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Abstract 

This paper examines the long-run dynamics and the cyclical structure of the US stock market 
using fractional integration techniques, specifically a version of the tests of Robinson (1994a) 
which allows for unit (or fractional) roots both at the zero (long-run) and at the cyclical 
frequencies. We consider inflation, real risk-free rate, real stock returns, equity premium and 
price/dividend ratio, annually from 1871 to 1993. When focusing exclusively on the long-run 
frequency, the estimated order of integration varies considerably, but nonstationarity is found 
only for the price/dividend ratio. When the cyclical component is also taken into account, 
most series appear to be stationary and to exhibit long memory. Further, mean reversion 
occurs. Finally, the fractional (at zero and cyclical) models are shown to forecast more 
accurately than rival ones based on fractional and integer differentiation exclusively at the 
zero frequency. 
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1. Introduction 

The empirical literature analysing stock markets typically tests whether the series of interest 
are I(1) (stock prices), or I(0) (stock market returns). This is because, according to the 
Efficient Market Hypothesis (EMH), it should not be possible to make systematic profits 
above transaction costs and risk premia, and therefore stock prices are characterised as an 
entirely unpredictable random walk process, which implies that stock returns should be I(0). 
Mean reversion is seen as inconsistent with equilibrium asset pricing models (see the survey 
by Forbes, 1996). Caporale and Gil-Alana (2002), though, stress that the unit root tests 
normally employed impose too restrictive assumptions on the behaviour of the series of 
interest, in addition to having low power. They suggest instead using tests which allow for 
fractional alternatives (see Robinson, 1994a, 1995a,b), and find that US real stock returns 
are close to being I(0) (which raises the further question whether the shocks are 
autocorrelated, with the implication that markets are not efficient). Fractional integration 
models have also been used for inflation and interest rates (see, e.g., Shea, 1991; Backus 
and Zhin, 1993; Hassler and Wolters, 1995; Baillie et al., 1996, etc.). 

However, it has become increasingly clear that the cyclical component of economic and 
financial series is also very important. This has been widely documented, especially in the 
case of business cycles, for which non-linear (Beaudry and Koop, 1993, Pesaran and Potter, 
1997) or fractionally ARIMA (ARFIMA) models (see Candelon and Gil-Alana, 2004) have 
been proposed. Furthermore, it has been argued that cycles should be modelled as an 
additional component to the trend and the seasonal structure of the series (see Harvey, 
1985, Gray et al., 1989). The available evidence suggests that the periodicity of the series 
ranges between five and ten years, in most cases a periodicity of about six years being 
estimated (see, e.g., Baxter and King, 1999; Canova, 1998; King and Rebelo, 1999; 
Caporale and Gil-Alana, 2003). 

In view of these findings, the present paper extends the earlier work by Caporale and Gil-
Alana (2002) by adopting a modelling approach which, instead of considering exclusively the 
component affecting the long-run or zero frequency, also takes into account the cyclical 
structure. Furthermore, the analysis is carried out for the US inflation rate, real risk-free rate, 
equity premium and price/dividend ratio, in addition to real stock returns. More precisely, we 
use a procedure due to Robinson (1994a), which enables one to test simultaneously for unit 
and fractional roots at both zero and the cyclical frequencies. This approach has several 
distinguishing features compared with other methods, the most noticeable one being its 
standard null and local limit distributions.1 Moreeover, it does not require Gaussianity (a 
condition rarely satisfied in financial time series), with a moment condition only of order two 
required. Additionally, using a large structure that involves simultaneously the zero and the 

                                                                                                                                                      
1 Note that, for example, most of the “classical” unit root tests (i.e., Dickey and Fuller, 1979; Kwiatkowski et al., 
1992; etc.) are non-standard, in the sense that the critical values have to be calculated numerically on a case by 
case simulation study. 
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cyclical frequencies, we can solve at least to some extent the problem of misspecification 
that might arise with respect to these two frequencies. We are able to show that our 
proposed method represents an appealing alternative to the increasingly popular ARIMA 
(ARFIMA) specifications found in the literature. It is also consistent with the widely adopted 
practice of modelling many economic series as two separate components, namely a secular 
or growth component and a cyclical one. The former, assumed in most cases to be 
nonstationary, is thought to be driven by growth factors, such as capital accumulation, 
population growth and technology improvements, whilst the latter, assumed to be covariance 
stationary, is generally associated with fundamental factors which are the primary cause of 
movements in the series.  

The structure of the paper is as follows. Section 1 briefly describes the statistical model. 
Section 2 introduces the version of the Robinson’s (1994a) tests used for the empirical 
analysis. Section 3 discusses an application to annual data on several US stock market 
series for the time period 1871 – 1993. Section 4 is concerned with model selection for each 
time series, and the preferred specifications are compared with other more classical 
representations. Section 5 contains some concluding comments.  

2. The statistical model 

Let us suppose that {yt, t = 1, 2, …, n} is the time series we observe, which is generated by 
the model: 

,..,2,1,)cos21()1( 21 2 ==+−− tuyLLwL tt
dd       (1) 

where L is the lag operator (Lyt = yt-1), w is a given real number, ut is I(0)2 and d1 and d2 can 
be real numbers. Let us first consider the case of d2 = 0. Then, if d1 > 0, the process is said 
to be long memory at the long-run or zero frequency, also termed ‘strong dependent’, so-
named because of the strong association between observations widely separated in time. 
Note that the first polynomial in (1) can be expressed in terms of its Binomial expansion, 
such that for all real d1: 
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These processes were initially introduced by Granger (1980, 1981) and Hosking (1981), and 
were theoretically justified in terms of aggregation by Robinson (1978), Granger (1980): 
cross section aggregation of a large number of AR(1) processes with heterogeneous AR 

