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Abstract 

A discrete time model of financial markets is considered. It is assumed that the stock price 

evolution is described by a homogeneous Markov chain. In the focus of attention is the 

expected value of the guaranteed profit of the investor that arises when the jumps of the 

stock price are bounded. The suggested diffusion approximation for the Markov chain allows 

establishing a convenient approximate formula for the studied characteristic. 
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1 Introduction

Consider the simplest financial market in which securities of two types are circulating.
The price evolution of the securities of the first type is given by the equations

bk = b0ρ
k, k = 0, 1, 2, . . . ,

where b0 > 0, ρ > 1. The prices are registered at the equidistant moments of time
tk = a+ kh. With no loss of generality we put a = 0, h = 1, i.e. tk = k.

The price of the security of the second type at the moment k is represented as

sk = s0ξ1 · · · ξk, k = 0, 1, 2, . . . ,

where the relative jumps ξk are random.
The securities of the first type are riskless having the interest rate (ρ − 1) · 100%.

Let us call them conventionally bonds. It is clear that possessing the securities of the
second type is concerned with a risk of their devaluation. We call them conditionally
stocks.

Taken together in certain amounts β and γ the securities of both types constitute
a so-called portfolio (writer’s investment portfolio) whose worth at the time moment k
is βbk + γsk. Playing in the considered financial market consists of successive chang-
ing of the portfolio content at the moments k = 1, 2, . . . , n − 1. The successive pairs
(β0, γ0), (β1, γ1), . . . , (βn−1, γn−1) constitute a so-called strategy of the game. Obvi-
ously, as a basis for choosing (βk, γk) serves the evolution of the stock price up to this
moment i. e. s0, s1, . . . , sk. In other words

βk = βk(s0, s1, . . . , sk), γk = γk(s0, s1, . . . , sk).

The player is called a writer (seller, investor).
A strategy is called self-financing if the changing of the portfolio content does not

affect its value i.e.

βkbk + γksk = βk−1bk + γk−1sk, k = 1, . . . , n− 1.

The final goal of the game is to meet the condition

xn = βn−1bn + γn−1sn ≥ f(sn) (1.1)

where f(s) is a so-called pay-off function of the simplest option of the European type
having n as a maturity date.

Basic problems of the mathematical theory of options are option pricing and build-
ing a strategy leading to (1.1). For more about the mathematical and substantial
aspects of the option pricing theory see, e.g., Shiryaev (1999).

1



Both problems are easily solved within the framework of the so-called binary model,
that is, in the case where ξk take only two values d and u, d < ρ < u. In this case (see,
e.g., Ch. VI in Shiryaev (1999))

x0 = ρ−n
n∑

k=0

Ck
np

k
∗(1− p∗)

n−kf(s0u
kdn−k) (1.2)

where

p∗ =
ρ− d

u− d
.

It is worth emphasizing that (1.2) does not assume any restrictions imposed on the
measure that governs the evolution of the stock price (ξ1, . . . , ξn). Furthermore, there
exists the unique self-financing strategy

(β, γ) = {(β0, γ0), (β1, γ1), . . . , (βn−1, γn−1)}

leading to the equality
xn = βn−1bn + γn−1sn = f(sn). (1.3)

The strategy is defined by the formulae

βk =
ufk+1(skd)− dfk+1(sku)

ρbk(u− d)
(1.4)

and

γk =
fk+1(sku)− fk+1(skd)

sk(u− d)
(1.5)

where

fk(s) = ρ−(n−k)
n−k∑
j=0

Cj
n−kp

j
∗(1− p∗)

n−k−jf(sujdn−k−j). (1.6)

The successive values of the portfolio are

xk = fk(sk), k = 0, 1, . . . , n− 1.

If ξk, k = 1, 2, . . . , n, take more than two values then it is impossible to guarantee
the desired relation (1.3) with probability 1. However, sometimes it is possible to
guarantee (1.1). Let f(s) be convex. Then from (1.6) it follows that all fk(s), k =
0, 1, . . . , n − 1, also are convex. If, furthermore, if ξk ∈ [d, u] then the minimal initial
capital is evaluated by the same formula (1.2).

