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Abstract 

In this study, we examine the Brock, Dechert and Scheinkman (BDS) test when applied to 
the standardised residuals of an estimated GARCH(1,1) model as a test for the adequacy of 
this specification. We review the conditions derived by De Lima (1996, Econometric 
Reviews, 15, 237-259) for the nuisance-parameter free property to hold, and address the 
issue of their necessity, using the GARCH(1,1) model. By means of Monte Carlo simulations, 
we show that, provided that the unconditional mean exists, the BDS test statistic still 
approximates the standard null distribution even when the majority of the conditions are 
violated. Further, the test performs reasonably well, as its empirical size is rather close to the 
nominal one. As a by-product of this study, we also examine the related issue of consistency 
of the QML estimators of the conditional variance parameters under various parameter 
configurations and alternative distributional assumptions on the innovation process. 
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1 Introduction

The Brock, Dechert and Scheinkman (1987) test for nonlinearity (BDS test henceforth)
is widely used as a misspecification test for parametric models capturing the dynamics
of time series. For this purpose, it is applied to the estimated residuals from the model
of interest. As these can still exhibit some form of dependence, even if the true inno-
vations are i.i.d., the asymptotic distribution of the test statistic may be affected by
the estimation procedure. This possible distortion has led researchers to consider test
statistics exhibiting the so-called nuisance-parameter free property, i.e. whose asymp-
totic distribution is not affected by the intermediate step of parameter estimation.

Brock, Dechert and Scheinkman (1987) and Brock, Hsieh and LeBaron (1991) were
the first to derive conditions for the BDS test to be nuisance-parameter free, and to carry
out Monte Carlo simulations to corroborate their theoretical results. However, they were
not able to prove that the BDS statistic that uses estimated residuals is asymptotically
normal. Following the work of Randles (1982), De Lima (1996) investigated further
the invariance property of the BDS test, and showed that, under appropriate sufficient
conditions for the series under scrutiny, the BDS test is nuisance parameter-free for
linear additive models or models that can be cast into this format. This family includes
the ARCH class of models, introduced by Engle (1982) and generalised by Bollerslev
(1986), as long as the BDS test is applied to a modified residual series. Examining
the ‘necessity’ of De Lima’s conditions is a difficult task analytically, and can be more
conveniently achieved by means of suitably designed Monte Carlo simulations in the
context of an appropriate model. This paper analyses the ”necessity” of De Lima’s
conditions for the BDS test statistic to have an asymptotic N(0,1) distribution when
it is computed using estimated standardised residuals of a GARCH(1,1) model. More
specifically, consider a martingale difference GARCH(1,1) process, defined as follows:

ut = htzt (1)

zt ∼ IID(0, 1) (2)

where

h2
t = c+ µu2

t−1 + δh2
t−1 (3)

denotes the variance of ut conditional on the σ−field, Ft−1, generated by all information
available at time t− 1. We are interested in testing the null hypothesis

H0 : {zt} is an i.i.d process

by means of the BDS statistic constructed on the basis of ẑt = ût/ĥt, where ĥt is the
Quasi Maximum Likelihood (QML) estimate of ht. Our aim is to analyse the properties
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of the BDS test when applied to ẑt for various distributional assumptions on zt, and
alternative values of the GARCH parameters µ and δ. Given that the GARCH(1,1)
model is versatile enough to produce a range of stochastic processes, with very dif-
ferent moment and memory characteristics, depending on the parameter settings and
the distribution of the innovations zt, we shall be able to examine cases that violate
some or all of De Lima’s conditions. Indeed, the GARCH(1,1) model provides a flexible
framework allowing the researcher to control for the amount of temporal dependence,
the degree of time-heterogeneity and the number of unconditional moments that char-
acterise the process by simply changing the values of the model parameters and/or the
distributional assumption on the innovations zt. The exact De Lima’s conditions will
be discussed in detail in the next section. However, it is already apparent from the pre-
vious discussion that the ‘invariance property’ of the BDS test is closely related to the
question of consistency and the rate of convergence of the Quasi Maximum Likelihood
(QML) estimator of the conditional variance parameters.

