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Abstract 

This paper uses Monte Carlo techniques to assess the loss in terms of forecast accuracy 
which is incurred when the true DGP exhibits parameter instability which is either overlooked 
or incorrectly modelled. We find that the loss is considerable when a FCM is estimated 
instead of the true TVCM, this loss being an increasing function of the degree of persistence 
and of the variance of the process driving the slope coefficient. A loss is also incurred when a 
TVCM different from the correct one is specified, the resulting forecasts being even less 
accurate than those of a FCM. However, the loss can be minimised by selecting a TVCM 
which, although incorrect, nests the true one, more specifically an AR(1) model with a 
constant. Finally, there is hardly any loss resulting from using a TVCM when the underlying 
DGP is characterised by fixed coefficients. 
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1 Introduction

Forecasting is one of the most common applications of econometric models. It

follows the specification and estimation stages in the modelling process, and it

depends crucially on the correct specification of the model and on the selec-

tion of the appropriate estimation method for model parameters. The aim of the

researcher is to specify a model that approximates the true Data Generation Pro-

cess (DGP) as closely as possible. A specification with fixed coefficients (FCM)

is usually adopted, in the hope that the time heterogeneity properties of the un-

derlying DGP are such that the selected model will be given empirical support

by the data. 1 However, misspecification tests often suggest parameter instability

which is fundamental, in the sense that it cannot be modelled by augmenting the

regressor set with dummy variables or other deterministic components. Moreover,

often not even the inclusion of other ‘relevant’ variables in the model specified

by the researcher will remove parameter instability, indicating that practically no

FCM is an adequate approximation of the underlying DGP. This has led to the

introduction of time varying coefficient models (TVCM), which have been widely

used in various fields of empirical economics such as money demand functions,

capital asset pricing and exchange rate models (for the latter two, see Wolff 1987,

1989 and Schinasi and Swamy 1989).

A common feature of TVCM regression models is that they assume a spe-

cific type of coefficient variation which includes some fixed (hyper) parameters.

Specifically, the literature has analysed three types of coefficient variation: the

Hildreth-Houck model (1978), the Random Walk model (Cooley and Prescott

1976), and the Return to Normality model (Rosenberg 1973). These models may

be cast in State Space Form. Both the estimates of the unknown parameters and

the time path of the stochastic coefficients are obtained by using the Kalman

Filter recursive algorithm, developed in the engineering literature (see Kalman

1960, and Kalman and Bucy 1961). Theoretical representations of State Space

Models and of the Kalman Filter can be found in Meinhold and Singpurwalla

(1983), Chow (1984), Hamilton (1994) and Moryson (1998).

Although empirical applications of these models are increasingly common,

little is known about their forecasting performance under alternative structures

of coefficient variation. The preceding discussion suggests that, if the underlying

DGP contains time varying coefficients, the researcher is liable to make two types

of errors. The first occurs when he estimates a regression with fixed coefficients

1A rather elaborate ARIMA model could appear to be stable even in the presence of pa-
rameter instability. However, such a model will break down when used for forecasting purposes
(see Harvey 1990).
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(FCM), even though the true model exhibits time varying parameters. In this

case, he erroneously utilises the Least Squares estimator, or some variant of this

estimator. The second type of error refers to the case where the researcher has

realised that the DGP contains time varying coefficients, but specifies a type

of coefficient variation different from that exhibited by the DGP. Therefore, he

correctly estimates a TVCM but selects the wrong type of coefficient variation.

This paper evaluates by means of Monte Carlo simulations the loss in terms of

forecast accuracy which is incurred when either error is made, thereby enabling us

to suggest an empirical strategy for the applied researcher. Clements and Hendry

(1998, 1999, 2002) have analysed extensively the possible reasons for forecast fail-

ure, reaching the conclusion that unmodelled shifts in deterministic components

are the primary cause. In the present study we ask the question how important

overlooking parameter time variation might be as a source of forecast failure. A

simple bivariate DGP capturing the salient features of the problem under study

is assumed. It consists of a bivariate linear regression where the slope coefficient

is time varying, and the regressor follows an AR(1) process. Alternative models of

slope coefficient variation are considered, including the three types of coefficient

variation mentioned above. Under the assumption that a FCM has been wrongly

selected despite the presence of coefficient variation in the DGP, we quantify the

