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Doctors’ Fees in Ireland Following the Change in 
Reimbursement: Did They Jump or Were They Pushed? 

 
 
 
1. Introduction 
 

In a recent paper Madden, Nolan and Nolan (2004, henceforth MNN) explored the 

extent to which visiting patterns to General Practitioners in Ireland changed following 

a change in reimbursement.  More specifically, in Ireland, individuals below an 

income threshold, termed “medical card patients”, are entitled to free GP 

consultations while the remainder of the population, termed “private patients”, must 

pay the full cost of each consultation.  Prior to 1989, GPs were reimbursed on a fee-

per-service basis for both medical card and private patients, by the State and the 

patient respectively. In part in response to evidence in favour of demand inducement 

presented by Tussing (1983, 1985), the reimbursement system for medical card 

patients was changed from fee-for-service to capitation in 1989, thus removing any 

incentive for GPs to induce visits from medical-card patients.  MNN examined the 

“difference-in-differences” between medical card and non-medical card visits before 

and after the change in reimbursement.  The results showed that the differential in 

visiting rates between medical-card holders and others did not narrow, as might have 

been anticipated if supplier induced demand played a major role. 

One factor which MNN were unable to take account of was whether, following 

the change in reimbursement, GPs increased their fees for private patients to offset 

any loss in induced demand from medical-card patients.  Failure to take account of 

this implies that some form of supplier-induced demand for medical card patients 

prior to 1989 cannot be unambiguously ruled out.  This is because while the change in 

reimbursement was introduced with the intention of lowering medical-card patients’ 
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visits (and evidence suggests that it succeeded in this in the short-run at least), doctors 

may have responded to their loss of income from this form of inducement by raising 

fees for non-medical card patients.  If GP visits for non-medical patients are price 

inelastic, as is typically assumed, then such a course of action would have led to 

increased revenue from private patients, yet no narrowing of the visiting differential 

since visits from both groups would have fallen. 

Unfortunately MNN were unable to explicitly control for such an effect since their 

data listed GP visits on an annual basis (i.e. numbers per year for each individual) and 

so it was not possible to assign individual visits to the particular month or quarter.  In 

the absence of sufficient time variation it was not possible to condition on price in the 

analysis. 

In this note we utilise an alternative data source and approach to investigate the 

evolution of doctors’ fees over time.  In particular, we examine whether any form of 

break or discontinuity (we define precisely what we mean by this below) can be 

observed in the time-series data on doctors fees around the time the change in 

reimbursement was introduced.  If such a break is observed then it is consistent with 

doctors responding to the change in reimbursement by raising private patients’ fees.  

In turn this could be regarded as a classic reaction to a situation where inducement 

had previously existed, but where the scope for such inducement had been diminished 

by the change in reimbursement. 

The remainder of the paper is organised as follows.  In the next section we 

describe our data source and the methodology we employ to detect any break in the 

time-series on doctors’ fees.  In section 3 we present our results and in section 4 we 

offer concluding comments. 
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2. Data and Methodology 

This section describes our data and methodology.  The data we use is quarterly 

data on doctors’ fees from 1983 Q1 to 2003 Q3 provided by the Irish Central 

Statistics Office.  This index is a sub-component of the overall Consumer Price Index.  

To obtain the change in the real price of doctors’ fees we deflate the index for 

doctors’ fees by the index for all items.  The graph below shows the change in the real 

price of doctors’ fees from 1983 to 2003 (indexed at 100 for 1983 Q1). 

 

Doc Fees, Quarterly, 1983Q1=100
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Purely eye-balling the graph we see that doctors’ fees (in real terms) stayed 

constant from early 1983 to about the last quarter of 1985.  We then see the index start 

to increase and there is some evidence of a slight “blip” upwards in the first quarter of 

1989, but this seems to be followed by a levelling off for the rest of 1989.  From then 

on the rate of increase is reasonably constant (though there is some evidence that it 
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picks up around the end of 2000) with evidence of other occasional blips e.g. 1992 

Q1, 1999 Q1 and, in particular, 2002 Q1.  The fact that most of the blips occur in Q1 

may indicate some seasonality in price setting (i.e. GPs change their fees at the 

beginning of every year) and the particularly large rise in 2002 Q1 may reflect the 

changeover to the euro.1  We return to this below. 

