The producer then chooses e to maximize expected profits ev−k(e).

The first-best investment level e∗ is thus given by k′(e∗) = v, which lies in the interval [0, 1]

due to our assumption k′(1) ≥ v. In particular we have e∗ > 0.

Under asymmetric information and in the absence of any further economic institution, a

producer cannot persuade consumers that he offers a high quality good and the market

price can therefore not be made contingent on a good’s quality. It is standard to show that

the Perfect Bayesian market outcome involves a market breakdown. In such an outcome,

consumers form a belief qet about the offered quality, which reflects their willingness to pay.

In equilibrium, this belief has to be consistent with the actual expected quality, E(qt|et).

Given any belief, the producer’s optimal choice of investment will be et = 0, as he maximizes

qet − k(et). But since E(qt|0) = 0, the unique equilibrium has producers choosing et = 0

in every period and the quality of the good is zero in each period. The result is a market

failure: high quality is never offered in equilibrium. We summarize this finding in the

following lemma.

3The second price auction results in a standard monopoly price that equals consumers’ valuations. It
circumvents signaling issues, e.g. letting the informed party take a publicly observed action that might be
interpreted as a signal.
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Lemma 1. Without certification, producers choose et = 0 in each period. In equilibrium,

quality is given by qt = 0 and the price is 0 in each period.

This inefficiency calls for the emergence of alternative market institutions to facilitate supply

of high quality. The focus of this paper lies on certification as one such institution. Assume

that an infinitely long-lived certifier enters the market. She offers to disclose the result of

some potentially imperfect test of the good’s quality, prior to it being sold. More precisely,

at the beginning of the game, in period t = 0, the certifier announces a fee f ≥ 0 and a

disclosure rule D = (C, αl, αh). The fee is to be paid by any producer who wishes to have

his product tested. The disclosure rule consists of a set C = {C1, . . . , Cm} of potential

certificates and probability vectors αl and αh, where the k-th entry of vector αi reflects the

probability that a product of quality qi is awarded certificate Ck whenever tested. We do

not assume that those probabilities add up to one, i.e. we allow for
∑m

k=1 α
i
k < 1. Hence,

a product may remain uncertified with the conforming probability and will be sold as such.

We assume that consumers cannot observe whether a product was tested, unless it is offered

with a certificate.4 Possible disclosure rules encompass for example full disclosure, where

C = {ql, qh} and αh = (0, 1) as well as αl = (1, 0), or no disclosure, where C = {C} and

αi = (1). Finally we assume that the certifier’s inspection costs are zero5 and that she

discounts future profits at rate δ ∈ (0, 1). Figure 2 illustrates the timing of the game with

certification.

An interpretation of the disclosure rule, which we shall use throughout the paper, is the

following: the certifier can create any test that leads to a grading scheme with grades from

the set C and results in the respective grades with conforming probabilities. This may be

done with a computer program or a statistical test. In particular, after the test result is

obtained, the certifier and the consumers share the same beliefs on product quality.

4Hence products which “failed” the test are sold under the same label as products that didn’t even
take the test. This assumption is not crucial, since the certifier can replicate any outcome of a game where
consumers are able to observe whether a product applied for certification.

5This assumption simplifies the analysis without substantially affecting the results, which continue to
hold as presented here for small but strictly positive inspection costs. Large inspection costs leave most of

7



period 0
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chooses et

producer

learns qt
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certification (y/n)

in auction

good sold

learn qt

consumers

period t

Figure 2: Timing with certification

3 Optimal honest certification

In this section, we analyze certifier equilibrium strategies when the certifier is honest. By

the stationary structure of the model, we can restrict our analysis to the certifier decision

(D, f) plus a single period of production. Let πD(f) denote the equilibrium profit of the

certifier, when adopting disclosure rule D with certification fee f .

We first study the case of full disclosure in some detail, as it will turn out that this disclo-

sure rule can be used to achieve maximal profits. Under full disclosure, any product certified

as high quality is sold at a price v, whereas a certificate of low quality makes the product

worthless to consumers. Assume that consumers believe that uncertified products are of low

quality with certainty. Therefore any high quality producer is willing to get his product cer-

tified, whereas low quality producers prefer to sell their product as uncertified.6 A producer

chooses his investment according to

e = argmax
ẽ

ẽ · (v − f)− k(ẽ). (3.1)

This implies k′(e) = v − f in equilibrium and certifier expected equilibrium profits can be

expressed as

π̂FD(e) = e · (v − k′(e)). (3.2)

Denote eFD the equilibrium effort level under a full disclosure rule and fFD the respective

our results still valid, but create cumbersome case distinctions.
6Given consumers’ beliefs, a high quality producer has a strict preference for certification whenever f < v.

Low quality producers strictly prefer remaining uncertified for any f > 0. It is easy to see that certification
fees f ≥ v and f = 0 yield zero profits to the certifier and we consequently restrict our analysis to f ∈ (0, v).
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fee that maximizes certifier profits under full disclosure. The following lemma proves that

these values do exist and are unique.

Lemma 2. Under full disclosure, there exists a unique fee fFD that maximizes certifier

profits. The uniquely defined equilibrium investment level eFD is implicitly given by

k′′(eFD) · eFD = v − k′(eFD). (3.3)

The fee is fFD = v − k′(eFD) and the (subgame-) equilibrium profit is πFD = eFD · fFD.

We continue analyzing general disclosure rules. The entire set of disclosure rules is complex

and difficult to handle analytically. A closer look at equation (3.2), which allows us to

express the certifier profit as function of the implemented investment level e, points to

the advantages of using an indirect approach. We can express the attained profit of any

certifier policy (D, f) solely in terms of the induced investment level e. This allows for a

straightforward comparison of attained profits and leads us to the following proposition.

Proposition 1. For any disclosure rule D =
(
C, α1, α0

)
and any fee f ≥ 0, it holds that

πD(f) ≤ πFD in equilibrium.

Proposition 1 states that the certifier will always find it optimal to employ a full disclosure

rule. The reason is that, investment incentives depend on the difference between payoffs from

selling high and low quality products. Given full disclosure, the certification fee is sufficient

to fully control this difference.