resulting loss in terms of forecast accuracy by comparing the forecasts of the

wrongly specified FCM with those produced by the ‘correct’ TVCM. Further-

more, we examine the extent to which the loss depends on the particular form

of coefficient variation that characterises the true DGP. As already mentioned,

the second type of specification error occurs when the researcher has diagnosed

parameter instability in his model, but specifies a TVCM with a structure of

coefficient variation different from the true one. In such a case, we are interested

in examining a) the loss associated with the wrong selection of the type of coeffi-

cient variation for each type of coefficient variation exhibited by the DGP, and b)

whether there are cases when the specification of a FCM produces better forecasts

than those of a TVCM which assumes the wrong type of coefficient variation.

The paper is organised as follows. Section [2] presents Monte Carlo simulations

that address the issues highlighted above. A striking result is that a wrongly

specified structure of coefficient variation can produce forecasts that are even

worse than those of the ‘wrong’ FCM. On the other hand, if the model selected

for the coefficients is general enough to encompass all possible specifications as

special cases, the forecasts are comparable to the forecasts of the ‘correct’ TCVM.

Section [3] summarises the main findings from the Monte Carlo analysis and their

implications for the applied researcher.
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2 Monte Carlo Analysis

In this section, we investigate by means of Monte Carlo simulations the fore-

casting cost incurred when the true DGP is a TVCM, and the researcher has

assumed either a FCM or a TVCM with a structure of coefficient variation differ-

ent from the one characterising the DGP. In our experiments the DGP consists

of a bivariate linear regression where the slope coefficient is time varying:

yt = b0 + btxt + e1t (1)

with

bt = r0 + r1bt−1 + e2t (2)

We further assume that the regressor, xt, is a zero mean, persistent, stationary

AR(1) process:

xt = ρxt−1 + e3t (3)

Finally, we assume that the errors are iid jointly normal random variables,

with zero means and covariance matrix Σ :

 e1t

e2t

e3t

 ∼ NIID

 0

0

0

 ,
 σ11 0 0

0 σ22 0

0 0 σ33

 (4)

Concerning the slope coefficient variation, (2) nests all the structures analysed

in the literature, that is

(i) Zero Mean AR(1): r0 = 0, r1 < 1

(ii) Random Walk Model: r0 = 0, r1 = 1.

(iii) Hildreth-Houck (HH) Model: r0 6= 0, r1 = 0.

(iv) AR(1) with constant (Return to Normality Model): r0 6= 0, r1 < 1.

The number of replications and the sample size for each experiment are 1000

and 100 respectively. We also set b0 = 0.5 and ρ = 0.75. For each replication we

estimate the linear regression model either assuming a fixed coefficient bt = b∀t
and applying OLS, or assuming a particular structure of coefficient variation

(which, of course, might be different from the one generating the data), and obtain

maximum likelihood estimates of the model parameters by using the Kalman

Filter (see, for example, Harvey and Phillips 1982, or Chow 1984 for a clear
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exposition of this method)2. If the process followed by the stochastic coefficient

has a steady state, then its equilibrium mean and variance are chosen as initial

conditions for the algorithm. On the other hand, when there is no steady state

(e.g. the random walk case) the initial conditions are usually set as follows: µ0 =

E(b0|0) = 0 and Σ0|0 = k ·I , with k being an arbitrarily chosen large number. We

follow Koopman, Shephard and Doornik’s (1999) recommendation to set k = 106

initially, and then to rescale it by multiplying by the largest diagonal element of

the residuals covariances. Having estimated the model over a (pseudo) in-sample

estimation period [1,T], we generate forecasts, ŷT+h, at the horizons h=1,2,3,5 and

10, over a (pseudo) out-of-sample period. To obtain these forecasts we either use

realised values of xT+h (ex-post forecasts) or generate forecasts x̂T+h by utilising

(3) (pure ex-ante forecasts). The forecasts are evaluated according to the usual

Root Mean Square Error (RMSE) criterion. We also include the forecasts of yT+h

produced by the naive ARMA(1,1) model for yt as a natural benchmark. We

consider each of the above four cases of coefficient variation separately in the

following subsections.