This fact was, first, proven in Tessitore and Zabczyk (1996) by the methods of
control theory (see also Zabczyk (1996) and Motoczyński and Stettner (1998)). Later
on in Shiryaev (1999) the rational price is derived as the solution of a extreme problem
(see Theorem V.1c.1 ibidem).
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Denote
x̄k = fk(sk), k = 0, . . . , n− 1, (1.7)

and let (βk, γk) be defined as in (1.4) and (1.5).
Possessing after the (k − 1)−th step the capital x̄k−1 distributed in portfolio in

accordance with (1.4) and (1.5) at the next step k the investor gains the capital

xk = βk−1bk + γk−1sk =
u− ξk
u− d

fk(sk−1d) +
ξk − d

u− d
fk(sk−1u).

If ξk ∈ [d, u], k = 1, . . . , n, and f(s) is convex then

δk = xk − x̄k = fk(sk−1d)
u− ξk
u− d

+ fk(sk−1u)
ξk − d

u− d
− fk(sk−1ξk) ≥ 0. (1.8)

If fk(sk−1ξ) is strictly convex in [dk, uk] then δk = 0 if and only if ξk = d or ξk = u.
Otherwise δk > 0. Thus, if ξk takes at least one value lying in (d, u) then a profit can
arise. If the extreme values d and u belong to the support of the distribution of ξk
then x̄k−1 is the minimal capital which allows such a profit. It implies that x̄0 is the
minimal starting capital that allows the investor to meet his contract obligations with
probability 1 provided he follows the strategy determined by (1.4) and (1.5). This
strategy forms the so-called upper hedge. It determines the sequence (x̄0, x̄1, . . . , x̄n−1)
of is the corresponding chain of hedging capitals. Here, x̄0 is called the upper rational
price.

The investor may dispose of the so arisen profit in various ways. The simplest one
is to withdraw from the game the superfluous quota δk which to the maturity date
acquires the value δkρ

n−k. So, the self-financing condition is fulfilled only in the part
which bans any capital inflows.

Having withdrawn unnecessary quota one should follow the ”binary” optimal strat-
egy determined by (1.4) and (1.5). As a result to the maturity date the investor
accumulates a riskless profit

∆n = δ1ρ
n−1 + δ2ρ

n−2 + · · ·+ δn.

It should be emphasized that the upper hedge admits an arbitrage opportunity in
the sense that the investor always meet his obligations, i.e.

P(xn ≥ f(sn)) = 1,

and may have a riskless profit
P(∆n > 0) > 0.

In the present paper, as in A. Nagaev and S. Nagaev (2003) and S. Nagaev (2003),
we study the distribution of ∆n. The results established in the referred works are
based on the assumption that the relative jumps of the stock price ξ1, ξ2, . . . , ξn are
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i.i.d. random variables. It is natural to try to extend those results to models that
assume some kind of dependence between those jumps. Here, we assume that they
form a Markov chain. Intuitively, we expect that the methods worked out in the
referred works allow analysis of such scheme provided the Markov chain is sufficiently
regular.

The paper is organized as follows. In Section 2 we introduce a model of financial
market in which the evolution of the risky security is described by a Markov chain with
a finite number of states. Further, we state the basic results concerning the expected
value of the riskless profit under selling the call and put options. The formulae for the
”local” profit are established in Section 3. The basic statement is proven in Section 4.
In Section 5 some auxiliary results are given. Concluding remarks are given in Section
6.

2 The model description and main result

Let ω0, ω1, ω2, . . . be a Markov chain having the phase space I = {1, 2, . . . ,M}. Assume
that the chain is homogeneous and starts from i0.. Denote by P the transition matrix,
i.e.

P = ||Pik||Mi,k=1.

The measure on the trajectories ω1, ω2, . . . , ωn is defined as follows

Pi0(ω1 = i1, ω2 = i2, . . . , ωn−1 = in−1, ωn = in) = pi0,i1pi1,i2 · · · pin−1,in .

We assume also that the chain is irreducible and ergodic or, in other words, the matrix
P is primitive, i.e. there exists an integer n0 ≥ 1 such that all the entries p

(n0)
ik , i, k =

1, . . . ,M, of P n0 are positive. Denote by π = (π1, . . . , πM) the stationary distribution
of the considered chain.

Let g be a function defined on I, i.e. g : I → IR. This function determines the
sequence of random variables ηk = g(ωk), k = 0, 1, 2, . . . . Without loss of generality
we assume that g(1) ≤ g(2) ≤ · · · ≤ g(M) and

M∑
i=1

g(i)πi = 0.