                                                                                                                                                      
2 For the purposes of the present paper, we define an I(0) process as a covariance stationary process with spectral 
density function that is positive and finite at any frequency on the spectrum. 
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coefficients may create long memory. Parke (1999) uses a closely related discrete time error 
duration model, while Diebold and Inoue (2001) relate fractional integration with regime 
switching models.33  The differencing parameter d1 plays a crucial role from both economic 
and statistical viewpoints. Thus, if d1 ∈ (0, 0.5), the series is covariance stationary and mean-
reverting, with shocks disappearing in the long run; if d1 ∈ [0.5, 1), the series is no longer 
stationary but still mean-reverting, while d1  ≥  1  means nonstationarity and non-mean-
reversion. It is therefore crucial to examine if  d1 is smaller than or equal to or higher than 1. 
Thus, for example, if d1 < 1, there is less need for policy action than if d1 ≥ 1, since the series 
will return to its original level sometime in the future. On the contrary, if d1 ≥ 1, shocks will be 
permanent, and active policies are required to bring the variable back to its original long term 
projection. In fact, this is one of the most hotly debated topics in empirical finance. Lo and 
MacKinlay (1988) and Poterba and Summers (1988) used variance-ratio tests and found 
evidence of mean reversion in stock returns. On the contrary, Lo (1991) used a generalized 
form of rescaled range (R/S) statistic and found no evidence against the random walk 
hypothesis for the stock indices, contradicting his earlier finding using variance–ratio tests. 
Other papers examining the persistence of shocks in financial time series are Lee and 
Robinson (1996), Fiorentini and Sentana (1998) and May (1999). 

Let us now consider the case of d1 = 0 and d2 > 0. The process is then said to exhibit long 
memory at the cyclical frequency. It was examined by Gray et al. (1989, 1994), who showed 
that the series is stationary if cos w < 1 and d2 < 0.50 or if cos w = 1 and d2 < 0.25. 
They also showed that the second polynomial in (1) can be expressed in terms of the 
Gegenbauer polynomial C , such that, calling µ = cos w, 
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where Γ(x) represents the Gamma function and a truncation will be required in (2) to make 
the polynomial operational. Of particular interest is the case of d2 = 1, i.e. when the process 
contains unit root cycles; its performance in the context of macroeconomic time series was 
examined, for example, by Bierens (2001).4 Such processes, for which the crucial issue is to 
have a spectral density with a peak at (0, π], were later extended to the case of a finite 
number of peaks by Giraitis and Leipus (1995) and Woodward et al. (1998) (see also Gray et 

                                                                                                                                                      
3 Crozcek-Georges and Mandelbrot (1995), Taqqu et al. (1997), Chambers (1998) and Lippi and Zaffaroni (1999) 
also use aggregation to motivate long memory processes. 
4 Unit root cycles were also examined by Ahtola and Tiao (1987), Chan and Wei (1988) and Gregoir (1999a, b). 
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al. (1989) and Robinson (1994a)). The economic implications in (2) are similar to the 
previous case of long memory at the zero frequency. Thus, if d2 < 1, shocks affecting the 
cyclical part will be mean reverting, while d2 ≥ 1 implies an infinite degree of persistence of 
the shocks. This type of model for the cyclical component has not been previously used for 
financial time series, though Robinson (2001, pp. 212-213) suggests its adoption in the 
context of complicated autocovariance structures. 

3. The testing procedure 

Following Bhargava (1986), Schmidt and Phillips (1992) and others in the parameterisation 
of unit-root models, Robinson (1994a) considers the regression model: 

,...,2,1' =+= txzy ttt β         (3) 

where yt is a given raw time series; zt is a (kx1) vector of deterministic regressors that may 
include, for example, an intercept, (e.g., zt ≡ 1), or an intercept and a linear time trend (in the 
case of zt = (1,t)’); β is a (kx1) vector of unknown parameters; and the regression errors xt 
are such that: 

,...,2,1);( == tuxL ttθρ     (4) 

where ρ is a given function which depends on L, and the (px1) parameter vector θ, adopting 
the form: 

,)LLwcos()L()L();L(
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for real given numbers d1, ds, d2, … dp-1, integer p, and where ut is I(0). Note that the second 
polynomial in (5) refers to the case of seasonality (i.e. s = 4 in case of quarterly data, and s = 
12 with monthly observations). Under the null hypothesis, defined by: 

     Ho:   θ  =  0      (6) 

(5) becomes: 

.)LLwcos()L()L()L();L(
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This is a very general specification that makes it possible to consider different models under 
the null. For example, if d1 = 1 and ds, dj = 0 for j ≥ 2, we have the classical unit-root models 
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(Dickey and Fuller, 1979, Phillips, 1987; Phillips and Perron, 1988, Kwiatkowski et al., 1992, 
etc.), and, if d1 is a real value, the fractional models examined in Diebold and Rudebusch 
(1989), Baillie (1996) and others. Similarly, if ds = 1 and dj = 0 for all j, we have the seasonal 
unit-root model (Dickey, Hasza and Fuller, 1984, Hyllerberg et al., 1990, etc.) and, if ds is 
real, the seasonal fractional model analysed in Porter-Hudak (1990). If d3 = 1 and ds, dj = 0 
for j ≠ 3, the model becomes the unit root cycles of Ahtola and Tiao (1987) and Bierens 
(2001), and if d3 is real, the Gegenbauer processes examined by Gray et al. (1989, 1994), 
Ferrara and Guegan (2001), etc. 

In this paper we are concerned with both the long run and the cyclical structure of the series, 
and thus we assume that ds = 0 and p = 3. In such a case (5) can be expressed as: 

,)cos21()1();( 2211 2 θθθρ ++ +−−= dd LLwLL            (8) 

and, similarly, (7) becomes: 

.)cos21()1()( 21 2 dd LLwLL +−−=ρ        (9) 

Here, d1 represents the degree of integration at the long run or zero frequency (i.e., the 
stochastic trend), while d2 affects the cyclical component of the series.  

