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Abstract 

We investigate autoregressive approximations of multiple frequency I(1) processes. The 
underlying data generating process is assumed to allow for an infinite order autoregressive 
representation where the coefficients of the Wold representation of the suitably filtered 
process satisfy mild summability constraints. An important special case of this process class 
are MFI(1) VARMA processes. The main results link the approximation properties of 
autoregressions for the nonstationary multiple frequency I(1) process to the corresponding 
properties of a related stationary process, which are well known. First, uniform error bounds 
on the estimators of the autoregressive coefficients are derived. Second, the asymptotic 
properties of order estimators obtained with information criteria are shown to be closely 
related to those for the associated stationary process obtained by suitable filtering. For 
multiple frequency I(1) VARMA processes we establish divergence of order estimators based 
on the BIC criterion at a rate proportional to the logarithm of the sample size. 
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1 Introduction

This paper considers unit root processes that admit an infinite order autoregressive repre-

sentation where the autoregression coefficients satisfy mild summability constraints. More

precisely the class of multiple frequency I(1) vector processes is analyzed. Following Bauer

and Wagner (2004) a unit root process is called multiple frequency I(1), briefly MFI(1), if

the integration orders corresponding to all unit roots are equal to one and certain restric-

tions on the deterministic components are fulfilled (for details see Definition 2 in Section 2).

Processes with seasonal unit roots with integration orders equal to one fall into this class,

as do I(1) processes (where in both cases certain restrictions on the deterministic terms

have to be fulfilled, see below).

VARMA processes are a leading example of the class of processes considered in this

paper. However, the analysis is not restricted to VARMA processes, since we allow for

nonrational transfer functions whose sequence of power series coefficients fulfill certain

summability restrictions. On the other hand long memory processes (e.g. fractionally

integrated processes) are not contained in the discussion.

Finite order vector autoregressions are probably the most prominent model in time

series econometrics and especially so in the analysis of integrated and cointegrated time

series. The limiting distribution of least squares estimators for this model class is well

known, both for the stationary case as well as for the MFI(1) case, see i.a. Lai and Wei

(1982), Lai and Wei (1983), Chan and Wei (1988), Johansen (1995) or Johansen and

Schaumburg (1999). Also model selection issues in this context are well understood, see

e.g. Pötscher (1989) or Johansen (1995).

In the stationary case finite order vector autoregressions have been extended to more

general processes by letting the order tend to infinity as a function of the sample size and

certain characteristics of the true system. In this respect the paper of Lewis and Reinsel

(1985) is one of the earliest examples. The properties of lag length selection using infor-

mation criteria in this situation are well understood. Section 7.4 of Hannan and Deistler

(1988), referred to as HD henceforth, collects many results in this respect: First, error

bounds that hold uniformly in the lag length are presented for the estimated autoregres-

sive coefficient matrices. Second, the asymptotic properties of information criteria in this

misspecified situation (in the sense that no finite autoregressive representation exists) are
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discussed in a rather general setting.

In the I(1) case autoregressive approximations have been studied i.a. in Saikkonen

(1992, 1993) and Saikkonen and Lütkepohl (1996). Here the first two papers derive the

asymptotic properties of the estimated cointegrating space and the third one derives the

asymptotic distribution of all autoregressive coefficients. In these three papers, analogously

to Lewis and Reinsel (1985), a lower bound on the increase of the lag length is imposed.

This lower bound depends on characteristics of the true data generating process. Saikko-

nen and Luukkonen (1997) show that for the asymptotic validity of the Johansen testing

procedures for the cointegrating rank this lower bound is not needed but only convergence

to infinity is needed. The asymptotic distribution of the coefficients, however, depends on

the properties of the sequence of selected lag lengths.

For the seasonal integration case analogous results on the properties of autoregressive

approximations and the behavior of tests developed for the finite order autoregressive case

in the case of approximating an infinite order VAR process do not seem to be available in

the literature. It is one aim of this paper to contribute to this area.

In most papers dealing with autoregressive approximations the order of the autore-

gression is assumed to increase within bounds that are a function of the sample size where

typically the lower bounds are dependent upon system quantities that are unknown prior to

estimation, see e.g. Assumption (iii) in Theorem 2 of Lewis and Reinsel (1985). In practice

the autoregressive order is typically estimated using information criteria. The properties

of the corresponding order estimators are well known in the stationary case, see again

Section 7.4 of HD. For the I(1) and MFI(1) cases, however, knowledge seems to be sparse

and partially incorrect: Ng and Perron (1995) discuss order estimation with information

criteria for univariate I(1) ARMA processes. Unfortunately (as noticed in Lütkepohl and

Saikkonen, 1999, Section 5) their Lemma 4.2 is not strong enough to support their conclu-

sion that for typical choices of the penalty factor the behavior of the order estimator based

on minimizing information criteria is identical to the behavior of the order estimator for the

(stationary) differenced process, since they only show that the difference between the two

information criteria (for the original data and for the differenced data) for given lag length

is of order oP (T−1/2), whereas the penalty term in the information criterion is proportional

to CT T−1, where usually CT = 2 (AIC) or CT = log T (BIC) is used. The asymptotic prop-

erties of order estimators based on information criteria are typically derived by showing
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that asymptotically the penalty term dominates the estimation error. This allows to write

the information criterion as the sum of a deterministic function L̃T (that depends upon

the order and the penalty term CT , see p. 333 of HD for a definition) and a comparatively

small estimation error. Subsequently, the asymptotic properties of the order estimator

are linked to the minimizer of the deterministic function (see HD, Section 7.4, p. 333,

for details). In order to show asymptotic equivalence of lag length selection based only

upon the deterministic function and the information criterion, therefore an OP (CT T−1)

bound that holds uniformly in the lag length has to be obtained for the estimation error.

A similar problem occurs in Lemma 5.1 of Lütkepohl and Saikkonen (1999), where only

a bound of order oP (KT /T ) is derived, with KT = o(T 1/3) denoting the upper bound for

the autoregressive lag length. Again this bound on the error is not strong enough to show

asymptotic equivalence of the order estimator based on the nonstationary process with the

order estimator based on the associated stationary process for typical penalty factors CT .

This paper extends the available theory in two ways: First the estimation error in

autoregressive approximations is shown to be of order OP ((log T/T )1/2) uniformly in the lag

length for a moderately large upper bound on the lag length given by HT = o((T/ log T )1/2).

This result extends Theorem 7.4.5 of HD, p. 331, from the stationary case to the case of

MFI(1) processes. Based upon this result we show in a second step that the information

criteria applied to the untransformed process have (in probability) the same behavior as

the information criteria applied to a suitably differenced stationary process. This on the

one hand provides a rigorous proof for the fact already stated for univariate I(1) processes

in Ng and Perron (1995) and on the other hand extends the results from the I(1) case to

the MFI(1) case. In particular in the VARMA case it follows that the BIC order estimator

increases proportionally to log T to infinity.

The paper is organized as follows: Section 2 presents some basic definitions, assumptions

and the class of processes considered. Section 3 discusses autoregressive approximations

for stationary processes. The main results for MFI(1) processes are stated in Section 4

and Section 5 briefly summarizes and concludes. Two appendices follow the main text. In

Appendix A several useful lemmata are collected and Appendix B contains the proofs of

the theorems.

Throughout the paper we use the notation FT = o(gT ) for a random matrix sequence

FT ∈ RaT×bT if limT→∞ max1≤i≤aT ,1≤j≤bT
|Fi,j,T |/gT = 0 a.s., where Fi,j,T denotes the (i, j)-
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th entry of FT . Also FT = O(gT ) means lim supT→∞ max1≤i≤aT ,1≤j≤bT
|Fi,j,T |/gT < M < ∞

a.s. for some constant M . Analogously FT = oP (gT ) means that max1≤i≤aT ,1≤j≤bT
|Fi,j,T |/gT

converges to zero in probability and FT = OP (gT ) means that for each ε > 0 there exists

a constant M(ε) < ∞ such that P{max1≤i≤aT ,1≤j≤bT
|Fi,j,T |/gT > M(ε)} ≤ ε. Note that

this definition differs from the usual conventions in that the maximum entry rather than

the 2-norm is considered. In case that the dimensions of FT tend to infinity this may

make a difference since norms are not necessarily equivalent in infinite dimensional spaces.

We furthermore use 〈at, bt〉T−j
i := 1

T

∑T−j
t=i atb

′
t, where we use for simplicity the same sym-

bol for both the processes (at)t∈Z, (bt)t∈Z and the vectors at and bt. Furthermore we use

〈at, bt〉 := 〈at, bt〉Tp+1, when used in the context of autoregressions of order p.

2 Definitions and Assumptions

In this paper we are interested in real valued multivariate unit root processes (yt)t∈Z with

yt ∈ Rs. Let us define the difference operator at frequency ω as:

∆ω(L) :=

{
1− eiωL, ω ∈ {0, π}
(1− eiωL)(1− e−iωL), ω ∈ (0, π).

(1)

Here L denotes the backward-shift operator such that L(yt)t∈Z = (yt−1)t∈Z. Somewhat

sloppily we also use the notation Lyt = yt−1. Consequently for example ∆ω(L)yt = yt −
2 cos(ω)yt−1 + yt−2, t ∈ Z for ω ∈ (0, π). In the definition of ∆ω(L) complex roots eiω, ω ∈
(0, π) are taken in pairs of complex conjugate roots in order to ensure real valuedness of

the filtered process ∆ω(L)(yt)t∈Z for real valued (yt)t∈Z. For stable transfer functions we

use the notation vt = c(L)εt =
∑∞

j=0 cjεt−j. We also formally use polynomials in the

backward-shift operator applied to matrices such that c(A) =
∑p

j=0 cjA
j for a polynomial

c(L) =
∑p

j=0 cjL
j. Using this notation we define a unit root process as follows:

Definition 1 The s-dimensional real process (yt)t∈Z has unit root structure

Ω := ((ω1, h1), . . . , (ωl, hl))

with 0 ≤ ω1 < ω2 < . . . < ωl ≤ π, hk ∈ N, k = 1, . . . , l, if with D(L) := ∆h1
ω1

(L) · · ·∆hl
ωl

(L)

it holds that

D(L)(yt − Tt) = vt, t ∈ Z (2)
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for vt =
∑∞

j=0 cjεt−j, cj ∈ Rs×s, j ≥ 0, corresponding to the Wold representation of the

stationary process (vt)t∈Z, where for c(z) :=
∑∞

j=0 cjz
j, z ∈ C with

∑∞
j=0 ‖cj‖ < ∞ it holds

that c(eiωk) 6= 0 for k = 1, . . . , l. Here (εt)t∈Z, εt ∈ Rs is assumed to be a zero mean weak

white noise process with finite variance 0 < Eεtε
′
t < ∞. Further (Tt)t∈Z is a deterministic

process.

The s-dimensional real process (yt)t∈Z has empty unit root structure Ω0 := {} if there exists

a deterministic process (Tt)t∈Z such that (yt − Tt)t∈Z is weakly stationary.

A process that has a non-empty unit root structure is called a unit root process. If fur-

thermore c(z) is a rational function of z ∈ C then (yt)t∈Z is called a rational unit root

process.

See Bauer and Wagner (2004) for a detailed discussion of the arguments underlying this

definition. We next define an MFI(1) process as follows:

Definition 2 A real valued process with unit root structure ((ω1, 1), . . . , (ωl, 1)) and (Tt)t∈Z

solving Πl
i=1∆ωi

(L)Tt = 0 is called multiple frequency I(1) process, or short MFI(1) process.

Note as already indicated in the introduction that the definition of an MFI(1) process

places restrictions on the deterministic process (Tt)t∈Z. E.g. in the I(1) case (when the

only unit root in the above definition occurs at frequency zero) the definition guarantees

that the first difference of the process is stationary. Thus, e.g. I(1) processes are a subset

of processes with unit root structure ((0, 1)). For the results in this paper some further

assumptions are required on both the function c(z) of Definition 1 and the process (εt)t∈Z.

Assumption 1 The real valued process (yt)t∈Z is a solution to the difference equation

D(L)yt = ∆ω1(L) · · ·∆ωl
(L)yt = vt, t ∈ Z (3)

where vt =
∑∞

j=0 cjεt−j corresponds to the Wold decomposition of the stationary process

(vT )t∈Z and it holds, with c(z) =
∑∞

j=0 cjz
j, that det c(z) 6= 0 for all |z| ≤ 1 except possibly

for zk := eiωk , k = 1, . . . , l. Here D(L) corresponds to the unit root structure and is given

as in Definition 1. Further
∑∞

j=0 j3/2+H‖cj‖ < ∞, with H :=
∑l

k=1(1 + I(0 < ωk < π)),

where I denotes the indicator function.
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Assumption 2 The stochastic process (εt)t∈Z is a strictly stationary ergodic martingale

difference sequence with respect to the σ-algebra Ft = σ{εt, εt−1, εt−2, . . .}. Additionally the

following assumptions hold:

E{εt | Ft−1} = 0 , E{εtε
′
t | Ft−1} = Eεtε

′
t = Σ > 0,

Eε4
t,j log+(|εt,j|) < ∞ , j = 1, . . . , s,

(4)

where εt,j denotes the j-th coordinate of the vector εt and log+(x) = log(max(x, 1)).

