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Abstract 
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1 Introduction

Currently, there is a growing interest in establishing an econometric theory of
forecasting that satisfies the needs of practitioners as well as the demand for
a firm basis in statistics. The popular books by Clements and Hendry
(1998), Chatfield (2000), and Štulajter (2002) are some examples for
the remarkable achievements in this field. An important message that is re-
peatedly stated by these researchers is that prediction methods–including
their auxiliary models if the methods are model-based–should be separated
carefully from the concept of true data-generating processes. Consequently,
there may be respectively more promising and also less promising tasks in
the field of econometric forecasting. As examples for the former set, we
may mention the search for methods that are valuable in repeatedly encoun-
tered empirical applications and projects, such as macroeconomic forecasts
or stock-market predictions for asset allocation. If a method is found to
dominate its rival counterpart in the majority of comparable case studies,
it may become the recommended method in further applications. Similarly,
it makes sense to compare rival predictions conditional on certain classes of
assumed data-generating mechanisms. If convincing evidence on the nature
of a probability law exists, either based on large amounts of comparable data
and statistical testing methods or on grounds of substance-matter theory,
such studies and results may motivate the usage of particular forecasting
methods that are tuned to specific processes. Unfortunately, there are also
research projects with poorer perspectives, such as the testing of subject-
matter theories by means of prediction methods. Testing for correct statisti-
cal specification in a forecasting model is another less well motivated issue,
particularly if the forecasting model evolves as a good tool for prediction in
empirical evaluations. Similar remarks apply to testing for the significance
of differences across forecasting procedures in one given data set.
In this paper, it is attempted to provide a formal basis for the evalu-

ation of forecasts. We consider three stages of increasing sophistication in
prediction evaluations. Firstly, a time series of data is compared with a time
series of point predictions. In such applications, only a single vector of ob-
servations is available and there is no real need to reach a final verdict on
its statistical properties. The measurement of the distance between two vec-
tors in Euclidean space is a mathematical rather than a statistical task. It
becomes statistical in repeated experiments or panels, for example for com-
parable data sets, such as gross production series from various countries or
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different industries. Secondly, a given data series is compared with a hy-
pothesized statistical data-generating process. This is commonly known as
stochastic prediction and requires measuring the proximity of a vector to a
probabilistic entity. We support this view of the task rather than the pop-
ular reversed view, which assumes a probabilistic nature for the data and
a merely numerical one for point forecasts. That view may rely too much
on equating a tentatively hypothesized model–the basis for the prediction
tool–and reality. Thirdly, we consider the comparison between a stochastic
data-generating process and a stochastic forecasting model. This third spec-
ification matches the aforementioned need for tuning a forecasting method
to an a priori assumed generation model.
An empirical application is used to highlight the features that are pre-

sented in the first, theoretical part of this paper. We use a multivariate
data set on investment and output for the UK economy. Some economic
theory exists that can be used a priori. One such theory is the tendency
of an investment-output ratio to be approximately constant in the long run.
There is also some econometric evidence that has evolved from decades of
empirical research on macroeconomic aggregates, such as the general approx-
imate validity of first-order integrated time-series models for the logarithms
of national accounts data, such as investment and output. Finally, there is
some information on institutions, such as the strong influence of exogenous
government policy on construction investment and its relative share in aggre-
gate output. The latter information set is set aside for our application, which
is an acceptable strategy for medium-run projections, where the prospects of
future government policies are largely unknown. Relying on these strands of
information, we compare a small set of forecasting procedures in the absence
of a fully developed model of economic behavior.
The remainder of this paper is structured as follows. Section 2 introduces

the concepts of a predictor, which essentially constructs a sequence of pre-
dicted numbers from a sequence of given numbers, and of a loss function,
which measures the distance of the predicted values from the targeted time
shift of the original sequence. Section 3 considers an extension to the con-
cept to stochastic prediction, which uses a stochastic process to forecast a
given sequence. Section 4 addresses the task of double stochastic evaluation,
which compares an assumed data-generating process and a stochastic pre-
dictor. Section 5 considers an empirical example, in which the application of
all concepts is demonstrated. Section 6 concludes.
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2 Simple prediction

2.1 Basic definitions

Definition 1 A predictor is a function ϕ

RN → RN

x 7→ ϕ (x) (1)

with the property that the pre-image of any cylinder set (x1, . . . , xk)× RN(k)
is a superset of a cylinder set E × RN(k), where N(k) denotes the set {k + 1,
k + 2, . . . }.