The paper is structured as follows. Section 2 briefly summarises the conditions
that must be satisfied by the process of interest in order for the test to be nuisance-
parameter free. Section 3 outlines the moment, memory and heterogeneity properties
of the GARCH(1,1) model. In addition, it discusses the issue of consistently estimating
its parameters, including the case where non-Gaussian innovations drive the GARCH
process. Section 4 describes the Monte Carlo setup and reports the main findings.
Finally, Section 5 offers a brief summary of the main results and some concluding
remarks.

2 The Brock, Dechert and Scheinkman (BDS) Test

A detailed description of the BDS test can be found in Brock, Dechert and Scheinkman
(1987) or De Lima (1996). Initially, the test was designed to be applied to raw series in
order to test whether they are i.i.d. It was soon realised that it could also be applied to
the estimated residuals from a model to test for omitted dynamics, i.e. to test model
adequacy. Brock and Dechert (1988) and De Lima (1996) examined the conditions under
which the BDS statistic is nuisance-parameter free, that is its asymptotic distribution
does not change when it is applied to the estimated residuals from a model, rather
than the raw series itself. The invariance property of the BDS statistic is ensured by
a set of sufficient conditions that are more stringent than in the case of smooth U-
statistics (a function of which the BDS test is). This is because the indicator kernel,
Iε(., .), used in the definition of the correlation integral, is not a differentiable smooth
kernel. As a result, special sufficient conditions, ensuring the reversibility between the
operations of differentiation and taking the limiting mean, are required in order to
guarantee the invariance property of the BDS statistic. Specifically, following Randles
(1982), De Lima (1996) derives five sufficient conditions (Assumptions A-D, pp. 240-
241, and Assumption E, pp. 245) that ensure the ‘nuisance-parameter free’ property of



I H S – Caporale, Ntantamis, et al. / A Monte Carlo Study 3

the BDS test for linear additive models, such as yt = G(Yt−1; θ)+et, or for models that
can be transformed into this format. In this paper, we focus on the effects of the failure
of some of these conditions on the invariance property of the BDS test. Assumption A
requires yt to be a strong mixing process with summable mixing coefficients, a(k), that
is
∑∞
k=1 a(k)1/2 <∞. Assumption B and C impose moment conditions on the difference

between the kernel Iε evaluated at two different points of the residual function. Of these
two assumptions, B is the most important one, and may be verified in a case by case
framework by evaluating the supremum of the relevant random variable. Assumption
C is automatically satisfied (by assumption B) for bounded kernels. Assumption D
requires the parameters, θ, of the model to be consistently estimated. The consistency
of the estimator of θ is usually based on some memory restrictions on the errors of the
model, such as strong mixing with summable mixing coefficients. Of course, if the errors
are i.i.d. these restrictions are automatically satisfied. Moreover, for the same reason
(consistent estimation of θ) moment conditions on the error term (or sometimes on the
raw series itself) should be imposed. Therefore, the nuisance-parameter free property
of the BDS does require moment restrictions when the BDS test is applied to estimated
residuals as opposed to raw data. Finally, Assumption E requires the distribution of
the innovations to be absolutely continuous and differentiable, with a bounded density
function.

3 Consistent Estimation and Moment and Memory Prop-

erties of the GARCH(1,1) Process

We shall investigate the necessity of conditions (A-E) in the context of the martingale-
difference (MD) GARCH(1,1) model defined in the introduction. Note that no specific
distributional characteristics of zt have been assumed yet, other than the variance
of the unspecified distribution is equal to one. The examination of the necessity of
conditions (A-E) within the context of the MD-GARCH(1,1) process is conducted for
two reasons. First, because of its empirical relevance: most studies that aim at capturing
non-linear dynamics in economic or financial time series specify and estimate such a
model. Second, the MD-GARCH(1,1) process is a versatile stochastic process, which,
depending on the distribution of the innovations process, zt, and the values of the
coefficients µ and δ, is able to reproduce processes that range from b−mixing with
finite unconditional moments of the fourth order to processes that are neither mixing
nor possess any unconditional moments. Note that the error term in (1) is not additive.
However, this does not generate any serious difficulties since, by raising both sides of (1)
to the square power and taking logs, we can transform (1) into a model that contains an
additive error, νt = ln z2

t = lnu2
t − lnh2

t . The asymptotic distribution of the BDS test
is the same whether it is applied to the estimated residuals ν̂t or to νt itself, provided
that ν̂t is a consistent estimator of νt.
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As already mentioned, the moment and memory characteristics of ut depend on a)
the distribution of the innovations zt and b) the values of the parameters µ and δ. The
following subsection summarises the main theoretical results found in the literature.

