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The Invention of Invention.

Morgan Kelly∗

University College Dublin and CEPR

Abstract
This paper models an industrial revolution as a qualitative transition from

a world where innovation is infrequent and haphazard to one where it is con-
tinuous and systematic. Pre-industrial innovation is treated as a social pro-
cess where an individual’s effectiveness as an innovator depends on the skills
of other individuals in his social network. As technology improves, indi-
viduals invest more time in learning through social contact. This gradual in-
crease in linkage formation leads to a sudden change in the size of knowledge
networks from small, isolated clusters, to a large connected cluster span-
ning most of the economy, causing a sudden increase in the effectiveness
of innovation: an industrial revolution. The predicted sequence of typical
innovators—from gifted amateurs, to lucky amateurs, to professionals—is
consistent with empirical evidence.
JEL: O40. Keywords: Industrial revolution, social networks, innovation.

1 Introduction.

Innovation is a social process that consists in bringing together the knowledge and
skills of different individuals to generate new knowledge and skills. For a con-
temporary firm undertaking R&D, these skills can be brought together by hiring
researchers with appropriate training and experience. In a pre-industrial economy,
with limited technological knowledge and education, this combining of skills has
to occur primarily through personal contact, so that an individual’s effectiveness as
an innovator will depend on the skills of those in his social network. This paper
shows how the gradual expansion of these networks of personal contact leads to a
sudden rise in the knowledge and effectiveness of innovators, turning innovation
from an occasional, haphazard activity into a continuous, systematic one.

∗This paper is part of the International Trade and Investment Programme of the Geary Institute at
UCD.
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We model an economy where kitchen table inventors devote time to forming
networks of social contacts in the hope of gaining useful knowledge, and show
that, if individual effectiveness at innovating is supermodular in skills over the
network, the most able individuals devote the most time to forming social contacts.
Successful innovations increase the skill of innovators and cause the number of
linkages between agents to grow slowly through time.

Our central result is that these knowledge networks undergo a sudden, quali-
tative change as the number of linkages between agents reaches a critical density.
Below the critical density, the network is split into small, isolated clusters of in-
dividuals. As the critical density is reached these clusters coalesce into a large,
connected cluster that spans most of the agents in the economy. Within a few gen-
erations, innovators go from having a small number of intellectual contacts, with a
limited probability that their collective knowledge can generate some useful inno-
vation; to having many contacts and a far greater probability of meeting someone
whose knowledge will enable them to make a significant breakthrough.

Recent models of industrial revolutions, including Galor and Weil (1999), and
Jones (2001), start from the result that that the growth rate in models where firms
allocate labour to R&D is determined by the rate of population growth (Kremer
1993b, Jones 1995), and model the acceleration of innovation through a demo-
graphic transition in a Malthusian model. In these models, pre-industrial innova-
tion is qualitatively the same as contemporary innovation; there are simply fewer
researchers engaged in R&D. Hansen and Prescott (1998) model an industrial rev-
olution without innovation as a shift from a land intensive to a capital intensive
technology. Weitzman (1998) develops a model of innovation as the combination
of ideas but without the social component of linkages between individuals that it
central here. Our approach to innovation as a social activity is most closely related
to the literature on social interactions in economics surveyed by Brock and Durlauf
(2001) and Glaeser and Scheinkman (2000). The network formation game here
differs from existing models of network formation (Jackson and Wolinsky, 1996;
Bala and Goyal, 2000) in that agents have incomplete knowledge of the character-
istics of their potential partners.

The rest of the paper is as follows. Section 2 discusses why social networks
aid innovation. Sufficient conditions for the number of personal linkages between
agents to grow through time are derived for a network formation game in Sec-
tion 3, while Section 4 shows that gradual growth in linkages causes the sudden
emergence of a large, connected knowledge network. Section 5 examines how
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Figure 1: Social network: individuals are points, social contacts are lines.

the characteristics of innovators are predicted to change through time, and shows
that these match the characteristics of American inventors during the nineteenth
century.