2.1 Zero Mean AR(1): r0 = 0, r1 = 0.845.

For this set of simulations, we set σ11 = σ22 = σ33 = 1 and therefore var(bt) =
1

1−0.8452 = 3.5. The results for this case are reported in Table 1A. It is apparent

that, even when utilising the realised values of xT+h, the ‘wrong’ FCM is out-

performed by the ‘correct’ TVCM (that is, the one assuming that bt follows a

zero mean AR(1) process) in terms of forecast accuracy, as shown by the RMSE.

Moreover, its forecasts are less accurate than even those of the naive ARMA(1,1)

benchmark model for all values of h.

Let us assume that, somehow, the researcher realises that the DGP exhibits

time varying coefficients, but fails to recognise the exact pattern of coefficient

variation, thus specifying a wrong form of coefficient variation. For instance, he

assumes that bt follows a random walk instead of selecting the correct model for

bt, which is a zero mean AR(1) process. We find that the RMSE of the ‘wrong’

TVCM assumed by the researcher is bigger than the RMSE that would have been

obtained had the ‘correct’ TVCM been selected. For h=5 and 10 the RMSE pro-

duced by the wrong TVCM is even greater than the RMSE of either the FCM or

the naive ARMA(1,1) benchmark. A similar picture emerges when the researcher

chooses the HH model instead of the correct zero mean AR(1) specification for bt.

2Alternatively, the Flexible Least Squares method for recursively estimating the time path of
the slope coefficient may be used instead (see Kalaba and Tesfatsion 1989, 1990 and Lutkepohl
and Herwartz 1996).
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In this case the RMSE produced by the HH model is, as expected, bigger than the

RMSE of the correct TVCM for all the forecast horizons h, and also bigger than

the RMSE of the TVCM model that assumes that bt follows a random walk for

h = 1, 2 and 3. That is, choosing the HH specification causes the worst forecast

deterioration for h = 1, 2 and 3, while the Random Walk specification does so

for h = 5 and 10. The misspecification effects on forecasting are minimised when

the researcher assumes an AR(1) model with constant which encompasses the

zero AR(1) process as a special case. This is due to the fact that the erroneous

inclusion of a constant in the AR(1) model does not have any major effects on

the accuracy of the estimates of r0 and r1, which are close to their true values of

0 and 0.845 respectively.

The results discussed above concern a particular case of coefficient variation,

when var(bt) = 3.5. Two additional questions need to be answered. First, is the

relative RMSE ranking of the above specifications affected by changes in var(bt)?

Second, as changes in var(bt) could be driven by changes either in σ22 or in r1,

what is the relative importance of these two possible sources of change (persistence

of coefficient variation (r1) versus variance of coefficient innovation (σ22))? To

answer these questions we conduct two additional extensive simulations. In the

first, we keep σ22 constant and equal to unity, and let r1 vary such that var(bt)

takes different values in the interval [1.5, 3.5] by steps of 0.5. In the second, we

set r1 equal to 0.845 and allow σ22 to vary in such a way that var(bt) takes

values in the interval [0.5, 3.5] by steps of 0.5. The results for the first case,

where r1 varies, are reported in Figures 1A and 1B for forecast horizons h = 1

and h = 5, respectively. For the sake of brevity, the results for the second case,

where σ22 varies, are not reported but briefly summarised below. In the first case,

where var(bt) changes due to changes in r1, we find that for the shortest forecast

horizon, i.e. for h = 1, the FCM produces the worst RMSE for all values of r1. It

is important to note that the discrepancy between the FCM and the true TVCM

becomes bigger, the bigger is the influence of past shocks inducing coefficient

variation, i.e. the bigger is r1. The same holds true when the HH specification is

employed. By contrast, when the researcher erroneously utilises the Random Walk

specification the discrepancy between the RMSEs of the correct and erroneous

specifications decreases with r1, since the memory properties of the true model are

close to those of the specified one. For all values of r1 the AR(1) with constant

specification appears to be the safest choice if the ‘correct’ form of coefficient

variation cannot be established. For h = 5, the discrepancy between the RMSE

of the FCM and the true TVCM increases as r1becomes bigger, but is smaller in

comparison with the one-step ahead forecast. This result suggests that the loss in
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short-term forecast accuracy is actually higher when the researcher assumes the

FCM instead of the correct TVCM one. It is almost the same if either the HH

specification or the FCM are selected. As in the FCM case, the loss increases with

the variance of the coefficient variation structure. A significant loss is incurred

when the researcher specifies an incorrect Random Walk model for bt,especially

for small values of r1. This is hardly surprising, since in this case it is erroneously

assumed that bt is not mean reverting, whereas in fact bt reverts to zero at a

speed which is inversely related to r1.