While eye-balling the data can be revealing in terms of suggesting possible 

breaks, it is also desirable to test for such breaks more formally.  The approach we 

take first of all relies less on identifying structural breaks rather than detecting 

unusually influential observations.  First we introduce some necessary notation.  This 

involves concepts and measures which are familiar in regression analysis except that 

here they are applied to individual observations as opposed to the regression as a 

whole. 

Suppose we have an estimated regression model of the form eXby +=  where 

y is a 1×n  vector, X is an kn×  matrix and b is a 1×k  vector of estimated 

coefficients with e the vector of residuals.  Thus we have n observations and k 

independent variables (including the intercept, if any).  jx  represents the jth 

observation, jy  is the observed value of the dependent variable with predicted value 

bxy jj =ˆ .  The residuals are defined as jjj yye ˆˆ −=  and 2s  is the mean square error 

of the regression.  We also write 12 )( −′= XXsV .   

We define a diagonal element of the projection matrix, jh , as 

jjj xXXxh ′′= −1)( .  The standard error of the prediction for observation j is defined as 

jjp xVxs
j

′=  which can also be expressed as jp hss
j
= .  The standard error of the 

                                                 
1 In January 2002 Ireland, along with a number of other nations in the EU, adopted the euro as its 
currency.  This led to many prices being “rounded” up or down.  A rounding up of doctors’ fees seems 
to be a plausible explanation for the relatively sharp rise observed in 2002 Q1. 
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forecast is defined as jf hss
j

+= 1  while the standard error of the residual is 

jr hss
j

−= 1 .  Standardised residuals are defined as 
jj rjs see /ˆˆ = while studentised 

residuals are 
jj

j
j hs

e
r

−
=

1

ˆ

)(

.  In the latter expression )( js represents the root mean 

square error with the jth observation removed.  We are now in a position to explain 

the various statistics used to detect unusually influential observations. 

Following the discussion in Belsley, Kuh and Welsch (1980) we can think in 

terms of three key issues in identifying model sensitivity to individual observations.  

These are residuals, leverage and influence.  Taking residuals first, each individual 

residual jjj yye ˆˆ −=  tells us how much the fitted value of the dependent variable 

differs from the observed value.  Any given data point ),( jj yx  with a large residual is 

an outlier and clearly there is concern that such outliers will exert undue influence 

upon estimated coefficients. 

However, large residuals are not the only way in which individual points can 

affect estimates unduly.  In the same way that jy  and jŷ  can be far apart it is also 

possible that some individual jx  may be far apart from the mass of other x’s. 
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Suppose we have a scatterplot of y against x such that all points are located in a mass 

concentrated in the ellipse in the lower left side of the diagram, apart from a single 

point (xj, yj) in the top right-hand corner.  The dashed line shows the estimated 

regression line obtained, which clearly comes very close to the point (xj, yj).  Thus (xj, 

yj) is not an outlier in the sense of having a large residual, yet it has a dramatic effect 

on the estimated slope of the regression line, since if this point was deleted then the 

estimates would change markedly.  The point (xj, yj) is said to have high leverage and 

it would be reflected in a high value of hj. 

 Thus we can think of influence being exerted in two ways, via large residuals 

or a high degree of leverage.  We now introduce a number of statistics which can 

combine both notions and give us some idea of the degree of influence of each 

observation.  The different statistics will reflect different types of influence e.g. with 

regard to the estimated coefficient b, or perhaps the standard error of b. 

 The first measures we will examine, apart from the plot of residuals, will be 

the measures of leverage, hj, and the standardised and studentised residuals defined 

earlier.  From the expression above it is clear that the standardised errors are simply 

the residuals adjusted for their standard errors.  Standardised residuals adjust using the 

root mean square error while studentised errors adjust using the root mean square 

error of a regression omitting the observation in question.  Belsley, Kuh and Welsch 

(1980) state that studentised residuals can be interpreted as the t statistic for testing 

the significance of a dummy variable equal to 1 in the observation in question and 0 

elsewhere, since such a variable would effectively absorb the observation and so 

remove its influence upon determining the other coefficients in the model. 
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 A very direct measure of the influence of a single observation is provided by 

the DFBETA statistic.  This measure focuses on one particular regression coefficient 

and measures the difference between that coefficient when the jth observation is 

included and excluded, with the difference being scaled by the estimated standard 

error of the coefficient.  Belsley, Kuh and Welsch (1980) suggest a critical value of  

nDFBETAj /2> , while it is also common practice to simply use 1 i.e. the 

observation shifted the estimate by one standard error. 