3.1 Moment and Memory Properties of the GARCH(1,1) Process

Case I: Fourth-order stationary process.

He and Terasvirta (1999) provide a necessary and sufficient condition for E(u4
t ) <

∞.1 This condition requires minimum restrictions on the innovation process zt, which is
assumed to be a zero mean i.i.d. process with second and fourth unconditional moments
denoted by v2 and v4 respectively. The condition is

µ2v4 + 2µδv2 + δ2 < 1 (4)

which, under the assumption that zt ∼ N(0, 1), reduces to Bollerslev’s (1986) condition

3µ2 + 2µδ + δ2 < 1 (5)

As for the memory properties, Davidson (2002) retains the unit variance assumption
(v2 = 1) and demonstrates that condition (4) is necessary and nearly sufficient for ut
to be near-epoch dependent on zt in L2-norm (L2 −NED).2 This is sufficient for the
series to obey the central limit theorem or the invariance principle.

Case II: Covariance stationary process.

In this case, condition (4) is violated, but we assume that the unconditional second
moment exists, which amounts to

µv2 + δ < 1 (6)

Under the unit variance assumption, the necessary and sufficient condition for covari-
ance stationarity reduces to the well-known condition

µ+ δ < 1 (7)

Davidson (2002) proves that, under (7), ut is L1−NED on zt, that is the sufficient con-
dition for the series to obey the law of large numbers holds, but not the corresponding
one for the Central Limit Theorem (CLT). Nevertheless, as shown by De Lima (1996),
since covariance stationarity holds, the condition for assumption B is satisfied. More-
over, Carrasco and Chen (2002) prove that (7) is sufficient for ut to be b−mixing. Since

1See also Ling and MacAleer (2002) for the necessary and sufficient condition for the existence of

higher order moments of the GARCH(r,s) model.
2Davidson shows that the fourth moment condition is necessary and nearly sufficient for the

L2−NED property, irrespectively of the distribution of the innovations process. The L2−NED prop-

erty of a GARCH(1,1) process was first proved by Hansen (1991) under the additional assumption of

normality of zt.
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b−mixing is stronger than a−mixing (but weaker than ϕ−mixing), we may conclude
that condition (7) is sufficient to guarantee the required memory property.

Case III: IGARCH process, with E(ut) = 0.

Nelson (1990) proves that a necessary and sufficient condition for ut to be strictly
stationary and ergodic is given by

E
[
ln(δ + µz2)

]
< 0 (8)

regardless of the distribution of the i.i.d. innovations zt. This condition holds even if

µv2 + δ = 1 (9)

Under (9), E(ut) = 0 and V ar(ut) = ∞. In such a case, the L2−NED measure of
memory is unavailable, since the unconditional second moment of ut does not exist.
Moreover, there is no guarantee that ut is a−mixing.

Case IV: Mildly explosive process, with E(ut) = 0.

Nelson (1990) shows that there might be an area in the (µ − δ) plane for which
µv2 + δ > 1 and condition (8) holds. In such a case, ut is mildly explosive but still
strictly stationary and ergodic. If, in addition,

E(δ + µz2)1/2 < 1 (10)

the process ut has an unconditional mean equal to zero.

Case V: Mildly explosive process, with E(ut) =∞.

This is a case where µ and δ are such that (8) is satisfied but (10) fails. By comparing
this case with the previous one, one can discern the importance of the finite (zero) mean
property of ut for the properties of the BDS statistic.

Let us now turn to the problem of estimating the conditional variance parameters,
θ = (c, µ, δ).

3.2 Consistent Estimation of the GARCH(1,1) Parameters.

When zt ∼ N(0, 1), the employment of the Gaussian likelihood function results in
Maximum Likelihood (ML) estimates, θ̂ML, of θ = (c, µ, δ). If the distribution of zt
is not Normal, then the Gaussian likelihood function produces the so-called Quasi
Maximum Likelihood (QML) estimates of θ. The asymptotic properties of the QML
estimates of θ have been studied in Bollerslev and Wooldridge (1992), Lumsdaine (1996)
and Lee and Hansen (1994). All these studies require the validity of (8), that is they
assume that ut is strictly stationary and ergodic so that the relevant laws of large
numbers apply. They differ in the moment restrictions that they impose either on
ut or on zt. The less restrictive moment condition is that of Lee and Hansen (1994)
which requires the fourth moment of zt to be finite. More recently, Jensen and Rahbek
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(2003) relax the stationarity condition (8) and prove the
√
T−consistency of the QML

estimates in cases where ut is a non-stationary process with unbounded low order
moments. The only condition they impose is the existence of the fourth moment of zt
(not ut). Interestingly, they prove that the rate of convergence is faster in the non-
stationary than in the stationary case. These results imply that the QML estimates
of θ are