The results are similar for the second case, where var(bt) changes due to

changes in σ22. The discrepancy between the RMSE of the true TVCM and of

all the alternative incorrect specifications increases monotically as σ22 increases,

the worst forecasting performances being exhibited by the FCM and the HH

specification for h = 1, and by the random walk specification for h = 5.

Finally, the ranking of the various models in terms of forecasting performance

stays the same when forecast rather than realised values of xT+h are used (these

results are not reported for the sake of brevity).

2.2 Hildreth Hook Model: r0 = 0.8, r1 = 0.

In this case, we assume that the slope coefficient bt evolves according to the HH

model, that is bt = 0.8 + e2t. We set σ11 = σ33 = 1, but we now set σ22 = 3.5, in

order to make the var(bt) for this case equal to that of bt in the previous AR(1)

case, which was var(bt) = 1
1−0.8452 = 3.5. We compute forecasts for all the models

of bt discussed above, in order to evaluate the forecast accuracy loss resulting from

misspecification in each case. Table 2A reports the results based on using the

realised values of xT+h. As can be seen, the loss due to erroneously using a FCM

when the DGP is characterised by time varying coefficients of the HH type is less

apparent than before for long horizons. For example, for var(bt) = 3.5 the RMSE

produced by the FCM for h = 5 and h = 10 is equal to 2.21 and 2.26 respectively

for the previous case of r1 = 0.845. The corresponding values of the RMSE

are 2.08 and 2.17 for the HH specification and for the same level of coefficient

variation, that is for var(bt) = 3.5. This suggests that persistence in coefficient

variation has a ‘net effect’ on the forecasting performance of the FCM, over and

above its effect through var(bt) = 1
1−r12 . Consequently, the discrepancy between

the RMSE of the FCM and of the ‘correct’ TVCM, i.e. the forecast accuracy loss

associated with the choice of the incorrect FCM, is much smaller and at some

forecast horizons hardly distinguishable from that observed in the previous case

(where bt followed a zero mean AR(1) model). This finding is consistent with the
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evidence presented in Figure 1A and 1B that the discrepancy in terms of RMSE

between the FCM and the ‘true’ TVCM increases with persistence in coefficient

variation, as measured by r1. Furthermore, unlike in the previous case of an AR(1)

slope coefficient, the forecasting performance of the FCM is not worse than that

of the naive ARMA(1,1) forecasting rule.

As for the second type of error, i.e. when the researcher assumes the wrong

type of coefficient variation for bt, we note that the resulting loss is higher than

in the previous case: a misspecified TVCM produces forecasts that are less ac-

curate than those not only of the ‘correct’ TVCM, but also of the FCM at all

forecast horizons. In other words, in this case there would be a forecast gain if

the researcher overlooked parameter instability altogether and selected instead a

FCM. In particular, choosing a Random Walk Model for bt instead of the cor-

rect HH structure generates RMSEs which are higher than those of either the

FCM or the naive ARMA(1,1) model at all forecast horizons. The loss due to

misspecification is also significant when a zero mean AR(1) model is selected.

Therefore, in this case the researcher would be better off using a simple univari-

ate ARMA(1,1) model for yt rather than a mispecified TVCM for the purpose

of forecasting. The loss associated with wrongly specifiying the TVCM is pro-

hibitively large if the true model of coefficient variation is the HH rather than

a zero mean AR(1) process as in the previous case. The explanation lies in the

very different time series behaviour exhibited by the true HH model and the two

alternative models assumed by the researcher. More precisely, in the HH model

shocks to the coefficients are ‘absorbed’ within the same time period and the

steady state of the process is equal to 0.8. By contrast, in the AR(1) case shocks

do not fade away immediately and the steady state of the process is zero. Finally,