The condition guarantees that the image depends on the first k sequence
elements only. In principle, prediction can also be used in a non-temporal
environment and for finite spaces, such as Rn. In this way, the concept is used
for cross validation, where an observation xj is predicted using all remaining
observations and this exercise is repeated for all j ∈ {1, . . . , n}. It is also
simple to extend the definition to non-real data. Here, we restrict attention
to time series and to real data.
Whereas a predictor is defined as any function of (x1, . . . , xk), we now

need a criterion for discriminating good from bad predictions. Such assess-
ment naturally depends on the target of prediction. This target is to ap-
proximate an observation xj, with j /∈ {1, . . . , k}. If j = k + h, this is an
h—step prediction. The ideal situation would be that ϕ (x) be the sequence
(x1+h, x2+h, ...), i.e. a time shift of the original sequence x. Generally, the
quality of predictions can be measured by loss functions:

Definition 2 A loss function for h—step prediction is a function G : RN ×
RN → R+, which is symmetric in its arguments and fulfills G

¡
ϕ (x) , F hx

¢
=

0 for ϕ (x) = F hx, where ϕ is a predictor and F is the forward shift op-
erator. Furthermore, it is required that G is monotonous in the sense that
G
¡
y, F hx

¢ ≥ G ¡z, F hx¢ if |yj − xh+j| ≥ |zj − xh+j| for all j ∈ N.
Usually, it may make sense to require strict monotonicity by demanding

that G
¡
y, F hx

¢
> G

¡
z, F hx

¢
if |yj − xh+j| > |zj − xh+j|+ ε for some ε > 0

for a non-zero share of indices j ∈ N. For a set J ⊂ N, a share of indices may
be defined as the limn→∞ n−1 card {j ∈ J : j ≤ n}. Thus, one can also avoid
trivial loss G ≡ 0. We point out, however, that while many common loss
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functions are indeed strictly monotonous, strict monotonicity excludes some
interesting cases of weighted loss, which we will consider in the following.
Often, it may be convenient to view G as a function of x,h, and ϕ, thus one
may refer to ‘the loss of the predictor ϕ for h—step prediction of x’.
Example. Typical loss functions depend on single-observation loss func-

tions in a ‘stationary’ way, such as the mean-squared error loss function

G2 (x, y) = lim
n→∞

n−1
nX
j=1

(xj − yj)2 (2)

or the mean-absolute error loss function

G1 (x, y) = lim
n→∞

n−1
nX
j=1

|xj − yj|

or, in general,

G (x, y) = lim
n→∞

n−1
nX
j=1

g (xj, yj) .

Such a single-observation loss function g : R2 → R+ corresponds to the
function g that is commonly used in econometrics (see, e.g., Diebold and
Mariano, 1995). The general function G allows for ‘robust’ loss functions
in the spirit of Rousseuw (1984), where summation is modified, such as
median squared loss

G (x, y) = lim
n→∞

median
©
(xj − yj)2 , j ≤ n

ª
.

The general definition of loss also admits weighing observation loss for certain
ranges or as n→∞, for example in the sense of discounted squared loss

G (x, y) = lim
n→∞

N (n, ρ)−1
nX
j=1

ρ (j) (xj − yj)2 ,

with N (n, ρ) chosen such that non-trivial limits are obtained, typically as
a sub-linear function of n. A simple example is ρ (j) = ρj and N (n, ρ) =
(1− ρ)−1 for 0 < ρ < 1. In contrast to mean-squared error loss, single
observations have a non-zero impact on the loss. Particularly, the first part
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of the sample affects the loss critically. In order to capture the usual aims
of empirical forecasters, ρ (j) may reach a maximum for j in the range of
typically available sample sizes and may discount large j in the sense that
limj→∞ ρ (j) = 0.¤
The distinction between squared loss and discounted squared loss can be

motivated in a simple example.
Example. The data x is a trajectory from an autoregression with un-

known φ and σ2. Prediction relies on ‘correctly specified’ autoregressions
with estimated φ̂j and σ̂

2
j . For small j, these estimates fluctuate strongly and

therefore forecasters will allot ρ (j) ≈ 0. Larger weights will be allotted to
20 ≤ j ≤ 100. In this range, φ̂j is known to be affected by the Hurwicz bias,
which does not only impair estimation or approximation of G (ϕ (x) , Fx) but
also the relative performance as compared to rival predictors ϕ̃ that may be
constructed from other (‘mis-specified’) models or technical algorithms such
as exponential smoothing. For j ≈ 1000, the Hurwicz bias has almost disap-
peared, and as j increases further, the autoregressive ϕ procedure will ‘win’
all horse races against rival models unless ρ (j) declines. Such discounting
appears to be appropriate, if the forecaster is unlikely to meet such large sam-
ples in applications. The common practice of evaluating predictive accuracy
on the basis of the final part of the available sample conforms to ρ (j) = 0
for j = 1, . . . , [λn] and for j > n, and ρ (j) = 1 for j = [λn] + 1, . . . , n, with
λ ∈ (0, 1).¤
Note that loss functions are usually defined by limit operations and thus

are reminiscent of statistical expectations. So far, no stochastic framework
has been introduced. This reflects the usual aim of forecasting, where an un-
known observation is targeted and not a stochastic process. The investigated
time series may be a trajectory from a stochastic process, yet even knowledge
of the probability law of the underlying stochastic process does not lead to
perfect or ideal prediction. Alternative concepts would be loss functions for
finite-length data Rn × Rn → R+, or loss functions adapted to the sample
size, such as n−1