Denote y = −g(1), x = g(M). If g is not constant on I then g(1) < 0 < g(M).
Consider the random process

zn(t) = hkn−1 + n−1/2(η1 + · · ·+ ηk), (k − 1)n−1 ≤ t < kn−1

where h is a constant. Obviously, the process takes values in D[0, 1].
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Proposition 2.1 If g is such

σ2 = σ2
g =

M∑
l=1

g2(l)πl + 2
∞∑

n=1

M∑
l,k=1

g(l)g(k)πlp
(n)
lk > 0, (2.9)

then the random process zn(t), 0 ≤ t < 1, weakly converges to z(t) = ht+ σw(t) wher
w(t) is the standard Wiener process.

The proof of this statement is the evident modification of those given in Ch. 2.3 of
Sirazhdinov and Formanov (1979) (see also Billingsley (1956) and Friedman (1967).
The following statement is the univariate version of Theorem 5.4 in Sirazhdinov and
Formanov (1979).

Proposition 2.2 Assume that the set {g(1), g(2), . . . , g(M)} is not lattice. Then un-
der the conditions of Proposition 2.1 the measures σ

√
2πnPi0(η1 + · · ·+ηn ∈ A) weakly

converge as n→∞ to the Lebesgue measure.

Assume that 
ξk = ξk,n = exp(hn−1 + ηkn

−1/2)

ρ = ρn = exp(αn−1)
(2.10)

where h and α > 0 are constant, while the random variables η1, . . . , ηn, are defined on
the successive states of the above Markov chain. So, ξk = ξk,n ∈ [dn, un], k = 1, 2, . . . , n,
where

u = un = exp(hn−1 + xn−1/2), d = dn = exp(hn−1 − yn−1/2) (2.11)

and

sk,n = s0ξ1,n · · · ξk,n. (2.12)

Note that the initial state of the model is determined by s0 and the latest observed
jump ξ0 = exp(hn−1 +n−1/2g(i0)). Since the chain is ergodic the influence of the initial
value i0 is asymptotically negligible.

In what follows we deal only with the call and put options defined by the pay-off
function, respectively,

f(s) = (s−K)+, f(s) = (K − s)+. (2.13)

The constant K > 0 is called the strike price.
Define

ψ(t, z) =
x+ y√
xy(1− t)

ϕ

 lnK − z + (1− t)(xy/2− α)√
xy(1− t)

 (2.14)
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and

I(t) = Eψ(t, z(t) + ln s0) =
1√

tσ2 + xy(1− t)
ϕ

 ln(K/s0)− ht+ (1− t)(xy/2− α)√
tσ2 + xy(1− t)

 .
(2.15)

Here, ϕ(v) is the density function of the standard normal law.

Theorem 2.3 Let the set I = {g(1), . . . , g(M)} is not lattice. If the conditions (2.9)
and (2.10) are fulfilled then for any i0 > 0 as n→∞

Ei0∆n =
K

2
(xy − σ2

π)

1∫
0

I(t)dt+ o(1),

where

σ2
π =

M∑
i=1

g2(i)πi

and K is the strike price from (2.13).

Since g takes more than two values we have σ2
π < xy. So, the limit value in Theorem

2.3 is strictly positive. It should be emphasized that this limit value depends on x and y
through xy. Furthermore, the upper rational price corresponding to x and y as n→∞
converges to

x̄(0) → c(xy) = s0Φ

(
ln(s0/K) + α+ xy/2

√
xy

)
−Ke−αΦ

(
ln(s0/K) + α− xy/2

√
xy

)
.

As to the lower rational price given by the formula

x0 = ρ−n(s0ρ
n −K)+

it converges to

c(0) = s0

(
1− K

s0eα

)
+

.

Below in Section 6 we show that the function c(v) monotonically increases and, as
expected, the Black-Scholes rational price c(σ2) ∈ (c(0), c(xy)). It is worth reminding
that if the random variables η1, η2, . . . are independent then σπ = σ.

3 ”Local” profit of investor

Here, we slightly modify the calculations presented in A. Nagaev and S. Nagaev (2003)
and S. Nagaev (2003) (see Section 3 therein). Furthermore, we show that the required
representation (3.24) for the ”local” profit is the same for both payoff functions (2.13).
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Let us convene to denote by c any positive constant whose concrete value is of no
importance. Under such a convention we have e.g. c+ c = c, c2 = c etc. By [·, ·], ((·, ·])
we denote a closed (closed from the right) interval and by θ any variable taking values
in [−1, 1]. By [·] and {·} we denote, respectively, the integer and fractional part of the
embraced number.