We next describe the test statistic. We observe {(yt, zt), t = 1,2,…n}, and suppose that the I(0) 
ut in (4) have parametric spectral density given by: 
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where the scalar σ2 is known and g is a function of known form, which depends on frequency 
λ and the unknown (qx1) vector τ. Based on Ho (6), the residuals in (3), (4) and (8) are: 
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Unless g is a completely known function (e.g., g ≡ 1, as when ut is white noise), we need to 
estimate the nuisance parameter τ, for example by , where T is 
a suitable subset of Rq Euclidean space, and 

)(minargˆ T τστ τ
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The test statistic, which is derived through the Lagrange Multiplier (LM) principle, then takes 
the form: 
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Based on Ho (6), Robinson (1994a) established that, under certain regularity conditions:5  

.,ˆ 2
2 ∞→→ nasR d χ  (12) 

Thus, as shown by Robinson (1994a), unlike in other procedures, we are in a classical large-
sample testing situation, and furthermore the tests are efficient in the Pitman sense against 
local departures from the null.66 Because  involves a ratio of quadratic forms, its exact null R̂

                                                                                                                                                      
5 These conditions are very mild and concern technical assumptions to be satisfied by ψ1(λ) and ψ2(λ). 
6 In other words, if the tests are implemented against local departures of the form: Ha: θ = δn-1/2, for δ ≠ 0, the limit 
distribution is a 

2
with a non-centrality parameter v, which is optimal under Gaussianity of ut. )v(2χ
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distribution can be calculated under Gaussianity via Imhof’s algorithm. However, a simple 
test is approximately valid under much wider distributional assumptions: a test of (6) will 
reject Ho against the alternative Ha: d ≠ do if R̂  > , where Prob ( > ) = α. A 

similar version of Robinson’s (1994a) tests (with d1 = 0) was examined in Gil-Alana (2001), 
where its performance in the context of unit-root cycles was compared with that of the Ahtola 
and Tiao’s (1987) tests, the results showing that the former outperform the latter in a number 
of cases. Other versions of his tests have been successfully applied to raw time series in Gil-
Alana and Robinson (1997, 2001) to test for I(d) processes with the roots occurring at zero 
and the seasonal frequencies respectively. However, this is the first empirical finance 
application, which tests simultaneously the roots at zero and the cyclical frequencies, a 
statistical approach which is shown in the present paper to represent a credible alternative to 
the more conventional ARIMA (ARFIMA) specifications used for the parametric modelling of 
many time series. 

2
,2 αχ 2

,2 αχ 2
2χ

4. An empirical application to the US stock market 

The dataset includes annual data on US inflation, real risk-free rate, real stock returns, equity 
premium and price/dividend ratio from 1871 to 1993, and is a slightly updated version of the 
dataset used in Cecchetti et al. (1990) (see that paper for further details on sources and 
definitions). 

Figure 1 contains plots of the original series with their corresponding correlograms and 
periodograms. All of them, with the exception of the price/dividend ratio, appear to be 
stationary. However, deeper inspection of the correlograms shows that there are significant 
values even at some lags relatively distant from zero, along with slow decay and/or cyclical 
oscillation in some cases, which could indicate not only fractional integration at the zero 
frequency but also cyclical dependence. Similarly, the periodograms also have peaks at 
frequencies other than zero. For the price/dividend ratio, the slow decay in the correlogram 
clearly suggests that the series is not I(0) stationary. 

Figure 2 displays similar plots for the first differenced data. The correlograms and 
periodograms now strongly suggest that all series are overdifferenced with respect to the 0 
frequency. On the other hand, there are significant peaks in the periodograms at frequencies 
different from zero. In view of this, it might be of interest to examine more in depth the 
behaviour of these series using a fractional model at both the zero and the cyclical 
frequencies. 



8 — Caporale, Gil-Alana / Long-run and Cyclical Dynamics in the US Stock Market — I H S 

FIGURE 1 
Raw time series, with their corresponding correlograms and periodograms 

Inflation rate Correlogram* Periodogram 
   

Real risk free rate Correlogram* Periodogram 
   

Real stock return Correlogram* Periodogram 
   

Equity premium Correlogram* Periodogram 
   

Price / Dividend ratio Correlogram* Periodogram 
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FIGURE 2 
First differenced time series, with their corresponding correlograms and periodograms 

Inflation rate Correlogram* Periodogram 
   

Real risk free rate Correlogram* Periodogram 
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* The large sample standard error under the null hypothesis of no autocorrelation is 1/√n or roughly 0.09 for series of  
length considered here.  
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As a first step, we focus on the long run or zero frequency and implement a simple version of 
Robinson’s (1994a) test, which is based on a model given by (3) and (4), with zt = (1,t)’, t ≥ 1, 
(0,0)’ otherwise, and ρ(L; θ) = (1 – L)d+θ. Thus, under Ho (6), we test the model: 

...,2,1,10 =++= txty tt ββ  (13) 

  (14) ,...,2,1,)1( ==− tuxL tt
d

for values d = 0, (0.01), 2, and different types of disturbances. In such a case, the test 
statistic greatly simplifies, taking the form given by (11), with ψ(λs) being exclusively defined 
by ψ1(λs) and  The null limit distribution will then be a  

distribution. However, if ρ(L; θ) = (1 – L)d+θ, then p = 1,  and therefore we can consider one-

sided tests based on 

.'ˆ)1(ˆ tt
d

t wyLu β−−= 2
1χ

,ˆˆ Rr =  with a standard N(0,1) distribution: an approximate one-sided 

100α% level test of Ho (6) against the alternative: Ha: θ > 0 (θ < 0) will be given by the rule: 
“Reject Ho if  r̂  > zα ( r̂   < - zα)”, where the probability that a standard normal variate 
exceeds zα is α. Note that by testing the null hypothesis with d = 1, this becomes a classical 
unit-root tests of the same form as those proposed by Dickey and Fuller (1979) and others. 
However, instead of using autoregressive (AR) alternatives of the form: (1 – (1+θ)L)xt = ut, 
we use fractional alternatives. Moreover, the use of AR alternatives involves a dramatic 
change in the asymptotic behaviour of the tests. Thus, if θ < 0, xt is stationary; it contains a 
unit root if θ = 0, and it becomes nonstationary and explosive for θ > 0. On the contrary, 
under fractional alternatives of the form as in (14), the behaviour of xt is smooth across d, 
this being the intuitive reason for its standard asymptotic behaviour. 