The assumptions on (εt)t∈Z follow Hannan and Kavalieris (1986), see also the discussion

in Section 7.4 of HD. They exclude conditionally heteroskedastic innovations. It appears

possible to relax the assumptions in this direction, but these extensions are not in the

scope of this paper.

The assumptions on the function c(z) formulated in Assumption 1 are based on the

assumptions formulated in Section 7.4 of HD for stationary processes. However, the allowed

nonstationarities require stronger summability assumptions (see also Stock and Watson,

1988, Assumption A(ii), p. 787). These stronger summability assumptions guarantee that

the stationary part of the process (see Theorem 1 for a definition) fulfills the summability

requirements formulated in HD.

In the following Theorem 1 a convenient representation of the processes fulfilling As-

sumption 1 is derived. The result is similar in spirit to the discussion in Section 2 of Sims

et al. (1990), who discuss unit root processes with unit root structure ((0, h)) with h ∈ N.

Theorem 1 Let (yt)t∈Z be a process fulfilling Assumption 1. Denote with c̃k the rank (over

C) of the matrix c(eiωk) ∈ Cs×s and let ck := c̃k(1 + I(0 < ωk < π)). Further let

Jk :=





Ick
, ωk = 0,

−Ick
, ωk = π,

Sk ⊗ Ic̃k
, else,

with Sk :=

[
cos ωk sin ωk

− sin ωk cos ωk

]
. (5)

Then there exist matrices Ck ∈ Rs×ck , Kk ∈ Rck×s, k = 1, . . . , l such that the state space

systems (Jk, Kk, Ck) are minimal (see p. 47 of HD for a definition) and a transfer function

c•(z) =
∑∞

j=0 cj,•zj,
∑∞

j=0 j3/2‖cj,•‖ < ∞, det c•(z) 6= 0, |z| < 1 such that with xt+1,k =

Jkxt,k +Kkεt ∈ Rck , t ∈ Z, there exists a process (yt,h)t∈Z where D(L)(yt,h)t∈Z ≡ 0 such that

yt =
∑l

k=1 Ckxt,k +
∑∞

j=0 cj,•εt−j + yt,h = ỹt + yt,h, where this equation defines the process

(ỹt)t∈Z.
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Proof: The proof centers around the representation for c(z) given in Lemma 2 in Ap-

pendix A. In the proof we show that for appropriate choice of c•(z) fulfilling the assump-

tions the corresponding process (ỹt)t∈Z defined above is a solution to the difference equation

D(L)ỹt = vt. Once that is established D(L)yt,h = D(L)(yt − ỹt) = 0 then proves the theo-

rem. Therefore consider ỹt =
∑l

k=1 Ckxt,k +
∑∞

j=0 cj,•εt−j. Note that for 0 < ωk < π

(1− 2 cos(ωk)L + L2)xt,k = Jkxt−1,k + Kkεt−1 − 2 cos(ωk)(Jkxt−2,k + Kkεt−2) + xt−2,k

= (J2
k − 2 cos(ωk)Jk + Ick

)xt−2,k + Kkεt−1 + (Jk − 2 cos(ωk)Ick
)Kkεt−2

= Kkεt−1 − J ′kKkεt−2

using Ick
− 2 cos(ωk)Jk + J2

k = 0 and −J ′k = Jk − 2 cos(ωk)Ick
. Then for t ≥ 1

D(L)xt,k = D¬k(L)∆ωk
(L)xt,k = D¬k(L)(Kkεt−1 − J ′kKkεt−2I(ωk /∈ {0, π})

with D¬k(L) = D(L)/∆ωk
(L). For ωk ∈ {0, π} simpler evaluations give xt,k−cos(ωk)xt−1,k =

Kkεt−1. Therefore for t ≥ 1

D(L)ỹt =
l∑

j=1

CkD¬k(L) [Kkεt−1 − J ′kKkεt−2I(ωk /∈ {0, π})] + D(L)c•(L)εt = c(L)εt

where the representation of c(z) given in Lemma 2 is used to define c•(z) and to verify its

properties. Therefore (ỹt)t∈Z solves the difference equation D(L)ỹt = vt. ¤

This theorem is a key ingredient for the subsequent results. It provides a representation

of the process as the sum of two components. The nonstationary part of (ỹt)t∈Z is a linear

function of the building blocks (xt,k)t∈Z, which have unit root structure ((ωk, 1)) and are

not cointegrated due to the connection between the rank of c(eiωk) and the dimension of

Kk. If c(z) is rational the representation is related to the canonical form given in Bauer

and Wagner (2004). In the I(1) case this corresponds to a Granger type representation.

Note that the representation given in Theorem 1 is not unique. This can be seen

as follows, where we consider only complex unit roots, noting that the case of real unit

roots is simpler: All solutions to the homogenous equation D(L)yt,h = 0 are of the form

yt,h =
∑l

k=1 Dk,c cos(ωkt) + Dk,s sin(ωkt) where Dk,s = 0 for ωk ∈ {0, π}. The processes

(dt,k,1)t∈Z = ([− sin(ωkt), cos(ωkt)]
′)t∈Z and (dt,k,2)t∈Z = ([cos(ωkt), sin(ωkt)]

′)t∈Z are easily
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seen to span the set of all solutions to the homogeneous equation dt,k = Skdt−1,k for

ωk /∈ {0, π}. If for Ck = [Ck,c, Ck,s] with Ck,c, Ck,s ∈ Rs×c̃k we have

[
Dk,c

Dk,s

]
=

[
Ck,c Ck,s

−Ck,s Ck,c

] [
α1

α2

]

for αi ∈ Rc̃k×1, i = 1, 2, it follows that in the representation of (yt)t∈Z given in Theorem 1

there exist processes (xt,k)t∈Z such that the corresponding (yt,h)t∈Z ≡ 0. In this case there

is no need to model the deterministic components explicitly. Otherwise the model has to

account for deterministic terms. These two cases are considered separately.

Assumption 3 Let (yt)t∈Z be generated according to Assumption 1, then we distinguish

two (non-exclusive) cases:

(i) There exists a representation of (yt)t∈Z of the form yt = ỹt+yt,h as given in Theorem 1,

such that (yt,h)t∈Z ≡ 0.

(ii) It holds that yt = ỹt + Tt, where ỹt is as in Theorem 1 and (Tt)t∈Z is a deterministic

process such that D(L)(Tt)t∈Z ≡ 0.

Note that the decomposition of (yt)t∈Z into (ỹt)t∈Z and (Tt)t∈Z also is not unique due to

non-identifiability with the processes (xt,k)t∈Z as documented above. In particular (Tt)t∈Z

of the above assumption does not necessarily coincide with the process (Tt)t∈Z as given in

Definition 1.

Remark 1 The restriction D(L)(Tt)t∈Z ≡ 0 is not essential for the results in this paper.

Harmonic components of the form ([A sin(ωt), B cos(ωt)]′)t∈Z with arbitrary frequency ω

could be included. For sake of brevity we refrain from discussing this possibility separately

in detail.

3 Autoregressive Approximations of Stationary Pro-

cesses

We recall in this section the approximation results for stationary processes that build the

basis for our extension to the MFI(1) case. The source of these results is Section 7.4 of

HD, where however the Yule-Walker (YW) estimator of the autoregression is considered,

8



whereas we consider the least squares (LS) estimator in this paper, see below. This neces-

sitates to show that the relevant results also apply to the LS estimator (which are collected

in Theorem 2).

In this section we consider autoregressive approximations of order p for (vt)t∈Z defined

as (ignoring the mean and harmonic components for simplicity)

ut(p) := vt + Φv
p(1)vt−1 + . . . + Φv

p(p)vt−p.

Here the coefficient matrices Φv
p(j), j = 1, . . . , p are chosen such that ut(p) has minimum

variance. Both the coefficient matrices Φv
p(j) and their YW estimators Φ̃v

p(j) are defined

from the Yule-Walker equations given below: Define the sample covariances as Gv(j) :=

〈vt−j, vt〉Tj+1 for 0 ≤ j < T, Gv(j) := Gv(−j)′ for −T < j < 0 and Gv(j) := 0 else. We

denote their population counterparts with Γv(j) := Evt−jv
′
t. Then Φv

p(j) and Φ̃v
p(j) are

defined as the solutions to the respective YW equations (where Φv
p(0) = Φ̃v

p(0) = Is):

p∑
j=0

Φv
p(j)Γ

v(j − i) = 0, i = 1, . . . , p,

p∑
j=0

Φ̃v
p(j)G

v(j − i) = 0, i = 1, . . . , p.

The infinite order Yule-Walker equations and the corresponding autoregressive coefficient

matrices are defined from (the existence of these solutions follows from the assumptions

on the process imposed in this paper, see below):

∞∑
j=0

Φv(j)Γv(j − i) = 0, i = 1, . . . ,∞.

It appears unavoidable that notation becomes a bit heavy, thus let us indicate the

underlying logic here. Throughout, superscripts refer to the variable under investigation

and subscripts indicate the autoregressive lag length, as already used for the coefficient

matrices Φv
p(j) above. If no subscript is added, the quantities correspond to the infinite

order autoregressions.

As indicated we focus on the LS estimator in this paper. Using the regressor vector

V −
t,p := [v′t−1, . . . , v

′
t−p]

′ for t = p + 1, . . . , T , the LS estimator, Θ̂v
p, is defined by

Θ̂v
p := −

[
Φ̂v

p(1), . . . , Φ̂v
p(p)

]
:= 〈vt, V

−
t,p〉〈V −

t,p, V
−
t,p〉−1,

9



where this equation defines the LS estimators Φ̂v
p(j), j = 1, . . . , p of the autoregressive

coefficient matrices. Define furthermore for 1 ≤ p ≤ HT (with Σ̂v
0 := Gv(0)):

Σ̂v
p := 〈vt − Θ̂v

pV
−
t,p, vt − Θ̂v

pV
−
t,p〉, Σv

p :=

p∑
j=0

Φv
p(j)Γ

v(j)

and note the following identity for the covariance matrix of (εt)t∈Z provided the infinite

sum exists which will always be the case in our setting:

Σ = Eεtε
′
t =

∞∑
j=0

Φv(j)Γv(j).

Thus, Σ̂v
p denotes the estimated variance of the one-step ahead prediction error. The lag

lengths p are considered in the interval 0 ≤ p ≤ HT , where HT = o((T/ log T )1/2). Lag

length selection over 0 ≤ p ≤ HT , when based on information criteria (see Akaike, 1975)

is based on the quantities just defined and an ‘appropriately’ chosen penalty factor CT .

These elements are combined in the following criterion function:

ICv(p; CT ) := log det Σ̂v
p + ps2CT

T
, 0 ≤ p ≤ HT (6)

where ps2 is the number of parameters contained in Θ̂v
p. Setting CT = 2 results in AIC and

CT = log T is used in BIC. For given CT the estimated order, p̂ say, is given by the smallest

minimizing argument of ICv(p; CT ), i.e.

p̂ := min
(
arg min0≤p≤HT

ICv(p; CT )
)
. (7)

Section 7.4 of HD contains many relevant results concerning the asymptotic properties of

autoregressive approximations and information criteria. These results build the basis for

the results of this paper. Assumption 1 on (c(L)εt)t∈Z is closely related to the assumptions

formulated in Section 7.4 of HD. In particular HD require that the transfer function c(z) =
∑∞

j=0 cjz
j is such that

∑∞
j=0 j1/2‖cj‖ < ∞ and det c(z) 6= 0 for all |z| ≤ 1. However, for

technical reasons in the MFI(1) case we need stronger summability assumptions on c(z), see

Lemma 3. In the important special case of MFI(1) VARMA processes these summability

assumptions are clearly fulfilled. Theorem 2 below presents the results required for our

paper for the LS estimator. Note again that the results in HD are for the YW estimator.

The proof of the theorem is given in Appendix B.
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Theorem 2 Let (vt)t∈Z be generated according to vt = c(L)εt, with c(z) =
∑∞

j=0 cjz
j,

c0 = Is, where it holds that
∑∞

j=0 j1/2‖cj‖ < ∞, det c(z) 6= 0, |z| ≤ 1 and (εt)t∈Z fulfills

Assumption 2. Then the following statements hold:

(i) For 1 ≤ p ≤ HT , with HT = o((T/ log T )1/2), it holds uniformly in p that

max
1≤j≤p

‖Φ̂v
p(j)− Φv

p(j)‖ = O((log T/T )1/2).

(ii) For rational c(z) the above bound can be sharpened to O((log log T/T )1/2) for 1 ≤
p ≤ GT , with GT = (log T )a for any a < ∞.

(iii) If (vt)t∈Z is not generated by a finite order autoregression, i.e. if there exists no p0

such that Φv(j) = 0 for all j > p0, then the following statements hold:

– For CT / log T →∞ it holds that

ICv(p; CT ) = log det Σ̇ +

{
ps2

T
(CT − 1) + tr

[
Σ−1(Σv

p − Σ)
]} {1 + o(1)},

with Σ̇ := T−1
∑T

t=1 εtε
′
t and the approximation error is o(1) uniformly in 0 ≤

p ≤ HT .

– For CT ≥ c > 1 the same approximation holds with the o(1) term replaced by

oP (1).