Denote

pn =
ρn − dn

un − dn

, λk,n =
ξk,n − dn

un − dn

and
aj,m = uj

nd
m−j
n , bj,m = Cj

mp
j
n(1− pn)m−j.

From (1.6) it follows that the discounted ”local” profit of the investor takes the
form

∆k,n = δk,nρ
n−k
n =

n−k∑
j=0

bj,n−k(λk,nf(sk−1,nunaj,n−k) + (1− λk,n)f(sk−1,ndnaj,n−k)−

−f(sk−1,nξk,naj,n−k)).
(3.16)

For time being we suppress the dependence of λk, d, u, ξk and sk on n.
Define

r̄m(z, Z) =
ln(Z/(zdm))

ln(u/d)
.

The following lemma plays an important role.

Lemma 3.1 If 0 < x′ ≤ min(x, y) ≤ max(x, y) ≤ x′′ <∞ then for d ≤ z ≤ u, m ≤ n

r̄m(z, Z) = m · y

x+ y
+ n1/2

(
Z

x+ y
− m+ 1

n
· h

x+ y

)
− w

x+ y

where ln z = hn−1 + wn−1/2.

Proof. From (2.11) it follows that

ln
u

d
= (x+ y)n−1/2

and, therefore,
ln z

ln(u/d)
=

w

x+ y
+

h

x+ y
· n−1/2.

In particular,
ln d

ln(u/d)
= − y

x+ y
+

h

x+ y
· n−1/2
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and the lemma follows.
It is easily seen that r̄m(d, Z)− r̄m(u, Z) = 1. Moreover,

#{j : r̄m(u, Z) < j ≤ r̄m(d, Z)} = 1. (3.17)

Taking into account (2.10) and (2.11) we obtain

u− d = (x+ y)n−1/2 +
x2 − y2

2
n−1 +O(n−3/2)

while
ρ− d = yn−1/2 + (α− h− y2/2)n−1 +O(n−3/2).

Therefore,

pn =
y

x+ y
+
α− h− xy/2

x+ y
n−1/2 +O(n−1).

By Lemma 3.1

rm(d, Z)−mpn = n1/2

(
lnZ

x+ y
+
m

n
(

xy

2(x+ y)
− α

x+ y
)

)
+O(1)

and, therefore,

rm(d, Z)−mpn√
mpn(1− pn)

= (m/n)−1/2(xy)−1/2
(
lnZ + (m/n)(

xy

2
− α)

)
+O(m−1/2). (3.18)

3.1 The case of the call option

Assume that the payoff function is of the form f(s) = (s−K)+. For the sake of brevity
put

rn−k(z) = r̄n−k(z,K/sk−1).

Let j be such that sk−1daj,n−k > K. Then

λkf(sk−1uaj,n−k)+(1−λk)f(sk−1daj,n−k)−f(sk−1ξkaj,n−k) = sk−1(λku+(1−λk)d−ξk)aj,n−k = 0.

If sk−1uaj,n−k ≤ K then

0 = f(sk−1uaj,n−k) ≥ f(sk−1ξkaj,n−k) ≥ f(sk−1daj,n−k).

It is worth reminding that d ≤ ξk−1 ≤ u. Thus,

∆k,n = δk,nρ
n−k
n =

∑
rn−k(u)<j≤rn−k(d)

bj,n−k(λk(sk−1uaj,n−k −K)++

(1− λk)(sk−1daj,n−k −K)+ − (sk−1ξkaj,n−k −K)+).

8



Further,

∆k,n =
∑

rn−k(ξk)<j≤rn−k(d)
bj,n−k(λk(sk−1uaj,n−k −K)− (sk−1ξkaj,n−k −K))+

λk
∑

rn−k(u)<j≤rn−k(ξk)
bj,n−k(sk−1uaj,n−k −K) = ∆′

k,n + ∆′′
k,n.

(3.19)
By definition of rn−k(z) we have

sk−1zaj,n−k = sk−1zd
n−k(u/d)j = K(u/d)j−rn−k(z).

Hence
sk−1uaj,n−k = K(u/d)j−rn−k(u) = K(u/d)j+1−rn−k(d)

and
sk−1daj,n−k = K(u/d)j−rn−k(d).