The results presented in Table 1 correspond to the 95%-confidence intervals of those values 
of d where Ho (6) cannot be rejected, using white noise disturbances.7 We examine 
separately the cases of β0 = β1 = 0 a priori (i.e., with no regressors in the undifferenced 
model (13)); β0 unknown and β1 = 0 (with an intercept); and β0 and β1 unknown (an intercept 
and a linear time trend). The inclusion of a linear time trend may appear unrealistic in the 
case of financial time series. However, it should be noted that in the context of fractional (or 
integer) differences, the time trend disappears in the long run. Thus, for example, suppose 
that ut in (14) is white noise. Then, testing Ho (6) in (13) and (14) with do = 1, the series 
becomes, for t > 1, a pure random walk process if β1 = 0, and a random walk with an 
intercept if both β0 and β1 are unknown. The results vary substantially from one series to 
another. For instance, for inflation and real risk-free rates, the values are always higher than 
0 but smaller than 0.5, oscillating between 0.07 (inflation rate with a linear trend) and 0.49 
(real risk-free rate with no regressors). For real stock returns and equity premium, the values 
of d where Ho (6) cannot be rejected widely oscillates around 0, ranging between –0.18 
(equity premium with a linear trend) and 0.14 (stock returns with no regressors). Finally, for 

                                                                                                                                                      
7 The confidence intervals were built up according to the following strategy. First, choose a value of d from a grid. 
Then, form the test statistic testing the null for this value. If the null is rejected at the 95% level, discard this value of 
d. Otherwise, keep it. An interval is then obtained after considering all the values of d in the grid. 
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the price/dividend ratio, all the non-rejection values are higher than 0.5, implying 
nonstationarity with respect to the zero frequency. 

TABLE 1 

Confidence intervals of the non-rejection values of d using  in (11) with ρ(L; θ) = (1 – L)d+θ 

and white noise ut 
R̂

Time Series  No regressors An intercept A linear trend 
INFLATION RATE [0.12  -  0.45] [0.13  -  0.46] [0.07  -  0.44] 

REAL RISK FREE RATE [0.19  -  0.49] [0.17  -  0.47] [0.15  -  0.47] 
REAL STOCK RETURN [-0.09  -  0.14] [-0.10  -  0.13] [-0.10  -  0.13] 

EQUITY PREMIUM [-0.12  -  0.10] [-0.14  -  0.10] [-0.18  -  0.08] 
PRICE / DIVIDEND RATIO [0.72  -  1.02] [0.58  -  0.92] [0.59  -  0.92] 

We test the null hypothesis: d = do in a model given by (1-L)dxt = εt. 

TABLE 2 

Confidence intervals of the non-rejection values of d using  in (11) with ρ(L; θ) = (1 – L)d+θ

and AR(1) ut 
R̂

Time Series  No regressors An intercept A linear trend 
INFLATION RATE [-0.13  -  0.19] [-0.18  -  0.20] [-0.44  -  0.11] 

REAL RISK FREE RATE [-0.11  -  0.33] [-0.08  -  0.28] [-0.14  -  0.27] 
REAL STOCK RETURN [-0.17  -  0.20] [-0.25  -  0.18] [-0.26  -  0.18] 

EQUITY PREMIUM [-0.22  -  0.00] [-0.30  -  0.00] [-0.41  -  -0.04] 
PRICE / DIVIDEND RATIO [0.24  -  0.83] [0.15  -  0.58] [0.13  -  0.60] 

We test the null hypothesis: d = do in a model given by (1-L)dxt = ut;  ut = τut-1 + εt.  

The significant results in Table 1 may be in part due to the fact that I(0) autocorrelation in ut 
has not been taken into account. Thus, we also performed the tests imposing AR(1) 
disturbances (see Table 2). Higher AR orders were also tried and the results were very 
similar. For all series, except the price/dividend ratio, the values oscillate around 0, implying 
that the series may be I(0) stationary. However, for the price/dividend ratio, the values are 
still above 0, ranging from 0.13 (with a linear time trend) to 0.83 (in the case of no 
regressors). Comparing the results of this table with those of Table 1 (white noise ut), we are 
left with the impression that the orders of integration are smaller by about 0.20 when 
autocorrelation is allowed for. This may be related to the fact that the estimates of the AR 
coefficients are Yule-Walker, which entails AR roots that, although automatically less than 
one in absolute value can be arbitrarily close to one. Hence, they might compete with the 
order of integration at the zero frequency when describing the behaviour at such a 
frequency. 

It may also be of interest to examine d, independently of the way of modelling the I(0) 
disturbances, at the same zero frequency. For this purpose, we use a semiparametric 
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procedure due to Robinson (1995a), which we now describe. The Quasi Maximum 
Likelihood Estimator (QMLE) of Robinson (1995a) is basically a ‘Whittle estimator’ in the 
frequency domain, considering a band of frequencies that degenerates to zero. The 
estimator is implicitly defined by: 

           ,log12)(logminargˆ
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and d ∈ (-0.5, 0.5).8 Under finiteness of the fourth moment and other mild conditions, 
Robinson (1995a) proved that: 

,)4/1,0()ˆ( ∞→→− nasNddm do  

where do is the true value of d, with the only additional requirement that m → ∞ slower than 
n. Robinson (1995a) showed that m must be smaller than n/2 to avoid aliasing effects. A 
multivariate extension of this estimation procedure can be found in Lobato (1999). There 
also exist other semiparametric procedures for estimating the fractional differencing 
parameter, for example, the log-periodogram regression estimator (LPE), initially proposed 
by Geweke and Porter-Hudak (1983) and modified later by Künsch (1986) and Robinson 
(1995b), and the averaged periodogram estimator (APE) of Robinson (1994b). However, we 
have chosen to use here the QMLE, primarily because of its computational simplicity. Note 
that, when using the QMLE, one does not need to employ any additional user-chosen 
numbers in the estimation (as in the case of the LPE and the APE). Also, there is no need to 
assume Gaussianity in order to obtain an asymptotic normal distribution, the QMLE being 
more efficient than the LPE.  