 The next three statistics are attempts to create an index which is affected by 

the size of the residuals and the degree of leverage and as they are related we will deal 

with them together.  The first of these is the DFITS measure (Welsch and Kuh, 1977) 

which is defined as 
j

j
jj h

h
rDFITS

−
=

1
 where rj are the studentised residuals.  Thus 

large values of the residuals will increase the DFITS measure as will large values of 

hj.  Intuitively, DFITS is a measure of the difference between predicted values for the 

jth case when the regression is estimated with and without the jth observation. 

 Following from the DFITS measure we have Cook’s Distance (Cook, 1977) 

which is defined as 2
2

2
)(1

j
j

j DFITS
s
s

k
D =  with k  the number of independent variables, 

including the constant, s the root mean square error of the regression and s(j) the root 

mean square error when the jth observation is omitted.  Thus Cook’s Distance is a 

measure of the difference between the coefficient vectors when the jth observation is 

omitted. 
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 Welsch’s Distance (Welsch, 1982) is defined as 
j

jj h
nDFITSW
−
−

=
1

1  where 

n is the total number of observations.  Thus Welsch’s Distance involves another 

normalisation by leverage apart from that already embodied in the DFITS measure. 

 Belsley, Kuh and Welsch (1980) suggest a critical value of DFITS of nk /2 , 

suggesting threshold values of Cook’s and Welsch’s Distance of 4/n and k3  

respectively. 

The final statistic we consider addresses the influence of individual observations 

on the variance-covariance matrix of the estimates.  The measure is the ratio of the 

determinants of the covariance matrix with and without the jth observation with a 

formula 
k

s

j
j kn

ekn

h
COVRATIO j

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

−−

−
=

1

ˆ

1
1

2

where 
jse is the standardised residual.  

Belsley, Kuh and Welsch (1980) suggest a critical value of 
n
kCOVRATIO j

31 ≥− . 

 An alternative approach to searching for unusually influential observations is 

to examine the data for a structural shift in the estimated relationship.  Perhaps the 

best known of such tests is the Chow test.  Suppose we have an idea of where the 

structural shift takes place.  The model is then estimated before and after the supposed 

structural shift and an F test can then be carried out on whether the estimated 

relationship is the “same” before and after the supposed shift.  Suppose there are n1 

observations before the structural shift and n2 observations following the structural 

shift.  Let S1 represent the residual sum of squares for the regression estimated on all 

the observations and let S2 and S3 represent the residual sum of squares for the 

regression run on the n1 and n2 observations respectively.  Then if there are k 

parameters to be estimated the statistic  
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)2/()(
/)(

2132

321

knnSS
kSSS

F
−++

−−
=  

follows an F distribution with degrees of freedom (k, n1+n2-2k). 

 As we will see below however, a problem with the Chow test is that while it 

can tell whether the relationship has changed for two different periods with the cut-off 

date chosen arbitrarily, it does not identify when exactly the relationship begins to 

change. 

A potentially more useful approach is to examine the recursive residuals from the 

regression (see Brown et al., 1975, and Galpin and Hawkins, 1980).  These residuals 

are not unlike the studentised residuals mentioned above.  Suppose our data consists 

of n observations.  Then discard the last data point and estimate the model using the 

first n-1 observations.  We can denote vector of estimated coefficients as bn-1.  The 

recursive residual, denoted by wn-1 is then defined as the standardised residual of the 

last observation from the new line, being standardised by the variance σ2.  The 

procedure can then be carried out for the second last point as well and the regression 

fitted to the first n-2 points giving wn-2.  By continually omitting points in this way n-p 

recursive residuals can be calculated, assuming we are trying to estimate p 

parameters. 