Since λku− ξk = −d(1− λk) we conclude that

∆′
k,n = (1− λk)K

∑
rn−k(ξk)<j≤rn−k(d)

bj,n−k

(
1− (d/u)rn−k(d)−j

)
(3.20)

while
∆′′

k,n = λkK
∑

rn−k(u)<j≤rn−k(ξk)

bj,n−k

(
(u/d)j+1−rn−k(d) − 1

)
. (3.21)

In view of (2.11) and (3.17) we have uniformly in k, δn ≤ k ≤ (1− δ)n,

1− (d/u)rn−k(d)−j = (x+ y)n−1/2(rn−k(d)− j +O(n−1))

and
(u/d)j+1−rn−k(d) − 1 = (x+ y)n−1/2(j + 1− rn−k(d) +O(n−1)).

Here δ > 0 is arbitrarily small.
Taking into account (2.11) we conclude that

∆′
k,n = K(x− ηk +O(n−1/2))n−1/2

∑
rn−k(ξk)<j≤rn−k(d)

bj,n−k(rn−k(d)− j +O(n−1))

while

∆′′
k,n = K(ηk + y +O(n−1/2))n−1/2

∑
rn−k(u)<j≤rn−k(ξk)

bj,n−k(j + 1− rn−k(d) +O(n−1)).

Both representations are valid uniformly in k, δn ≤ k ≤ (1− δ)n.
By the uniform version of the Moivre-Laplace local limit theorem we obtain for

k, δn ≤ k ≤ (1− δ)n,
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bj,n−k =
1√

(n− k)pn(1− pn)
ϕ

 j − (n− k)pn√
(n− k)pn(1− pn)

) + o(n−1/2


or, taking into account (3.18) and (2.14)

bj,n−k = n−1/2ψ(kn−1, ln sk−1) + o(n−1/2). (3.22)

It is worth emphasizing that (3.22) holds uniformly in sk−1.
Thus,

∆′
k,n = K(x− ηk)n

−1ψ(kn−1, ln sk−1)
∑

rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) +O(n−3/2)

while

∆′′
k,n = K(ηk + y)n−1ψ(kn−1, ln sk−1)

∑
rn−k(u)<j≤rn−k(ξk)

(j + 1− rn−k(d)) +O(n−3/2).

Both representations are valid uniformly in k, δn ≤ k ≤ (1− δ)n. In view of (3.17) the
interval (rn−k(u), rn−k(d)] contains exactly one integer j∗ = [rn−k(d)]. So,

∑
rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) =


{rn−k(d)} if rn−k(ξk) < [rn−k(d)]

0 otherwise.

Similarly,

∑
rn−k(u)<j≤rn−k(ξk)

(j + 1− rn−k(d)) =


0 if rn−k(ξk) < [rn−k(d)]

1− {rn−k(d)} otherwise.

It is worth reminding that {rn−k(d)} denotes the fractional part of rn−k(d). Denote

σk,n =


(x− ηk){rn−k(d)} if rn−k(ξk) < [rn−k(d)]

(ηk + y)(1− {rn−k(d)}) otherwise.

For the sake of brevity put

p =
y

x+ y
, R = x+ y.

Then the inequality rn−k(ξk) < [rn−k(d)] can be rewritten as

ηk > R({rn−k(d)} − p).
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Therefore,

σk,n =


(x− ηk){rn−k(d)} if ηk > R({rn−k(d)} − p)

(ηk + y)(1− {rn−k(d)}) otherwise.
(3.23)

Now, we may combine (3.19) and the latest estimates in the following way

∆k,n = Kn−1ψ(kn−1, ln sk−1)σk,n +O(n−3/2). (3.24)

So, we obtained the desired representation of the ”local” profit in the case of the
call option. It is of interest that its representation does not depend on the measure
governing the price evolution.

3.2 The case of the put option

Assume that the payoff function is of the form f(s) = (K − s)+. Let j be such that
sk−1daj,n−k ≤ K. Then

λkf(sk−1uaj,n−k)+(1−λk)f(sk−1daj,n−k)−f(sk−1ξkaj,n−k) = sk−1(λku+(1−λk)d−ξk)aj,n−k = 0.

If sk−1daj,n−k ≥ K then

f(sk−1uaj,n−k) = f(sk−1ξkaj,n−k) = f(sk−1daj,n−k).

Recall that d ≤ ξk−1 ≤ u. Thus,

∆k,n = δk,nρ
n−k
n =

∑
rn−k(u)<j≤rn−k(d)

bj,n−k(λk(K − sk−1uaj,n−k)++

(1− λk)(K − sk−1daj,n−k)+ − (K − sk−1ξkaj,n−k)+).