(iv) For rational c(z) let c(z) = a−1(z)b(z) be a matrix fraction decomposition where

(a(z), b(z)) are left coprime matrix polynomials a(z) =
∑m

j=0 Ajz
j, A0 = Is, Am 6= 0,

b(z) =
∑n

j=0 Bjz
j, B0 = Is, Bn 6= 0, n > 0 and det a(z) 6= 0, det b(z) 6= 0 for |z| ≤ 1.

Denote with ρ0 > 1 the smallest modulus of the zeros of det b(z) and with p̂BIC the

smallest minimizing argument of ICv(p; log T ) for 0 ≤ p ≤ GT . Then it holds that

lim
T→∞

2p̂BIC log ρ0

log T
= 1 a.s.

(v) Let P̃s ∈ Rr×s, r ≤ s denote a selector matrix, i.e. a matrix composed of r rows of

Is. Then, if the autoregression of order p − 1 is augmented by the regressor P̃svt−p

results (i) to (iv) continue to hold, when the approximation to ICv(p; CT ) presented

11



in (iii) is replaced by:

ĨC
v
(p; CT ) ≤ log det Σ̇ +

{
ps2

T
(CT − 1) + tr

[
Σ−1(Σv

p−1 − Σ)
]} {1 + o(1)},

ĨC
v
(p; CT ) ≥ log det Σ̇ +

{
ps2

T
(CT − 1) + tr

[
Σ−1(Σv

p − Σ)
]} {1 + o(1)}

for CT / log T →∞. Again for CT ≥ c > 1 the result holds with the o(1) term replaced

by oP (1). Here ĨC
v
(p; CT ) denotes the information criterion from the regression of

order p− 1 augmented by P̃svt−p.

(vi) All results formulated in (i) to (v) remain valid, if

vt = c(L)εt +
l∑

k=1

(Dk,c cos(ωkt) + Dk,s sin(ωkt))

for 0 ≤ ωk ≤ π, i.e. when a mean (if ω1 = 0) and harmonic components are present,

when the autoregressions are applied to

v̂t := vt − 〈vt, dt〉T1 (〈dt, dt〉T1 )−1dt,

where dt,k :=

(
cos(ωkt)
sin(ωkt)

)
for 0 < ωk < π and dt,k := cos(ωkt) for ωk ∈ {0, π} and

dt := [d′t,1, . . . , d
′
t,l]
′.

The theorem shows that the coefficients of autoregressive approximations converge even

when the order is tending to infinity as a function of the sample size. Here it is of particu-

lar importance that the theorem derives error bounds that are uniform in the lag lengths.

Uniform error bounds are required because order selection necessarily considers the cri-

terion function ICv(p; CT ) for all values 0 ≤ p ≤ HT simultaneously. Based upon the

uniform convergence results for the autoregression coefficients the asymptotic properties of

information criteria are derived, which are seen to depend upon characteristics of the true

unknown system (in particular upon Σv
p, which in the VARMA case is closely related to ρ0,

see HD, p. 334). The result establishes a connection between the information criterion and

the deterministic function L̃T (p; CT ) := ps2 CT−1
T

+ tr
[
Σ−1(Σv

p − Σ)
]
. The approximation

in loose terms implies that the order estimator p̂ cannot be ‘very far’ from the optimiz-

ing value of the deterministic function (see also the discussion below Theorem 7.4.7 on

p. 333–334 in HD). This implication heavily relies on the uniformity of the approximation.
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Here ‘very far’ refers to a large ratio of the value of the deterministic function to its min-

imal value. Under an additional assumption on the shape of the deterministic function

(compare Corollary 1(ii)), results for the asymptotic behavior of p̂ can be obtained (see

Corollary 1 below). In particular in the stationary VARMA case it follows from (iv) that

p̂BIC increases essentially proportional to log T , as does the minimizer of the deterministic

function.

The result in item (v) is required for the theorems in the following section, where it will be

seen that the properties of autoregressive approximations in the MFI(1) case are related to

the properties of autoregressive approximations of a related stationary process where only

certain coordinates of the last lag are included in the regression. The final result in (vi)

shows that the presence of a non-zero mean and harmonic components does not affect any

of the stated asymptotic properties.

4 Autoregressive Approximations of MFI(1) Processes

In this section autoregressive approximations of MFI(1) processes (yt)t∈Z are considered.

The discussion in the text focuses for simplicity throughout on the case of Assumption 3(i)

without deterministic components (i.e. without mean and harmonic components), however,

the theorems contain the results also for the case including these deterministic components,

i.e. under Assumption 3(ii). Parallelling the notation in the previous section define

ut(p) := yt + Φy
p(1)yt−1 + . . . + Φy

p(p)yt−p.

The LS estimator of Φy
p(j), j = 1, . . . , p is given by

Θ̂p := −
[
Φ̂y

p(1), . . . , Φ̂y
p(p)

]
:= 〈yt, Y

−
t,p〉〈Y −

t,p, Y
−
t,p〉−1

with Y −
t,p := [y′t−1, . . . , y

′
t−p]

′. Furthermore denote Σ̂y
p = 〈yt − Θ̂y

pY
−
t,p, yt − Θ̂y

pY
−
t,p〉 and, also

as in the stationary case, for 0 ≤ p ≤ HT

ICy(p; CT ) := log det Σ̂y
p + ps2CT

T
,

where again CT is a suitably chosen penalty function. An order estimator is again given

by p̂ := min
(
arg min0≤p≤HT

ICy(p; CT )
)
.
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The key tool for deriving the asymptotic properties of Θ̂y
p is a separation of the sta-

tionary and nonstationary directions in the regressor vector Y −
t,p. Define the observability

index q ∈ N as the minimal integer such that the matrix

Oq :=




C1 . . . Cl

C1J1 . . . ClJl
...

...

C1J
q−1
1 . . . ClJ

q−1
l




has full column rank. Due to minimality of the systems (Jk, Kk, Ck) for k = 1, . . . , l this

integer exists (cf. Theorem 2.3.3 on p. 48 of HD).

Lemma 1 Let (yt)t∈Z be generated according to Assumption 1 and Assumption 3(i). De-

note with C := [C1, . . . , Cl] ∈ Rs×c, K := [K ′
1, . . . , K

′
l ]
′ ∈ Rc×s, J := diag(J1, . . . , Jl) ∈ Rc×c

and xt := [x′t,1, . . . , x
′
t,l]
′ ∈ Rc where c :=

∑l
k=1 ck, with Ck, Kk, Jk and xt,k as in Theorem 1.

Denote furthermore with et := c•(L)εt. Hence yt = Cxt + et.

(i) If q = 1 define C̄ ′ := [C†, C⊥], with C† := C(C ′C)−1 and C⊥ ∈ Rs×(s−c) is such that

(C⊥)′C⊥ = Is−c, C ′C⊥ = 0. Define

Tp := Qp

(
Ip ⊗ C̄

)
,where Qp :=




Ic 0 0
0 Is−c 0
Ic 0 −J 0

0 0 Is−c

Ic 0 −J 0
. . . . . . . . .

Is−c




(8)

and

Z−
t,p := TpY

−
t,p =




xt−1 + (C†)′et−1

(C⊥)′et−1

Kεt−2 + (C†)′et−1 − J(C†)′et−2

(C⊥)′et−2

Kεt−3 + (C†)′et−2 − J(C†)′et−3
...

(C⊥)′et−p




.

With the quantities just defined it holds that

yt − CJ(C†)′yt−1 =
[
C,C⊥] [

Kεt−1 + (C†)′et − J(C†)′et−1

(C⊥)′et

]
.
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Define the transfer function

c̃•(z) :=
∞∑

j=0

c̃j,•zj =
[
C,C⊥] [

Kz + (I − zJ)(C†)′c•(z)
(C⊥)′c•(z)

]

and let ẽt := c̃•(L)εt. The transfer function c̃•(z) has the following properties:

c̃•(0) = Is,
∑∞

j=0 j3/2‖c̃j,•‖ < ∞ and hence c̃•(z) has no poles on the closed unit

disc. Furthermore c̃•(z) has no zeros on the unit disc, i.e. det c̃•(z) 6= 0 for all

|z| < 1.

(ii) If q > 1 define ỹt := [y′t, y
′
t+1, . . . , y

′
t+q−1]

′ ∈ Rs̃, with s̃ := sq. Then for each i =

1, . . . , q, the sub-sampled process (ỹtq+i)t∈Z is generated according to Assumption 1

and by construction the observability index corresponding to this process is equal to 1.

Thus, for the processes (ỹtq+i)t∈Z part (i) of the lemma applies with ε̃
(q)
t = c̃

(q)
• (Lq)ε̃t

and it follows that there exists a matrix T̃p̃ ∈ Rp̃s̃×p̃s̃ such that in Z−
t,p̃q := T̃p̃Y

−
t,p̃q

the first c coordinates are unit root processes while the remaining components are

stationary.

The proof of the lemma is given in Appendix B. The lemma is stated only under As-

sumption 3(i), however, it is obvious that it also applies under Assumption 3 (ii) in which

case et := c•(L)εt + Tt. The idea is, as stated above, to separate the stationary and the

nonstationary directions in the regressor vector, which is achieved in Z−
t,p. Only the first c

components are unit root processes which are independent of the choice of the lag length

p. Only the stationary part of the regressor vector Z−
t,p depends upon p. Therefore, for this

part the theory reviewed for stationary processes in the previous section is an important

input.

Note that in the important I(1) case it holds that q = 1 (due to minimality) and thus

the simpler representation developed in (i) can be used and no sub-sampling arguments

are required. As is usual in deriving the properties of autoregressive approximations an

invertibility condition is required.

Assumption 4 The true transfer function c(z) is such that det c̃•(z) 6= 0, |z| = 1, for c̃•(z)

as defined in Lemma 1. Note that in case (ii) of Lemma 1 this assumption has to hold for

the correspondingly defined transfer function, c̃
(q)
• (zq) say, of the sub-sampled processes.
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For q = 1 it follows that yt − CJ(C†)′yt−1 = c̃•(L)εt and hence under Assumption 4 we

obtain c̃•(L)−1(I − CJ(C†)′L)yt = εt showing that (yt)t∈Z is the solution to an infinite

order autoregression. Letting Φy(z) := c̃•(z)−1(I − CJ(C†)′z) =
∑∞

j=0 Φy(j)zj we have
∑∞

j=0 j3/2‖Φy(j)‖ < ∞. For q > 1 a similar representation can be obtained.

The following bivariate example shows that Assumption 4 is not void. Let ∆0(L)yt =

c(L)εt, with

c(z) =

[
1 1.5− z

1− z 0.5z − 0.5z2

]
,

which for simplicity is not normalized to c(0) = I2. The determinant of c(z) is equal to

det c(z) = −1.5(1 − z)2 and hence z = 1 is the only root. Furthermore, c(1) = C1K1 is

non-zero and equal to [1, 0]′[1, 0.5]. Now, using the representation of c(z) as derived in

Lemma 1 we find

c(z) = zC1K1 + (1− z)c•(z)

with

c•(z) =

[
1 1.5
1 0.5z

]
.

Thus, det c•(z) = 0.5z − 1.5 and hence det c•(z) has its root outside the closed unit circle.

However, if one considers c̃•(z) for this example, given by

c̃•(z) =

[
K1z + (1− z)(C†)′c•(z)

(C⊥)′c•(z)

]
=

[
1 1.5− z
1 0.5z

]
.

evaluated at z = 1 one obtains

c̃•(1) =

[
1 0.5
1 0.5

]
,

from which one sees that det c̃•(1) = 0. This example shows that indeed the assumption

is not void. However, since all entries in K1 are free parameters, Assumption 4 is not

fulfilled only on a ‘thin set’, i.e. on the complement of an open and dense subset. Similar

considerations also apply to the general case, but we abstain from discussing these issues

here in detail.

It follows from the distinction of the two cases (q = 1 or q > 1) in the above Lemma 1

that the following theorems concerning autoregressive approximations have to be derived

separately for these two cases. The first case is dealt with in Theorem 3 and the second is

considered in Theorem 4.
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Assume again for the moment that Assumption 3(i) holds (for simplicity only, since as

already mentioned the results are also derived when Assumption 3(ii) holds) and consider

the case q = 1. Note that for any choice of the autoregressive lag length p it holds that

Θ̂y
p = 〈yt, Y

−
t,p〉〈Y −

t,p, Y
−
t,p〉−1 = 〈yt, Z

−
t,p〉〈Z−

t,p, Z
−
t,p〉−1Tp = Θ̂z

pTp,

where this equation defines Θ̂z
p. Now, since yt = CJ(C†)′yt−1 + ẽt and zt := (C†)′yt−1 is

equal to the first c components of Z−
t,p we obtain

Θ̂z
p =

[
CJ 0 . . . 0

]
+ 〈ẽt, Z

−
t,p〉〈Z−

t,p, Z
−
t,p〉−1

and thus it is sufficient to establish the asymptotic behavior of the second term on the right

hand side of the above equation. Now, let Z−
t,p := [z′t, (Z

−
t,p,2)

′]′, where zt ∈ Rc contains

the nonstationary components and Z−
t,p,2 contains the stationary components. The proof

of the following Theorem 3 given in Appendix B shows that the asymptotic behavior of

the estimator Θ̂y
p is governed by the asymptotic behavior of

Θ̂ẽ
p := 〈ẽt, Z

−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1,

i.e. by the asymptotic distribution of an autoregression including only stationary quanti-

ties. It is this result that shows that the asymptotic behavior is in many aspects similar

for the stationary and the MFI(1) case. Note here also that Z−
t,p,2 is a linear function of

the lags of ẽt. Given that all quantities are stationary we can define

Θẽ
p := Eẽt(Z

−
t,p,2)

′(EZ−
t,p,2(Z

−
t,p,2)

′)−1

and analogously Θẽ as the solution to the corresponding infinite order population YW

equations. Finally, as in Section 3 define Σẽ and Σẽ
p as the population innovation variance

of the process (ẽt)t∈Z and the minimal variance of all one-step ahead prediction errors

achieved using an autoregressive approximation of order p. Then, the next theorem states

the properties of autoregressive approximations for MFI(1) processes with q = 1.