Pn
j=1 (xj − yj)2. The latter concept can be embedded into

our framework, while the former one abandons asymptotic arguments.
Example. If x is a trajectory from an autoregressive process xt = φxt−1+

εt with εt ∼ NID (0,σ2) and both parameters φ and σ2 are known, a natural
predictor for h = 1 is

ϕ (x) = ϕ (x1, x2, . . . ) = (φx1,φx2, . . . ) = φx,

with G (ϕ (x) , Fx) = σ2 due to the law of large numbers. If parameters are
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not known, a common alternative is the least-squares predictor

ϕ (x) =
³
φ̂1x1, φ̂2x2, . . .

´
for

φ̂t =

Pt
j=2 xjxj−1Pt−1
j=1 x

2
j

, t ≥ 2,

and φ̂1 = 0. Replacing the upper summation bound in the denominator by
t yields the Yule-Walker predictor. A loss close to σ2 may also be obtained
by radically different methods, hence ϕ should not be interpreted as being
model-determined necessarily.¤
Next, note that the loss function G is not equivalent to a pseudo-metric

on RN, i.e. a metric without the requirement that d (x, y) = 0 only if x = y
(see, e.g., Davidson, 1994, p.75). While any pseudo-metric on RN defines
a loss function, typical loss functions do not satisfy the triangle inequality.
It would be possible to re-define mean-squared loss by taking square roots,
though such transformations may be much harder to achieve for other usual
loss functions. Restricting loss functions to pseudo-metrics or to monotonous
functions of pseudo-metrics appears to be unnecessarily restrictive.
In the literature, there is some disagreement on the importance of pa-

rameter uncertainty in forecast evaluation. For example, Clements and
Hendry (1995) opine that parameter uncertainty has only moderate effects
in the presence of correct specification. Let us re-consider the typical calcu-
lations in support of this view, for the case of the least-squares autoregressive
predictor and a data trajectory from an autoregressive process. Mean squared
loss is

lim
n→∞

n−1
nX
t=1

³
φ̂txt − φxt − εt

´2
= lim

n→∞
n−1

(
nX
t=1

³
φ̂t − φ

´2
x2t +

nX
t=1

ε2t + 2
nX
t=1

³
φ̂t − φ

´
xtεt

)

The third term is small and converges to 0, while the second term converges
to σ2. For large t, the term φ̂t − φ can be approximated by t−1/2wt with
wt ∼ N (0, 1− φ2) because of root consistency of the least-squares estimator.
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As a result, one may write

n−1
nX
t=1

³
φ̂t − φ

´2
x2t = n

−1
(

NX
t=1

³
φ̂t − φ

´2
x2t +

nX
t=N+1

t−1
¡
w2t x

2
t + op(1)

¢)

As n → ∞, the first and the remainder terms disappear, while the second
term behaves like n−1σ2 (C + lnn), where C is the sum of Euler’s constant
and a correction for the starting index N . These calculations imply that
mean squared loss will be σ2, as if φ were known. However, note that the
argument does not apply any more if discounted loss functions are used.
The influence of the second term will not disappear asymptotically, and the
first term will keep loss substantially above the benchmark loss for known
parameters.

2.2 Loss functions suggested in practice

In recent work, Chen and Yang (2004) attempt to optimize loss functions
for prediction accuracy assessments. To this aim, they survey specifications
that are in current usage. Apart from the classical MAE and MSE criteria,
they consider the MAPE (mean absolute percentage error)

n−1
nX
t=1

|x̂t − xt|
|xt| .

This MAPE is described completely by single-observation loss g (x, y) =
|x/y − 1|, which is asymmetric. Asymmetry is a first disadvantage and im-
plies that x viewed as a forecast of y is treated differently from y as a forecast
of x. Another one is the fact that g (x, y) → ∞ as y → 0 and thus requires
infinite predictive accuracy for small true values. The popularity of MAPE
stems from a concern for scale invariance in the sense that predicting y by x
should be assessed equivalently to predicting λy by λx for any λ 6= 0. There
seems to be little reason for such a requirement within a single series. Scale
invariance may make more sense for a comparison across a set of prediction
experiments for various similar variables. In that case, however, one could
simply standardize the MSE or MAE values after conducting the experiment,
although it is less obvious whether scaling by dispersion is adequate. One
could also argue that the assessment of forecasting algorithms should account
for the degree of predictability.
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Another criterion is the symmetric MAPE (sMAPE) that was suggested
by Makridakis and Hibon (2000)

n−1
nX
t=1

|x̂t − xt|
(|x̂t|+ |xt|) /2 .