2 Social Cognition.

Innovation is a social process; pre-industrial innovation particularly so. In a world
with little technical knowledge and formal education, an individual’s success as an
inventor depends in large part on his access to the knowledge, skills, and ideas of
other aspiring innovators. We model the social network of innovators as a random
graph: potential innovators are points (vertices), and personal contacts between
them are lines (edges). Edges form at random as individuals meet and choose to
pool their knowledge.

The social networks here are undirected graphs: the transfer of knowledge goes
both ways. This means that the inventors that compose the network are individuals
of roughly similar ability, neither geniuses or botchers, who can benefit mutually
from intellectual contact.

A social network has chains of acquaintance: individuals can know each other
directly, or be indirectly connected through other acquaintances. Being indirectly
connected to someone does not imply that he necessarily knows anything about you
but it does give a chance for individuals with complementary interests and skills to
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learn of each other and come together. In particular the higher the ability of an in-
dividual in a connected chain of acquaintance, the greater the probability that news
of his skills will diffuse through the network and attract linked individuals with
complementary interests and skills. Inventors that belong to separate networks, by
contrast, have no possibility of learning of each other and do not benefit from each
other’s knowledge.

The importance of social networks can be seen in many accounts of historical
innovations. For example, in examining why the mechanization of the cotton in-
dustry took place in Manchester rather than any of the other equally successful tex-
tile centres in eighteenth century England, Hall (1998, 310–347) concludes that the
decisive factors were social: the presence of a relatively large middle class of small
capitalist entrepreneurs engaged in textile production who, as Dissenters excluded
from mainstream Anglican society, had close and relatively egalitarian social net-
works based on common churches, schools and the Manchester Scientific Society
which, like other scientific societies served as a forum for intellectual networking,
and a marketplace where knowledge was traded for patronage (Mokyr, 2002, 44).
In this society that combined strong group ties with personal competitiveness, news
of successful innovations could spread rapidly and serve as a foundation for further
successful innovation.

2.1 What makes two heads better than one?

There are four benefits to be derived from intellectual contact with others: com-
plementary knowledge, interaction of ideas, division of labour, and overcoming
cognitive barriers; and one possible cost: conformity. We discuss each in turn.

No individual can know and do everything, and innovation will occur most
readily where complementary skills are brought together. The mechanization of the
cotton industry, for instance, required combining a knowledge of textile production
with a knowledge of mechanical engineering which, in the case of Manchester, was
present in the form of clock makers who were able to design and build parts for
textile machines.

When individuals share similar knowledge and skills—the participants at an
academic seminar, for instance—the interaction of ideas through challenge, justifi-
cation and revision acts to clarify and improve thoughts (Levine, Resnick and Higgins,
1993). In his study of intellectual and personal networks among philosophers from
ancient Greece until the mid-twentieth century, Collins (1998, 37–40) shows how
important is group contact, both for new participants who can acquire the knowl-
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edge of existing members, and for established members who can recharge their
enthusiasm for their individual research.

When tasks require specific skills, there is an incentive to specialize in one task
and pool one’s knowledge with other specialists. In Becker and Murphy (1992),
for example, output is the product of skill and time devoted to production, where
skill is proportional to time invested in human capital formation. Output in each
activityis therefore quadratic in time, giving an incentive to specialize in a few
activities as part of a team of similar specialists.

Innovation is not merely about coming up with new ideas, but also about re-
jecting existing ideas that others accept unquestioningly. In overcoming personal
cognitive barriers, contact with the ideas of others is vital. For example, Margolis
(1987, 224–249) shows that the decisive turning point in Copernicus’s thought oc-
curred after seeing Waldseemuller’s 1507 map of the world. This was the first map
to show America as a separate continent, something irreconcilable with the Aris-
totelian view of Europe, Africa and Asia alone on a sphere surrounded by water,
and surrounded in turn by the celestial spheres. Copernicus’s successful rejection
of geocentric cosmology led his followers in turn to reject other aspects of the
deductive Aristotelian physics in favour of the empirical scientific method whose
importance for subsequent technological development is shown by Mokyr (2002).

While individual knowledge and creativity can be stimulated by contact with
others, they can also be stunted by Groupthink: pressure to conform with the exist-
ing ideas and goals of a group. Conformity is a problem for groups where the costs
of exit are high, but in the informal networks that interest us here, anyone who does
not like the ideas of the group can leave and work alone or move to another group.