√
T−consistent for all the five cases defined above provided that ν4 < ∞.

However, as will be shown below,
√
T−consistency of the QML estimates of θ seems

to be achieved even in cases where ν4 is infinite, as for example when zt follows a t(4)
or t(3) distribution. Therefore, as a by-product of this study, we provide evidence that
the existing conditions for

√
T−consistency of the QML estimates of θ may be relaxed.

4 Monte Carlo Simulations

In this section we carry out Monte Carlo simulations that aim at examining the dis-
tribution of the BDS statistic and the resulting performance of the BDS test in cases
where some of the sufficient conditions for the invariance property of the BDS test
fail. Since the performance of the BDS test statistic is closely linked to the quality
of estimation of the GARCH parameters, we examine both issues jointly. The simula-
tions are designed as follows. First, we choose the distribution of the innovation zt, and
generate i.i.d. series with mean zero and variance one. Second, we select the GARCH
parameters, δ and µ, in such a way as to generate a series ut with specific moment
and memory properties as outlined in cases I to V. Third, we estimate a GARCH(1,1)
model, take the logarithm of the squared standardised residuals and compute the BDS
statistic for various values of the embedding dimension m and for alternative sample
sizes, T , namely T = 50 to 950 by steps of 50. We repeat this procedure 2000 times and
calculate the mean, variance, skewness and kurtosis coefficients of the BDS statistic.
We also compute the 5% empirical size. Further, for each parameter configuration and
for each sample size, we compute the average absolute bias of the QML estimates of c,
µ and δ. By doing this, we are able not only to examine whether the QML estimates
are consistent, but also to investigate their rate of convergence. This issue is particu-
larly important in cases where ν4 is infinite, that is when the sufficient condition for
√
T−consistency is violated. In such a case the QML estimates may converge at a rate

slower than
√
T , or they might not converge at all. In both cases the convergence of

the BDS statistic to N(0, 1) will be affected.

4.1 The case of Gaussian innovations

First, we assume that zt is an i.i.d. Gaussian process. Figure 1 shows the regions in the
(µ−δ) plane that correspond to the five cases defined above, when zt ∼ N(0, 1). Regions
1 and 2 correspond to cases I and II, respectively; the boundary between regions 2 and
4 to case III; and finally regions 4 and 5 to cases IV and V respectively. We selected
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values of (µ, δ) ranging from the upper left area of each region to the bottom right one,
in order to achieve full coverage of each region.3 However, we report in the Tables only
the results for two alternative values of (µ, δ). The first pair of values is representative
of those typically reported in the relevant literature, i.e. a very small µ and a much
larger δ, while the second pair includes a much larger value of µ. We mention in the
text any cases where other points from the same region produce different results. The
reported results are those for the following pairs of values for (µ, δ) corresponding to
the five regions mentioned above.

Model Ia: (µ, δ) = (0.1 , 0.85) and model Ib: (µ′, δ′) = (0.4 , 0.4)

Model IIa: (µ, δ) = (0.1 , 0.895) and model IIb: (µ′, δ′) = (0.4 , 0.5)

Model IIIa: (µ, δ) = (0.1 , 0.9) and model IIIb: (µ′, δ′) = (0.4 , 0.6)

Model IVa: (µ, δ) = (0.1 , 0.904) and model IVb: (µ′, δ′) = (0.4 , 0.63)

Model Va: (µ, δ) = (0.1 , 0.907) and model Vb: (µ′, δ′) = (0.4 , 0.67)