The sMAPE is based on a symmetric single-observation loss g (x, y) = |x−
y|/ (|x|+ |y|). From MAPE, it inherits the divergence as |x|+ |y|→ 0, while
it is still defined if only one of the arguments approaches 0. In order to cope
with this problem, Chen and Yang suggest adding a positive number to
the denominator, for example a sequentially defined measure of dispersion

S (t) = (t− 1)−1
t−1X
s=1

|xs − x̄s−1|, x̄s = s
−1

sX
j=1

xs,

which is defined for t > 2, while S (1) is undefined and S (2) = 0. This
suggestion leads to an asymmetric loss function, which is at odds with the
idea of sMAPE. The modified sMAPE is more complex than MAPE and
sMAPE, as it cannot be described by a single-observation loss function alone.
sMAPE and MAPE are monotonous in the sense of our basic definition.
In Table 1, we compare the four variants of absolute-error criteria by

plotting the areas of equal distance to given data points (x1, x2) = (1, 3) and
(x1, x2) = (−0.5,−1.5). MAE yields the familiar diamond shapes of the L1
norm. MAPE yields shrinking diamonds as data approach 0. It also distorts
the axes due to its inherent asymmetry. Thus, area size changes with distance
to the origin, while asymmetry increases with the angle to the x = y median
line. sMAPE and the modified sMAPE yield non-convex shapes, which only
remotely are reminiscent of the original diamonds. For the modified sMAPE,
S (t) had to be redefined in order to allow a graphical representation. While
both variants look similar for the selected data points, differences increase
as the variation of the data increases. The modified sMAPE tolerates large
forecasting errors for volatile data sets.
Analogous modifications can also be conducted for L2 criteria. Chen

and Yang consider an NMSE (normalized MSE)P
(x̂t − xt)2P
(xt − x̄)2

.

Like MAPE, NMSE is invariant to the scaling of the true data and it is
asymmetric. Unlike the modified MAPE criteria, NMSE is not ‘causal’ in
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the sense that the denominator uses the whole data up to n. While we made
no assumption concerning such a causal structure of loss functions, NMSE
has the drawback of being non-monotonous. A simple example demonstrates
that NMSE can increase if an observation xt moves closer to its prediction
x̂t. Table 2 shows areas of equal distance for true data points (1, 3), (−1, 3),
and (−0.5,−1.5). The radii of the circles increase with the distance from
the origin and also with dispersion. The data point (−1, 3) is more ‘volatile’
than (1, 3) and causes more tolerance with regard to its prediction. A slight
modification of the denominator would yield a symmetric loss function that
would correspond to our basic definitions.
Example. Suppose n = 2 and (x̂1, x̂2) = (1, 3) while (x1, x2) = (ξ, 5).

The NMSE takes its minimum for ξ = 0, not for ξ = 1, and increases for
ξ ∈ (0, 1).¤
Discussion. Because many loss functions in current usage do not obey

our definition, one could consider relaxing assumptions.

1. Symmetry follows the idea that prediction is viewed as approximation,
such that therefore x as a forecast of y should be treated equivalently
to y as a forecast of x. If loss is determined by cost arguments, it
makes sense to distinguish the costs of under- and over-prediction. We
note that none of the above loss functions follows from cost arguments.
Their asymmetry is a side effect rather than a deliberate specification.

2. Monotonicity is a logical requirement. If a forecast ‘improves’ as the
true observation moves away from it, the loss concept should be revised.

3. Criteria that are not defined in important areas of the sample space and
therefore are not functions RN × RN → R+ cannot be recommended.
This applies to most variants of the MAPE concept.

It appears that arguments of logical consistency support restricting focus
to loss functions within the limits of our definition. This supports the usage
of traditional loss functions G1 and G2, while robust and weighted variants
may also deserve attention.

3 Stochastic prediction

Forecasters can choose among a variety of different predictors. While in
theory loss functions may be determined by economic cost arguments, such
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externally determined loss functions are rare in empirical applications. An
exception is the field of empirical finance and portfolio selection, where loss
may be determined by asset returns, transaction costs, and risk premia. This
field is of considerable importance but it is not typical. In most applications
of forecasting, including macroeconomic forecasts, meteorological and hydro-
logical forecasts as well as predictions of election results, the forecaster is free
to choose a loss function as well as a predictor. Often, different loss functions
are considered in the same exercise, such as mean absolute and mean squared
error functions.
An alternative to pre-specified predictors, such as ϕ (x) = φx for given

φ, or estimation-based predictors, such as ϕ (x) =
³
φ̂jxj

´
j∈N
, are stochastic

predictors. The simplest form of a stochastic predictor is a randomized ver-
sion of an estimation-based predictor, such as ϕ (x) =

³
φ̂jxj + εj

´
j∈N
, where

εj is independently drawn from a distribution. Parametric randomization re-
lies on convenient error laws, such as the normal distribution N

¡
0, σ̂2j

¢
with

σ̂2j determined from the available data {x1, . . . , xj} by

σ̂2j = j
−1

jX
k=1

³
xk+1 − φ̂kxk

´2
.