Further,

∆k,n = (1− λk)
∑

rn−k(ξk)<j≤rn−k(d)
bj,n−k(K − sk−1daj,n−k)+

∑
rn−k(u)<j≤rn−k(ξk)

bj,n−k((1− λk)(K − sk−1daj,n−k)− (K − sk−1ξkaj,n−k)) = ∆′
k,n + ∆′′

k,n.

(3.25)
Since (1− λk)d− ξk = −uλk we arrive at (3.20) and (3.21).

Now it remains to repeat the calculations leading to (3.24). Thus, the ”local” profits
of the put and call options admit the same representation.
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4 Proof of Theorem 2.3

Represent the total profit ∆n as

∆n =
∑

1≤k<δn

∆k,n +
∑

δn≤k≤(1−δ)n

∆k,n +
∑

(1−δ)n≤k≤n

∆k,n = ∆′
n + ∆′′

n + ∆′′′
n (4.26)

and estimate the expectations E∆′
n, E∆′′

n and E∆′′′
n one after another.

According to (3.24) we have

Ei0∆
′′
n = Kn−1

∑
δn≤k≤(1−δ)n

Eψ(kn−1, ln sk−1,n)σk,n + cθn−1/2.

Consider

A(u, v) = (x− v)uχ(u, v) + (v+ y)(1− u)(1−χ(u, v)), (u, v) ∈ [0, 1]× [−y, x], (4.27)

where

χ(u, v) =


1 if R(u− p) < v ≤ x, 0 ≤ u ≤ 1

0 if − y < v ≤ R(u− p), 0 ≤ u ≤ 1

In view of (3.23) we have

σk,n = A({rn−k(d)}, ηk).

It is evident that χ(u, v) admits a monotone ε−approximation by means of χ+(u, v)
and χ−(u, v) where

χ+(u, v) =



v−R(u−p)
ε

+ 1 if R(u− p)− ε ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p)− ε, 0 ≤ u ≤ 1

1 if R(u− p) ≤ v ≤ x, 0 ≤ u ≤ 1

and

χ−(u, v) =



v−R(u−p)
ε

if R(u− p) ≤ v ≤ R(u− p) + ε, 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

1 if R(u− p) + ε ≤ v ≤ x, 0 ≤ u ≤ 1.
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Obviously, χ±(u, v) are continuous in [0, 1]× [−y, x] and

χ−(u, v) ≤ χ(u, v) ≤ χ+(u, v).

Furthermore,

0 ≤
∫

[0,1]×[−y,x]

(χ+(u, v)− χ−(u, v))dudF (v) ≤
∫
Uε

dudF (v) ≤ (2ε/R) (4.28)

where
Uε = ((u, v) : u ∈ (0, 1), −y < v < x, |v −R(u− p)| ≤ ε).

Therefore

Ei0

(
ψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n
+ ln s0)A−({rn−k(d)}, ηk)|ηk−1 = g(i)

)
≤

Ei0

(
ψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n
+ ln s0)σk,n|ηk−1 = g(i)

)
=

Ei0

(
ψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n
+ ln s0)A({rn−k(d)}, ηk)|ηk−1 = g(i)

)
≤

Ei0

(
ψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n
+ ln s0)A+({rn−k(d)}, ηk)|ηk−1 = g(i)

)
where

A±(u, v) = (x− y)uχ±(u, v) + (y + x)(1− u)(1− χ∓(u, v)).

Obviously, the family ψ(t, z), δ ≤ t ≤ 1− δ, is contained in the class F defined in
Corollary 5.2.

By the corollary

Ei0

(
ψ(kn−1, η1+···+ηk−1√

n
+ hk−1

n
+ ln s0)A±({rn−k(d)}, ηk)|ηk−1 = g(i)

)
=

Eψ(kn−1, σν
√
kn−1 + hkn−1 + ln s0)

∫
[0,1]×[−y,x]

A±(u, v)dudP(ηk < v|ηk−1 = g(i)) + o(1)

uniformly in k, δ ≤ kn−1 ≤ 1− δ. Here ν has the standard (0, 1)−normal distribution
and F is the distribution function of η.