 

                                                                                                                                                      
8 Velasco (1999a, b) has recently showed that the fractionally differencing parameter can also be consistently 
semiparametrically estimated in nonstationary contexts by means of tapering. 
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FIGURE 3 

Semiparametric estimates of d based on the QMLE (Robinson, 1995a) 
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The horizontal axes corresponds to the bandwidth parameter number m, while the vertical one refers to the order of 
integration.
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Figure 3 reports the results based on the QMLE of Robinson (1995a), i.e.,  given by (15) 
for a range of values of m from 1 to n/2.9

d̂
9 It also displays the confidence intervals 

corresponding to the I(0) hypothesis for all series and the unit root for the price/dividend 
ratio. We see that, for inflation and the real risk-free rate, there are some estimates that are 
within the I(0) interval, especially if m is small; however, for most of the values of m, the 
estimates are higher than those corresponding to the confidence interval. For real stock 
returns and equity premium, almost all values are within such intervals, while for the 
price/dividend ratio they are clearly not. Also, for the latter series, the values are lower than 
those within the unit root interval, clearly suggesting that d is greater than 0 but smaller than 
1. Consequently, the findings are the same as with the parametric procedure, namely there 
is strong evidence in favour of I(0) stationarity for real stock returns and equity premium, 
some evidence of long memory for inflation and real risk-free rates, and strong evidence of 
fractional integration for the price/dividend ratio. 

The above approach to investigating the long-run behaviour of a time series consists of 
testing a parametric model for the series and estimating a semiparametric one, relying on the 
long run-implications of the estimated models. The advantage of the first procedure is the 
precision gained by providing all the information about the series through the parameter 
estimates. A drawback is that these estimates are sensitive to the class of models 
considered, and may be misleading because of misspecification. It is well known that the 
possibility of misspecification can never be settled conclusively in the case of parametric (or 
even semiparametric) models. However, the problem can be partly addressed by considering 
a larger class of models. This is the approach used in what follows, where we employ 
another version of the tests of Robinson (1994a) that enables us simultaneously to consider 
roots at zero and the cyclical frequencies. 

For this purpose, let us consider now the model given by (3) and (4), with ρ(L; θ) as in (8) 
and zt = (1,t)’ . Thus, under Ho (6), the model becomes: 

...,2,1,10 =++= txty tt ββ  (16) 

....,,2,1,)cos21()1( 21 2 ==+−− tuxLLwL tt
dd  (17) 

and, if d2 = 0, the model reduces to the case previously studied of long memory exclusively 
at the long-run or zero frequency. We assume that w = wr = 2πj/n, j = n/r, and r indicating the 
number of time periods per cycle. 

                                                                                                                                                      
9 In the case of the price/dividend ratio, and in order to ensure stationarity, the estimates were based on the first 
differenced data, adding then one to the estimated values of d to get the proper orders of integration. 
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TABLE 3 
Testing Ho (6) in (16), (4) and (8) with zt ≡ 1, w = wr, r = 6 and white noise ut 

D1 d2 INFLATION RISK RATE STOCK RT PREMIUM PRICE / DIV 

-0.10 -0.10 39.49 51.69 4.03 4.84 236.63 
-0.10  0.00 36.06 55.05 3.38* 0.69* 254.45 
-0.10  0.10 36.86 58.98 4.64* 0.90* 265.93 
-0.10  0.20 37.25 60.01 6.61 3.03* 272.99 
 0.00 -0.10 28.25 30.70 0.14* 4.35* 170.35 
 0.00  0.00 16.73 24.09 0.43* 0.54* 186.83 
 0.00  0.10 13.29 23.03 2.96* 1.81* 197.19 
 0.00  0.20 12.66 22.78 6.60 5.29* 202.97 
 0.10 -0.10 25.25 22.51 1.32* 5.49* 112.99 
 0.10  0.00 8.42 9.72 1.95* 2.74* 125.92 
 0.10  0.10 3.04* 6.19 5.64* 5.11* 133.05 
 0.10  0.20 2.72* 6.26 10.39 9.57 137.62 
 0.10   0.30 4.70* 7.72 15.49 14.84 141.08 
 0.20 -0.10 24.90 20.29 3.41* 6.91 68.85 
 0.20  0.00 5.70* 4.50* 5.18* 5.48* 76.73 
 0.20  0.10 0.20* 0.50* 9.78 8.87 81.48 
 0.20  0.20 1.09* 1.78* 15.19 13.99 83.13 
 0.20  0.30 4.84* 5.32* 20.69 19.63 82.15 
 0.30 -0.10 25.10 20.09 5.89* 8.23 38.97 
 0.30  0.00 5.65* 3.62* 8.78 8.19 41.56 
 0.30  0.10 0.98* 0.40* 14.06 12.43 43.27 
 0.30  0.20 3.32* 3.19* 19.81 18.00 43.31 
 0.30  1.00 26.02 25.29 32.69 34.37 4.71* 
  0.40  0.00 6.45 4.45* 12.23 10.73 19.63 
 0.40  0.10 3.30* 2.70* 17.98 15.68 19.12 
 0.40  0.70 34.13 23.32 31.40 31.13 5.73* 
 0.40  0.80 26.00 25.28 31.98 32.02 5.08* 
 0.40  0.90 27.50 26.85 32.64 32.80 5.11* 
 0.50  0.00 7.49 5.84* 15.38 13.12 7.89 
 0.50  0.10 6.14 5.83* 21.44 18.62 6.30 
 0.50  0.20 11.24 11,36 27.34 24.62 5.81* 
 0.50  0.30 18.20 18.46 32.72 30.33 5.86* 
 0.60  0.00 8.59 7.38 18.23 15..40 2.70* 
 0.60  0.10 9.02 9.15 24.48 21.31 1.00* 
 0.60  0.20 15.22 15.70 30.31 27.36 1.25* 
 0.60  0.30 22.70 23.22 35.51 32.95 2.59* 
 0.60  0.40 29.91 30.36 40.08 37.95 4.70* 
 0.70  0.00 9.77 9.00 20.82 17.60 1.22* 
 0.70  0.10 12.04 12.49 27.15 23.80 0.04* 
 0.70  0.20 19.01 19,76 32.86 29.84 1.26* 
 0.70  0.30 26.72 27.46 37.85 35.28 3.77* 
 0.80  0.00 11.09 10.73 23.20 19.75 1.72* 
 0.80  0.10 14.97 15.66 29.54 26.13 1.39* 
  0.80  0.20 22.57 23.51 35.10 32.10 3.57* 
 0.90  0.00 12.57 12.58 25.41 21.85 3.19* 
 0.90  0.10 17.86 18.77 31.70 28.33 3.82* 
 1.00  0.00 14.22 14.56 27.49 23.90 5.05* 