Non-parametric randomization relies on draws from empirical distributions,
such as a uniform distribution onn

xk+1 − φ̂jxk, k = 1, . . . , j
o
.

Even when x is indeed a trajectory from the stochastic process that underlies
the estimation method–in this backdrop case, an autoregressive process with
coefficient φ–such randomizations are unable to achieve any improvement
in accuracy as measured by the loss function. Their advantage may be the
more realistic visual approximation of some properties of the sequence x. For
example, a sequence of predictions for varying step size h starting from any
time point t looks like an asymptote for deterministic prediction, while it
looks like the remainder of x for stochastic prediction.
Stochastic prediction becomes more attractive if a large number of trajec-

tories are drawn from the parametric or non-parametric distribution. This
defines ϕ (x) as a random sequence and allows to evaluate its moments, which
may be used, in turn, as a basis for accuracy assessments.
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Definition 3 A stochastic predictor is defined as a random function ϕ

RN ×Ω→ RN

(x,ω) 7→ ϕ (x,ω) = ζ (κ (x) , δ (ω))

with the property that κ : RN → RN is a predictor and δ : Ω → RN defines
a stochastic process. Moreover, the distribution of the finite sub-sequence
(y1, . . . , ym) of y = ϕ (x, .) is completely determined from the finite sub-
sequence (x1, . . . , xm). The function ζ : RN × RN → RN is a time-constant
continuous linking function, which can be equivalently seen as ζ : R2 → R.
Often, ζ will just be a binary operator. The function κ (.) determines the
skeleton of the stochastic model and corresponds to the function ϕ (.) for
non-stochastic predictors. Often, the stochastic process δ : Ω → RN will be
specified as random noise.

The expression ‘skeleton’ for the non-stochastic part of a dynamic model
originates from Tong (1990). The conditions can be motivated as follows.
Violation of the predictor property of κ (.) means that unknown (future)
parts of the sequence x are used for forecasts, perhaps even in a determin-
istic way (the ‘perfect forecast’ of economic theory). Violation of the stated
property of δ (.) would permit, for example, the estimation of the error vari-
ance for predicting xk from future (unknown) observations. Its statement is
deliberately vague and does not exclude knowing that variance a priori. Note
that the distribution of (y1, . . . , ym) must be determined from the observa-
tions and not from an unknown stochastic process that may have generated
x. All stochastic constructions are under the forecaster’s control and there
is no unknown stochastic component here. The only unknown object is the
remainder of the non-stochastic real sequence x.
A typical example is an autoregressive forecasting model with unknown

φ and σ2. Then, ζ (x, y) = x + y, κ (x) =
³
φ̂1x1, φ̂2x2, . . .

´
, and δ (ω) is

an infinite trajectory of normal random variables with mean zero and time-
changing variance σ̂2j that is ‘estimated’ from (x1, . . . , xj) according to any
of the rules described before. In this case, the meaning of the skeleton is
clear, as the m-th element of κ (x) is a center of the conditional distribution
of (ym|x1, . . . , xm). This is not the case for non-linear prediction models.
Like deterministic predictions, stochastic predictions may also be sub-

jected to an evaluation criterion. For single trajectories, the framework of
the last section can be used. For example, x may be a trajectory from a
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random walk with known variance and independent increments νt. A deter-
ministic predictor aiming at single-step forecasting could be just ϕ (x) = x.
The quadratic loss is G2 (ϕ (x) , Fx) = G2 (x, Fx) = σ2. A stochastic pre-
dictor may be ϕ (x,ω) = x + ε, where εt ∼ NID (0,σ2). Quadratic loss
is

G2 (ϕ (x,ω) , Fx) = limn−1
nX
j=1

(xj + εj − xj − νj)
2

= limn−1
nX
j=1

(εj − νj)
2 = 2σ2,

which is twice the loss of deterministic prediction. If more trajectories are
generated, it seems natural to focus on the limit of

lim
K→∞

K−1
KX
k=1

G
¡
ϕ (x,ωk) , F

hx
¢
= EG

¡
ϕ (x, .) , F hx

¢
,

assuming that expectations are finite. If loss functions depend on single-
observation loss in a linear way, one obtains the simple expression

EG
¡
ϕ (x, .) , F hx

¢
= lim

K
lim
n
K−1n−1

KX
k=1

nX
j=1

g (yj + εj (ωk) , xj+h) ,

where yj is the prediction according to the skeleton. Note that this criterion
is usually different from

G
¡
Eϕ (x, .) , F hx

¢
,

i.e. the loss of the mean predictor, and also from

G
¡
κ (x) , F hx

¢
,

the loss of the skeleton predictor. For example, if a random walk is predicted
at single steps using a random-walk model, both the mean predictor and the
skeleton predictor incur a loss of σ2, while the expected loss of the stochastic
predictor is 2σ2.