in the Random Walk model there is infinite persistence and no steady state for

the process. However, if the researcher assumes a model for bt that encompasses

the HH structure as a special case, i.e. if he assumes an AR(1) model with a

constant, then the mispecification effects on forecasting are minimised - in this

way the researcher allows the process bt to have a non-zero mean equal to r0
1−r1 ,

i.e. he does not ‘force’ the process to fluctuate around an incorrect mean. This

is true in both the previous and the present case, which suggests that the best

option for the researcher is to specify a model for bt, e.g bt = r0 +r1bt−1 +e2t, that

nests the true model of bt, that is bt = r0 + e2t. In fact the Monte Carlo means

of the estimates of r0 and r1 (reported in Table 2B) are very close to their true

values of 0.8 and 0 respectively, thus explaining the good forecasting performance

achieved by this specification. 3

3However, the over-specification comes at a price, namely the average standard errors are
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The same simulations were conducted using different values for σ22 = var(bt),

specifically for σ22 taking values in the interval [0.5, 3.5] by steps of 0.5. Figure

2A plots the RMSE produced by all the alternative forms of coefficient variation,

and the FCM, for h = 1. The discrepancy between the RMSE of the FCM and

the ‘correct’ TVCM is found to increase with σ22, but is much smaller than in the

case where the true process is the zero mean AR(1) model with r1 = 0.845. On

the other hand, when the researcher makes the second type of error, i.e. when he

employs the incorrect TVCM specification, the discrepancy between the RMSE

of the ‘true’ TVCM and of the TVCM with the zero mean AR(1) specification is

inversely related to σ22. Instead, when the Random Walk specification is utilised

the RMSE increases monotonically with σ22 and the forecast cost is very large.

For instance, for var(bt) = 3.5 the RMSE produced by the random walk specifi-

cation is 25.13% higher than that of the correct HH specification. For the same

variability of bt, that is for var(bt) = 3.5, the RMSE produced by the random

walk specification is only 6.13 percent higher than that produced by the correct

model with a zero mean AR(1) specification for bt.

As a general result, we find that the highest forecast accuracy loss is incurred

when the model specified by the researcher does not nest the true underlying coef-

ficient structure, though the exact size of the loss will depend on both the selected

specification and the degree of variability of the time varying coefficients.4

2.3 Non-Zero Mean AR(1): r0 = 0.7, r1 = 0.30.

In this case it is assumed that the slope coefficient follows an AR(1) process

with a constant term equal to 0.7. We also set σ11 = σ33 = 1 and σ22 = 3.185,

so that var(bt) = 3.185
1−0.32 = 3.5, namely we choose a value for σ22 such that the

variance of the coefficient process is the same as in the previous cases, although

the process is less persistent. Table 3A reports the RMSEs. It can be seen that if

the researcher utilises the FCM instead of the ‘correct’ TVCM the loss in terms

of forecast accuracy is only slight. As in the previous two cases and as shown by

Figure 1A, the discrepancy between the RMSE of the FCM and of the ‘correct’

TVCM decreases as the influence of past shocks to the coefficients diminishes,

i.e. when r1 approaches zero. Moreover, both the ‘wrong’ FCM and the ‘correct’

TVCM outperform the naive ARMA(1,1) benchmark model according to the

higher.
4The picture remains almost unchanged if forecast (as opposed to realised) values of the

explanatory variables are used for forecasting. The results (not reported) again suggest that
the researcher should choose the FCM or a simple ARMA(1,1) model in order to avoid the
effects of misspecification in the structure of bt.
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RMSE criterion.

Failure to specify the correct form of coefficient variation has serious effects

on forecast accuracy. In the present case, if the researcher assumes that bt follows

a zero mean AR(1) process, instead of the true AR(1) process with a constant,

he obtains forecasts that are worse, for all horizons, than those not only of the

‘correct’ TVCM but also of the FCM. This is not surprising, since the zero mean

AR(1) specification restricts the coefficient to move around zero while in the

‘correct’ AR(1) specification E(bt) = r0
1−r1 = 1. The loss increases further if

the researcher specifies a Random Walk model for bt. It is worth noticing that

the RMSE of the HH specification, which imposes no memory restrictions on

the coefficient, is almost equal to that of the ‘correct’ specification. This can

be explained by considering the mean estimates of the constant term for the

misspecified HH model (see Table 3B): the average value of the estimate of the

constant across all replications in the HH specification is close to the mean value

of one of the ‘correct’ coefficient models (AR(1) with a constant). As a result of

its unbiased estimate of the mean of bt, the HH specification matches the forecast

performance of the true specification, even though it does not nest the true model

for bt. Similar reasons account for the forecast accuracy of the FCM.