In bold and with “*”, the non-rejection values of the null hypothesis at the 5% significance level.
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We computed the statistic  given by (11) for values of d1 and d2 = -0.50, (0.10), 2, and r = 
2, …, n/2,10 assuming that ut is white noise. For brevity, we do not report the results for all 
statistics. In brief, the null hypothesis (6) was rejected for all values of d1 and d2 if r was 
smaller than 4 or higher than 9, implying that, if a cyclical component is present, its 
periodicity is constrained to be between these two years. This is consistent with the empirical 
finding in Canova (1998), Burnside (1998), King and Rebelo (1999) and others that cycles 
have a periodicity between five and ten years. We report in Table 3 the non-rejection cases 
at the 5% level, with an intercept and with r = 6. The reason for giving the results only for the 
case of an intercept is that those based on a linear time trend were very similar, together with 
the fact that the coefficient corresponding to the linear time trend was found to be 
insignificantly different from zero in virtually all cases. Note that the test statistic is obtained 
from the null differenced model, which is assumed to be I(0), and therefore standard t-tests 
apply. Further, we focus on r = 6 since the non-rejection values with r = 4, 5, 7, 8 and 9 
formed a proper subset of those non-rejections obtained with r = 6. We see that for inflation 
and real risk rate the non-rejection values oscillate between 0.10 and 0.40 for d1, and 
between 0 and 0.3 for d2. They are slightly smaller for d2 in the case of stock returns and 
equity premium, in some cases being even negative. Finally, for the price/dividend ratio, the 
values of d1 range between 0.5 and 1, while d2 seems to be constrained between 0 and 0.5. 

R̂

In order to have a more precise view about the non-rejection values of d1 and d2, we re-
computed the tests but this time for a shorter grid, with d1, d2 = -0.25, (0.01), 2. Figure 4 
displays the regions of (d1, d2) values where Ho cannot be rejected at the 5% level. 
Essentially, the series can be grouped into three categories: inflation rate and real risk-free 
rate; real stock returns and equity premium; finally price/dividend ratio. Starting with the first 
group (inflation and real risk-free rates), we observe that the values of d1 range between 0.1 
and 0.5 while d2 seems to be constrained between 0 and 0.3. Thus, we observe a slightly 
higher degree of integration at the long run or zero frequency compared to the cyclical one. 
For real stock returns and equity premium, the values of both orders of integration oscillate 
around 0. Finally, for the price/dividend ratio the values of d1 range between 0.5 and 1, while 
d2 is between 0 and 0.5, implying nonstationarity with respect to the zero frequency but 
stationarity with respect to the cyclical component, and mean reversion with respect to both. 
Consequently, shocks to the latter series will disappear in the long run, with those affecting 
the cyclical part tending to disappear faster than those affecting its long-run or trending 
behaviour.11 

                                                                                                                                                      
10 Note that in the case of r = 1, the model reduces to the case previously studied of long memory exclusively at the 
long run or zero frequency. 
11 This procedure was also conducted in the context of autocorrelated (AR(1) and AR(2)) disturbances and the 
results did not substantially differ from those reported here based on white noise ut. 
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FIGURE 4 

Non-rejection values of d1 and d2 in (16), (4) and (8) with r = 6 and white noise ut 

INFLATION RATE REAL RISK FREE RATE 

  

REAL STOCK RETURN EQUITY PREMIUM 
  

PRICE  /  DIVIDEND RATIO 
PRICE  /  DIVIDEND RATIO (FIRST DIFF) 

 

0

0,25

0,5

0,75

0 0,25 0,5 0,75

d1

d
2

0

0,25

0,5

0,75

0 0,25 0,5 0,75

d1

d
2

-0,5

-0,25

0

0,25

0,5

-0,5 -0,25 0 0,25 0,5

d1

d
2

-0,5

-0,25

0

0,25

0,5

-0,5 -0,25 0 0,25 0,5

d1

d
2

0

0,25

0,5

0,75

0 0,25 0,5 0,75 1 1,25

d1

d2



18 — Caporale, Gil-Alana / Long-run and Cyclical Dynamics in the US Stock Market — I H S 

5. Forecasting and comparisons with other models 

In this section, we try first to determine the best model specification for each time series. 
Then, we compare the selected models with other approaches based on I(0) and I(1) 
hypotheses. 

Given the lack of efficient procedures for estimating the parameters involved in the model 
given by (16) and (17), we have decided to use the following strategy: first, we recompute 
the values of the test statistic for d1o, d2o = -0.50, (0.01), 2 and r = 2, …, n/2, for the three 
cases of no regressors, an intercept and an intercept with a linear time trend. Then, we 
discriminate between the three cases according to the t-values of the estimated coefficients 
in (16), and choose the values of d1o, d2o and r which produce the lowest statistic in absolute 
value. The selected model for each time series is reported in the second column in Table 4. 
We observe that for inflation rate and real risk-free rate, both orders of integration are 
constrained to be between 0.10 and 0.30, the order of integration at zero being slightly 
higher than the cyclical one; for real stock returns and equity premium, the values of the d’s 
are close to zero, being slightly negative for the zero frequency; finally, for the price-dividend 
ratio we see that it is nonstationary at the long-run frequency (d1 = 0.68), and stationary with 
d2 close to zero for the cyclical component. 