Definition 4 The expected loss of a stochastic predictor for h—step pre-
diction is defined as EG

¡
ϕ (x, .) , F hx

¢
, where G (., .) is a loss function and
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ϕ (., .) is a stochastic predictor. Expectation is taken with respect to the distri-
bution of ϕ (x, .). The mean predictor loss is defined as G

¡
Eϕ (x, , ) , F hx

¢
.

The skeleton predictor loss is defined as G
¡
κ (x) , F hx

¢
, where κ (x) is the

skeleton.

These three loss concepts should be distinguished carefully. The expected
loss describes the average distance of generated stochastic-predictor trajec-
tories from the true and given data x. The mean-predictor loss evaluates the
quality of the mean of the stochastic predictor distribution as a point fore-
cast for x. The skeleton-predictor loss reduces the stochastic predictor to its
core and evaluates the quality of that prediction. In empirical applications,
the skeleton-predictor loss is the easiest to construct, while it usually may be
the least reliable version. Theoretical guidelines may recommend to rule out
skeleton prediction as a useful concept. This recommendation, however, may
be too severe for prediction models that are dominated by their linear com-
ponent. For linear prediction models, the mean predictor and the skeleton
predictor coincide. It appears more important to focus on the distinction of
expected loss and the mean-predictor loss.
Example. If the data x is a trajectory from a random walk with in-

cremental variance σ2 and the prediction model specifies the incremental
variance at τ 2, the expected squared loss at single steps is σ2 + τ 2. A small
τ 2 reduces expected loss but gives unrealistic scenarios. A large τ 2 increases
expected loss, while mean-predictor loss remains at σ2. Similarly, if x is re-
ally a trajectory from the autoregressive process xt = φxt−1 + νt, expected
loss becomes

lim
K→∞

lim
n→∞

K−1n−1
KX
k=1

nX
j=1

(xj + εj (ωk)− φxj − νj+1)
2

= τ 2 + (1− φ)2 Ex
2
t + σ2 = τ 2 +

2

1 + φ
σ2

and a ‘correct’ specification of the incremental variance at τ 2 = 2σ2 (1 + φ)−1

yields again an expected loss of 4σ2 (1 + φ)−1, twice the loss of the mean
predictor. For h = 2, expected loss becomes

lim
K→∞

lim
n→∞

K−1n−1
KX
k=1

nX
j=1

¡
xj + εj (ωk) + εj+1 (ωk)− φ2xj − φνj+1 − νj+2

¢2
= 2τ 2 +

¡
1− φ2

¢2
Ex2t +

¡
φ2 + 1

¢
σ2 = 2τ 2 + 2σ2.

13



Clearly, the mean predictor loss is the second component 2σ2. This doubling
property is typical for a wide range of models with linear errors ζ (x, y) =
x+ y, including non-linear autoregressions.¤
We do not consider the possibility of correlation of ε (noise in stochastic

prediction) and ν (noise in data generation), for its lack of intuitive basis.
We recall that it was not generally assumed that x is a trajectory from a
stochastic process or even from a time-homogeneous or stationary process.
Therefore, objects like Ex2t do not exist in general. In some cases, it may be
convenient to consider pseudo-moments, such as limn−1

Pn
t=1 xt = lim x̄ (n)

for the pseudo-mean and limn−1
Pn

t=1 (xt − x̄ (n))2 for the pseudo-variance.
For example, suppose x = (1,−1, 1,−1, ...), then the pseudo-mean is 0 and
the pseudo-variance is 1, even though the sequence has a clearly recognizable
deterministic pattern. The predictor (0, 0, 0, . . . ) with added N(0, 1) noise
yields a mean-prediction loss of 1 and an expected loss of 2. The random-
walk predictor ϕ (x) = x yields a mean-prediction loss of 4 and an expected
loss of 8.
We summarize the doubling property as a theorem. The vector informa-

tion of (x1, . . . , xt) will be denoted as Xt
1.

Theorem 1 (Doubling property) If the following conditions hold

1. The data x are a trajectory from a time-homogeneous process with ad-
ditive errors.

2. The stochastic predictor is defined according to the data-generating
time-series process, as the conditional expectation with added noise ε,
where E εt = 0 and E ε2t is the true variance of xt+h − E(xt+h|Xt

1).