We conclude this section with pointing out that full disclosure is not the unique disclosure

rule that yields the maximal certifier profit πFD. One example of such a disclosure rule is the

following: The certifier issues two different certificates C1 and C2. Low quality products are

only eligible for certificate C2, hence αl = (0, 1). High quality products receive certificate C1

with probability α ∈ (0, 1) and C2 otherwise, therefore αh = (α, 1−α). With this structure,

it is possible to sustain an equilibrium in which all producer types demand certification. The
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optimal certifier profit πFD is then obtained by choosing f and α appropriately.7

Disclosure rules of this kind play a crucial rule for the remainder of this paper. We henceforth

refer to them as partial disclosure rules.

4 The capture problem

So far we assume that the certifier sticks to the announced disclosure rule, in particular that

she conducts the lottery honestly and grants the respective certificate. However, there is

pressure from producers who wish to be awarded better certificates. For instance, if dis-

closure is meant to be noisy, a certifier might be willing to guarantee a producer a high

value certificate in exchange for a bribe. In this section we address this issue by formally

introducing the possibility of capture.

We follow Strausz (2005) in modeling the possibility of capture, using the framework of en-

forceable capture as initiated by Tirole (1986). Hence we assume that the certifier and the

producer can write an enforceable side-contract with transfers. Consumers are fully aware

of the possibility of these side-contracts, but cannot observe them. Specifically, we model

capture as follows: after a producer has learned his type qt, the certifier, without observing

qt, may make an offer (C, b) to the producer. The offer consists of a certificate C, issued in

case of acceptance, and a financial transfer b to be paid by the producer. The certifier thus

offers to ”sell” the sure certificate C at the price b, circumventing the customary certification

procedure given by the disclosure rule. Hence, (C, b) are the terms at which she is willing to

become captured. A producer however can reject this offer and, if willing to do so, insist on

honest certification by paying the fee f . This last assumption is motivated following Kofman

and Lawarrée (1993) in assuming that the certifier cannot forge certification without the help

of the producer.

Note that the choice of the disclosure rule puts some limits on the set of feasible capture

offers. For a general disclosure rule D = {C, α} only offers of the form (C, b) with C ∈ C are

7We formally show this in the proof of Proposition 6.
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feasible.8 With full disclosure this means offers of the type (q, b) with q ∈ {ql, qh}.

Within the framework presented here, capture may subvert honest certification for two rea-

sons. First, producers with low quality products are willing to side-contract with the certifier

in order to obtain better certification. Second, high types may want to avoid uncertainty if

disclosure is noisy.

In this section we are interested in the existence and characterization of equilibria where

the certifier resists the temptation of making any capture offer of the above described kind.

Throughout, we will work with different specifications of trigger beliefs. This becomes neces-

sary as the ability of consumers to detect capture varies across disclosure rules. We assume

consumers are able to perfectly observe quality after consumption. Therefore, if D is full

disclosure or if certain certificates are awarded exclusively to high types, capture detection

is also perfect.

Our particular idea behind the consumers’ beliefs is the following: They stop trusting the

certifier immediately if a false testimony about a product’s quality is detected. Then, pro-

ducers are not willing to pay for certification anymore. Consequently the certifier will lose

future demand and makes zero profits henceforth. This prevents the certifier from becoming

captured in the first place. We shall make this more precise in the following subsections.

4.1 Capture under full disclosure

Because, by Proposition 1, a certifier would want to employ full disclosure whenever possible,

we start by investigating capture under a full disclosure rule. We assume that consumers

trust certificates as long as they have not detected a deviation. A certifier who anticipates

this behavior may be prevented from succumbing to the temptation of becoming captured

by the fact that losing credibility will leave her without demand in future periods.

Denote ht = (nt, q
c
t , qt) the certification outcome in period t, where nt ∈ {0, 1} indicates

8This will be made more precise when formally introducing consumer beliefs. Granting a certificate which
is not contained in D is certainly perceived as cheating by consumers. Consequently consumers believe to
be faced with a worthless product and they will lose trust in the certifier’s credibility.
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whether certification in period t took place, qct is the testified quality level in period t and qt

is the true quality observed after consumption.9 If certification in period t did not take place,

then nt = 0 and qct = ∅. Now let Ht = (h1, . . . , ht−1) summarize the history of certification

at the beginning of period t. Finally, we denote qet (nt, q
c
t , Ht) a consumer’s belief in period t

when faced with a product certified as being of quality qct and when having observed history

Ht. The following assumption on consumers’ beliefs comprehends the described behavior.10

Assumption 1. The consumers’ beliefs qet (nt, q
c
t , Ht) satisfy qet (1, q

c
t , Ht) = qct whenever

{τ < t|nτ = 1 ∧ qct 6= qt} = ∅. Moreover qet (1, q
c
t , Ht) = 0 whenever {τ < t|nτ = 1 ∧ qct 6=

qt} 6= ∅ and qet (0, ∅, Ht) = 0.

The assumption states that consumers trust the certifier if capture was not observed in the

past. They however lose trust forever, once they detected cheating. Losing trust implies

that consumers believe for any certifier’s claim that the offered quality is zero.

With full disclosure, there are (at most) two types of bribing offers that can be made: (q1, b)

and (q0, b). Obviously, an offer (q0, b) is turned down by all types of producers, as it is

worth nothing. Hence, in the following we focus on offers (q1, b) and talk of a bribe b rather

than (q1, b). An offer b is accepted by high producer types whenever b < f . Low quality

producers accept any bribe b < v because acceptance will yield positive profits compared to

zero profits for rejection. In equilibrium, the certifier assigns probability e(f) to the event

that a producer is of high type, where e(f) is the producer’s optimal investment under full

disclosure, derived from (3.1). We are interested in equilibria where capture does not occur.

In all such equilibria, a producer chooses his optimal investment level knowing that he will

not receive an acceptable capture offer. The acceptance probability p(b|f) of bribing offer b

9This specification of a history and Assumption 1 are particular for the case of full disclosure. With
noisy disclosure one has to replace qct by the disclosed certificate and the trigger beliefs have to be adjusted,
since there will be cases where consumers are uncertain whether capture occurred. We make this precise in
section 4.2.

10Note that consumers do not lose trust in the certifier when a product is awarded a low certificate,
although this should not happen in equilibrium. It is not necessary to include this case into consumers’
beliefs, because any such event can only follow a non-profitable deviation by the certifier.
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given the certification fee f is given by

p(b|f) =


1, if b < f,

1− e(f), if f ≤ b < v,

0, if b ≥ v.