The third column of the table reports the selected models taking into account exclusively the 
component affecting the long run or zero frequency, while the fourth refers to the case of 
integer differentiation with respect to such a frequency. In both cases, we model the cyclical 
structure using ARMA specifications. Starting with the case of fractional integration, we 
observe that the highest degree of integration is obtained for the price/dividend ratio (d = 
0.73), followed by inflation (d = 0.19). For the remaining three series, the values are 
practically zero (0.03 for real risk-free rate; 0.01 for real stock returns, and –0.04 for equity 
premium). Imposing integer orders of integration, for the first four variables, we use d = 0 
while for the price-dividend ratio we try both d = 0 and 1. With respect to the short-run 
components we use ARMA(p, q) models, with p, q ≤ 3, and choose the best model 
specification using both LR tests and likelihood criteria (AIC, BIC). We see that, for most of 
the series, the short-run structure can be described by simple MA models, the only exception 
being the real risk-free rate where an AR(1) process is imposed. 
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TABLE 4 

Selected models for each time series 
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Next, we compare the various models in terms of their forecasting performance. Standard 
measures of forecast accuracy are the following: Theil’s U, the mean absolute percentage 
error (MAPE), the mean-squared error (MSE), the root-mean-squared error (RMSE), the 
root-mean-percentage-squared error (RMPSE) and mean absolute deviation (MAD) (Witt 
and Witt, 1992). Let yt be the actual value in period t; ft the forecast value in period t, and n 
the number of periods used in the calculation. Then: 

a) Theil’s U: 
( )
( )

;
2
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∑
∑
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b) Mean absolute percentage error (MAPE):  
( )

;
/

n
xfx ttt∑ −

 

c) Mean squared error (MSE): 
( )
n
fx tt∑ − 2

; 

d) Root-mean-percentage-squared error (RMSP):  
( )

;
/2

n
ffx ttt∑ −

 

e) Root-mean-squared error (RMSE): 
( )

;
2

n
fx tt∑ −

 

f) Mean absolute deviation (MAD): .
n

fx tt∑ −
 

The first type of evaluation criteria measures the spread or dispersion of the forecast value 
from its mean. The MAD belongs to this category. It measures the magnitude of the forecast 
errors. Its principal advantages are ease of interpretation and the fact that each error term is 
assigned the same weight. However, by using the absolute value of the error term, it ignores 
the importance of over or underestimation.  

The second type of accuracy measure is based on the forecast error, which is the difference 
between the observation, xt, and the forecast, ft. This category includes MSE, RMSE and 
RMSPE. MSE is simply the average of squared errors for all forecasts. It is suitable when 
more weight is to be given to big errors, but it has the drawback of being overly sensitive to a 
single large error. Further, just like MAD, it is not informative about whether a model is over- 
or under-estimating compared to the true values. RMSE is the square root of MSE and is 
used to preserve units. RMSPE differs from RMSE in that it evaluates the magnitude of the 
error by comparing it with the average size of the variable of interest. The main limitation of 
all these statistics is that they are absolute measures related to a specific series, and hence 
do not allow comparisons across different time series and for different time intervals. By 
contrast, this is possible using the third type of accuracy measure, such as MAPE, which is 
based on the relative or percentage error. This is particularly useful when the units of 
measurement of x are relatively large. However, MAPE also fails to take over or under 
estimation into consideration. 

Unlike the measures mentioned above, Theil’s U is a relative measure, allowing comparisons 
with the naïve (xt = xt-1) or random walk model, where a U = 1 indicates that the naïve 
method is as good as the forecasting technique, whilst U < 1 means that the chosen 
forecasting method outperforms the naïve model. The smaller the U-statistic, the better the 
performance of the forecasting technique relative to the naïve alternative. Despite some 
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attractive properties, the U-statistic has the disadvantage of not being as easily interpretable 
as MAPE; further, it does not have an upper bound, and therefore is not robust to large 
values. 

The three selected time series models (fractional and cyclical differencing, FCD; fractional 
differencing, FD; and integer differencing, ID) for each of the series were used to generate 
the 5-year-ahead out-of-sample forecasts. Each forecast value was calculated and 
compared with the actual value of the series. Then, the above six criteria were used to rank 
the three forecasting models for each series. The ranking in terms of forecasting 
performance is given in Table 5. We observe that for inflation and real risk-free rate the FCD 
model outperforms FD and ID for all the criteria. For real stock returns and equity premium, 
the ID specification seems to be the most adequate, while for the price/dividend ratio the 
results are mixed. Therefore, on the basis of the MAPE, MSE, RMSP and RMSE criteria, the 
fractional and cyclical (FCD) model emerges as the best specification, while the other two 
criteria, MAD and Theil’s U, suggest that the simple fractional model (with d = 0.73) is the 
most adequate one. 