3. The loss function G is defined by single-observation squared loss as
G (x, y) = limn→∞ n−1

Pn
t=1 (xt − yt)2

then the expected loss EG
¡
ϕ (x, .) , F hx

¢
is twice the mean-predictor loss

G
¡
Eϕ (x, .) , F hx

¢
.

Proof: If x is generated from a time-series process with additive errors,
then it holds that

xt+1 = E
¡
xt+1|Xt

1

¢
+ νt+1,
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if Xt
1 = {x1, . . . , xt} and, for general h, that

xt+h = E
¡
xt+h|Xt

1

¢
+

hX
j=1

θjνt+j,

with time-constant weights θj and white-noise ‘prediction’ errors νt. These
are the Wold-decomposition errors for stationary processes and are defined
analogously for non-stationary time-homogeneous processes. Because of con-
dition 2, prediction relies on white-noise random numbers εt with the same
variance as

P
θjνt+j. In obvious notation, we use ϕt (X

t
1) + εt for the pre-

diction of xt+h, such that ϕ (x) = (ϕ1 (X1
1 ) + ε1, ϕ2 (X2

1 ) + ε2, . . . ). Because
of condition 3,

EG
¡
ϕ (x, .) , F hx

¢
= lim

n→∞
n−1

nX
t=1

E
¡
ϕt
¡
Xt
1

¢
+ εt − xt+h

¢2
= lim

n→∞
n−1

nX
t=1

E{E
¡
xt+h|Xt

1

¢
+ εt − E

¡
xt+h|Xt

1

¢− hX
j=1

θjνt+j}2

= lim
n→∞

n−1
nX
t=1

E

Ã
εt −

hX
j=1

θjνt+j

!2
= 2E ε2t ,

while the mean-predictor loss is determined as

G
¡
Eϕ (x, .) , F hx

¢
= lim

n→∞
n−1

nX
t=1

©
E
¡
E
¡
xt+h|Xt

1

¢
+ εt

¢− xt+hª2
= lim

n→∞
n−1

nX
t=1

©
E
¡
xt+h|Xt

1

¢− xt+hª2
= lim

n→∞
n−1

nX
t=1

Ã
hX
j=1

θjνt+j

!2

=
hX
j=1

θ2j lim
n→∞

n−1
nX
t=1

ν2t+j +
hX
j=1

hX
k 6=j,k=1

θjθk lim
n→∞

n−1
nX
t=1

νt+jνt+k

=
hX
j=1

θ2j E ν2t = E ε2t .¤
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While the result per se appears rather trivial, we note that the condi-
tions cannot be relaxed substantially. If the predictor does not correspond
to the generating model, either variance expressions will differ or a bias will
invalidate the equivalence. As our examples show, the doubling property also
holds for many ‘mis-specified’ predictors, as long as the variance of the sim-
ulated errors ε corresponds to the true one and the prediction error has zero
unconditional expectation. If non-quadratic criteria are used, the adding-up
property fails. Loss functions of the squared type with discounting sometimes
retain the doubling property–such as different weights for odd and even ob-
servations, which may represent ‘winter’ and ‘summer’ in an application.
More often they do not do so, as the ergodicity argument in the last part of
the proof will not work, particularly if a finite ‘window of interest’ is allotted
a non-zero weight. Even when the true model is substituted by a correctly
specified model with a consistent estimator, the equivalence depends on the
rate of convergence of the estimator and is not generally true. Also note that
independence of the Wold-type errors νt is not required. Independence holds
if the process is linear and its errors are Gaussian.
Clearly, unconstrained minimization of expected loss does not make sense

for stochastic predictors. A useful requirement may be to search for the min-
imum expected loss in a class of stochastic predictors that conform to the
doubling-property rule. That condition is tuned to the case of squared loss,
due to the equivalence of squared-error minimization and taking expecta-
tions, and has to be replaced for different loss functions. For squared loss,
stochastic prediction with EG

¡
ϕ (x, .) , F hx

¢
> 2G

¡
Eϕ (x, , ) , F hx

¢
displays

over-dispersion in the sense that the prediction model is more volatile than
the data. Conversely, EG

¡
ϕ (x, .) , F hx

¢
< 2G

¡
Eϕ (x, , ) , F hx

¢
implies

under-dispersion in the sense that the prediction model does not capture
the variation of the data fully.
In practice, even for ‘correctly specified’ prediction models in the sense

that the stochastic predictor uses a model class that contains the mechanism
that generates x, model parameters are unknown and have to be estimated.
Therefore, the doubling property will not hold exactly. In the more realistic
situation that the prediction model does not contain the data-generating
mechanism and such a mechanism may even fail to exist or at least to be
time-varying, the rule may serve as a rough guideline.
It is worth while discussing whether stochastic prediction is a useful tool,

as it appears that optimization of the predictor algorithm can be conducted
on the basis of a single trajectory (n → ∞) and mean or deterministic pre-
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diction. The point is that typical macroeconomic (and other) data samples
are rather small and ‘n→∞’ is a daring idealization. For fixed n, K →∞
reveals some of the properties of predictor loss, as long as x features proper-
ties of a time-homogeneous process trajectory. Note that working with fixed
n violates strict monotonicity of the loss function G.