(4.1)

We denote by ΠD(f) =
∑∞

t=1 δ
t−1πD(f) = πD(f)/(1 − δ) the certifier’s expected profit

from honest certification under disclosure rule D and fee f . The certifier’s expected profit

from offering bribe b is denoted by Π̂D(b|f) and depends on whether the consumer detected

capture as follows: whenever b < f , all producer types will accept the bribe, but only for low

quality producers this is detected. Hence, Π̂FD(b|f) = b+e(f)δΠFD(f). For f ≤ b < v, only

low quality producers accept the bribe and Π̂FD(b|f) = (1 − e(f))b + e(f)(f + δΠFD(f)).

Whenever b ≥ v, all producers reject the bribe and the certifier obtains Π̂FD(b|f) = ΠFD(f).

If Π̂FD(b|f) exceeds ΠFD(f), the certifier is actually better off becoming captured with the

associated probability p(b|f). We say that certification at a fee f is capture proof if and only

if

ΠFD(f) ≥ Π̂FD(b|f) (4.2)

for all b. Note that Π̂FD(b|f) is increasing in b, both on [0, f) and [f, v) and it is constant

for b ≥ v. Furthermore Π̂FD(·|f) is continuous at b = f .11 Therefore, certifier profits from

bribery are largest when b approaches v. Evaluating this yields the following proposition:

Proposition 2. If D is full disclosure, an equilibrium satisfying Assumption 1 is capture

proof. It exists if and only if

δ ≥ δFD(f) ≡ v

v + πFD(f)
(4.3)

11To see this compare the left and right limit: limb↗f Π̂FD(b|f) = f + e(f)δΠFD(f) = (1 − e(f))f +

e(f)
(
f + δΠFD(f)

)
= limb↘f Π̂FD(b|f).
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Figure 3: Capture proof combinations of (e, δ) resp. (f, δ) under full disclosure.

The proposition highlights the crucial role the discount factor plays for the existence of

honest, i.e. capture proof, equilibria: the critical discount factor determines the relative

weights of the short run gain - the bribe b - and the long run loss of capture - foregone

future profits from certification. To see this, note that all bribes b < v are accepted with

some positive probability and therefore, the largest possible short-run gain equals v. In the

long run, a certifier risks her per-period profits πFD(f). As the certification fee only enters

via the per-period profit, δFD(f) depends on f only through πFD(f), which is concave in

f . Therefore δFD(f) must be convex in f and minimized at the profit maximizing fee fFD.

The following corollary summarizes.

Corollary 1. For any discount factor δ ≥ δFD there exists an interval of fees [fl(δ), fh(δ)],

which sustains capture-proof certification under full disclosure, where

δFD ≡ v

v + πFD
. (4.4)

In the right part of Figure 3 the set of feasible (δ, f)-combinations for full disclosure is

depicted.

An immediate consequence from this is that the static monopoly fee fFD can sustain honest

certification for all discount factors δ ≥ δFD. Alternatively one might ask the question, what

level of producer investment can be implemented via capture-proof certification with a full
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disclosure rule? The analysis follows the same arguments as above, only that certifier profits

in the inequality of Proposition 2 are expressed in terms of e.

Proposition 3. For any δ ≥ δFD there exists an interval of investment levels [eFDl (δ), eFDh (δ)]

that can be implemented in a capture-proof equilibrium. A particular investment level e ∈

[0, e∗] can be implemented in a capture-proof equilibrium with full disclosure if and only if

δ ≥ δFD(e) ≡ v

v + e · (v − k′(e))
(4.5)

.

The set of feasible (e, δ)-combinations is depicted in the left part of Figure 3.

Note that the first-best investment level e∗ can only be (virtually) implemented for δ = 1.

Whenever δ < 1, fees must be strictly positive in order to induce the certifier to remain

honest. But then, the producer does not obtain the entire return on his investment. Hence,

it must be that e < e∗.

4.2 Capture under partial disclosure

We next argue that alternative noisy disclosure rules can improve certifier credibility in the

sense that they increase the range of discount factors that allow for capture-proof equilibria.

To gain an intuition for this consider condition (4.3). This condition summarizes the trade-

off between short-run gains and long-run losses. A larger profit πD(f) reduces the critical

discount factor and full disclosure guarantees maximal per-period profits. On the other hand,

δFD(f) is decreasing in v, which represents the the maximal bribe still accepted by low-

type producers and therefore the largest possible short-run gain from capture. Using noisy

disclosure the certifier can affect the maximal short-run gain in various dimensions. First of

all, lowering the value of the best certificate or increasing the value of the worst certificate

(resp. the value of uncertified products) decreases the gap between particular certification

outcomes. This effect can be used to reduce the maximal bribe which producers are willing to
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pay. Second, with noisy disclosure the certifier can sustain an outcome where both producer

types demand certification. Upon colluding with a producer type the certifier foregoes the

regular certification fee, which reduces the effective gain from becoming captured.

Before analyzing noisy disclosure rules, we have to reconsider the detection possibilities by

consumers. An implication of noisy rules is that consumers may hold probabilistic beliefs

about a product’s quality. In order to simplify matters and because it suffices to make our

point clear, we focus on partial disclosure rules as as introduced in section 3. Other noisy

disclosure rules are discussed in section 5 and in the appendix. Under partial disclosure, the

high value certificate C1 is awarded exclusively to high quality products which makes effective

trigger punishment possible. In particular, it then suffices that the certifier is punished only

if probability zero events (a low quality product was awarded certificate C1) are observed.

The fact that capture detection is not possible if bribes are being paid in exchange for the

low value certificate C2, which is assigned to both high and low types, turns out not to

be crucial. This results from the fact that we can exclusively focus on equilibria where

both producer types demand certification. Any partial disclosure equilibrium that has only

high quality producers demand certification is outcome equivalent to a full disclosure rule.

With the respective trigger beliefs it can be sustained as a capture-proof equilibrium under

the same conditions as stated in the the last section. But whenever all producer types

demand certification, receiving certificate C2 is the worst possible outcome. Certificate C2

can therefore not be part of a profitable bribing offer, as we will argue later.

To specify consumer beliefs, let ht = (nt, Ct, qt) denote the certification outcome in period t.

Compared to the last section, we now explicitly state the disclosed certificate Ct. As before,

Ht = (h1, . . . , ht−1) describes the history of certification before period t. Based on these

histories, we formulate trigger beliefs for consumers. Denote V̂ D
Ct

the (static) equilibrium

value of a product endowed with certificate Ct under disclosure rule D.