Before presenting the results on the performance of the BDS test statistic, let us first
discuss the ML estimates of the GARCH parameters for each of the five models defined
above. Note that, since zt is Gaussian, there is no reason to believe that consistency is
threatened in any of the cases. Figures 2.I refers to Models Ia and Ib and reports the
mean absolute bias of the ML estimates of µ and δ for sample sizes ranging from 50
to 950 by steps of 50.4 More specifically, the upper panel of figure 2.I corresponds to
model Ia, that is (µ, δ) = (0.1 , 0.85), while the lower panel of figure 2.I corresponds to
model Ib, that is (µ′, δ′) = (0.4 , 0.4). Similarly, Figures 2.II, 2.III, 2.IV and 2.V refer
to Model II, III , IV and V respectively. In each case we also report simulated biases
that would have been produced, had the rate of convergence of the ML estimates been
exactly

√
T . We observe the following:

i) The ML estimators of the GARCH parameters seem consistent in all cases under
examination, since the bias decreases with the sample size. Moreover, the mean absolute
bias of the estimates decreases in general as we move from region 1 (i.e. model I) to
region 5 (i.e. model V). The only exception is found when T = 50, in which case the
bias of δ increases.

ii) The rate of convergence of the ML estimators increases as we move from region
1 to region 5. However, the rate of convergence of the ML estimates of µ and δ differs
substantially. To be more specific, the former is always very close to

√
T and only

minor increases are observed as we move from region 1 to region 5. By contrast, the
latter increases substantially. Moreover, when µ = 0.1, the ML estimator of δ becomes
T−consistent when the fourth-order stationarity of ut does not hold. However, the
rate of convergence of the ML estimators depends on the pair of values (µ, δ), and
it generally decreases for increasing µ and decreasing δ. This is more obvious for the

3Throughout the simulations we set the constant term c equal to unity.
4The mean absolute bias of µ is displayed on the left, while the mean absolute bias of δ is displayed

on the right. The results for the constant term are not reported to save space.
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estimator of δ, if we compare the rate of convergence for the two cases a and b.

We now examine the behaviour of the BDS test. The results, reported in Table 1,
can be summarised as follows5:

i) For small sample sizes T < 250, the BDS test is slightly oversized.6 For example,
the empirical size of the test is about 13 percent when T = 50 for all the values of the
embedding dimension m under consideration. However, it approaches the nominal size
of 5 percent as the sample size increases. For samples of 250 observations or more, it is
generally less than 6 percent.

ii) The empirical size of BDS is affected neither by the moment characteristics of ut
nor by the relative values of µ and δ. Even for regions 3, 4 and 5, where the sufficient
conditions for of the invariance property of BDS are violated, the distribution of the
BDS statistic approaches the standard normal N(0, 1), providing empirical sizes that
are almost equal to the nominal size.

4.2 Symmetric, heavy-tailed distributions: The case of t-innovations

In this set of experiments, we assume that the innovations zt follow a standardised t-
distribution with κ degrees of freedom, that is zt = (ξt/

√
k/k − 2), where ξt is an i.i.d.

t(k) variate. The new distributional assumption implies that some of the aforementioned
cases (I) to (V) are no longer defined. Indeed, the number of valid cases, under t-
innovations, depends on the degrees-of-freedom parameter, k. In particular, for k = 5,
all the cases (I)-(V) exist. For k = 4 and k = 3, fourth moments of the innovations
do not exist, which in turn implies that case I is not defined. As already mentioned,
the existence of the fourth moment of zt was the condition imposed by Jensen and
Rahbek (2003) to prove the

√
T−consistency of the QML estimates. It would therefore

be very interesting to examine the consistency of QML estimates and the behaviour of
the BDS statistic when the fourth moment condition of zt is violated. Figure 3 defines
the corresponding cases 2 to 5 for k = 4.

We first investigate the consistency property of the QML estimates of θ, when zt

follows a standardised t(3)− or t(4)−distribution. In general, the results are similar for
the two distributions. Therefore, we only report the results for the latter. We consider
values of (µ, δ) corresponding to case II to V, and, once again, two pairs of values for
each region, i.e. case a = (µ, δ) and b = (µ′, δ′). More specifically, the models under
investigation are the following:

Model VIa: (µ, δ) = (0.1 , 0.8) and model VIb: (µ′, δ′) = (0.4 , 0.5)

Model VIIa: (µ, δ) = (0.1 , 0.9) and model VIIb: (µ′, δ′) = (0.4 , 0.6)

Model IIXa: (µ, δ) = (0.1 , 0.91) and model IIXb: (µ′, δ′) = (0.4 , 0.65)