Given that an individual innovator can increase his effectiveness by expanding
his network of contacts with other innovators, we now derive sufficient conditions
for social connections between innovators to grow endogenously through time.

3 Network Formation Game.

Any innovative process involves learning followed by doing. Here we consider
kitchen table inventors who devote some of their leisure time to innovation. In the
first period of their lives they devote time to learning to increase their technical
skills; in the second period they apply these skills to inventing.

5



An inventor i who has acquired a level of technical skill or effectiveness e i in
the first period of his life, allocates time wi in the second period to working at
inventing to maximize his expected payoff

R(wi,ei)− c(wi) (1)

where c is the cost of leisure time devoted to invention and R is the expected return
from inventive activity. We assume that R is increasing in and has strictly increas-
ing differences in its arguments so that the most effective inventors devote most
time to inventing. An example of a such a function, used by Becker and Murphy
(1992), is R = wiei.

With expected return in the second period determined by effectiveness e i, the
problem in the first period is to allocate time li to developing human capital to
maximize

V (ei)− c(li) (2)

where V , the present value of the second period payoff, is an increasing func-
tion of ei. We assume moreover that it is convex: in generating new knowledge
there are increasing returns to ability. In modern economies a person can increase
his effectiveness through formal study and technical training, but in pre-industrial
economies he is forced to learn mainly through personal contact with people who
possess the skills he wishes to acquire.

There is a fixed population of N part-time inventors: population growth will
play no role in any takeoff that occurs. There are M types of skill. Agent i has
a single skill of type j, τ j

i ≥ 0 that is exogenously given by his day job and the
current state of technology in all fields. If no innovation occurs, each generation
has the same vector of skills τττ as its predecessor. Any successful innovation that
occurs will increase the skill of one or more inventors in the next generation.

We denote the types of agents other than i as τττ−i, and types in i’s network as
τττ(i). We expand τττ(i) to include all N agents by setting the types of agents outside
i’s network to zero. The effectiveness of agent i

ei
(

τ j
i ,τττ

(i)
)

(3)

depends on his own skill and the skill of his contacts. Distance between agents in
a network can be allowed for by allowing the effective skill of other agents τττ−i to
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diminish with their distance from i, although nothing essential changes if distance
is ignored.

By increasing the time li devoted to forming linkages with other innovators,
inventor i can improve the composition of his network τττ(i) by increasing the number
of individuals to whom he is linked; reducing their distance from him; and, if
matching is assortative, their individual skill.

The network formation game therefore has N agents who invest time li in link-
age formation to increase their skill ei and consequently their expected payoff from
innovation (2). We wish to see how actions li change as successful innovation in-
creases the skill of agents τ j

i .

3.1 Comparative Statics.

While comparative static results in non-cooperative games customarily rely on
strategic complementarity in actions (Milgrom and Roberts, 1990), in many link-
age formation games actions are strategic substitutes. If many linkages have al-
ready formed then it is unlikely that your adding an extra linkage will bring some-
one really useful into your network who was not there already.1 We require instead
that individual effectiveness ei is supermodular in types.

Assumption. ei is increasing and supermodular in
(

τi,τττ(i)).

For the reasons discussed in Section 2.1 there are positive externalities in learn-
ing. Supermodularity requires further that the value of these spillovers increase
with individual type: the smarter you are, the greater the benefit you are able to
derive as your contacts become smarter. An example of a skill function where
knowledge is complementary across players is ei = τ j

i + τ j
i ∏m6= j maxk∈τ(i) τm

k .
Supermodularity will not hold where learning is uninfluenced by the ability

of others: the innovator is an intellectually self-sufficient genius with nothing to
gain from contact with his contemporaries; or retarded by it. The skill of others
can retard your learning if learning takes place in formal teams of limited size into
which agents are sorted by ability (such as the O-ring technology of Kremer, 1993a
and the Leontief technology of Becker and Murphy, 1992) so that a rise in the skill
of an outsider can displace you onto a weaker team. However in the pre-industrial

1Suppose for example, that your payoff depends only on the highest type of player in your net-
work ei = τi + maxτττ(i). The expected number of highest types that have joined the network by the
time it has reached size m is approximately logm (Arnold, Balakrishnan and Nagaraja, 1998, 24) so
that the expected payoff to adding new agents falls rapidly with m.
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economies that concern us here, opportunities for learning in formally structured
teams are negligible.