Assumption 2. The consumers’ beliefs qet (nt, Ct, Ht) satisfy qet (1, Ct, Ht) = V̂ D
Ct

whenever

Cτ ∈ C for all τ ≤ t and {τ < t|nτ = 1 ∧ Prob(C = Ct|q = qt) = 0} = ∅. Moreover
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qet (1, Ct, Ht) = 0 when either Cτ /∈ C for some τ ≤ t or {τ < t|nτ = 1 ∧ Prob(C = Ct|q =

qt) = 0} 6= ∅.

Note that in contrast to Assumption 1, we now also specify beliefs for cases where the

testimony is inconsistent with the disclosure rule, i.e. when Ct /∈ C.12

Bribing offers can now be of two kinds: (C1, b) and (C2, b). Offer (C2, b) is never beneficial.

It would only be accepted for b < f , since any producer receives at least the certificate C2

when applying for (honest) certification and the certifier gets f from any producer who is

honestly tested. Thus, we can focus on bribing offers of the form (C1, b), which we will

simply refer to as b. Recall that certificate C1 can only be awarded to high quality products.

Hence, V1, the value of a C1-certified product, equals v. Denote V2 the value of a C2-certified

product. Furthermore, recall that α is the probability with which a high type is awarded

C1.

A bribe b is accepted by low types whenever V2 − f < v − b. High quality producers accept

b if αv + (1 − α)V2 − f < v − b. Denote e(α) the equilibrium investment.13 Then bribery

acceptance probabilities are

p(b|α, f) =


1, if b < f + (1− α)(v − V2),

1− e(α), if f + (1− α)(v − V2) ≤ b < f + (v − V2),

0, if b ≥ f + (v − V2).

Let ΠPD(α, f) denote the expected profit from applying a partial disclosure rule and honestly

disclosing information in each period. The corresponding expected certifier profits from

12In Assumption 1 this is done implicitly. Only quality levels are disclosed there and whenever qct 6= qt
beliefs react accordingly. In particular the trigger is pulled whenever q /∈ {ql, qh} is certified.

13The investment decision does not depend on the fee because in equilibrium, all types apply for certifi-
cation and therefore pay f anyway. The expected producer profit is e(αV1 + (1−α)V2) + (1− e)V2−f −k(e)
and consequently the optimal investment level depends on α but not on f .
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bribing offer b are

Π̂(b|α, f) =


b+ e(α)δΠPD(α, f), if b < f + (1− α)(v − V2),

(1− e(α))b+ e(α)
(
f + δΠPD(α, f)

)
, if f + (1− α)(v − V2) ≤ b < f + (v − V2),

ΠPD(α, f), if b ≥ f + (v − V2).

Note that whenever high types accept the bribery offer, this is not perceived as cheating

because the certificate then matches the observed quality level. Again, Π̂(b|α, f) is increasing

in the respective subintervals. But the function now exhibits a downward-jump at b =

f + (1−α)(v−V2). The reason is that high types are willing to accept bribes strictly larger

than the certification fee f to avoid the lottery between the good and the bad certificate.

Therefore, at least locally, the certifier is better off bribing all producers instead of only

the low types as it was the case with full disclosure. Furthermore, the maximal bribe that

is accepted by at least some types is now f + v − V2, which is weakly lower than under

full disclosure, where the maximal bribe is v.14 The analysis of condition (4.2) yields the

following proposition.

Proposition 4. With partial disclosure, an equilibrium satisfying Assumption 2 is capture-

proof. It exists if and only if

δ ≥ δPD(α, f) ≡ max
{
δl(α, f), δl,h(α, f)

}
, (4.6)

where δl(α, f) = v−V2

v−V2+f
and δl,h(α, f) = (1−α)(v−V2)

(1−α)(v−V2)+(1−e(α))f .

The result gives a lower bound on the discount factor δ to guarantee existence of a capture-

proof equilibrium with partial disclosure. The critical discount factor discount factor δPD(α, f)

depends on the parameters in the way how they affect short-run gain and long-run loss from

capture and on which producer types accept the bribing offer that yields largest deviation

14In order to have all producer types demand certification it has to hold that f ≤ V2. Consequently
f + v − V2 ≤ v.
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profits. The term δl(α, f) refers to the case where the largest threat stems from bribes ac-

cepted only by low types. The numerator v−V2 is the effective bribe, defined as the bribery

payment minus foregone payments. In the denominator we find again the effective bribe

and the per-period profit f , reflecting the long-run loss from capture. The term δl,h(α, f)

refers to the case where the largest threat stems from bribes accepted by all types. Here the

effective bribe is (1− α)(v − V2). Since the long-run profit is only at stake if quality is low,

long-run profits are lost with probability (1−e(α)). Although the classical trade-off between

short-run gain and long-run loss, that we already identified for full disclosure, prevails, the

derivation of the maximal short-run gain is more involved for partial disclosure.

From Proposition 4 we identify a third notable difference between capture under full and

noisy disclosure. Short-run gains from capture can be reduced due to the different equilib-

rium structure: all producers certify in equilibrium which implies that the certifier always

loses fee payments if he is captured. Therefore, a larger fee f not only increases the long-run

losses but at the same time reduces the short-run gains from capture.

It is now straightforward to see that δPD(α, f) is decreasing in the certification fee f . This

implies that for any partial disclosure rule (i.e. any α) the threat of capture is lowest when

f is maximal. To keep all producers applying for certification, f cannot exceed V2. It is

therefore optimal to set f = V2, which leaves low quality producers with an expected profit

of zero. The following corollary summarizes.

Corollary 2. With partial disclosure a capture-proof equilibrium satisfying Assumption 2

exists if and only if

δ ≥ δPD(α) ≡ max
{
δl(α), δl,h(α)

}
, (4.7)

where δl(α) = v−e(α)(v−k′(e(α)))
v and δl,h(α) = 1

1+e(α) .

Corollary 2 allows us to reduce the problem of finding the critical discount factor for partial

disclosure to the one-dimensional problem of finding the optimal level of α, the probability

that high quality is revealed. In fact, δPD(α) depends on α only through the equilibrium
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value for producer investment e(α). The set of investment levels that can be implemented by

partial disclosure is (0, e∗), the same set as for full disclosure. Defining δPD ≡ minα δ
PD(α)

allows us to formulate the analog of Proposition 3 for partial disclosure.