The examination of plots of the recursive residuals can be extremely useful in 

detecting a “change in regime” in the regression model.  As Brown et al. (1975) point 

out  “...the recursive residuals seem preferable [to other transformations of least-

squares residuals] for detecting the change of a model over time since until a change 

takes place the recursive residuals behave exactly as on the null hypothesis” (Brown 

et al., 1975, p. 150).  Brown et al. suggest plotting the cumulative sums (CUSUM) of 

the recursive residuals, defined by ∑
=

=
i

j

j
i

w
z

1 σ
, where i can take on values from 1 to 
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n-p.  If all the regression assumptions are satisfied then the plot of zi should be a 

random walk within a parabolic envelope (where the borders of the envelope can 

reflect significance levels) about the origin since the expectation of these recursive 

residuals is zero. 

 

 

 

 

 

 

 

 

 

When a structural break occurs, we typically observe a secular increase (or decrease) 

in zi.  In the illustration above we show recursive residuals for two regressions, with 

the dashed line showing no signs of a structural break, while the constant line shows 

clear signs. 

 Complementary to the CUSUM plot is that of the CUSUM of squares.  This 

plots the quantities 
∑

∑

+=

+=
n

pi
i

r

pi
i

w

w

1

2

1

2

, i=p+1, p+2,…,n.  Brown et al. claim that this plot is 

particularly useful when departures from constancy of the bi is “…haphazard rather 

than systematic” (Brown et al., 1975, p. 154).  Once again if the regression 

assumptions are satisfied then these quantities should stay within defined limits.  

Below we once again illustrate the case of two models, one showing stability and one 

Observation 
Number 

CUSUM 

Structural Break 
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not showing stability.  Note that as we plot this statistic from observation p+1 to 

observation n, it must take on a value of unity at the limit (i.e. at observation n). 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

We now present values of the above statistics for influential observations and for 

structural breaks for the case of doctors’ fees.  We are concerned only with the pure 

time-series properties of doctors’ fees, hence our regression model will only have 

time and higher order terms in time as explanatory variables.  Ideally we would like to 

estimate a structural or even reduced form of inverse demand function whereby 

doctors’ fees would depend upon such factors as underlying health, supply of GPs etc.  

Such data is simply not available and so we concentrate purely on the time series 

properties of doctors’ fees. 

There are a variety of models we could estimate to investigate the pure time-series 

properties of doctors’ fees.  Perhaps the simplest is where we simply let doctors’ fees 

depend upon an n-th order polynomial in time.  For comparison we include results for 

1% significance 
line 

1% significance line 

Observation number 

CUSUMSQ 
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a quadratic, cubic and quartic in time.  For the case of leverage, standardised residuals 

and studentised residuals we present those observations with the five highest values.  

For the other statistics outlined above we list those observations in excess of the 

critical values suggested by Belsley, Kuh and Welsch (1980). 

The results for influential observations do not lend any support to the idea that 

1989 is in any way “different” in the sense that the relationship between doctors’ fees 

and time is unduly influenced by events in this year.  In no case does an observation 

from 1989 exceed the critical value, nor are they ranked high in terms of leverage or 

the standardised or studentised residuals.  What is of interest is to examine what 

observations, if any, consistently appear to be influential.  In terms of residuals, it is 

clear that the first two quarters of 2002 and, to a lesser extent, of 1994 are outliers.  

As suggested above, the behaviour of doctors’ fees in early 2002 is probably due to 

rounding up following the introduction of the euro.  It is less clear what caused the 

higher residuals in 1994. 

In terms of leverage, the greatest influence is exerted by observations at the 

beginning and end of the sample period.  In the case of the various measures 

combining residuals and leverage, the influence of large outliers appears to dominate 

that of observations with high leverage.  Hence 2002 Q1 has the highest value of 

DFITS, Cook’s and Welsch’s Distance.  For COVRATIO it is generally those 

observations with highest leverage which exert the most influence. 