Theorem 1. The network formation game has a pure strategy Nash equilibrium
where each player’s equilibrium strategy is non-decreasing in his type.

Proof. Agent i allocates effort li from a compact set Li ∈ R to forming contacts
with other agents. Expected payoff V is an increasing, convex function of e i and is
therefore supermodular in

(

τi,τττ(i)).
Given li and the set of strategies of other players λ−i(τττ−i), the distribution func-

tion of types in i’s network is Fi
(

τττ(i); li,λ−i(τττ−i),τττ
)

which is ordered by first order
stochastic dominance in li: the probability that agents in i’s network exceed a given
quality τ increases as he spends more time on network formation. Given τττ−i, the
agent’s expected payoff is U (li,λ−i(τττ−i),τττ) =

R

Vi
(

τi,τττ(i))dFi
(

τττ(i); li,λ(τττ−i),τττ
)

.
Given the first order stochastic dominance of F in li and the supermodular-

ity of Vi
(

τi,τττ(i)) in (τi,τττ(i)), Ui (li,λ−i(τττ−i),τττ) satisfies single crossing in incre-
mental returns in

(

li,τ j
i

)

: Athey (1998). The set of types of other agent τττ−i has
conditional distribution function G(τττ−i|τi) so the agent has the objective function
R

Ui (li,λ−i(τττ−i),τττ)dG(τττ−i|τi). The result follows directly from Athey (2001).

The economy starts with a low value τττ of individual skills, so agents have
little incentive to learn from each other. Through time, however, a small number
of inventive efforts will be successful. Each successful innovation improves the
quality τ j

i of a subset of innovators in the next period and causes the intensity of
their network formation efforts to increase.2

Innovation and network formation are treated here as a closed cycle: success-
ful innovation increases the skill of innovators τττ, who invest more time in learn-
ing by forming social networks, generating new inventions that increase τττ further.
In practice other, exogenous factors increased skills and reinforced this process:
improved literacy, increased division of labour associated with market expansion
(Becker and Murphy, 1992), the spread of the experimental method from the sci-
ences to industry (Mokyr, 2002), and greater parental investment in the education
of children (Galor and Moav, 2002).

2The increasing time that researchers devote to learning from each other can be seen in the length
of bibliographies in economics. Ricardo and Smith cite almost nobody, Marshall and Keynes cite a
few more, whereas contemporary researchers typically cite large numbers of other works.

8



4 Evolution of Social Networks.

We now consider how a network with a gradually increasing number of connections
between individuals evolves through time and how this gradual process of network
expansion gives rise to a sudden takeoff in innovation.

4.1 Random Matching.

We start with a network where each individual i forms linkages with ki other in-
dividuals at random, where ki is an increasing function of li, the time devoted to
forming linkages with other players. Let pk be the proportion of agents in the net-
work with k = 0,1,2, . . . linkages. The behaviour of such random graphs has been
analysed by Newman, Strogatz and Watts (2001).

The generating function for pk is G0(x) = ∑∞
k=0 pkxk so the average number of

nearest neighbours of any agent is z1 = ∑k k pk = G′

0(1), while it can be shown that
the average number of second nearest neighbours is z2 = G′

0(1)G′

1(1) = G′′

0(1)

where G1(x) = G′
0(x)/z1 is the generating function for the number of vertices

reached by following an edge.
For N large, the average size of a connected cluster of agents is

s̄ = 1+
G′

0(1)

1−G′

1(1)

= 1+
z2

1
z1 − z2

. (4)

This expression diverges when G′

1(1) = 1 or, more transparently, when the average
agent has as many second nearest neighbours as nearest neighbours z2 = z1. The
system suddenly goes from small, isolated clusters of agents to a large connected
cluster. When linkages are added, their effect at first is to join isolated agents into
connected pairs. As the critical density is approached, adding new linkages causes
these many isolated pairs to coalesce rapidly into a large connected cluster.