Proposition 5. For any δ ≥ δPD there exists an interval of investment levels [ePDl (δ), ePDh (δ)]

that can be implemented in a capture-proof equilibrium. A particular investment level e ∈

[0, e∗] can be implemented in a capture-proof equilibrium with noisy disclosure if and only if

δ ≥ δPD(e) = max
{
δPD,l(e), δPD,l,h(e)

}
(4.8)

where δPD,l(e) = v−e(v−k′(e))
v and δPD,l,h(e) = 1

1+e .

Proposition 5 makes implementation of capture-proof equilibrium under full and partial

disclosure directly comparable. Before investigating this in the next section we want to

highlight some properties of the function δPD(e). Writing e(v − k′(e)) = πPD(e) = f the

term δPD,l(e) can be expressed as (v − f)/(v − f + πPD(e)). This resembles the trade-

off between short-run gain and long-run loss, already identified above. Only the maximal

short-run gain with partial disclosure is the maximal bribe minus foregone regular payments.

The same trade-off leads to δPD,l,h(e), which is however independent of the producer’s cost

function k(e). The maximal bribe that is accepted from both producer types in particular

must be accepted from high quality producers. For them, the difference between the sure

certificate C1 and the lottery faced when certifying honestly matters. This difference is

closely related to a producers’ investment incentives, in fact one can show that the maximal

bribe equals v − k′(e). Now both short-run gain and long-run loss depend in a similar way

on the investment incentives15 and consequently the fraction δPD,l,h(e) does not depend on

the producers cost function anymore.

Which of the two terms, δPD,l(e) and δPD,l,h(e), is now larger? δPD,l,h(e) is decreasing in

e, starting at 1 for e = 0 towards 1/2 for e = 1. On the other hand δPD,l(e) is convex in e

15As discussed, the short-run gain equals v − k′(e). The long-run loss is the per-period profit, which was
already shown to be e(v − k′(e)).
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Figure 4: Capture-proof (e, δ)-combinations for low (left) and high (right) marginal costs k′

at e = eFD.

with a unique minimum at e = eFD. Furthermore δPD,l(0) = δPD,l(1) = 1. Therefore, δPD

is either δPD,l(eFD), that is the minimum of δPD,l, or it is the intersection of both fractions

lying to the right of e = eFD. Figure 4 illustrates the two cases, the latter in its left part.

4.3 Sub-optimality of full disclosure

In the previous sections, we identified the conditions under which capture-proof equilibria

exist for full disclosure and a special class of noisy disclosure rules. These conditions are

expressed in terms of the critical discount factors δFD and δPD. It is the aim of this study

to show that opaque disclosure rules can be used by the certifier to improve his credibility.

Comparing the critical discount factors δFD and δPD is short-hand for comparing the entire

sets of (e, δ)-combinations, for which a capture-proof equilibrium exists with the respective

disclosure rule. We are going to prove in this section that the two sets are different and,

more importantly, that the respective set for full disclosure is contained in the respective set

for partial disclosure. Consequently there exists an intermediate range of discount factors

for which there does not exist a capture-proof equilibrium with full disclosure, but it is still
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possible to sustain capture-proof equilibria with partial disclosure.

As we have discussed several times throughout this paper, the key trade-off for implementing

a capture-proof equilibrium is that of short-run gain versus long-run loss. Either disclosure

rule leads to a per-period profit of π(e) = e(v − k′(e)) when implementing effort level e,

the potential long-run loss is therefore the same. However, with partial disclosure the short-

run gain from becoming captured by only low quality producers is v − f , compared to v

for full disclosure. The resulting trade-off is resolved in favor of partial disclosure. So far

this assumes that the largest threat of capture indeed stems from low quality producers.

Although this is in general true for full disclosure, it ceases to hold for partial disclosure.

When the maximal threat stems from a bribe accepted by all producer types, the long-run

loss is reduced. Only when the producer is of low quality this is perceived as cheating by

consumers and punished accordingly. So per-period profits are only lost with probability

1 − e. On the other hand such a bribe must be smaller in order to be acceptable for high

quality producers, which reduces the short-run gain. The following proposition proves that

the latter effect outweighs the former.

Proposition 6. It holds that δPD < δFD. For any δ ∈ [δPD, δFD], a capture-proof equilib-

rium can only be sustained applying a noisy disclosure rule. Furthermore, for any δ ≥ δFD,

we have that [eFDl (δ), eFDh (δ)] ( [ePDl (δ), ePDh (δ)].

Proposition 6 shows our main result that opaqueness can be used as a tool to improve certifier

credibility. For any level of producer investment e, the range of discount factors that allow

for capture-proof implementation of e is strictly larger for partial disclosure compared to

full disclosure. Similarly, for any discount factor δ, the set of investment levels that are

implementable in a capture-proof equilibrium with partial disclosure is strictly larger then

the corresponding set for full disclosure. The superiority of partial disclosure therefore goes

along two dimensions. Figure 5 displays these differences. The dark-grey area corresponds

to (e, δ)-combinations that can be implemented as a capture-proof equilibrium under full

disclosure. The light-grey area shows the additional (e, δ)-pairs that allow for implementation
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Figure 5: Dark-grey: capture-proof certification with full disclosure. Light-grey: (additional)
capture-proof certification with noisy disclosure.

in capture-proof equilibrium under partial disclosure.

In Section 3, we show that a certifier would always want to implement eFD as this maximizes

her per-period profits. With full disclosure, this is only possible when δ ≥ δFD. Partial

disclosure allows for capture-proof equilibria also for lower discount factors. It is remarkable

that, at least for a range of discount factors, this can be achieved without waiving any

profits. To see this, denote δ̃(πFD) the smallest discount factor, such that a capture-proof

equilibrium is sustained and achieves per-period profits of πFD. The following corollary is

an immediate consequence of Proposition 6.

Corollary 3. It holds that

δ̃(πFD) = max

{
v − πFD

v
,

1

1 + eFD

}
< δFD.

4.4 Welfare properties of partial disclosure

In this subsection, we study welfare properties of capture-proof equilibria with partial dis-

closure. When δ̃(πFD) = δPD we also have δPD = (v − πFD)/v. In this case, the largest
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threat of capture stems from low quality producers, i.e. the largest deviation profit for the

certifier is achieved for b = v. Then the certifier can still achieve the maximal per-period

profits πFD in a capture-proof equilibrium for any δ ≥ δPD, which implies implementing

e = eFD.