Turning now to the results for structural breaks, when we calculate the Chow 

statistic above for the quadratic, cubic and quartic in time for our data using 1989 Q1 

as the date for the structural shift we obtain F values of  125.74, 117.24 and 100.01 

respectively, clearly rejecting the null hypothesis that there is no structural shift.  So, 

is this clear evidence that doctors’ fees did take a jump in 1989?  Not really, since if 
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we calculate the same statistic for different dates, chosen somewhat randomly, then 

we also obtain high F values.  For example, choosing 1986 Q1 we obtain F values of 

129.19, 119.41 and 96.74 respectively, while choosing 1995 Q1 we obtain 97.63, 

78.57 and 79.48.  Thus while the Chow Test can tell whether the relationship has 

changed for two different periods with the cut-off date chosen arbitrarily, it does not 

identify when exactly the relationship begins to change. 

In figures 1a to 4b we present the plots of the CUSUM and CUSUMSQ for the 

different regression models estimated for doctors’ fees, while in table 3 we show for 

what quarter, if any, the CUSUM and CUSUMSQ plots move outside the 95% 

confidence intervals and for what quarter, if any, they move back inside the limits.  

The results for CUSUM show no consistency in terms of when a regime change 

may have occurred.  Those for CUSUMSQ do show consistency, with evidence of a 

change in regime sometime in 1988.  This, however, pre-dates the change in 

reimbursement so unless GPs were demonstrating an unusual degree of foresight it 

seems unlikely that the change in reimbursement was the source of this regime 

change. 

 

4. Discussion and Conclusion 

This paper has extended the analysis of MNN’s investigation into the presence of 

supplier induced demand in the Irish health system.  An analysis of the time-series 

properties of doctors’ fees gave no indication that there was any unusual upwards 

“blip” around about the time the reimbursement change was introduced in 1989.  This 

finding is consistent with the conclusions of MNN who had used the reimbursement 

change as a natural experiment in their investigation into the presence of supplier 

induced demand in the Irish health system and concluded that no such inducement 
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existed.  The analysis concludes that to the extent that any period could be identified 

where doctors fees did appear to behave unusually it was 2002 Q1, the period when 

the changeover to the euro occurred and when there was some anecdotal evidence of 

prices being rounded up. 
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Table 1: Residuals and Leverage Tables 
 Quadratic Cubic Quartic 

Residual   1993q3   4.040937 
  1994q2   4.075958 
 1994q1    4.41813 
  2002q2   5.803434 
  2002q1   11.10708 

  1983q1   4.159307 
  1994q2   4.314041 
  1994q1   4.597921 
  2002q2   5.249311 
  2002q1   10.71379 

  1994q2   3.326477 
  1994q1   3.566862 
  2001q4   4.052376 
  2002q2   5.156991 
  2002q1   10.93967 

Leverage   1983q3   .0849845 
  2003q2   .0937705 
  1983q2   .0937705 
  2003q3   .1033715 
  1983q1   .1033715 

  2003q1   .1224355 
  2003q2   .1469544 
  1983q2   .1469544 
  2003q3   .1763529 
  1983q1   .1763529 

  2003q1   .1472167 
  2003q2   .1956615 
  1983q2   .1956646 
  2003q3   .2615539 
  1983q1    .261558 

Standardised 
Residual 

  1993q3   1.614895 
  1994q2   1.628505 
  1994q1   1.765409 
  2002q2   2.363393 
  2002q1   4.508962 

  1994q2   1.772296 
   1983q1   1.855927 
   1994q1   1.888412 
   2002q2   2.207103 
  2002q1    4.47928 

   1994q2   1.491997 
   1994q1   1.600324 
   2001q4   1.832766 
   2002q2   2.352024 
   2002q1   4.962735 

Studentised  
Residual 

  1993q3   1.631584 
  1994q2   1.645804 
  1994q1   1.789546 
  2002q2   2.435124 
  2002q1   5.188176 

   1994q2   1.797132 
   1983q1   1.885711 
   1994q1   1.920263 
   2002q2   2.264002 
   2002q1   5.153057 

   1994q2   1.504019 
   1994q1   1.616797 
   2001q4   1.861503 
   2002q2   2.424454 
   2002q1   5.960912 
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Table 2: DFITS, Cook’s Distance, Welsch’s Distance and COVRATIO Tables 
 Quadratic Cubic Quartic 