TABLE 5 
Overall ranking of forecasting performance using different criteria 

Series Model Theil’s U MAPE MSE RMSD RMSE MAD 

FCD 2 1 1 1 1 1 

FD 1 2 2 2 2 3 Inflation rate 

ID 3 3 3 3 3 2 

FCD 1 1 1 1 1 1 

FD 3 3 3 3 3 2 
Real risk  
free rate 

ID 2 2 2 2 2 3 

FCD 3 3 3 3 2 3 

FD 2 2 2 2 3 2 
Real stock  

return 
ID 1 1 1 1 1 1 

FCD 3 3 3 3 3 3 

FD 1 2 2 2 2 1 
Equity  

premium 
ID 2 1 1 1 1 2 

FCD 2 1 1 1 1 2 

FD 1 2 2 2 2 1 Price – Dividend 
ratio 

ID 3 3 3 3 3 3 

FCD means Fractional and Cyclical Differentiation; FD is Fractional Differentiation and ID Integer 
Differentiation. 
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6. Conclusions 

In this paper we have examined the time series behaviour of the US stock market for the 
time period 1871 - 1993 by means of new statistical techniques based on long memory 
processes. Specifically, we have used a procedure due to Robinson (1994a) that has 
enabled us to test for unit and fractional roots not only at zero but also at the cyclical 
frequencies. These tests have standard null and local limit distributions and can easily be 
applied to raw time series.12 

We initially focused exclusively on the long run or zero frequency, performing a suitable 
version of Robinson’s (1994a) parametric tests along with a semiparametric estimation 
procedure. We used these methods because of the distinguishing features that make them 
particularly relevant in the context of financial time series. Specifically, they do not require 
Gaussianity (which is an assumption that is not satisfied in most financial data), but only a 
moment condition of order 2. Additionally, they have standard null limit distributions, which is 
another advantage of these tests compared to other procedures based on AR alternatives. 
The order of integration estimated using these methods varies considerably, but 
nonstationarity is found only in the case of the price/dividend ratio. 

However, the non-rejection values obtained at the zero frequency could be partly due to the 
fact that attention has not been paid to other possible (cyclical) frequencies of the process. 
Thus, we adopted a method suitable for simultaneously testing for the presence of roots at 
zero and the cyclical frequencies, as in Robinson (1994a). For the latter frequencies, the 
model is based on Gegenbauer processes. The results suggest that the periodicity of the 
series ranges between 5 and 10 years, which is consistent with most of the empirical 
literature on cycles finding a periodicity of about six years (see, e.g., Baxter and King, 1999, 
Canova, 1998, and King and Rebelo, 1999). Further, the series can be grouped into three 
different categories: inflation and real risk-free rates, with the order of integration at the zero 
frequency fluctuating between 0 and 0.5 and d2 (cyclical integration) between 0 and 0.3; real 
stock returns and equity premium, with both orders of integration fluctuating around 0; and 
finally, the price/dividend ratio, with d1 ranging between 0.5 and 1 and d2 between 0 and 0.5. 
Thus, we found evidence of stationary long memory with respect to both components for 
inflation and real risk-free rates; I(0) stationarity for stock returns and equity premium; and 
nonstationary long memory at the zero frequency but stationary at the cyclical component for 
the price/dividend ratio. Finally, the fact that all orders of integration are smaller than 1 
suggests that mean reversion takes place with respect to both components for all series, 
though the rate of adjustment varies across series. 

An argument that could be employed against this type of models for the cyclical component 
is that, unlike seasonal cycles, business cycles are typically weak and irregular and are 
spread evenly over a range of frequencies rather than peaking at a specific value. A strong 

                                                                                                                                                      
12 A diskette containing the FORTRAN codes for the programs is available from the authors upon request. 
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counterargument is that, in spite of the fixed frequencies used in this specification, flexibility 
can be achieved through the first differenced polynomial, the ARMA components and the 
error term.  In fact, Bierens (2001) uses a model of this kind (with d2 = 1) to test for the 
presence of business cycles in the annual change of monthly unemployment in the UK. Our 
analysis also yields clear-cut results, which are consistent with earlier findings on the 
periodicity of cycles.  

The selected models for each time series were then compared with other approaches based 
on fractional and integer differentiation with respect to the zero frequency. Six forecasting 
criteria were employed and the results showed that the fractional cyclical model outperforms 
the others in a number of cases. 

It would also be worthwhile to obtain point estimates of the fractional differencing parameters 
in this context of trends and cyclical models. For the trending component the literature is vast 
(see, e.g., Fox and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992; Tanaka, 1999, etc.). For the 
cyclical part, there are fewer contributions such as Arteche and Robinson (2000) and Arteche 
(2002). However, the goal of this paper is to show that a fractional model with the roots 
simultaneously occurring at the zero and the cyclical frequencies can be a credible 
alternative to the conventional ARIMA (ARFIMA) specifications. In fact, our approach leads 
us to some unambiguous conclusions, with the periodicity ranging between 4 and 10 years 
and most of the orders of integration within the intervals (0, 0.5) and (0.5, 1) depending on 
the series and the component under study. 

Further research could be carried out in this context. For instance, the tests of Robinson 
(1994a) can be extended to allow for more than one cyclical component underlying the 
process. The existence of multiple cycles in financial series has not yet been examined 
empirically, and might be of interest in the context of various latent variates. Further, daily 
data could also be used to examine intraday periodicity, e.g. in the volatility of asset returns. 
As an alternative to the cyclical fractional approach, Andersen and Bollerslev (1997) 
modelled periodicity in returns by means of deterministic weights. The inclusion of 
deterministic components is possible in Robinson’s (1994a) set-up, and its significance can 
be tested by means of a joint test of the deterministic regressors and of the order of 
integration. The univariate nature of the present study is also a limitation in terms of 
theorising, policy-making or forecasting. Theoretical models and policy-making involve 
relationships between many variables, and forecast performance can be improved through 
the use of many variables (e.g., factor based forecasts based on data involving hundreds of 
time series beat univariate forecasts, as shown, e.g., in Stock and Watson, 2002). However, 
the univariate approach taken in the present paper is useful, as it enables one to decompose 
the series into a long run and a cyclical component. Moreover, theoretical econometric 
models for both long run and cyclical fractional structures in a multivariate framework are not 
yet available. In this respect, the present study can be seen as a preliminary step in the 
analysis of financial data from a different time series perspective. Of particular interest in 
future work would be a more extensive study of the out-of-sample forecasting performance 
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of our preferred model. In order to increase the number of out-of-sample observations and 
gain power, a rolling design could be used. Alternatively, larger sample could be obtained 
using higher frequency data, such as quarterly series. Data mining is an additional relevant 
issue worth exploring. 
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