This is however not true when δ̃(πFD) > δPD. As can be seen from Figure 5, for discount

factors below δ̃(πFD) the profit maximizing level of investment eFD is no longer capture-

proof implementable. Instead only larger values of producer investment can be implemented

when δ ∈ [δPD, δ̃(πFD)). To provide an intuition for this, note the following: Bribing offers

b that are accepted by all producer types pose the largest threat. Now, implementing a

larger e leads to a reduction in V2, as otherwise profits would increase beyond πFD. To in-

centivize producers to make larger investments, the certifier therefore has to increase α. As

now shown, for high quality producers the difference in expected profits between the lottery

of the certification process and the sure certificate v is reduced.16 This in turn lowers the

maximum bribe they are willing to pay for capture and therefore reduces the short-run gain

for the certifier from any such offer. From a welfare perspective this increase in investment is

beneficial. Social welfare is given by e·v−k(e) in each period. The first-best investment level

e∗ was shown to be strictly larger than eFD and welfare is strictly increasing on [0, e∗]. Imple-

menting certification with partial disclosure for discount factors δ ∈ [δPD, δ̃(πFD)] therefore

increases social welfare compared to doing so for larger levels of the discount factor. Put

differently, a severe threat of capture increases welfare. We summarize this in the following

proposition.

Proposition 7. Assume δ̃(πFD) > δPD. For intermediate levels of the discount factor, i.e.

δ ∈ [δPD, δ̃(πFD)), only investment levels that are strictly larger than eFD can be capture-

proof implemented with partial disclosure. This leads to increased social welfare.

16Honest certification yields an expected payoff αv + (1 − α)V2. This value is reduced when α increases
and V2 decreases at the same time.
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5 Discussion

We analyze the effects of reputational concerns on optimal disclosure rules from the point

of view of a monopolistic certifier. Our main finding is that if capture is an issue, a certifier

benefits from resorting to coarser certification in order to reduce the threat of capture.

In particular, for medium discount factors, sustaining honest certification is impossible if

information is fully disclosed whereas it is still possible if information disclosure is noisy.

Implications of our analysis are manifold. First of all we provide a novel explanation for

the occurrence of imperfect testing. In many papers on e.g. rating agencies (examples

include Mathis et al. (2009) and Bolton et al. (2012)) imperfect testing is exogenously given,

whereas here it arises in equilibrium. An empirical implication is that for low discount

factors we expect disclosure to be coarser. This is consistent with the casual observation

that certification in markets with low volume, such as wine, technical inspections or eco-

labels often involves only a few different certificates. On the other hand, the high volume

rating market exhibits a rather wide variety of different but still coarse certificates per rating

agency.

Our findings also have important policy implications. Politics tend to push certifiers to

precisely reveal information. Our results suggest that doing so may lead to unforeseen

consequences for the functioning of those markets, as it might become more difficult to build

up a reputation and resist capture if certificates are required to be too precise. Similarly,

regarding the current financial crisis, forcing rating agencies to issue more precise information

might even exacerbate capture problems.

We demonstrate our results in a highly stylized model, but the intuition behind our results

is general. In particular, they carry over to more than only two quality specifications. Such

a specification is on the one hand actually simpler, as it can be shown that already coarse

deterministic disclosure rules outperform full disclosure. On the other hand the analysis is

complicated by the fact that full disclosure is not necessarily optimal anymore, when capture

is ignored. The first point already becomes clear from a setting with three quality levels.
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Full disclosure can then entail both the highest and the medium quality producer demand

certification. A coarse rule would specify one certificate awarded to all but low quality.

Obviously, for both rules the same types of producer demand certification. In the latter case

however the maximal bribe is strictly lower. For similar investment levels and fees, the critical

discount factor is therefore strictly lower for the coarse rule. The precise analysis is more

complicated, since the coarse rule generates different investment incentives for producers. In

Appendix B we offer an illustration for a special case of probability distributions.

We point out that our restriction to a particular class of noisy disclosure rules is without loss

of generality. First, offering various coarse certificates generates incentives for the certifier to

always offer the best among the noisy certificates in a bribing offer. This will be accepted (at

least by low quality producers) in order to avoid a lottery that includes the worst certificates.

As deviations of this kind remain undetected they will occur with certainty, that destroys

the equilibrium. Second, disclosure rules that do not allow for unambiguous detection of

deviations call for a different type of trigger beliefs. Consumers lose trust in the certifier

whenever they first detect low quality sold with the best certificate. This leads to punish-

ments even if collusion did not take place. The harsher punishments makes it impossible

to sustain capture proof equilibria for low discount factors. Proposition 8 in the appendix

makes this statement precise.

Finally we use a specific extensive form to model capture. More sophisticated forms to study

imply non-uniform bribing offers, e.g. menus, to elicit the producers’ private information.

Also, later bribing, after the certifier learned q or giving producers the possibility to signal

their private information are possible extensions. The exact extensive form may well affect

parts of the analysis, but the main finding of the advantage of opacity does not depend on

the specific extensive form.
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A Proofs

Proof of Lemma 1. Follows immediately from the arguments given in the text.

Proof of Lemma 2. Following the arguments given in the text the certifier maximizes

(3.2). Recall that we assume k′′′(·) ≥ 0, which ensures that this profit function is concave

in e, thus the first-order condition is sufficient for an optimum. This first-order condition

is 0 = v − k′(e) − ek′′(e). Define Ψ(e) = v − k′(e) − ek′′(e). We have Ψ(0) = v > 0 and

Ψ(1) = v−k′(1)−k′′(1) ≤ 0 by our assumptions on k(·). Furthermore Ψ is strictly decreasing

due to strict concavity of k(·). Hence there exists a unique eFD such that Ψ(eFD) = 0, which

consequently is the unique maximizer of the certifier profit. The formulas for eFD and fFD

follow easily from the formulas above.

Proof of Proposition 1. First of all a disclosure rule can potentially lead to four different

subgames: (1) no producer demands certification, (2) only low quality producers demand

certification, (3) only high quality producers demand certification, and (4) all producers

demand certification. Note that we do not explicitly consider mixed strategies by producers.