DFITS    2002q3   .4173948 
   2002q2   .6319016 
   2002q1   1.277219 

  1983q2   .4850934 
  1983q1   .8725609 
  2002q2   .6323084 
  2002q1   1.322664 

   1983q1     .48272 
     2001q4   .4566158 
    2002q2   .6776755 
    2002q1   1.538692 

Cook’s 
Distance 

  2002q3   .0571261 
  2002q2   .1253739 
  2002q1   .4107081 

  2003q2   .0896757 
  2003q3   .0493738 
  1983q2   .0585576 
  1983q1   .1843755 
  2002q2   .0949926 
   2002q1   .3304649 

    2003q2   .3196336 
    2003q3   .4125764 
    2003q1    .061532 
     2002q2   .0864429 
     2002q1   .3282086 

Welsch’s 
Distance 

 2002q2    5.91163 
  2002q1   11.91102 

   1983q1   8.706269 
    2002q1   12.36548 

   2002q2    6.37183 
    2002q1   14.39016 

DFBETA (q)   2002q1  -.6726409 
  2002q2  -.3538598 
  1994q1   .2204721 
  2002q3  -.2464218 

             1983q1  -.2877555 

    2002q1   .2896095 
    1998q3   .2200425 
     1983q1  -.6140192 
     2003q2  -.3263205 
    1983q2  -.3218166 
    2003q3  -.2590429 

   2003q2   .5760458 
    2003q3   .7550463 
     1983q1  -.3070806 

 

DFBETA (q2)  2002q1   .7438254 
 2002q2   .3884256 
 2002q3   .2688075 
 1983q1   .2713457 

   2002q1  -.3240395 
    1998q3  -.2253262 
   1983q1   .5864317 
   2003q2   .3441555 
   1983q2   .3060353 
   2003q3   .2721687 

   2003q2  -.6012018 
   2003q3  -.7846808 
   1983q1   .2958201 

DFBETA (q3)     2002q1   .3635265 
   2002q2   .2263039 
   1998q3   .2283469 
   1983q1  -.5613201 
   2003q2  -.3628275 
   1983q2  -.2918263 
   2003q3  -.2857441 

  2003q2   .6275222 
   2003q3   .8152993 
   1983q1  -.2853069 

DFBETA (q4)     2003q2  -.6548761 
  2003q3  -.8466979 
  2003q1  -.2287365 
  1983q1   .2755144 

COVRATIO  1983q4   1.124759 
 1983q2   1.132886 
 2003q1   1.134225 
 1983q3   1.134871 
 2003q3   1.155496 

   2002q1   .3474203 
   1983q2   1.150797 
   1983q4   1.166584 
   2002q4   1.171982 
   2003q1   1.176337 
   1983q3   1.186772 
   2003q3   1.218951 

   2002q1   .1706468 
   2002q2   .7960646 
   2003q2   .8541124 
  1984q1    1.16814 

   2002q4   1.186107 
   1983q4   1.201302 
   1983q3   1.248664 
   1983q2   1.315668 
   1983q1   1.384297 

 



 
Table 3: “Break-Out” Quarters for Doctors’ Fees 

Break Out Quarters 

 Linear Quadratic Cubic Quartic 

CUSUM 1993 q2 1997 q4 2001 q4 - 

CUSUMSQ 1988 q1 1988 q2 1988 q2 1988 q3 

 

Break In Quarters 

 Linear Quadratic Cubic Quartic 

CUSUM - 1999 q3 - - 

CUSUMSQ 2002 q2 2002 q1 2002 q1 2003 q1 
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Figure 1a: CUSUM plot for linear regression against time 
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Figure 1b: CUSUMSQ plot for linear regression against time 
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Figure 2a: CUSUM plot for quadratic regression against time 
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Figure 2b: CUSUMSQ plot for quadratic regression against time 
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Figure 3a: CUSUM plot for cubic regression against time 
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Figure 3b:  CUSUMSQ plot for cubic regression against time 
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Figure 4a: CUSUM plot for quartic regression against time 
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Figure 4b:  CUSUMSQ plot for quartic regression against time 
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