2.4 Random Walk: r0 = 0, r1 = 1.

Here we assume that the slope coefficient of the regression follows a Random Walk

process, that is r0 = 0 and r1 = 1 in equation (2) with σ22 = 1. The results are

reported in Table 4A. It appears that the consequences in terms of forecasting

accuracy of wrongly deciding to employ the FCM are even more serious than

in the previous cases considered. For example, if the correct form of coefficient

variation, i.e. the random walk, is assumed, then an RMSE as small as 1.55 and

2.54 for forecast horizons h = 1 and h = 5 respectively, is obtained. If, however,

parameter variation is overlooked and a FCM is specified, the RMSE for h = 1

and h = 5 increases to 5.45 and 6.16 respectively. If parameter instability is

detected but the correct type of coefficient variation is not identified, then the

forecast accuracy loss depends on the selected model for bt. If the HH model,

which specifies a process for bt with zero persistence, is chosen, then the loss

is comparable to that incurred by estimating a FCM. On the other hand, if an

AR(1) model is specified for bt, either with or without a constant, the associated

RMSEs are not much higher than those of the correct Random Walk specification.

Table 4B reports the average value of the estimates of r0 and r1 obtained if the

researcher erroneously specifies bt as an AR(1) model with constant. It can be
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seen that the mean estimates of r0 and r1 are close to zero and one respectively,

which implies that the consistency of the estimates of r0 and r1 neutralises, to

a large extent, the effects of over-specification. Nevertheless, the loss associated

with specifying an AR(1) with constant as the model for bt is bigger when the

true model is a random walk compared to the previous cases where bt had a

steady state. For example, if h = 5 then using the AR(1) model with a constant

results in an increase in the RMSE of 2.03% and 6.35% when the true process is

the zero mean AR(1) model with r1 = 0.845 and the Random Walk respectively.

An even bigger loss is incurred when h = 10. Consequently, it is crucial that an

appropriate method for detecting the correct form of coefficient variation should

be found, especially for forecasting at long horizons. The AR(1) specification

with a constant produces a smaller percentage loss in terms of forecast accuracy

compared to the FCM and the HH specification, and therefore should be used

when it is difficult to identify the true process for the coefficient. It is also worth

noticing that the loss associated with the erroneous use of the FCM depends on

the true type of coefficient variation. It should have become apparent by now

that the discrepancy between the RMSE of the ‘wrong’ FCM and of the ‘correct’

TVCM is an increasing function of the degree of persistence of the process followed

by bt. In other words, it becomes greater as we move from structures with no or

small memory restrictions to structures with infinite memory.

Figure 3 reports the RMSE for all alternative forms of coefficient variation

using different values for the variance of the random walk innovations, i.e. σ22.

It is clear that the difference between the RMSE of both the FCM and the

HH specification and of the correct random walk TVCM is increasing as the

variance of the innovations increases. On the other hand, all the autoregressive

specifications capture well the dynamics of coefficient variation, thus producing

quite accurate forecasts.

To summarise the main findings so far:

(i) If the true DGP exhibits parameter time dependence and the researcher

fails to detect it and employs a FCM estimated by OLS, he is likely to incur a

significant forecast accuracy loss. For a given level of coefficient variation, i.e. for

a fixed value of var(bt), the loss is minimised when the true coefficient process

exhibits a zero degree of persistence.

(ii) If the true DGP is characterised by time varying parameters but the re-

searcher specifies a model of coefficient variation different from the true one, the

loss is minimised when the selected model for bt encompasses the true model as

a special case. When this condition is not satisfied, two very different cases can

occur. In the first, the model specified by the researcher is such that consistent



I H S – Anyfantakis, Caporale, Pittis / Parameter Instability 11

estimates of the mean of bt (assuming that the mean exists) are obtained, and

the loss is small. In the second, the chosen model does not yield consistent esti-

mates of the mean of bt (probably because it does not exist), and the loss due to

assuming the incorrect TVCM is considerable and comparable to that associated

with selecting a FCM.