The reason is that any outcome where some producers randomize their certification decision

can be replicated by a disclosure rule that adds the respective probabilities for not certifying

to the probabilities of remaining uncertified though paying for certification. To see this,

assume type i chooses to certify with probability γ ∈ (0, 1). Now multiply every αi by γ and

increase the probability of remaining uncertified appropriately. After changing the fee from

f to γf , it is easy to see that this adjusted disclosure with the reduced fee leads to the same

investment incentives and also to the same equilibrium prices for (un-)certified products and

the certifiers profit is unchanged.

Case (1) trivially leads to zero profits and the claim is proven.

Case (2) leads to consumers paying zero in equilibrium for certified products.17 To make

low quality producers “pay” for certification we consequently must have f = 0 which leads

17A disclosure leading to this particular subgame is given by C = {C}, αl = 1 and αh = 0.
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to zero profits and proves our claim also in this case.

Case (3) can be analyzed as follows: If only high types certify, rational behavior by consumers

dictates that a certified product is sold at a price v. Uncertified products however can be of

either high or low quality and have some price V un ∈ [0, v).

A producer’s investment decision is given by the solution of

max
e

e
(∑

k

α1
kv + (1−

∑
k

α1
k)V

un − f
)

+ (1− e)V un − k(e),

which yields the following first-order condition for producer investment:

(∑
k

α1
k(v − V un)− f

)
= k′(e).

Rewriting this constraint in terms of induced investment yields f = v−k′(e)−(1−
∑

k α
1
k)(v−

V un)− V un. Now we have for the certifier profit

πD(f) = e(f,D) · f = e ·
(
v − k′(e)− (1−

∑
k

α1
k)(v − V un)− V un

)
≤ e · (v − k′(e)) ≤ πFD.

This proves the claim for case (3).

Finally consider case (4): When both producer types demand certification, the resulting

certifier profit in the subgame is πD(f) = f . The price V i of a product sold with certificate

Ci is

V i = v · eαhi
eαhi + (1− e)αli

.

Uncertified products are sold at price V un = v · e
(
1−

∑
i
αh

i

)
e
(
1−

∑
i
αh

i

)
+(1−e)

(
1−

∑
i
αl

i

) . A producer’s

investment decision follows from maximizing his expected payoff from certification, given by

e ·

(∑
i

αhi V
i +

(
1−

∑
i

αhi

)
V un

)
+ (1− e) ·

(∑
i

αliV
i +

(
1−

∑
i

αli

)
V un

)
− f − k(e).
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The resulting investment constraint is

k′(e) =
∑
i

(αhi − αli)(V i − V un). (A.1)

On the other hand, from the formula given for V i we have eαhi V
i + (1 − e)αliV

i = evαhi .

Similarly e(1 −
∑

i α
h
i )V un + (1 − e)(1 −

∑
i α

l
i)V

un = ev(1 −
∑

i α
h
i ). Summing those

expressions yields

∑
i

(
eαhi V

i + (1− e)αliV i
)

+ e(1−
∑
i

αhi )V un + (1− e)(1−
∑
i

αli)V
un = ev. (A.2)

Rewriting the left hand side of equation (A.2) yields

e
∑
i

(αhi − αli)(V i − V un) +
∑
i

αliV
i +

(
1−

∑
i

αli

)
V un = ev. (A.3)

Finally, to make all producer types demand certification we must have in particular

f ≤
∑
i

αliV
i +

(
1−

∑
i

αli

)
V un (A.4)

i.e. low quality producers ecpected payoff from certification must be non-negative.18

From this we can derive an upper bound on certifier profits:

πD(f) = f
(A.4)
≤

∑
i

αliV
i +

(
1−

∑
i

αli

)
V un

(A.3)
= ev − e

∑
i

(αhi − αli)(V i − V un)

(A.1)
= ev − ek′(e) = e(v − k′(e)).

But e (v − k′(e)) is the profit from implementing effort level e optimally with a full disclosure

18More conditions are required in subgame where all producer types demand certification, but the one
presented her is the only required for our proof.
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rule, therefore we have proven πD(f) ≤ πFD.

Proof of Proposition 2. In any equilibrium in which Assumption 1 holds capture may

not take place, since otherwise the beliefs of consumers are not consistent with the behavior

of the certifier. Hence, condition (4.2) must be satisfied for all b. As mentioned in the text,

certifier profits from deviating Π̂FD(b|f) are largest for b approaching v. Taking this limit

yields

lim
b↗v

Π̂FD(b|f) = (1− e(f))v + e(f) ·
(
f + δΠFD(f)

)
= (1− e(f))v + πFD(f) +

δ

1− δ
e(f)πFD(f)

= (1− e(f))v − δ

1− δ
(1− e(f))πFD(f) + ΠFD(f).

Condition (4.2) is thus equivalent to

(1− e(f))v ≤ δ

1− δ
(1− e(f))πFD(f).

Rearranging this expression yields that condition (4.2) is satisfied if and only if

δ ≥ δFD(f) ≡ v

v + πFD(f)
.

Proof of Proposition 3. We first argue how condition (4.3) can be translated towards

(4.5). Recall πFD(f) = e(f) · f and optimal investment by producers requires k′(e) = v− f .

Replacing f by v−k′(e) yields (4.5). All other statements are straightforward reformulations

of Proposition 2 and Corollary 1.

Proof of Proposition 4. In any equilibrium in which Assumption 2 holds capture may

not take place, since otherwise the beliefs of consumers are not consistent with the behavior
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of the certifier. Hence, condition (4.2) must be satisfied for all b. We compute the respective

critical discount factors. Taking the limit of Π̂D(b|f) as b approaches f + (1−α)(v−V2) we

get

lim
b↗f+(1−α)(v−V2)

Π̂D(b|f) = f + (1− α)(v − V2) + e(α)δΠPD(f)

= f + (1− α)(v − V2) + e(α)
δ

1− δ
f

= (1− α)(v − V2)−
δ

1− δ
(1− e(α))f + ΠPD(f).

Consequently this limit lies below ΠPD(f) if and only if

(1− α)(v − V2) ≤
δ

1− δ
(1− e(α))f,

respectively whenever

δ ≥ δl,h(α, f) =
(1− α)(v − V2)

(1− α)(v − V2) + (1− e(α))f
.

Similarly the limit of Π̂D(b|f) as b approaches f + (v − V 1) can be rewritten as follows

lim
b↗f+(v−V2)

Π̂D(b|f) = (1− e(α)) · (f + (v − V2)) + e(α)
(
f + δΠPD(f)

)
= (1− e(α))(v − V2)−

δ

1− δ
(1− e(α))f + ΠPD(f).