Theorem 3 Let (yt)t∈Z be generated according to Assumptions 1, 2, 3(i) and 4 such that

q = 1 and let 0 ≤ p ≤ HT .

(i) Then it holds that

max
1≤p≤HT

∥∥∥∥Θ̂y
p −

(
C̄−1

[(
J
0

)
, Θẽ

p

])
Tp

∥∥∥∥
1

= OP ((log T/T )1/2),

where ‖.‖1 denotes the matrix 1-norm.
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(ii) For CT ≥ c > 1 the following approximations hold

ICy(p; CT ) ≤ log det Σ̇ +

{
ps2

T
(CT − 1) + tr

[
(Σẽ)−1(Σẽ

p−1 − Σẽ)
]} {1 + oP (1)}+ OP (T−1),

ICy(p; CT ) ≥ log det Σ̇ +

{
ps2

T
(CT − 1) + tr

[
(Σẽ)−1(Σẽ

p − Σẽ)
]} {1 + oP (1)}+ OP (T−1).

The error term here is oP (1) uniformly in 0 ≤ p ≤ HT .

(iii) All statements remain valid if Assumption 3(ii) holds with Tt = Ddt and the autore-

gressive approximations are performed on ŷt, defined as ŷt := yt−〈yt, dt〉T1 (〈dt, dt〉T1 )−1dt,

with dt as defined in Theorem 2.

Here (i) is the analogue to Theorem 2(i), the only difference being that the result is stated

in probability rather than a.s. This shows that the existence of (seasonal) integration does

not alter the estimation accuracy of the autoregression coefficients substantially. Result

(ii) is essentially the analogue of Theorem 2(iii), where however due to the fact that in the

considered regression components of ẽt−p are omitted (since only (C⊥)′et−p is contained

in the regressor vector Z−
t,p,2) lower and upper bounds similar to the bounds derived in

Theorem 2(v) are developed. As in the stationary case the result provides uniform bounds

for the information criterion (in the range 0 ≤ p ≤ HT ) given by the sum of a deterministic

function and a noise term. Additionally a term appears which is uniformly in p of order

OP (T−1). For CT → ∞ this term can be integrated into the oP (1) term. Even for finite

CT as in AIC this term typically is of no importance: Under the conditions of Corollary 1

below the minimizing integer p̂ tends to infinity. Clearly OP (T−1) also is dominated by

OP (pT CT /T ) for any sequence pT →∞ and again can be omitted without consequences.

These results imply that the asymptotic behavior of the autoregressive approximation es-

sentially depends on the properties of the stationary process (ẽt)t∈Z: Except for the first

block all blocks of Θ̂z
p converge to blocks of the matrix Θẽ

p which correspond to an autore-

gressive approximation of the stationary process (ẽt)t∈Z. The uniform bounds on the infor-

mation criterion also provides a strong relation to the information criterion corresponding

to autoregressive approximations of (ẽt)t∈Z which is detailed in Corollary 1 below.

For q > 1 the sub-sampling argument outlined in Lemma 1 shows that similar results

can be obtained by resorting to q time series of dimension s̃ = qs, with time increment q:
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Theorem 4 Let (yt)t∈Z be generated according to Assumptions 1, 2, 3(i) and 4, assume

q > 1 and let 0 ≤ p = p̃q ≤ HT , p̃ ∈ N ∪ {0}. Let C := [C ′, J ′C ′, . . . , (Jq−1)′C ′]′ ∈ Rs̃×c.

Further let C̄ := [C†, C⊥]′ where (C⊥)′C⊥ = Is̃−c, C ′C⊥ = 0 and C† := C(C ′C)−1 and use T̃p̃

as defined in Lemma 1.

(i) Defining Ĩs =
[
Is, 0

s×(q−1)s
]

it holds that

max
1≤p̃≤HT

∥∥∥∥Θ̂y
p̃q − Ĩs

(
C̄−1

[(
J
0

)
, Θẽ

p̃q

])
T̃p̃

∥∥∥∥
1

= OP ((log T/T )1/2).

(ii) Further letting now p̃ := bp/qc for CT ≥ c > 1 the following approximations hold

(where again the oP (1) term holds uniformly in 0 ≤ p ≤ HT )

ICy(p; CT ) ≤ log det Σ̇ +

{
(p̃ + 1)qs2

T
(CT − 1) + tr

[
Σ−1Ĩs(Σ

ẽ
p̃−1 − Σẽ)Ĩ ′s

]}
{1 + oP (1)}

+OP (T−1),

ICy(p; CT ) ≥ log det Σ̇ +

{
p̃qs2

T
(CT − 1) + tr

[
Σ−1Ĩs(Σ

ẽ
p̃ − Σẽ)Ĩ ′s

]}
{1 + oP (1)}

+OP (T−1).

(iii) All statements remain valid if Assumption 3(ii) holds with Tt = Ddt and the autore-

gressive approximations are performed on ŷt, defined as ŷt := yt−〈yt, dt〉T1 (〈dt, dt〉T1 )−1dt,

with dt as defined in Theorem 2.

Compared to the results in case that q = 1, the results obtained when q > 1 are weaker. The

approximation results in (i) are only stated for p being an integer multiple of q, although

it seems to be possible to extend the uniform bound on the estimation error to p ∈ N. The

bounds on the information criterion are also related to the closest integer multiple of q.

Nevertheless, as p̂ tends to infinity this difference might be considered minor.

We close this section by using the results derived above in Theorems 3(ii) and 4(ii)

to study the asymptotic properties of information criterion based order estimation. In

the approximation to the information criterion (discussing here the case corresponding to

Theorem 4), the deterministic function

L̃T (p̃; CT ) := tr
[
Σ−1Ĩs(Σ

ẽ
p̃ − Σẽ)Ĩ ′s

]
+

p̃qs2

T
(CT − 1)

has a key role. If we assume that CT /T → 0, then it follows that the minimizing argument

of this function, lT (CT ) say, tends to infinity unless there exists an index p0, such that
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Σẽ
p = Σẽ for p ≥ p0, which is the case if and only if the process is an autoregression of

order p0. The discussion on p. 333–334 of HD links lT (CT ) and p̂(CT ) minimizing the in-

formation criterion ICy(p; CT ). The main building block is the uniform convergence of the

information criterion to the deterministic function L̃T (p; CT ). The lower and upper bounds

on the information criteria as established in (ii) above are sufficient for the arguments in

HD to hold, as will be shown in Corollary 1 below.

We also consider the important special case of VARMA processes, where the underlying

transfer function c(z) is a rational function. Recall from Theorem 2(iv) in Section 2 that for

stationary VARMA processes the choice of CT = log T (i.e. using BIC) leads to the result

that limT→∞
2p̂BIC log ρ0

log T
= 1 almost surely. Here we denote again with p̂BIC the smallest

minimizing argument of the information criterion BIC and by ρ0 the smallest modulus of

the zeros of the moving average polynomial. This result is extended to the MFI(1) case,

however, only in probability and not a.s. in item (iii) of Corollary 1 below. The proof of

Corollary 1 is given in Appendix B.

Corollary 1 Let (yt)t∈Z be generated according to Assumptions 1, 2, 3(i) and 4. Assume

that for all p ∈ N ∪ {0} it holds that Σẽ
p > Σẽ, i.e. (ẽt)t∈Z has no finite order VAR

representation. Denote with p̂(CT ) the smallest minimizing argument of ICy(p; CT ) over

the set of integers 0 ≤ p ≤ HT , HT = o((T/ log T )1/2) and assume that CT ≥ c > 1 and

CT /T → 0. Then the following results hold:

(i) P{p̂(CT ) < M} → 0 for any constant M < ∞.

(ii) Assume that there exists a twice differentiable function θ̃(p) with second derivative

θ̃
′′
(p) such that limp→∞ tr

[
Σ−1Ĩs(Σ

ẽ
p − Σẽ)Ĩ ′s

]
/θ̃(p) = 1 and lim infp→∞ |p2θ̃

′′
(p)/θ̃(p)| >

0. Then p̂(CT )/(qlT (CT )) → 1 in probability, where q denotes again the observability

index and lT (CT ) is as defined above the formulation of the corollary.

(iii) If (yt)t∈Z is an MFI(1) VARMA process, then 2p̂ log ρ0/ log T → 1 in probability,

where ρ0 = min{|z| : z ∈ C, det c̃
(q)
• (zq) = 0}, with c̃

(1)
• (z) = c̃•(z).

(iv) All statements remain valid if Assumption 3(ii) holds with Tt = Ddt and the autore-

gressive approximations are performed on ŷt, defined as ŷt = yt−〈yt, dt〉T1 (〈dt, dt〉T1 )−1dt,

with dt as defined in Theorem 2,
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5 Summary and Conclusions

In this paper we have studied the asymptotic properties of autoregressive approximations

of multiple frequency I(1) processes. These are defined in this paper as processes with unit

roots of integration orders all equal to one and with rather general assumptions on the

underlying transfer function (and certain restrictions on the deterministic components).

In particular the assumptions on the transfer function are that the coefficients converge

sufficiently fast (see Assumption 1) and that an appropriate invertibility condition (see

Assumption 4, which is standard in autoregressive approximations) holds. These assump-

tions imply that we do not restrict ourselves to VARMA processes (where the transfer

functions are restricted to be rational), but exclude long memory processes (e.g. fraction-

ally integrated processes). Also the assumptions on the noise process are rather standard

in this literature, and essentially allow for martingale difference sequence type errors with a

moment assumption that is slightly stronger than finite fourth moments. The innovations

are restricted to be conditionally homoskedastic.

The main insight from our results is that the properties of autoregressive approxima-

tions in the MFI(1) case are essentially driven by the properties of a related stationary

process, (c̃
(q)
• (Lq)ε̃t)t∈Z in the notation used throughout. This observation is important,

since the approximation properties of autoregressions are well understood for stationary

processes (compare Section 7.4 of HD). Thus, based on the above insight we obtain uniform

convergence of the autoregressive coefficients when the lag lengths are tending to infinity

at a rate not faster than o((T/ log T )1/2). The obtained bound on the estimation error,

which is of order OP ((log T/T )1/2), appears to be close to minimal, being slightly larger

than T−1/2.

The convergence results are used in a second step to study the asymptotic properties of

order estimators based on information criteria. It is shown, establishing again a similarity

to the stationary case, that the autoregressive approximation order obtained by minimizing

information criteria typically essentially behaves as a deterministic function of the sample

size and certain characteristics of the data generating process. One particularly important

result obtained in this respect is that for MFI(1) VARMA processes order estimation

according to BIC leads to divergence (in probability) of the order proportionally to log T .

This result is a generalization of the almost sure result stated for stationary processes in
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Theorem 6.6.3 in HD. This result closes an important gap in the existing literature, since

previously available results (e.g. Lemma 4.2 of Ng and Perron, 1995) do not provide sharp

enough bounds on the error terms, which imply that such results can only be used in

conjunction with overly large penalty terms. Thus, even for the fairly well studied I(1)

case the corresponding results in this paper are new.

This paper does not analyze estimators of the autoregressive approximations that are

based on estimated orders in detail (e.g. no limiting distributions are provided in this

paper, see e.g. Kuersteiner, 2005 in this respect for stationary processes), since we only

derive uniform error bounds. Of particular importance in this respect seems to be the

extension of the estimation theory for seasonally integrated processes from the finite order

autoregressive case dealt with in Johansen and Schaumburg (1999) to the case of infinite

order autoregressions. This includes both extending the asymptotic theory for tests for

the cointegrating ranks to the infinite autoregression case (analogous to the results in

Saikkonen and Luukkonen, 1997) as well as providing asymptotic distributions for the

estimated coefficients. This is left for future research, for which important prerequisites

have been established in this paper.
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A Preliminaries

In this first appendix several preliminary lemmata are collected. We start with Lemma 2,

which discusses a specific factorization of analytic functions useful for Theorem 1.

Lemma 2 Let c(z) =
∑∞

j=0 cjz
j, cj ∈ Rs×s, j ≥ 0, be analytic on |z| ≤ 1. Denote with

0 ≤ ω1 < · · · < ωl ≤ π a set of frequencies and denote again with D(z) := ∆ω1(z) . . . ∆ωl
(z).

Assume that there exists an integer L ≥ H for H :=
∑l

k=1(1 + I(0 < ωk < π)) such that
∑∞

j=0 j1/2+L‖cj‖ < ∞. Further define D¬k(z) :=
∏

j 6=k ∆ωj
(z). Denote with c̃k the rank of

c(e−iωk) = C̃kK̃k ∈ Cs×s with C̃k ∈ Cs×c̃k , K̃k ∈ Cc̃k×s and with ck := c̃k(1+I(0 < ωk < π)).