(iii) Based on the above considerations and the coefficient variation types ex-

amined so far, we conclude that the safest strategy for the researcher is to specify

an AR(1) model with a constant term as his model for coefficient variation. The

reason is that this specification nests all the main models of coefficient variation

found in the literature.

The next issue to be addressed is the forecasting performance of the AR(1)

model with a constant when it does not encompass the true model for bt. Below,

we investigate its performance under the assumption that bt follows a process

that does not belong to the autoregressive family.

2.5 Moving Average

In this case we assume that the slope coefficient follows a moving average process

of the form: bt = e2t + 0.5e2t−1, with var(e2t) = 2.8, which implies that var(bt) =

3.5, as in all previous cases. The results obtained using the realised values of xT+h

are reported in Table 5, and can be summarised as follows:

(i) The lowest RMSEs are produced by specifications of the process driving

bt that assume that this has a steady state, the AR(1) model with zero mean

appearing to be the best choice. These models outperform the FCM in terms of

forecasting accuracy at all forecast horizons.

(ii) The highest RMSE is produced by the assumption that bt follows a random

walk. This is not surprising, given the fact that the researcher assumes a process

for bt with vastly different statistical properties (no mean reversion) from the true

one (stationary).

(iii) In this case the two AR(1) models (with and without constant) are un-

derfitted, since the true model for bt is an AR(∞). The HH specification, which

does not include any autoregressive terms, is even more so. However, these spec-

ifications perform well relative to the random walk model because the mean of bt

(which is equal to zero) is still estimated with some degree of accuracy, despite

the underfitting.

(iv) The ARMA(1,1) forecasting rule produces RMSEs that are more or less

equal to those of the TVCMs that assume that the process of bt has a steady state.

This means that there is practically no benefit from employing a TVCM rather
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than an ARMA(1,1) forecasting rule if the chosen model of coefficient variation

does not nest the true process followed by bt. Some minor gains in terms of lower

RMSE derive from using an AR(1) model, but only for a forecast horizon h = 1.

2.6 Fixed Coefficients: bt = 1 for all t

Finally, we examine the forecasting performance of the alternative TVCMs when

the DGP is characterised by fixed coefficients, but the researcher erroneously

assumes that they exhibit time dependence. The results are reported in Table

6. It appears that there is almost no loss resulting from using a TVCM, as the

RMSE of the ‘correct’ FCM and of the alternative ‘wrong’ TVCMs are hardly

distinguishable. Also, the simple ARMA(1,1) forecasting rule produces the worst

forecasts at all forecast horizons.

2.7 Persistence and Forecasting Performance

The Monte Carlo analysis we have conducted suggests that the forecasting per-

formance of the FCM improves when the true process driving bt exhibits a zero or

low degree of persistence, compared to the case when bt follows a random walk.

One might ask what the reasons are. Given that the forecasts of yt in the context

of the FCM-OLS framework are computed as ŷT+h = b̂0 + b̂xT+h the first question

to answer is what the OLS estimator ‘estimates’ when bt is time varying, i.e what

exactly b̂ is. Heuristically, if the process followed by bt is such that yt is station-

ary and ergodic, then one would expect b̂ to converge in probability to E(bt). To

investigate this issue, we carry out additional simulations. Specifically, we exam-

ine the finite sample properties of the OLS estimator of the slope coefficient in

the context of the FCM. Table 7 reports the Monte Carlo means and standard

deviation of the OLS estimator of the slope coefficient applied to the FCM. In

particular, it presents the simulation results when the true process followed by

bt is: (i) a zero mean AR(1) (Panel A); (ii) the HH (Panel B); (iii) a stationary

AR(1) with constant and a Random Walk (Panel C and D respectively); (iv) the

FMC, i.e bt = b ≡ 1,∀t (Panel E). In brief, we find that:

(i) When bt follows an AR(1) process, with E(bt) = b (where b may be zero),

or it follows the HH process with E(bt) = r0 ≡ b, the OLS estimator b̂ converges

to b as the sample size increases. Note that the standard deviation of b̂ decreases

at approximately the same rate for all the stationary processes of bt.