5We only report the empirical size of the BDS test. Mean, standard deviation, skewness and kurtosis

of the BDS test are available on request.
6This mainly reflects the effect of the positive skewness we observe in the empirical distribution of

the BDS statistic.
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Model IXa: (µ, δ) = (0.1 , 0.915) and model IXb: (µ′, δ′) = (0.4 , 0.72)

The mean absolute bias of the GARCH parameters for these four models is shown in
Figures 4.II, 4.III, 4.IV and 4.V respectively. The results can be summarised as follows:

i) The bias decreases as the sample size increases, which supports the consistency
of the QML estimators. In general, it decreases as we move from region 2 to region 5.
Few exceptions are observed for small samples (T < 200).

ii) The rate of convergence of the QML estimators depends on both the moment
properties of ut and the value of (µ, δ). More specifically, the estimators of all the
GARCH parameters converge faster to θ as we move from region 2 to region 5. Initially,
when second-order stationarity of ut holds, the rate of convergence is very slow (slower
than

√
T in most cases). However, as we move to regions 3, 4 and 5, it increases,

reaching T in some cases. For example, the estimator of δ becomes T−consistent when
µ = 0.1, and the variances of ut is infinite (for regions 3 to 5). On the other hand, the
rate of convergence of the estimates of µ is always slower than T . In general, the rate
of convergence is slower for large values of µ and small values of δ. Similarly to the
Gaussian case, the estimates of δ converge faster than those of µ.

We now examine the distribution of the BDS statistic. The results are presented in
Table 2. On the whole, the results are similar to the Gaussian case. That is, the BDS
test is slightly oversized for small sample sizes but it approaches the nominal size as
the sample increases. For example, for T = 50 and m = 2, the empirical size of BDS
is 13.2 and 13.8 percent for the Gaussian and t(4)−distribution respectively. It can be
noted that the empirical sizes in the case of the t(3)−distribution are about 1 percent
larger than those of the t(4)−distribution. Finally, the distribution of the BDS statistic
seems to be invariant of the moment characteristics of ut.

4.3 Asymmetric Distributions: The case of χ2 innovations

So far, we have considered innovations that follow a symmetric distribution. We now
analyse the behaviour of the BDS statistic when the innovations zt have an asymmetric
distribution. To shed some light on this issue, we carry out some additional simulations
in which the innovations zt follow a standardised χ2−distribution, that is zt = ξt−1√

2
,

where ξt is an i.i.d. χ2(1) variate. Under this assumption, all five cases (I to V) are
meaningful. Figure 5 shows the corresponding regions in the (µ, δ) plane.

We consider the following models:

Model Xa: (µ, δ) = (0.1 , 0.8) and model Xb: (µ′, δ′) = (0.2 , 0.4)

Model XIa: (µ, δ) = (0.1 , 0.85) and model XIb: (µ′, δ′) = (0.4 , 0.5)

Model XIIa: (µ, δ) = (0.1 , 0.9) and model XIIb: (µ′, δ′) = (0.4 , 0.6)

Model XIIVa: (µ, δ) = (0.1 , 0.91) and model XIIVb: (µ′, δ′) = (0.4 , 0.65)

Model XIVa: (µ, δ) = (0.1 , 0.92) and model XIVb: (µ′, δ′) = (0.4 , 0.75)

Figures 6.I, 6.II, 6.III, 6.Iv and 6.V show the mean absolute bias of µ and δ for
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models X, XI, XII, XIII and XIV respectively. As before, the mean absolute bias of the
QML estimators decreases with the sample size. Few exceptions are found when µ is
large. In that case, the bias of the estimators initially increases with the sample size, but
starts to decrease with the sample size when T > 100. Once again, the bias decreases
as we move from region 1 to region 5. The rate of convergence appears to depend
on the moment properties of ut and the value of (µ, δ). More specifically, the rate of
convergence of the estimator of µ is not affected by the moment characteristics of ut,
but it decreases with the value of µ. For example, when µ = 0.1, the rate of convergence
of the estimates of µ is slightly faster than

√
T . However, it becomes slower than

√
T

as the value of µ increases. On the other hand, the rate of convergence of the estimates
of δ increases as we move from region 1 to region 5, but it strongly depends on the
value of (µ, δ). The smaller is µ and the larger is δ, the faster the rate of convergence
becomes, without exceeding a

√
T rate. However, when µ = 0.1 and the unconditional

mean of ut becomes infinite (region V), the estimator of δ becomes T−consistent.