Further define Jk and Sk as in (5). Then there exist matrices Ck ∈ Rs×ck , Kk ∈ Rck×s, k =

1, . . . , l and a function c•(z) =
∑∞

j=0 cj,•zj, cj,• ∈ Rs×s, such that:

(i)
∑∞

j=0 j1/2+L−H‖cj,•‖ < ∞ . Thus, c•(z) is analytic on the closed unit disc.

(ii) The function c(z) can be decomposed as

c(z) =
l∑

k=1

zD¬k(z)Ck(I − zJ ′kI(0 < ωk < π))Kk + D(z)c•(z). (9)
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(iii) Representation (9) is unique up to the decomposition of the products Ck[Kk,−J ′kKk].

Proof: For algebraic convenience the proof uses complex quantities and the real represen-

tation in the formulation of the lemma is derived from the complex results at the end of

the proof.

Thus, let 0 ≤ ω1 < . . . < ωH < 2π be the set of frequencies where we now consider

complex conjugate frequencies separately. We denote the unit roots corresponding to the

frequencies with zk := eiωk . The fact that unit roots appear in pairs of complex conjugate

roots follows immediately from the fact that the coefficients cj of c(z) are real valued.

Denote with D̃¬k := D(z)/(1− zzk).

The proof is inductive in the unit roots. Thus, let

c(r)(z) = c(z)−
r∑

k=1

zD̃¬k(z)

zkD̃¬k(zk)
C̃kK̃k

where c(r)(z) = (1 − zz1) . . . (1 − zzr)c
(r)
• (z) is such that c

(r)
• (z) =

∑∞
j=0 c

(r)
•,jz

j, with
∑∞

j=0 j1/2+L−r‖c(r)
j,•‖ < ∞. Now consider ĉ(r+1)(z) = c

(r)
• (z)− zD̃¬r+1(z)

zr+1D̃¬r+1(zr+1)
C̃r+1K̃r+1/[(1−

zz1) . . . (1−zzr)]. By inserting it follows immediately that ĉ(r+1)(zr+1) = 0, and we can thus

write ĉ(r+1)(z) = (1−zzr+1)c
r+1
• (z). Also, since ĉ(r+1)(z) and c

(r)
• (z) differ only by a polyno-

mial they have the same summability properties. We can write ĉ(r+1)(z) =
∑∞

j=0 ĉ
(r+1)
j zj =

(1− zzr+1)
∑∞

j=0 c
(r+1)
j,• zj and using a formal power series expansion we obtain: c

(r+1)
0,• = Is

and c
(r+1)
j,• = ĉ

(r+1)
j + zr+1c

(r+1)
j−1,•, which implies

c
(r+1)
j,• =

j∑
i=0

ĉ
(r+1)
j−i zi

r+1 =

j∑
i=0

ĉ
(r+1)
i zj−i

r+1 = zj
r+1

j∑
i=0

ĉ
(r+1)
i zr+1

i = −zj
r+1

∞∑
i=j+1

ĉ
(r+1)
i zr+1

i

using ĉ(r+1)(zr+1) =
∑∞

j=0 ĉ
(r+1)
j zr+1

j = 0. Therefore

∞∑
j=0

j1/2+L−r−1‖c(r+1)
j,• ‖ =

∞∑
j=0

j1/2+L−r−1

∥∥∥∥∥−zj
r+1

∞∑
i=j+1

ĉ
(r+1)
i zr+1

i

∥∥∥∥∥

≤
∞∑

j=0

∞∑
i=j+1

j1/2+L−r−1‖ĉ(r+1)
i ‖ ≤

∞∑
i=1

i−1∑
j=0

j1/2+L−r−1‖ĉ(r+1)
i ‖

≤
∞∑
i=1

(i− 1)i1/2+L−r−1‖ĉ(r+1)
i ‖ < ∞,
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using the induction hypothesis. Setting r = 0 and c(0)(z) = c(z) starts the induction and

the above arguments show the induction step. For r = H the following representation is

obtained

c(z) = D(z)c•(z) + z

H∑

k=1

D̃¬k(z)

zkD̃¬k(zk)
C̃kK̃k.

Evaluating the above representation at zk, k = 1, . . . , H shows uniqueness up to the de-

composition C̃kK̃k.

What is left to show is how to obtain the real valued decomposition from the above

decomposition formulated for complex quantities. In order to do so note first that terms

corresponding to complex conjugate roots occur in complex conjugate pairs, i.e. for each

index k ≤ l corresponding to a complex root, there exists an index j > l such that zk = zj

and it holds that

z
D̃¬k(z)

zkD̃¬k(zk)
C̃kK̃k = z

D̃¬j(z)

zjD̃¬j(zj)
C̃jK̃j

since C̃kK̃k = c(zk) = c(zj) = C̃jK̃j. Noting that D̃¬j(z) = D¬j(z)(1− zzk) we obtain

D̃¬k(z)

zkD̃¬k(zk)
C̃kK̃k +

D̃¬j(z)

zjD̃¬j(zj)
C̃jK̃j = D¬k(z)

[
C̃kK̃k(1− zzj)

(1− z2
j )zkD¬k(zk)

+
C̃jK̃j(1− zzk)

(1− z2
k)zjD¬j(zj)

]
.

To obtain the real valued expression given in the formulation of the lemma define for

complex roots:

Ck :=
[
R{zkC̃k/[(1− z2

j )D¬k(zk)]}, I{zkC̃k/[(1− z2
j )D¬k(zk)]}

]
, Kk :=

[
2R(K̃k)

−2I(K̃k)

]

where R and I denote the real and the imaginary part of a complex quantity. For real

roots define Ck = C̃k/(zkD¬k(zk)), Kk = K̃k noting that for real roots D̃¬k(z) = D¬k(z)

holds. Note finally that due to the fact that the coefficients cj(z) and D(z) are real, also

the coefficients cj,•(z) are real, which completes the proof of the lemma. ¤

Lemma 3 For k = 1, . . . , l let xt+1,k = Jkxt,k +Kkεt, where x1,k = 0. Here Jk corresponds

to zk := eiωk and is defined in equations (5) and (εt)t∈Z fulfills Assumption 2. Assume

furthermore that [Kk, JkKk] has full row rank. Let vt := c(L)εt for c(z) =
∑∞

j=0 cjz
j with

∑∞
j=0 j3/2‖cj‖ < ∞, hence c(z) is analytic on the closed unit disc.
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We denote the stacked process as xt :=
[
x′t,1, . . . , x

′
t,l

]′
and define Gv(j) := 〈vt−j, vt〉Tj+1

for j = 1, . . . , T − 1, Gv(j) := Gv(−j)′ for j = −T +1, . . . ,−1, Gv(j) := 0 for |j| ≥ T and

Γv(j) := Evt−jv
′
t. Introduce furthermore the following notation: HT = o((T/ log T )1/2) and

GT = (log T )a for 0 < a < ∞.

(i) Then we obtain:

max
0≤j≤HT

‖Gv(j)− Γv(j)‖ = O((log T/T )1/2), (10)

T−1〈xt, xt〉T1 d→ W, (11)

max
0≤j≤HT

‖〈xt, vt−j〉Tj+1‖ = OP (1). (12)

Here it holds that W > 0 a.s. and thus it follows that
[
T−1〈xt, xt〉T1

]−1
= OP (1),

where
d→ denotes convergence in distribution.

(ii) If c(z) is a rational function, then max0≤j≤GT
‖Gv(j)−Γv(j)‖ = O((T−1 log log T )1/2).

(iii) If the processes (xt)t∈Z and (vt)t∈Z are corrected for mean and harmonic components,

the above results remain true for the processes (x̂t)t∈Z defined analogously to (v̂t)t∈Z

in Theorem 2. The definition of W in (11) has to be changed appropriately in this

case.

Proof:

Proof of (i): Equation (10) follows immediately from Theorem 7.4.3 (p. 326) in HD.

The assumptions concerning summability and the supremum required in that theorem are

guaranteed in our framework since we require summability with a factor j3/2 and also our

assumptions on the noise (εt)t∈Z are sufficient.

The second result (11) follows from Theorem 2.2 on p. 372 of Chan and Wei (1988)

and the continuous mapping theorem. Chan and Wei (1988) only consider univariate

processes, however, the Cramer-Wold device allows for a generalization to the multivariate

case. Using the notation of Chan and Wei (1988), the required components t1, . . . , t2l

of the random vector Xn(u, v, t1, . . . , t2l) are essentially equal to
√

2
∑ti

s=1 sin(θks)εs and√
2
∑ti−1

s=1 cos(θks)εs. Now,

xt,k =
t−1∑
s=1

Js−1
k Kkεt−s = J t−1

k

t−1∑
s=1

Js−t
k Kkεt−s = J t−1

k

t−1∑
s=1

J−s
k Kkεs
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= J t−1
k

t−1∑
s=1

([
cos(ωks) − sin(ωks)
sin(ωks) cos(ωks)

]
⊗ Ic̃k

)(
u1

s

u2
s

)
,

where [(u1
s)
′, (u2

s)
′]′ = Kkεs. Thus, for any x 6= 0, x′J1−t

k xt,k is composed of the terms

collected in Xn of Chan and Wei (1988). Therefore the Cramer-Wold device combined

with Theorem 2.2 of Chan and Wei (1988) shows convergence of J1−t
k xt,k, when scaled by

T−1/2, to a multivariate Brownian motion with zero mean and variance V .

For establishing non-singularity of the limiting variance V it is sufficient to look at each

unit root separately (cf. Theorem 3.4.1 of Chan and Wei, 1988, p. 392, which establishes

asymptotic uncorrelatedness of the components corresponding to different unit roots). In

case of real unit roots non-singularity of the corresponding diagonal block of V follows

immediately from full rank of Kk in that case. For complex unit roots the arguments

are more involved and the proof proceeds indirectly. Chan and Wei (1988) show that

the sine and cosine terms (for any given frequency ωk) are asymptotically uncorrelated,

irrespective of the properties of the noise process. This implies that the diagonal block

of the limiting variance of the Brownian motion that corresponds to a given unit root

(i.e. that corresponds to J1−t
k xt,k) is singular, if and only if there exists a non-zero vector

x′ = [x′1, x
′
2]
′ such that the variances of both x′1u

1
s + x′2u

2
s (corresponding to the cosine

terms) and of x′1u
2
s−x′2u

1
s (corresponding to the sine terms) are zero. This is equivalent to

x′ [Kk, J
′
kKk] = 0. The latter matrix has full rank by assumption and thus the contradiction

is shown. Consequently V > 0.

Now the continuous mapping theorem can be applied to show that

T−1〈xt, xt〉T1 = T−1

T∑
t=1

J t−1(J1−txt/
√

T )(J1−txt/
√

T )′(J t−1)′
d→ W.

The a.s. non-singularity of W follows from the non-singularity of the limiting covariance

matrices of J1−txt/
√

T . Since W is a continuous function of a Brownian motion, it has a

density with respect to the Lebesgue measure (i.e. it is absolutely continuous with respect

to the Lebesgue measure). Therefore, for each η > 0 there exists an ε > 0, such that

P{λmin(W ) > ε} = P{‖W−1‖2 > ε−1} < η, where λmin(W ) denotes a minimal eigenvalue

of W . Due to the convergence in distribution it holds that P{λmin(T−1〈xt, xt〉T1 ) > ε} →
P{λmin(W ) > ε} showing that [T−1〈xt, xt〉T1 ]−1 = OP (1).
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The bounds formulated in (12) are derived for each k separately. Thus, fix k for

the moment and assume that 0 < ωk < π, since for real unit roots the result follows

analogously and is thus not derived separately. Applying Lemma 2 with l = 1 to c(z)

and using z2 = ∆ωk
(z) − 1 + 2 cos(ωk)z we obtain c(z) = α1 + α2z + ∆ωk

(z)c•(z), where

c•(z) =
∑∞

j=0 cj,•zj is such that
∑

j1/2‖cj,•‖ < ∞. Using this decomposition we obtain

vt = c(L)εt = α1εt + α2εt−1 + ∆ωk
(L)v∗t , with v∗t := c•(L)εt. Hence

〈xt,k, vt−j〉Tj+1 = J j
k〈xt−j,k, vt−j〉Tj+1 +

j−1∑
i=0

J i
kKk〈εt−i−1, vt−j〉Tj+1

= J j
k〈xt−j,k, vt−j〉Tj+1 + O(j(log T/T )1/2) + O(1).

Here the first equality stems immediately from the definition of xt,k. The second equality

follows from 〈εt−i−1, vt−j〉Tj+1 = O((log T/T )1/2) for i < j − 1 and 〈εt−j, vt−j〉Tj+1 = O(1).

This last result follows from the uniform convergence of the estimated covariance sequence,

i.e. by applying (10) to the stacked process ([ε′t, v
′
t]
′)t∈Z. Here it has to be noted that

the difference between 〈εt−j, vt−j〉Tj+1 and 〈εt, vt〉T1 is of order O((log T/T )1/2). Now, the

assumption that 0 ≤ j ≤ HT implies that the two O(.)-terms above are uniformly O(1)

for 0 ≤ j ≤ HT . This shows that the essential term that has to be investigated further is

T−1
∑T−j

t=1 xt,kv
′
t. This term can be developed as follows:

1

T

T−j∑
t=1

xt,kv
′
t =

1

T

T−j∑
t=1

xt,k(α1εt + α2εt−1 + ∆ωk
(L)v∗t )

′

=
1

T

T−j∑
t=1

xt,kε
′
tα
′
1 +

1

T

T−j∑
t=1

xt,kε
′
t−1α

′
2 +

1

T

T−j∑
t=1

xt,k(v
∗
t − 2 cos(ωk)v

∗
t−1 + v∗t−2)

′.