(ii) When bt follows a random walk, however, no convergence is observed.

Instead, the standard deviation of b̂ increases with the sample size. This explains
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why the forecasting performance of a FCM is extremely poor when the true model

of coefficient variation is a random walk.

3 Conclusions

Most econometric models are built either for forecasting or for policy simula-

tion and analysis. Even in the latter case, analysing their forecasting properties

can still be important for assessing their adequacy as an approximation for the

underlying DGP. A variety of reasons have been considered for the poor forecast-

ing record of many models used by practitioners or as a guide to policymakers.

Clements and Hendry (1998, 1999, 2002) have developed a taxonomy of forecast-

ing errors, and concluded that shifts in deterministic factors in the out-of-sample

forecast period are the main reason for forecast failure. According to their analy-

sis, provided the deterministic components are adequately treated, other factors

(including misspecification of the stochastic components) are not likely to have

significant effects on forecasting. In the presence of structural breaks, they suggest

using differenced or double-differenced series in addition to intercept correction in

the presence of structural breaks in order to reduce forecast bias (though at the

cost of a higher forecast variance), whilst are rather dismissive of Markov switch-

ing or threshold models, which are reported not to significantly outperform linear

AR specifications. In this paper we argue that overlooking time dependency in the

parameters is in fact a potentially crucial explanation for forecast failure, which

can be remedied by using models allowing for coefficient variation. In practice,

time invariant parameters are often assumed, or even when parameter instability

is taken into account, the type of time heterogeneity which is allowed for is not

as complex as that present in the data. 5 By means of Monte Carlo experiments,

we quantify the deterioration in model forecasts which occurs when either time

variation in the parameters is ignored, or the wrong model of coefficient variation

is chosen, and show that the consequences for forecasting can be severe.

In particular, our findings suggest that there is a considerable loss in terms of

forecast accuracy when the true process is a TVCM and the researcher assumes a

FCM, this loss being an increasing function of the degree of persistence 6 and of

5See Caporale and Pittis (2002) for further details. They also discuss the undesirable con-
sequences for statistical testing, and suggest a strategy to isolate the invariants and estimate a
stable subsystem conditional on the other subset of variables (if these are superexogenous with
respect to the parameters of interest). In this case, standard statistical inference and estimation
techniques are valid.

6Since, as discussed before, if bt follows a highly persistent process, its estimator does not
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the variance of the process driving the slope coefficient. 7 A loss is also incurred

when the true process is a TVCM and the researcher, although detecting param-

eter instability, specifies a model for coefficient variation different from the true

one. Under these circumstances, surprisingly, the forecasts are even less accurate

than those produced by a FCM. However, the loss can be minimised by selecting

a model for coefficient variation which, although incorrect, nests the true one, in

which case the forecasts are comparable to those of the ‘correct’ TCVM. The fore-

casting performance is particularly poor when the true process is a random walk,

and either the FCM or the HH models are chosen, as neither of them encompasses

the random walk as a special case. Further, even if the true DGP is known and

the correct random walk specification is adopted, forecasts at long horizons are

extremely unreliable if forecast (rather than realised) values of the regressor are

used. Finally, there is hardly any loss resulting from using a TVCM when the un-

derlying DGP is characterised by fixed coefficients, the resulting forecasts being

almost as accurate as those from a FCM. Consequently, the applied researcher

interested in forecasting, and not having full information about the underlying

DGP, would be well advised to estimate a time varying coefficient model, and

more specifically an AR(1) model with a constant. This empirical strategy will

obviously produce the best forecasts if the selected structure of coefficient vari-

ation is in fact the true one; it will generate forecasts almost as precise as those

which would have been obtained using the true model of coefficient variation if

this is different from the chosen one (the reason being the generality of the AR(1)

with a constant specification); it will also guarantee a forecasting performance of

the model which nearly matches that of a FCM even if the DGP does in fact

exhibit fixed coefficients. Finally, using realised instead of forecast values of the

regressor is essential for the purpose of long-term forecasting.

converge.
7The very poor forecasting performance of monetary models of the exchange rate docu-

mented by Meese and Rogoff (1983) might very well reflect the fact that they overlook pa-
rameter instability. Caporale and Pittis (2001) provide clear evidence of such instability, and
estimate a stable subsystem.
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