4.2 Assortative and Localized Matching.

While networks where people form connections with each other at random are
tractable and a useful benchmark, it is more realistic to allow for individuals to
sort themselves by ability so that more able individuals attempt to seek each other
out, and reject linkages from less able ones. The behaviour of such assortative
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networks has been analysed by Newman (2002) who generalizes condition (4) for
the emergence of the large connected component, and shows that the tendency of
the best connected individuals to link together causes the large connected cluster
to emerge earlier than in random matching models.

In examining the social networks of job seekers, Granovetter (1973) found the
prevelance of strong ties: people tended to be linked directly to people to whom
they were also linked indirectly, breaking the network into tight, local clusters.
The way that this local clumping delays the emergence of a large connected cluster
can be seen by comparing a network where anyone can link to anyone else with
probability p, with one where agents are placed as points on a square grid and can
only link to their 4 nearest neighbours.

For the economy where anyone can link, for N large the average number of
linkages of each agent is z1 = N p, and the distribution of linkages across agents is
Poisson with parameter z1, giving the generating function G1(x) = ez1(x−1). From
(4), the large connected cluster appears when the average number of linkages per
agent z1 = 1. For the nearest neighbour model, the large cluster appears when p =

0.5 (Grimmett, 1989, 192) so that each agent needs an average of z1 = 2 linkages,
twice the number in the random matching economy.

4.3 Example: Exponential Distribution of Contacts.

We demonstrate the sudden transition from small isolated clusters of agents to a
large connected cluster for the case where the distribution of number of contacts
across agents is exponential

pk = Ce−k/κ (5)

where the normalizing constant C = 1−e−1/κ. In the terms of the linkage formation
game in Section 3, the parameter κ reflects the average effort that agents put into
forming contacts, and rises through time as average ability increases as a result of
successful innovation.

For random matching, the generating function is G0(x) = (1 − e−1/κ)/(1 −

xe−1/κ). In this case G1(x) = G0(x)2 so that condition (4) for the emergence of
a giant cluster implies that the critical value for the connectivity parameter κ is
κ∗ = 1/ log 3 ≈ 0.9.

For assortative matching, we allow each agent to meet ck prospective partners,
where c ≥ 1 is an integer, and to choose the best k. The higher is c the greater is
the degree of sorting, with c = 1 corresponding to random matching. To preclude
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Figure 2: Average cluster size and fraction of agents in large cluster versus con-
nectivity parameter κ for a network with 250 agents, with assortative matching
parameters c = 1 (solid line), c = 2 (dotted line), and c = 4 (dashed line).

marriage-problem complications, where agents refuse a match in the hope of mak-
ing a better one later, agents get to choose partners in descending order of k so no
later offer will be more attractive than the one being currently made.

Figure 2 shows how the average cluster size and largest cluster size change as
κ varies in a simulated economy with 250 agents, with values of the assortative
matching parameter c of 1, 2, and 4. For random matching, the takeoff around
κ = 0.9 is apparent, while assortative matching is seen to cause the takeoff to start
earlier but to slow down as the more highly connected agents continue to link with
each other, leaving lower ranking agents out of the large cluster.

4.4 General Matching.

Finally, we show that critical behaviour is a general feature of social networks that
holds for almost any pattern of linkage formation. Let I be the set of agents and
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R the set of possible linkages with associated σ-algebra F (R) and cardinality n:
|R| = n. Let S ⊂ F (R) be the set of linkages that connect O(N) agents with the
properties that φ /∈ S, R ∈ S, and if A ∈ S and A ⊂ B, then B ∈ S.

Theorem 2. There exists a critical number of linkages m∗ for the network (I,R).
For n large the probability of a giant connected cluster tends to zero below m∗ and
to one above it.

Proof. Let R|k| be the set of subsets of R with k elements, 0≤ k ≤ n and define Sk =

S∩R|k|. Given k connections, define the measure of large connected components
as Pk(S) = |Sk|/

(n
k
)

. P0(S) = 0, Pn(S) = 1, and Pk(S) is increasing in k.
Define m∗ = maxk

{

k : Pk(S) ≤ 1
2
}

and let ω(n)≥ 1 be increasing in n. By The-
orem 4 of Bollobás and Thomason (1986), for m ≤ m∗/ω(n), Pm(S) ≤ 1− 2−1/ω;
while for m ≥ (m∗ +1)ω(n), Pm(S) ≥ 1−2−ω. For n large the result follows.