Therefore limb↗f+(v−V2) Π̂D(b|f) ≤ ΠPD(f) if and only if

δ ≥ δl(α, f) =
v − V2

f + v − V2
.

Because capture-proofness requires Π̂D(b|f) ≤ ΠPD(f) for all b, (4.6) follows.

Proof of Corollary 2. As discussed in the text, the certifier may set f = V2 to minimize

the threat of capture. We consider δl(α, f) first. Making use of f = V2 allows us to simplify
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it to (v − V2)/v. From the proof of Proposition 1 we get V2 = e(v − k′(e)) and therefore

δl(α) =
v − V2
v

=
v − e(α)(v − k′(e(α)))

v
.

Now consider δl,h(α, f). With f = V2 we may rewrite

δl,h(α, f) =
(1− α)(v − V2)

(1− α)(v − V2) + (1− e(α))V2

By Bayesian updating we have V2 = v ·
(
(1 − α)e(α)

)
/
(
1 − αe(α)

)
in equilibrium, which

implies v − V2 = v ·
(
1− e(α)

)
(
(
1− αe(α)

)
. Replacing V2 and v − V2 accordingly yields

(1− α)(v − V2)
(1− α)(v − V2) + (1− e(α))V2

=
1

1 + e(α)
.

Proof of Proposition 6. Recall, that with full disclosure the critical discount factor is

δFD(e) = v
v+πFD(e) = v

v+e(v−k′(e)) and this term is minimized for the profit maximizing effort

e, yielding mine δ
FD(e) = v

v+πFD . For all e ∈ (0, e∗) we have v−e(v−k′(e))
v < δFD(e). To see

this:

v − e(v − k′(e))
v

< δFD(e) =
v

v + e(v − k′(e))
⇔

(
e(v − k′(e))

)2
> 0.

Also

1

1 + e
< δFD(e) =

v

v + e(v − k′(e))
⇔ ek′(e) > 0

Therefore also max{ 1
1+e ,

v−e(v−k′(e))
v } < δFD(e) for all e ∈ (0, e∗) and hence we can define

δPD := min
e

max

{
1

1 + e
,
v − e(v − k′(e))

v

}

and it follows that δFD > δPD. Since both δPD,l(e) < δFD(e) and δPD,l,h(e) < δFD(e) the

last statement follows immediately.
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Proof of Proposition 7. When δPD < δ̃(πFD) we must have δ̃(πFD) = δPD(eFD) =

1
1+eFD . Since 1/1+e decreases in e we have δPD(e) > δ̃(πFD) for any e < eFD. Consequently

we must have δPD(e) < δ̃(πFD) on some interval [eFD, ê]. This proves our result.

B Extensions

Example B.1.

Let quality levels be {0, 0.5, 1} and P (q = 0.5|e) = P (q = 1|e) = e/2. Consequently

P (q = 0|e) = 1 − e. The cost of effort is k(e) = e2/2. If we restrict the analysis to

deterministic disclosure rules, it is straightforward to show that full disclosure with a fee

f = 3/8 maximizes certifier profits. With this fee both quality levels 0.5 and 1 get certified

in equilibrium. Using the same line of argument as in the main text, this disclosure rule can

be sustained as a capture-proof equilibrium whenever δ ≥ 16
19 .

A cut-off disclosure rule that certifies any product whose quality exceeds 0, but does not

distinguish any further, achieves the same static profit as the mentioned full disclosure rule.

However, the largest possible bribe is then not equal to 1 since no certificate which yields

a price of one is available. Instead, the best certificate yields 3/4, the value of a certified

product. Consequently, a capture-proof equilibrium with this disclosure rule exists whenever

δ ≥ 16
20 . While profits remain the same, the largest acceptable bribe is lowered.

Proposition 8. For any δ < δFD and any disclosure rule which is such that the highest

value certificate is different from v, no capture-proof equilibrium exists.

Proof. We restrict the proof to the following simple disclosure rule19: there are two certifi-

cates, C1 and C2, where high quality always receives C1 and low quality receives C1 with

probability α ∈ (0, 1). Denote V the value of C1, certificate C2 is always worth zero (in

19For any other rule, the argument is the same for selling the best certificate in a capture offer to the low
quality producer. However, there are even more feasible bribing offers, which make it even harder to resist
the threat of capture.
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equilibrium). The first-order condition for producer investment reads as

k′(e) = (1− α)V

and from Baye’s rule we have

V = v
e

e+ α(1− e)
.

Thus, to implement a particular e, the certifier has to set20

α =
e(v − k′(e))

e(v − k′(e)) + k′(e)

The fee must be such that low quality producers are willing to get their product certified,

i.e. f ≤ αV .

When a purchased product with certificate C1 turns out to be of low quality, consumers

cannot be sure whether this was due to bad luck or to a captures certifier. Appropriate

trigger beliefs have to be such that the certifier is punished whenever low quality is sold with

certificate C1. This can well happen without any deviation by the certifier. The probability

of entering punishment, absent any deviation, is p = (1 − e)α and expected profits from

honest play are given by

Πh(α, f) = f + (1− p)δf + (1− p)2δ2f + . . . =
f

1− (1− p)δ
.

The maximal bribe is given by b ≈ (1 − α)V + f , where only low quality producers accept

it. The profit from making such an offer is

Π(b|f, α) = (1− e)b+ e(f + δΠh(α, f))

20Note that lime→0 α equals 1 whenever k′′(0) = 0 and otherwise equals v
v+k′′(0)∈(0,1) , that is in the latter

case not all α are implementable.
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We have Π(b|f, α) ≤ Πh(α, f) for b→ (1− α)V + f whenever

δ ≥ (1− e)b− (1− e)f
(1− e)(1− p)b− epf

=
b− f(

1− (1− e)α
)
b− eαf

This is both increasing in b and in f , such that the largest threat is exercised for f = αV

and b = V , which results in the condition

δ ≥ 1

1 + eα
.

We have 1
1+eα ≥

v
v+e(v−k′(e)) if and only if

v − k′(e) ≥ vα ⇔ 1 ≥ e.

Hence, for all e to be implemented, this is only possible with a noisy rule without sure high

quality certificate, when this is also possible using a full disclosure rule.
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