In view of (4.28)∫
[0,1]×[−y,x]

A±(u, v)dudP(ηk < v|ηk−1 = g(i)) =
∫

[0,1]×[−y,x]

A(u, v)dudP(ηk < v|ηk−1 = g(i))+2θε.

It is easily verified that∫
A(z, w)dP(ηk ≤ w|ηk−1 = g(i)) =

1

2(x+ y)
(xy + (x− y)ai − b2i )
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where

ai =
M∑
l=1

g(l)pil, b
2
i =

M∑
l=1

g2(l)pil.

Since ε is arbitrary we obtain

Ei0σk,n =

1
2(x+y)

(xy + (x− y)
M∑
i=1

aiPi0(ηk−1 = g(i))−
M∑
i=1

b2i Pi0(ηk−1 = g(i))) + o(1).

Since the chain is ergodic we have as k →∞

Pi0(ηk−1 = g(i)) = πi + o(1)

whence

M∑
i=1

aiPi0(ηk−1 = g(i)) =
M∑
i=1

aiπi+o(1) =
M∑
i=1

πi

M∑
l=1

g(l)pil+o(1) =
M∑
l=1

g(l)πl+o(1) = o(1).

Similarly,
M∑
i=1

b2i Pi0(ηk−1 = g(i))) =
M∑
l=1

g2(l)πl + o(1) = σ2
π + o(1).

Thus,

Ei0∆
′′
n =

K

2(x+ y)
(xy − σ2

π)n−1
∑

δn≤k≤(1−δ)n

Eψ(kn−1, σν
√
kn−1 + hkn−1 + ln s0) + o(1).

Obviously,

I(t) = Eψ(t, σν
√
t+ ht+ ln s0) =

∫
ψ(t, σv

√
t+ ht+ ln s0)ϕ(v)dv

or after simple calculations

I(t) =
x+ y√

tσ2 + xy(1− t)
ϕ

 ln(K/s0)− ht+ (1− t)(xy/2− α)√
tσ2 + xy(1− t)


whence we deduce

Ei0∆
′′
n =

K

2
(xy − σ2

π)

1−δ∫
δ

I(t)dt+ o(1). (4.29)

14



Now we are going to estimate E∆′′′
n . For the extreme ”local” profit ∆n,n we obtain

∆n,n = δn,n = (sn−1,ndn −K)+
un − ξn
un − dn

+ (sn−1,nun −K)+
ξn − dn

un − dn

− (sn−1,nξn.n −K)+

whence

∆n,n =


0 if sn−1,nun ≤ K or sn−1,ndn > K

θ(sn−1,nun −K) if K/un < sn−1,n ≤ K/dn.

Therefore,
Ei0∆n,n ≤ K(un/dn − 1) ≤ cn−1/2.

For m = n− k ≥ 1 in view of (3.19) – (3.21)

∆n−m,n ≤ cmax
j
bj,m

(
(un/dn)2 − 1

)
or taking into account (2.11) and (2.2)

∆n−m,n ≤ cm−1/2n−1/2.

Thus, for all sufficiently large n

Ei0∆
′′′
n ≤ cδ1/2. (4.30)

Similarly,
Ei0∆

′
n ≤ cδ. (4.31)

Since δ is arbitrary in view of (4.26), (4.29), (4.30) and (4.31) the theorem follows.

5 Auxiliary statements

The following statement is a Markov chain analogue of Lemma 7.1 in A. Nagaev and
S. Nagaev (2003).

Lemma 5.1 Under the conditions of Theorem 2.3 the random variables ηk−1, {rn−k(d)}
and sk−1,n are asymptotically independent as n → ∞ in the sense that for any δ > 0
as n→∞

sup
0<δ≤kn−1≤1−δ

sup
v, z∈[0,1]

|Pi0(ηk−1 = g(i), {rn−k(d)} ≤ z, ln sk−1,n ≤ v)−

πizP(hkn−1 + σw(kn−1) < v)| = o(1).
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Proof. From Proposition 2.2 it follows that as n→∞

Pi0(v
′ ≤ η1 + · · ·+ ηn − x < v′′) =

v′′ − v′

σ
√
n
φ

(
x

σ
√
n

)
+ o(n−1/2) (5.32)

uniformly in v′, v′′, 0 < c1 ≤ v′′ − v′ ≤ c2 < ∞. As in A. Nagaev and S. Nagaev
(2003)(see Lemma 7.1 therein) we put