We examined an economy where kitchen table inventors form social networks
in the hope of learning from each other, and showed that an arbitrarily slow expan-
sion in the number of social connections leads to a relatively sudden change in the
economy as a critical density of connections is reached. Below the critical density,
agents are split into small isolated networks that offer agents with complementary
skills little chance of meeting, and their effectiveness as innovators is retarded as a
consequence. Above the threshold these isolated networks coalesce into a network
that spans most of the economy, giving each innovator access to a very much larger
pool of skills and ideas. The industrial revolution: a qualitative transition from a
world where invention is haphazard to one where it is routine; is a real process.

5 Empirical Predictions: Characteristics of Inventors.

How do the characteristics of inventors change as networks evolve? We look at
the three stages of the network: before, during, and after the emergence of a large
connected cluster.

In the pre-threshold stage with small knowledge networks, an individual’s ef-
fectiveness as an innovator ei depends largely on his own ability τi so that the in-
ventions that do occur will usually be made by more talented individuals, who may
make several inventions in their careers. As the economy reaches the threshold and
knowledge networks start to grow rapidly, some individuals of low personal ability
will, though serendipitous contacts, make significant inventions, but are unlikely to
be lucky twice.

12



The time that an individual devotes to inventing wi is increasing in his effec-
tiveness ei. As individual skill rises through successful innovation and the knowl-
edge network comes to span the entire economy, some individuals will become
sufficiently effective as innovators that they can expect to earn more at full time in-
venting than in their day jobs, and turn professional. These professional innovators
can increase their effectiveness by grouping into teams with a formal division of
labour (Becker and Murphy, 1992) which compete against other teams in familiar
patent races. However, while Rosen (1981) superstars account for an increasing
share of inventions, the inherent unpredictability of innovation means that talented
garage entrepreneurs are never entirely displaced.

This predicted sequence of innovators—first talented amateurs, then an influx
of lucky amateurs, and finally an increasing number of professionals—matches the
sequence found among early-nineteenth century American inventors by Sokoloff and Khan
(1990). Analysing a a large sample of patentees from 1790 to 1846, they find at
the start of the period that patenting is dominated by merchants, professionals and
skilled artisans, and that many individuals have several patents in their careers. As
the nineteenth century progresses, an increasing share of patents go to ordinary ar-
tisans, and to individuals with only a single patent in their lifetime. By the middle
of the nineteenth century, when their sample ends, professional inventors start to
account for a significant share of patents.

6 Summary.

Just as energy consumption is higher now than in the eighteenth century, not be-
cause cars back then had very small engines but because internal combustion en-
gines have fundamentally changed transportation technology; so innovation now
is not merely higher than in the pre-industrial world, it is a qualitatively different
activity. The industrial revolution marks the transition from a world where innova-
tion is intermittent and haphazard to one where it is systematic and continuous: a
transition that Whitehead termed “the invention of the method of invention”.

To model industrial revolutions as a qualitative change in the effectiveness of
innovation, we modelled pre-industrial innovation as a social process where an in-
dividual’s effectiveness as an innovator depends on the skills of other individuals
in his social network. Assuming that an individual’s effectiveness an an individual
is supermodular in the skills in his network, as technology improves individuals
invest more time in learning through social contact (Theorem 1). This gradual
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increase in linkage formation leads to a sudden change in the size of social net-
works, from networks spanning a few individuals, to networks spanning most of
the economy (Theorem 2), leading to a jump in the effectiveness of innovation: an
industrial revolution.

The story here is intended to explain the industrial revolution, but can equally
apply to the scientific revolution. In the fourteen hundred years that separate
Ptolemy and Copernicus no major scientific discovery occurred, but around 1600
there was a burst of discovery, most notably by Galileo, Kepler, Stevin, and Gilbert
(Margolis, 1992). While the threshold effect in knowledge networks is the same for
both revolutions, the form that the linkages take is different. Face to face contact
is the most important way of forming connections between agents in the industrial
revolution, while letter writing and printing are the decisive conduits of information
in the scientific revolution.
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