That the first two terms above converge for j = 0, i.e. when summation takes place from 1

to T , as can be shown using Theorem 2.4 of Chan and Wei (1988) (see also Theorem 6 of

Johansen and Schaumburg, 1999). It thus remains to characterize the behavior of the first

two terms for 1 ≤ j ≤ HT , where we will show convergence to a random variable for the

considered values of j. Note again that ck denotes the dimension of xt,k and consider the

difference between the expressions for j = 0 and j 6= 0, which is for the first term equal to

T−1
∑T

t=T−j+1 xt,kε
′
tα
′
1. We obtain that

E max
1≤j≤HT

‖T−1

T∑
t=T−j+1

vec(xt,kε
′
t)‖1 ≤

√
sck

T

T∑
t=T−HT +1

(E‖xt,kε
′
t‖2

Fr)
1/2
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≤
√

sck

T

T∑
t=T−HT +1

(E‖xt,k‖2
2E‖εt‖2

2)
1/2

≤ c

T

T∑
t=T−HT +1

t1/2 ≤ cHT√
T
→ 0,

where we have used the inequality E‖xt,kε
′
t‖2

Fr ≤ E‖xt,k‖2
2E‖εt‖2

2, which follows from

E{εtε
′
t|Ft−1} = Σ using E‖xt,kε

′
t‖2

Fr = E(x′t,kxt,kε
′
tεt) = E[x′t,kxt,ktr(εtε

′
t)]. Therefore we

have established uniform convergence in 0 ≤ j ≤ HT of T−1
∑T−j

t=1 xt,kε
′
t to a random vari-

able. Similar arguments apply to the second term above and thus only the third term has

to be investigated further. The third term is equal to

1
T

∑T−j
t=1 xt,k(v

∗
t − 2 cos(ωk)v

∗
t−1 + v∗t−2)

′ = 1
T

∑T−j
t=1 xt,k(v

∗
t )
′ − 2 cos(ωk)xt,k(v

∗
t−1)

′ + xt,k(v
∗
t−2)

′

= 1
T

∑T−j
t=1 xt,k(v

∗
t )
′ − 2 cos(ωk)

1
T

∑T−j
t=1 xt,k(v

∗
t−1)

′ + 1
T

∑T−j
t=1 xt,k(v

∗
t−2)

′

= 1
T

∑T−j
t=1 xt,k(v

∗
t )
′ − 2 cos(ωk)

1
T

∑T−j−1
t=1 xt+1,k(v

∗
t )
′ + 1

T

∑T−j−2
t=1 xt+2,k(v

∗
t )
′ + o(1)

= 1
T

∑T−j−2
t=1 (xt,k − 2 cos(ωk)xt+1,k + xt+2,k)(v

∗
t )
′

+ 1
T

[
xT−j−1,k(v

∗
T−j−1)

′ + xT−j,k(v
∗
T−j)

′ − 2 cos(ωk)xT−j,k(v
∗
T−j−1)

′] + o(1)

= 1
T

∑T−j−2
t=1 (Kkεt+1 − J ′kKkεt)(v

∗
t )
′ + o(1).

Here the first o(1) term comes from the omission of three initial terms and the second

o(1) term holds uniformly in 0 ≤ j ≤ HT , as can be shown as follows: Due to the law

of the iterated logarithm (see Theorem 4.9 on p. 125 of Hall and Heyde, 1980) T−1xT =

O((T−1 log log T )1/2) and v∗T = o(T 1/4) due to ergodicity and the existence of the fourth

moments of εt and thus of v∗t . This together implies that T−1xT−j,k(vT−j∗)′ = o(T−1(T −
j)3/4

√
log log(T − j)) = o(1). In the sum in the final line above only stationary quantities

appear. Therefore, using (10) this term is O(1) uniformly in 0 ≤ j ≤ HT , which concludes

the proof of (12).

Proof of (ii): The sharper result for the case of rational transfer functions is given in

Theorem 5.3.2 (p. 167) in HD.

Proof of (iii): Recall the definition of the variable v̂t = vt−〈vt, dt〉T1 (〈dt, dt〉T1 )−1dt, with dt

defined in Theorem 2. Note first that it follows from the law of the iterated logarithm (see

e.g. Theorem 4.7 on p. 117 of Hall and Heyde, 1980) that 〈vt, dt〉T1 = O((T−1 log log T )1/2).

This fact allows to derive equation (10) also for v̂t and furthermore this observation also

allows to derive the stronger bound (which is of exactly this order) in item (ii) of the

lemma.
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Let us next turn to establishing equation (11) for x̂t. This result follows from the

observation that for all k = 1, . . . , l it holds using the continuous mapping theorem and

the results achieved in the proof of (i) that T−1/2〈J1−txt, dt,k〉T1 = OP (1). Nonsingularity

of the limiting variable W follows from nonsingularity of W in (ii) and the properties of

Brownian motions. For details see Johansen and Schaumburg (1999).

We are thus left to establish (12) for x̂t and v̂t−j. In order to do so note that

〈x̂t, v̂t−j〉Tj+1 = 〈xt, vt−j〉Tj+1 + 〈xt, v̂t−j − vt−j〉Tj+1 + 〈x̂t − xt, v̂t−j〉Tj+1.

The first term above is dealt with in item (i). Next note vt−j−v̂t−j = 〈vt, dt〉T1 (〈dt, dt〉T1 )−1dt−j.

As just mentioned above 〈vt, dt〉T1 = O((T−1 log log T )1/2) and it furthermore holds that

T 1/2〈vt, dt〉T1 converges in distribution (to a normally distributed random variable). It is

easy to show, analogously to max ‖〈xt, vt−j〉Tj+1‖ = OP (1), that also max T−1/2‖〈xt, dt−j〉Tj+1‖ =

OP (1). This implies that the second term above fulfills the required constraint on the order

and we are left with the third term, which can be rewritten as−〈xt, dt〉T1 (〈dt, dt〉T1 )−1〈dt, v̂t−j〉Tj+1.

From above we know that T−1/2〈xt, dt〉T1 = OP (1) and also (〈dt, dt〉T1 )−1 = O(1). Using

〈dt, v̂t〉T1 = 0 and dt = J jdt−j we obtain T 1/2〈dt, v̂t−j〉Tj+1 = −T−1/2J j
∑T

t=T−j+1 dtv̂
′
t. Now

∥∥∥∥∥ max
1≤j≤HT

T−1/2J j

T∑
t=T−j+1

dtv̂
′
t

∥∥∥∥∥ ≤ T−1/2

T∑
t=T−HT +1

l‖v̂t‖

since ‖J j‖ ≤ 1 and ‖dt‖ ≤ l by definition. Since E‖v̂t‖ = O(1) as is easy to verify

HT /T 1/2 → 0 shows that this term is uniformly of order oP (1) in j = o((T/ log T )1/2).

Therefore we have established max0≤j≤HT
‖〈x̂t, v̂t−j〉Tj+1‖ = OP (1). ¤

Remark 2 Although in the formulation of the lemma we assume x1,k = 0, it is straight-

forward to verify that all results hold unchanged if x1,k is instead given by any random

variable.

We present one more preliminary lemma without proof, the well known matrix inversion

lemma, for convenience of reference.

Lemma 4 For any nonsingular symmetric matrix X ∈ Rm×m and any partitioning into

blocks A,B, C it holds that

X−1 =

[
A B
B′ C

]−1

=

[
0 0
0 C−1

]
+

[
I

−C−1B′

] (
A−BC−1B′)−1 [

I,−BC−1
]
.
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The following inequality holds true:

‖ (
A−BC−1B′)−1 ‖2 ≤ ‖X−1‖2 + ‖C−1‖2. (13)

B Proofs of the Theorems

B.1 Proof of Theorem 2

The proof of the theorem is based on the theory presented in Chapters 6 and 7 of HD. The

difference is that HD consider the YW estimator, whereas we consider the LS estimator.

The general strategy of the proof is thus to establish that the results apply also to the LS

estimator by showing that the differences that occur are asymptotically sufficiently small.

As a side remark note here that HD use the symbol ‘ .̂ ’ for the YW estimator, whereas we

use it for the LS estimator. In this paper the YW estimators carry the symbol ‘̃.’. Note for

completeness that this symbol is also used in other contexts, where, however, no confusion

should arise.

Proof of (i), (ii): In Theorem 7.4.5 (p. 331) of HD it is shown that max1≤j≤p ‖Φ̃v
p(j) −

Φv
p(j)‖ = O((log T/T )1/2) uniformly in p = o((T/ log T )1/2). The tighter bound for the

case of rational c(z) is derived in Theorem 6.6.1 (p. 259) of HD. Thus, to establish the

results also for the LS estimator it has to be shown that the difference between Φ̃v
p(j)

and Φ̂v
p(j) is ‘small enough’ asymptotically. For example for the first bound this means

that we have to show that max1≤p≤HT
max1≤j≤p ‖Φ̃v

p(j) − Φ̂v
p(j)‖ = O((log T/T )1/2) and

the correspondingly tighter bound for the rational case. In order to show this we consider

the difference between the YW and the LS estimator. In the LS estimator Θ̂v
p, quantities

of the form 〈vt−i, vt−j〉 = T−1
∑T

t=p+1 vt−iv
′
t−j for i, j = 1, . . . , p appear, whereas the YW

estimator uses Gv(i − j) = T−1
∑T

t=1+j−i vtv
′
t−j+i for j ≥ i and the corresponding similar

expression for j < i. Thus, the difference between these two terms is given (discussing here

only the case j ≥ i; with the case i > j following analogously) by:

〈vt−i, vt−j〉 −Gv(i− j) = − 1

T

p−i∑
t=1+j−i

vtv
′
t−j+i −

1

T

T∑
t=T−i+1

vtv
′
t−j+i.

We know from equation (10) in Lemma 3 that T−1
∑T

t=1+r vt−rv
′
t−Γv(r) = O((log T/T )1/2)

uniformly in 0 ≤ r ≤ HT . This directly implies 〈vt−i, vt−j〉 − Gv(i− j) = O((log T/T )1/2)
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uniformly in 0 ≤ i, j ≤ HT and 1 ≤ p ≤ HT . Next note that ‖〈V −
t,p, V

−
t,p〉−1‖∞ and

‖〈vt, V
−
t,p〉‖∞ are uniformly bounded in 1 ≤ p ≤ HT , which follows from the bound derived

above, equation (10), and max1≤p≤HT
‖(EV −

t,p(V
−
t,p)

′)−1‖∞ < ∞ and max1≤p≤HT
‖Evt(V

−
t,p)

′‖∞ <

∞, see Theorem 6.6.11 (p. 267–268) in HD. This shows (i) by calculating the difference

between the YW and the LS estimators.

In case of rational c(z), the same type of argument as above but using Lemma 3(ii)

instead of (i) leads to the tighter bound 〈vt−i, vt−j〉 − Gv(i − j) = O((log log T/T )1/2) for

p ≤ GT = (log T )a for a < ∞. This proves the bounds on the estimation error for Φ̂v
p(j)

given in the theorem.

Proof of (iii): The approximation results to ICv(p; CT ) as stated in Theorem 7.4.7 (p. 332)

of HD, which is based upon Hannan and Kavalieris (1986), are formulated for the YW

estimator. Again a close inspection of the proofs of the underlying theorems forms the

basis for the adaption of the results to the LS estimator.

Some main ingredients required for Theorem 7.4.7 are derived in Theorem 7.4.6 (p. 331)

of HD (also dealing with the YW estimator). Inspection of the proof of this theorem

shows that the key element is equation (7.4.31) on p. 340. It is sufficient to verify that

this relationship concerning the properties of autoregressive approximations also holds for

the LS estimator. In other words, if this equation is verified for the LS estimator, then

Theorems 7.4.6 and 7.4.7 of HD stated for the YW estimator also hold for the LS estimator.

Therefore, denote as in HD g̃(j, k) := T−1
∑T

t=1 vt−jv
′
t−k and ûk := T−1

∑T
t=1 εtv

′
t−k.

Then we obtain

g̃(j, k) = 〈vt−j, vt−k〉+ T−1

p∑
t=1

vt−jv
′
t−k = 〈vt−j, vt−k〉+ o(

p

T
j1/4k1/4)

uniformly in j, k ≤ p, which follows from the assumption of finite fourth moments of (vt)t∈Z.