ζn = η1,+ · · ·+ ηn, τn(a) = {λζn + a}

where λ is constant. In view of (5.32) the proof of Lemma 7.1 in A. Nagaev and
S. Nagaev (2003) remains valid for the considered Markov chain. So, for any fixed
u′, u′′, 0 < u′ < u′′ < 1 and z′, z′′, −∞ < z′ < z′′ <∞ as n→∞

[Pi0(u
′ ≤ τn(a) < u′′, z′ ≤ n−1/2ζn < z′′)−(u′′−u′) (Φ(z′′/σ)− Φ(z′/σ)) = o(1) (5.33)

uniformly in a ∈ IR. From Lemma 3.1 it follows that

rn−k(d) = λζk−1 + a

where

λ = − 1

x+ y
, a = (n− k + 1)p− n1/2 · h

x+ y
+

ln(K/s0)

x+ y
.

Further,

Pi0(ηk−1 = g(i), {rn−k(d)} ≤ z, ln sk−1,n ≤ v) = Pi0(ηk−1 = g(i))×

Pi0({λζk−2 + a+ λg(i)} ≤ v, η1+···+ηk−2√
n

+ (k−1)h
n

+ g(i)√
n
< v| ηk−1 = g(i)).

From (5.33) it follow that

Pi0({λζk−2 + a+ λg(i)} ≤ v, η1+···+ηk−2√
n

+ (k−1)h
n

+ g(i)√
n
< v| ηk−1 = g(i)) =

zP(khn−1 +
√
kσ2n−1ν < v) + o(1)

uniformly in a and k, 0 < δ ≤ kn−1 ≤ 1− δ. As above, the random variable ν has the
standard normal distribution. Since the Markov chain is ergodic we have as k →∞

Pi0(ηk−1 = g(i)) = πi + o(1)

and the lemma follows.
Lemma 5.1 has the following evident corollary (cf. Corollary 7.2 in A. Nagaev and

S. Nagaev (2003)).
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Corollary 5.2 Let F be the class of equicontinuous functions defined on (−∞,∞)
such that

lim
t→∞

sup
f∈F

∫
|u|>t

|f(u)|du = 0.

Let, further, χ(u, v) be a bounded continuous function defined on [0, 1]×IR1. Under the
conditions of Lemma 5.1 for any fixed λ as n→∞

lim
n→∞

sup
f∈F

|Ei0

(
f(n−1/2ζk−1)χ({rn−k(d)}, ηk)|ηk−1 = g(i)

)
−

∫
f(σz)ϕ(z)dz

∫
[0,1]×IR1

χ(u, v)dudFi(v)| = 0

uniformly k, 0 < δ ≤ kn−1 ≤ 1− δ. Here

Fi(v) = P(ηn < v|ηn−1 = g(i)).

6 Concluding remarks

First, note that the representation (3.24) of the ”local” profit assumes no specification
of the measure that governs the evolution of the stock price. In other words, it is the
same for any joint distribution of η1, η2, . . . , ηn. The further analysis of (3.24) is based
on the functional central limit theorem for the successive sums

ζn = η1 + η2 + · · ·+ ηk, k = 1, 2, . . . ,

and the local limit theorem given by Proposition 2.2. It is the local limit theorem that
allows successful analysis of the chaotic term σn,k in (3.24). If the joint distribution
of η1, η2, . . . , ηn admits those fundamental limit theorems then the suggested method
works well. So, the basic problem now is to verify whether a given discrete time process
η1, η2, . . . , ηn, . . . possesses the required property. In particular, it is worth trying to
analyze such popular stochastic models as, say, ARIMA or GARCH.

Further, consider the limit value of the upper rational price

c(xy) = s0Φ

(
ln(s0/K) + α+ xy/2

√
xy

)
−Ke−αΦ

(
ln(s0/K) + α− xy/2

√
xy

)
.

For the sake of brevity put Z = K/(s0e
−α), xy = v2. Then

c(xy) = c(v2) = s0

(
Φ

(
− lnZ + v2/2

v

)
− ZΦ

(
− lnZ − v2/2

v

))
.

After a simple algebra we obtain

sign(c′(v2)) = sign((Z − 1) lnZ + (1 + Z)v2/1).
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It is easily seen that for all Z > 0 we have c′(v2) > 0. Thus c(xy) monotonically
increases as xy grows. If g takes more than two values then xy > σπ. This implies that

c(0) < c(σ2) < c(xy). (6.34)

Note that c(σ2) correspond to the Black-Scholes rational price.
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