Surprisingly, although the bias of the QML estimators is larger in the case of the
χ2 as opposed to that of the Normal distribution, the empirical sizes of the BDS test
are similar in the two cases. That is, the BDS test is slightly oversized for small sample
sizes, but it reaches the nominal size very fast as the sample size increases. These results
are reported in Table 3.

5 Conclusions

In this study we carry out Monte Carlo simulations to examine the behaviour of the
widely used Brock, Dechert and Scheinkman (BDS) test when applied to the standard-
ised residuals of an estimated GARCH(1,1) model as a test for the adequacy of this
specification. More in detail, we consider a variety of distributions for the innovations
(implying different moment and memory characteristics of the error term) to examine
the consistency of the QML estimators of the GARCH parameters, and the ”necessity”
of De Lima’s (1996) conditions for the invariance property of the BDS test statistic. The
results suggest that the distribution of the BDS statistic is not generally affected by the
moment properties of the innovations. The test is slightly oversized for small sample
sizes (T < 200), but it gradually reaches the nominal size as the sample size increases.
As far as the consistency of the QML estimators is concerned, the mean absolute bias
of the estimates decreases with the sample size. The rate of convergence is faster in the
non-stationary case than in the stationary case, and the estimators sometimes become
T−consistent. However, the rate of convergence strongly depends on the pair of values
(µ, δ): it is faster for small values of µ and large values of δ.
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Figure 1: Regions for the N(0,1) distribution 
Z~N(0,1)
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Figure 2.I: Mean Absolute Bias (dashed line) for Models Ia, Ib.* 
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* The solid line refers to the simulated biases that would have been produced, had the rate of 
convergence been exactly T . 
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Figure 2.II: Mean Absolute Bias (dashed line) for Models IIa, IIb.* 
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Figure 2.III: Mean Absolute Bias (dashed line) for Models IIIa, IIIb.* 
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* See Figure 2.I. 



18 Caporale, Ntantamis, et al. / A Monte Carlo Study – I H S

Figure 2.IV: Mean Absolute Bias (dashed line) for Models IVa, IVb.* 
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Figure 2.V: Mean Absolute Bias (dashed line) for Models Va, Vb.* 
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* See Figure 2.I. 
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Figure 3: Regions for the t(4)-distribution 
Z~t-stud(4)
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Figure 4.II: Mean Absolute Bias (dashed line) for Models VIa, VIb.* 
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* See Figure 2.I. 
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Figure 4.III: Mean Absolute Bias (dashed line) for Models VIIa, VIIb.* 

.00

.04

.08

.12

.16

.20

0 100 200 300 400 500 600 700 800 900 1000

T

B
ia

s

.00

.05

.10

.15

.20

.25

.30

.35

.40

0 100 200 300 400 500 600 700 800 900 1000

T

B
ia

s

.04

.08

.12

.16

.20

.24

.28

0 100 200 300 400 500 600 700 800 900 1000

T

B
ia

s

.04

.08

.12

.16

.20

0 100 200 300 400 500 600 700 800 900 1000

T

B
ia

s

Case a

Case b

 

µ δ 

µ′ δ′ 

Figure 4.IV: Mean Absolute Bias (dashed line) for Models IIXa, IIXb.* 
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* See Figure 2.I. 



I H S – Caporale, Ntantamis, et al. / A Monte Carlo Study 21

Figure 4.V: Mean Absolute Bias (dashed line) for Models IXa, IXb.* 
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Figure 5: Regions for the χ2(1)-distribution 

Ζ ~ χ2 (1)
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* See Figure 2.I. 
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Figure 6.I: Mean Absolute Bias (dashed line) for Models Xa, Xb.* 
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Figure 6.II: Mean Absolute Bias (dashed line) for Models XIa, XIb.* 
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* See Figure 2.I. 
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Figure 6.III: Mean Absolute Bias (dashed line) for Models XIIa, XIIb.* 
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Figure 6.VI: Mean Absolute Bias (dashed line) for Models XIIIa, XIIIb.* 
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Figure 6.V: Mean Absolute Bias (dashed line) for Models XIVa, XIVb.* 
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