Further p−1
∑p

t=1(
∑p

j=1(Φ̂
v
p(j)− Φv(j))vt−j)v

′
t−k = O(1) is easy to verify from the conver-

gence of Φ̂v
p(j), the summability of Φv(j) and the uniform boundedness of p−1

∑p
t=−p vtv

′
t

(which follows from ergodicity of (vt)t∈Z). This implies due to the assumptions concerning

the upper bounds on the number of lags, the uniform error bound on the autoregressive

coefficients and εt =
∑∞

j=0 Φv(j)vt−j that:

p∑
j=1

(
Φ̂v

p(j)− Φv(j)
)

g̃(j, k) =

p∑
j=1

(
Φ̂v

p(j)− Φv(j)
)
〈vt−j, vt−k〉+ o(T−1/2)
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= −〈εt, vt−k〉+
∞∑

j=p+1

Φv(j)
1

T

T∑
t=p+1

vt−jv
′
t−k + o(T−1/2)

= −ûk +
∞∑

j=p+1

Φv(j)
[
g̃(j, k) + o(pj1/2T−1)

]
+ o(T−1/2)

= −ûk +
∞∑

j=p+1

Φv(j)g̃(j, k) + o(T−1/2)

due to
∑∞

j=1 j1/2‖Φv(j)‖ < ∞ and p/T 1/2 → 0 by assumption. This establishes HD’s

equation (7.4.31) also for the LS estimator. Thus, their Theorem 7.4.6 continues to hold

without changes also for the LS estimator. Since the proof of Theorem 7.4.7 in HD does

not use any properties of the estimator exceeding those established in Theorem 7.4.6 it

follows that also this theorem holds for the LS estimator. Only certain assumptions on the

noise (εt)t∈Z (see the formulation of Theorem 7.4.7 for details), which hold in our setting

(cf. Assumption 2), are required.

Proof of (iv): The result is contained in Theorem 6.6.3 (p. 261) of HD for the YW esti-

mator. Inspection of the proof shows that two quantities have to be changed to adapt the

theorem to the LS estimator. The first is the definition of F on p. 274 of HD, which has

to be modified appropriately when using the LS instead of the YW estimator. The second

is the replacement of Gh in the proof by 〈V −
t,p, V

−
t,p〉, where our V −

t,p corresponds to HD’s

y(t, h). All arguments in the proof remain valid with these modifications.

Proof of (v): This item investigates the effect of including components of vt−p as regres-

sors in the autoregression of order p − 1, which is equivalent to the exclusion of certain

components of vt−p in the autoregression of order p. This evident observation is exactly

what is reflected in the results. Denote with Ṽ −
t,p the regressor vector V −

t,p−1 augmented by

P̃svt−p. Note that in this proof ’̃.’ is used to denote quantities relating to the augmented

regression and not to the YW estimators. Using the block-matrix inversion formula and

(13) from Lemma 4 (with the blocks corresponding to V −
t,p−1 and P̃svt−p) it is straightfor-

ward to show that ‖〈Ṽ −
t,p, Ṽ

−
t,p〉−1‖ < ∞ and ‖〈Ṽ −

t,p, Ṽ
−
t,p〉−1‖∞ < ∞ a.s. for T large enough,

uniformly in 1 ≤ p ≤ HT . This can be used to show the approximation properties of the

autoregression including P̃svt−p as follows:

Θ̃v
p := 〈vt, Ṽ

−
t,p〉〈Ṽ −

t,p, Ṽ
−
t,p〉−1

= Evt(Ṽ
−
t,p)

′(EṼ −
t,p(Ṽ

−
t,p)

′)−1 +
[
〈vt, Ṽ

−
t,p〉 − Evt(Ṽ

−
t,p)

′
]
〈Ṽ −

t,p, Ṽ
−
t,p〉−1 +
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Evt(Ṽ
−
t,p)

′(EṼ −
t,p(Ṽ

−
t,p)

′)−1
[
EṼ −

t,p(Ṽ
−
t,p)

′ − 〈Ṽ −
t,p, Ṽ

−
t,p〉

]
〈Ṽ −

t,p, Ṽ
−
t,p〉−1.

Now applying the derived uniform bounds on the estimation errors in 〈vt−j, vt−k〉−Evt−jv
′
t−k

shows the result. With the appropriate bounds on the lag lengths, both the result for the

general and the sharper result for the rational case follow.

The next point discussed is the effect of the inclusion of P̃svt−p on the approximation

formula derived for ĨC
v
(p; CT ). By construction it holds that

Σ̂v
p−1 = 〈vt − Θ̂v

p−1V
−
t,p−1, vt − Θ̂v

p−1V
−
t,p−1〉Tp ≥ Σ̃v

p = 〈vt − Θ̃v
pṼ

−
t,p, vt − Θ̃v

pṼ
−
t,p〉Tp+1 ≥ Σ̂v

p.

Adding the penalty term ps2CT /T does not change the inequalities. Then the approxima-

tion result under (iii) shows the claim.

Proof of (vi): We have shown in (iv) of Lemma 3 that the inclusion of the deterministic

components does not change the convergence properties of the estimated autocovariance

sequence. This implies that all the statements of the theorem related to the properties of

the autoregressive approximations remain valid unchanged.

Concerning the evaluation of ICv(p; CT ) it is stated in HD on p. 330 that the inclusion

of the deterministic components (i.e. mean and harmonic components) does not change

the result. From this it also follows immediately that the asymptotic properties of p̂BIC

are not influenced, since that result stems entirely from the approximation derived for

ICv(p; CT ) and the decrease in Σv
p as a function of p, which also does not depend upon the

considered deterministic components. ¤

B.2 Proof of Lemma 1

Proof of (i): The starting point is the representation derived in Theorem 1. The properties

of Z−
t,p are straightforward to verify using (C⊥)′C = 0 and (C†)′yt − J(C†)′yt−1 = xt +

(C†)′et−Jxt−1−J(C†)′et−1. These relationships also immediately establish the expression

given for yt − CJ(C†)′yt−1 and thus also the definition of c̃•(z). Furthermore, c̃•(0) = Is

follows immediately from c•(0) = Is. The summability properties of c̃•(z) follow directly

from the analogous properties of c•(z). Since c•(z) has no poles inside the unit circle,

neither has c̃•(z), since the latter is a polynomial transformation of the former (see the

definition in the formulation of the lemma). Concerning the roots of the determinant of

c̃•(z) note that from the representation of c̃•(z) given in the theorem the following relation
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is obtained for |z| < 1:

c̃•(z) = C̄−1

[
(I − zJ) 0

0 I

]
D(z)−1C̄c(z)

Now, since by assumption det c(z) 6= 0 for all |z| < 1 and det D(z) 6= 0, |z| < 1 it follows

that det c̃•(z) 6= 0, |z| < 1.

Proof of (ii): By recursive inserting it is straightforward to show that

ỹtq+i =




C
CJ
...

CJq−1


 xtq+i +




Is 0 · · · 0

CK Is
. . .

...
...

. . . . . . 0
CJq−2K · · · CK Is




︸ ︷︷ ︸
Eq




εtq+i

εtq+1+i
...

εtq+q−1+i


 +

∞∑
j=1

c̄
(q)
j ε̄(t−j)q+i

with ε̄t := [ε′t, ε
′
t+1, . . . , ε

′
t+q−1]

′ and where the coefficients in
∑∞

j=1 c̄
(q)
j ε̄(t−j)q+i can be ob-

tained by cumbersome but straightforward computations. It is clear that (ε̄tq+i)t∈Z is a

martingale difference sequence with respect to the filtration Fjq+i, j ∈ Z. To obtain the

innovations representation (i.e. a representation with leading coefficient equal to the iden-

tity matrix) a renormalization has to be performed (given that in the above representation

the leading coefficient is equal to Eq). Since Eq is non-singular, this is achieved by setting

ε̃t := Eqε̄t and correspondingly this also defines c̃(q)(z) =
∑∞

j=0 c̃
(q)
j zj =

∑∞
j=0 c̄

(q)
j E−1

q zj.

Summability of the coefficients of c̃(q)(z) follows from summability of c•(z). Since Eq is

block lower triangular with diagonal blocks equal to the identity matrix it follows that the

first block of ε̃t equals εt.

Note also that D(z)ỹt = ṽt, with (ṽt)t∈Z defined analogously to (ỹt)t∈Z. Thus, the

sub-sampling argument leads to q processes (ỹtq+i)t∈Z, i = 1, . . . , q that all have the same

unit root structure as (yt)t∈Z and for which part (i) of the lemma can be applied, since by

construction for this process q = 1. ¤

B.3 Proof of Theorem 3

The discussion above the theorem in the main text shows that the regression of ẽt on

Z−
t,p := [z′t, (Z

−
t,p,2)

′]′ has to be analyzed. Here zt is independent of the choice of p and

collects the nonstationary components.

Proof of (i): Partitioning the coefficient matrix according to the partitioning of the
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regressor vector we obtain:

[β̂1, β̂2,p] := 〈ẽt, Z
−
t,p〉〈Z−

t,p, Z
−
t,p〉−1 (14)

= 〈ẽt, z
Π
t 〉〈zΠ

t , zΠ
t 〉−1

[
Ic,−〈zt, Z

−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1

]
+

[
0s×c, 〈ẽt, Z

−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1

]
,

with β̂1 := 〈ẽt, z
Π
t 〉〈zΠ

t , zΠ
t 〉−1 and zΠ

t := zt − 〈zt, Z
−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1Zt,p,2. Thus, zΠ

t

denotes the residuals of a regression of zt onto Z−
t,p,2 for t = p + 1, . . . , T . The above

evaluation follows from the matrix inversion Lemma 4 using A = 〈zt, zt〉, B = 〈zt, Zt,p,2〉
and C = 〈Zt,p,2, Zt,p,2〉. The second term above, Θ̂ẽ

p = 〈ẽt, Z
−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1, contains

only stationary quantities. In particular Zt,p,2 contains ẽt−j, j = 1, . . . , p− 1 and a part of

ẽt−p as blocks. Thus, the asymptotic behavior of this term is covered by Theorem 2, from

which we obtain Θ̂ẽ
p − Θẽ

p = O((T−1 log T )1/2). Therefore, in order to establish (i), it is

sufficient to show that the other terms above are of at most this order (in probability).

Let us start with the term
[
Ic,−〈zt, Z

−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1

]
. Note first that zt = xt +

(C†)′et and again that Z−
t,p,2 contains only stationary variables. Therefore equation (12)

of Lemma 3 shows that 〈xt, Z
−
t,p,2〉 is OP (1) uniformly in p. Furthermore, Theorem 6.6.11

(p. 267) of HD and Assumption 4 imply that ‖〈Z−
t,p,2, Z

−
t,p,2〉−1‖∞ < M a.s. for T large

enough. Equation (10) implies that 〈(C†)′et, Zt,p,2〉 = OP (1) and hence 〈zt, Z
−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1

= OP (1) uniformly in p.

Consider β̂1 = 〈ẽt, z
Π
t 〉〈zΠ

t , zΠ
t 〉−1 next. We start with the first term, i.e. with 〈ẽt, z

Π
t 〉 =

〈ẽt, zt〉 − 〈ẽt, Z
−
t,p,2〉〈Z−

t,p,2, Z
−
t,p,2〉−1〈Z−

t,p,2, zt〉. We know already from above that 〈ẽt, Z
−
t,p,2〉

〈Z−
t,p,2, Z

−
t,p,2〉−1 = OP (1). Using again (12) of Lemma 3 it follows that both 〈ẽt, xt〉 and

〈Z−
t,p,2, xt〉 are OP (1) uniformly in p showing that 〈ẽt, z

Π
t 〉 = OP (1) uniformly in 1 ≤ p ≤ HT

(where we here use zt = xt + (C†)′et).

Thus, the term 〈zΠ
t , zΠ

t 〉 is left to be analyzed. In order to do so consider

T−1〈zΠ
t , zΠ

t 〉 = T−1〈zt, zt〉 − T−1〈zt, Z
−
t,p,2〉〈Z−

t,p,2, Zt,p,2〉−1〈Zt,p,2, zt〉.

The first term above converges in distribution to a random variable W with positive def-

inite covariance matrix, compare Lemma 3(i). With respect to the second term uniform

boundedness of 〈zt, ẽt−j〉 together with the established properties of 〈Z−
t,p,2, Z

−
t,p,2〉 immedi-

ately implies that it is of order OP (pT−1), which is due to our restriction that 1 ≤ p ≤ HT
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in fact oP (1). Therefore we obtain

P
{‖〈ẽt, z

Π
t 〉(T−1〈zΠ

t , zΠ
t 〉)−1‖ > M

} ≤ P{‖〈ẽt, z
Π
t 〉‖‖(T−1〈zΠ

t , zΠ
t 〉)−1‖ > M

}

≤ P
{
‖〈ẽt, z

Π
t 〉‖ >

√
M

}
+ P

{
‖(T−1〈zΠ

t , zΠ
t 〉)−1‖ >

√
M

}

≤ η/2 + P
{

λmin(T−1〈zΠ
t , zΠ

t 〉) < 1/
√

M
}
≤ η.

In the above expression the first probability can be made arbitrarily small by choosing M

large enough, since 〈ẽt, z
Π
t 〉 = OP (1) and the second probability can be made arbitrarily

small since T−1〈zΠ
t , zΠ

t 〉 = T−1〈zt, zt〉 + oP (1)
d→ W , where the random variable W has

non-singular covariance matrix. Here λmin(X) denotes the smallest eigenvalue of the ma-

trix X. Thus, we have established that β̂1 = OP (T−1). This concludes the proof of (i).

Proof of (ii): We now derive the bounds to ICy
p (p; CT ), which requires to assess the

approximation error in Σ̂y
p. The strategy is to show that the difference Σ̂y

p− Σ̃ẽ
p = OP (T−1)

uniformly in p. Here again Σ̃ẽ
p denotes the error covariance matrix from the autoregres-

sion where the components (C⊥)′et−p are added (see the expression for Z−
t,p provided in

Lemma 1). Then (ii) follows since for Σ̃ẽ
p the result presented in Theorem 2(v) applies

concluding the proof. To this end consider

Σ̂y
p = 〈ẽt − β̂1zt − β̂2,pZ

−
t,p,2, ẽt − β̂1zt − β̂2,pZ

−
t,p,2〉 and Σ̃ẽ

p = 〈ẽt − Θ̂ẽ
pZ

−
t,p,2, ẽt − Θ̂ẽ

pZ
−
t,p,2〉

where

ẽt − Θ̂ẽ
pZ

−
t,p,2 − ẽt + β̂1zt + β̂2,pZ

−
t,p,2 = β̂1zt + (β̂2,p − Θ̂ẽ

p)Z
−
t,p,2 = β̂1z

Π
t

follows from (14). Hence

Σ̂y
p − Σ̃ẽ

p = 〈ẽt − Θ̂ẽ
pZ

−
t,p,2, β̂1z

Π
t 〉+ 〈β̂1z

Π
t , ẽt − Θ̂ẽ

pZ
−
t,p,2〉+ 〈β̂1z

Π
t , β̂1z

Π
t 〉.

Recall that β̂1 = OP (T−1), 〈zΠ
t , zΠ

t 〉 = OP (T ), 〈zΠ
t , ẽt〉 = OP (1) and 〈zΠ

t , Z−
t,p,2〉 = 0 have

been shown above. Using these results implies that Σ̂y
p − Σ̃ẽ

p = OP (T−1) uniformly in p,

which shows the results.

Proof of (iii): The proofs above are all based on error bounds derived in Lemma 3 and

the results summarized for stationary processes in Theorem 2. In both the lemma and

the theorem the respective bounds are also derived for the case including the mean and

harmonic components. This implies that the results also hold under Assumption 3(ii).
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B.4 Proof of Theorem 4

Proof of (i): Consider Lemma 1(ii): There ỹt := [y′t, y
′
t+1, y

′
t+2, . . . , y

′
t+q−1]

′ is defined,

where (ỹtq+i)t∈Z fulfills the assumptions of Theorem 3. Let p = p̃q for some integer p̃

and consider the sub-sampled processes (ỹtq+i)t∈Z, i = 1, . . . , q. For each value of i the

corresponding autoregressive estimators are given as

Θ̂y,(i)
p := [Is, 0

s×s(q−1)]〈ỹtq+i, Z
−
tq+i,p〉T̃−1

p̃ (〈Z−
tq+i,p, Z

−
tq+i,p〉T̃−1

p̃ )−1T̃p̃, i = 1, . . . , q.

Note that here summation is over t = p̃, . . . , T̃ − 1, where T̃ := bT/qc and bxc denotes the

integer part of x. In the arguments below it is always assumed for notational simplicity

that T = T̃ q. The expressions for other values of T differ from these only in the addition

of finitely many values in the summation. This does not change any of the error bounds

provided below. Note here that the effective sample size for estimating Θ̂
y,(i)
p is reduced to

T̃ = bT/qc due to the sub-sampling.

For each of these estimators the error bound (Θ̂
y,(i)
p −Θy

p)T̃ −1
p̃ = OP ((T̃−1 log(T̃ ))1/2) =

OP ((log T/T )1/2) follows according to the proof of Theorem 3(i). It is straightforward to

see that

Θ̂y
p = 〈yt, Y

−
t,p〉Tp+1(〈Y −

t,p, Y
−
t,p〉Tp+1)

−1 =

q∑
i=1

Θ̂y,(i)
p T̃ −1

p̃ 〈Z−
tq+i,p, Z

−
tq+i,p〉T̃−1

p̃ (〈Z−
t,p, Z

−
t,p〉Tp+1)

−1T̃p̃

Therefore under the assumption of nonsingularity of 〈Z−
t,p, Z

−
t,p〉Tp+1 from

∑q
i=1〈Z−

tq+i,p, Z
−
tq+i,p〉T̃−1

p̃ =

〈Z−
t,p, Z

−
t,p〉Tp+1 one obtains (for fixed p)

Θ̂y
p −Θy

p =

q∑
i=1

(Θ̂y,(i)
p −Θy

p)T̃ −1
p̃ 〈Z−

tq+i,p, Z
−
tq+i,p〉T̃−1

p̃ (〈Z−
t,p, Z

−
t,p〉Tp+1)

−1T̃p̃.

In the proof of Theorem 3 it has actually been shown that the first c components of

Θ̂
y,(i)
p −Θy

p are of order OP (T−1). Thus, letting DT = diag(T−1/2Ic, I) one obtains:

DT 〈Z−
tq+i,p, Z

−
tq+i,p〉T̃−1

p̃ DT (DT 〈Z−
t,p, Z

−
t,p〉Tp+1DT )−1 d→

[
Z

(i)
11 0
0 1

q
I

]

for i = 1, . . . , q where 〈ztq+i, ztq+i〉T̃−1
p̃ (〈zt, zt〉Tp+1)

−1 d→ Z
(i)
11 . In the above matrix the off

diagonal elements are of order OP (T−1/2) uniformly in 1 ≤ p ≤ HT . All evaluations use

Lemma 3(i) and are straightforward. Since there are only finitely many terms it follows
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that Θ̂y
p −Θy

p = OP (
√

(log T )/T ) for p = p̃q as claimed in the theorem.

Proof of (ii): Again the sub-sampling argument is used to define the processes (ẽtq+i)t∈Z

according to ẽt := c̃
(q)
• (Lq)ε̃t where ε̃t := Ef [ε

′
t, . . . , ε

′
t+q−1]

′. Since c̃
(q)
• (zq) is invertible

due to Assumption 4 it follows that there exists a transfer function Φ̃ẽ(Lq) such that

Φ̃ẽ(Lq)ẽt = ε̃t. The first block equation (note that Ef is block lower triangular) here states

that εt can be obtained by filtering ẽt which implies that εt = ĨsΦ̃
ẽ(Lq)ẽt. Therefore for

p = p̃q, p̃ ∈ N ∪ {0} consider

Σ̂y
p = 〈yt − Θ̂y

pY
−
t,p, yt − Θ̂y

pY
−
t,p〉Tp+1 = 〈yt − Θ̂z

pZ
−
t,p, yt − Θ̂z

pZ
−
t,p〉Tp+1.

As in the proof of Theorem 3 again using a sub-sampling argument it can be shown that

Σ̂y
p = 〈Ĩs[ẽt − Θ̂ẽ

p̃Z
−
t,p,2], Ĩs[ẽt − Θ̂ẽ

p̃Z
−
t,p,2]〉Tp+1 + OP (T−1)

where Z−
t,p = [z′t, (Z

−
t,p,2)

′]′. Here zt ∈ Rc denotes again the nonstationary components of

Y −
t,p. Note that the blocks of Z−

t,p,2 are the lags ẽt−jq, j = 1, . . . , p̃ − 1 and a sub-vector

of ẽt−p̃q. In- or excluding this sub-vector we obtain lower and upper bounds respectively

for Σ̂y
p (see the proof of Theorem 2(v) for details). Therefore it is sufficient to derive the

bounds only for p = p̃q, p̃ ∈ N ∪ {0}. In the sequel we discuss lag length selection for the

process (ẽt)t∈Z based on autoregressive approximations of lag length h = h̃q.

Analogously to the proof of Theorem 3 the proof is based on mimicking the proof

of Theorems 7.4.6 and 7.4.7 of HD. There are two differences to the theory presented

there: First, the order selection is not performed on the whole processes (ẽtq+i)t∈Z but only

on a sub-vector obtained by pre-multiplying with Ĩs. Second, the sub-sampled processes

(ẽtq+i)t∈Z use q as the time increment whereas in the selection 1 is used as time increment.

Therefore the proofs of Theorem 7.4.6 and 7.4.7 of HD need to be reconsidered for the

present setting.

As in the proof of Theorem 2(iii) the result follows from verifying (7.4.31) of HD. We

obtain from summing the results for the sub-sampled processes (which follow directly from

the proof of Theorem 2) over i = 1, . . . , q that for k = 1, . . . , h

h∑
j=1

Ĩs

(
Φ̂

(q)
h (j)− Φ(q)(j)

)
g̃(j, k) = −ûk +

∞∑

j=h+1

ĨsΦ
(q)(j)g̃(j, k) + o(T−1/2),

where ûk = T−1
∑T

t=qk+1 εtẽ
′
t−kq and Φ̂

(q)
h (j) denotes the least squares estimates in the

regression for fixed h. Let further Φ(q)(j) denote the true coefficients. This corresponds to
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equation (7.4.31) on p. 340 of HD with the o(log T/T )1/2) replaced by o(T−1/2), which is

discussed below the equation on p. 340 of HD. The arguments leading to the final line on

p. 340 of HD then are based on population moments and the error bounds on the estimation

of the covariance sequence (both of which hold in our setting as is straightforward to

verify). The autoregressive approximation of ẽt underlying the estimation shows that

(φ
(2)
h )′{Γ22−Γ21Γ

−1
11 Γ12}φ(2)

h = ĨsΣ
ẽ
h̃
Ĩ ′s−Σ. Therefore in order to establish (7.4.32) on p. 341

of HD it is sufficient to show that G̃22 − G̃21G̃
−1
11 G̃12 can be replaced by its expectation

introducing an error of magnitude o(h/T ). For G̃22 this again follows by sub-sampling and

decomposing the sum over all t involved in the formation of G̃22 into q sums over tq + i

where for each of these q sums the arguments below (7.4.32) can be used to obtain the

required result. Similar arguments show the claim for the remaining terms.

The next step in the proof of Theorem 7.4.6 on p. 331 of HD is to show that

û′Γ−1
11 û = T−2

h∑
j=1

(
T∑

t=1

εtεt−j

)2

(1 + o(1))

(here the scalar case is shown), which essentially involves replacing (in the notation of HD)

Γ
−1/2
11 y(t, h) with ε(t, h). In our setup this amounts to replacing Γ

−1/2
11 [ẽ′t−q, ẽ

′
t−2q, . . . , ẽ

′
t−h]

′

with [ε′t−1, ε
′
t−2, . . . , ε

′
t−h]

′. That this replacement is valid can be shown using the same

arguments as in HD, since the proof only involves error bounds on the estimated covariance

sequences and the convergence of the coefficient matrices in ε̃t = Φ̃(Lq)ẽt which follow

from the assumptions on c̃
(q)
• (zq). The rest of the proof of Theorem 7.4.6 of HD uses only

properties of εt. Then Theorem 7.4.6 of HD shows the required approximation for h = h̃q

for any integer h̃.

Now given any value of p ∈ N we use as in the proof of Theorem 2(v) with p̃ := bp/qc

〈yt − Θ̂y
(p̃+1)qY

−
t,(p̃+1)q, yt − Θ̂y

(p̃+1)qY
−
t,(p̃+1)q〉T(p̃+1)q+1 ≤ Σ̂y

p ≤ 〈yt − Θ̂y
p̃qY

−
t,p̃q, yt − Θ̂y

p̃qY
−
t,p̃q〉Tp̃q+1.

Then using the result for p̃q and (p̃ + 1)q shows the claim.

Proof of (iii): The changes necessary to prove (iii) are obvious and hence omitted.

B.5 Proof of Corollary 1

Proof of (i): This result follows from Σẽ
p > Σẽ, Σẽ

p → Σẽ and the fact that the penalty

term tends to zero by assumption.
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Proof of (ii): The proof is based on the arguments of HD, p. 333–334: Let p̃(CT ) :=

bp̂(CT )/qc. Then a mean value expansion is used to derive

(
p̃(CT )

lT (CT )
− 1

)2

= 2
L̃T (p̃(CT ))− L̃T (lT (CT ))

lT (CT )2θ̃′′(l̄T )
= 2

(
L̃T (p̃(CT ))

L̃T (lT (CT ))
− 1

)
L̃T (lT (CT ))

θ̃(lT (CT ))

θ̃(lT (CT ))

lT (CT )2θ̃′′(l̄T )
,

where l̄T is an intermediate value. Since the latter two terms are bounded as in HD it

is sufficient to show that L̃T (p̃(CT ))/L̃T (lT (CT )) → 1. The following inequalities hold

uniformly in p:

L̃T (lT (CT )) ≤ L̃T (p̃(CT )) ≤ ICy(p̂(CT ); CT )(1 + oP (1))

≤ ICy(q(lT (CT )− 1); CT )(1 + oP (1)) ≤ L̃T (lT (CT ))(1 + oP (1)).

Here the first inequality follows from optimality of lT (CT ) with respect to L̃T , the second

from the lower bound of Theorem 3 (ii) (or Theorem 4(ii) resp.) and p̂(CT ) →∞, the third

from optimality of p̂(CT ) with respect to ICy(p, CT ) and the last again from Theorem 3

(ii) (or Theorem 4(ii) resp.). Here the uniformity of the oP (1) term in p is essential.

Proof of (iii): This result is an immediate consequence from the discussion in the lower

half of p. 334 of HD.

Proof of (iv): Since all results in this paper are robust with respect to correcting for the

mean and harmonic components prior to LS estimation it is evident that (iv) holds.
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