4 Double stochastic evaluation

Many existing forecasting evaluation studies explicitly or tacitly assume that
the observed data x has been generated by a time-homogeneous stochas-
tic process, i.e. either a stationary process or a non-stationary process that
becomes stationary after differencing. Such a stochastic process, of which
only one trajectory is observed for a finite time range, is then called a data-
generating process (DGP). If the predictor is model-based and its model class
contains the DGP, the prediction model is called ‘correctly specified’, oth-
erwise it is called ‘mis-specified’. If the predictor is not model-based, this
distinction does not make sense.
Although we suggest the adoption of such an approach only with the ut-

most caution, it may be convenient to assume–for the sake of an experiment–
that x indeed is the trajectory of such a DGP. Such exercises may be useful
for answering the question, how well a model-based predictor would perform,
if its model really were the DGP. One may compare the loss from such an
exercise to the loss (or expected loss) from other experiments, such as enter-
taining rival predictors based on mis-specified models. If the rival predictor
yields a comparable loss but wins the reverse horse race, which assumes that
the model for the rival predictor were the DGP and again calculates the loss
for both methods, usage of the rival predictor may be recommended for the
sake of ‘robustness’.
In such double stochastic evaluations, a model is estimated from x using

the whole available time range. This model is then assumed as the DGP. An
expression such as

lim
K2→∞

lim
K1→∞

K−1
2 K

−1
1

K2X
j=1

K1X
k=1

G
¡
ϕ (x (ω2j) ,ω1k) , F

hx (ω2j)
¢

= E
x
EG

¡
ϕ (x, .) , F hx

¢
may serve as a criterion of accuracy. Here, two kinds of expectations are
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taken: firstly, the expectation w.r.t. the generation law of the stochastic pre-
dictor; secondly, the expectation w.r.t. the generation law of the DGP. For
‘correct specification’, both laws are members of the same model class, while
they differ for ‘mis-specification’. Even when an x trajectory of infinite length
is available, however, the laws do not coincide, as x (ω2) is drawn from the
true distribution in this case, while ϕ (x,ω1) stands for gradual approxi-
mations of that true distribution by estimates from finite segments of the
trajectory. Note that computation time increases by a factor of K2 relative
to regular stochastic prediction evaluation. For non-stochastic prediction,
the experiment simplifies considerably and its computer time requirements
are again comparable to stochastic prediction.
The examples introduced in the last section also apply in this case. Ap-

proximating expectations by averaging across random draws instead of across
time is convenient if the sample is short. However, note that double sto-
chastic evaluation is not constrained to the available sample size. Samples of
large size can be generated artificially. Large-sample double stochastic predic-
tion evaluations serve as guidelines for ‘asymptotic behavior’ for hypothetical
cases when large samples could become available. Usually, consistent estima-
tors for the predictors imply that the ‘true’ model, i.e. a match between the
DGP and the predictor model, achieves the lowest (double) expected loss,
though slow convergence toward true parameter values may counteract this
standard result. In particular, misspecified models may beat correctly speci-
fied prediction for some non-linear models with poorly identified parameters
and for discounted loss functions.
Double stochastic evaluation is not really a procedure that measures pre-

dictive accuracy for a given data sample. It is rather a simulation exercise
that evaluates the relative accuracy of predictors against the background of
an assumed true model class.

5 An empirical project: investment compo-
nents in gross output

5.1 The data

We use a data set from the national accounts of the United Kingdom. Quar-
terly total fixed investment (or gross fixed capital formation, GFCF) is de-
fined as the sum of investment in equipment and machinery, investment in
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residential construction, investment in non-residential construction, and some
minor positions. Additionally to these investment subaggregates, we use a
time series of quarterly gross domestic product (GDP). All variables are at
constant prices.
Data series were taken from the UK quarterly national accounts for the

time range 1965:1 to 2002:3. Figure 1 shows the evolution over time of
ratios of total GFCF and of some raw investment components to GDP. The
investment components were aggregated to the two main components later.
It is seen that the ratio of total GFCF over GDP has remained fairly stable
over the whole time range, at around 17—18%. By contrast, the share of
equipment investment has increased from less than 5% to around 8%, while
the share of residential construction has fallen from 5—6% to less than 3% over
the same time range. The three shown subaggregates do not sum to total
investment. Some smaller components and discrepancies and a fourth major
position of ‘transport equipment’ add to the overall increase in equipment
investment.
For the prediction experiment, we simplify the breakdown of GFCF as

follows. In order to keep the historical distinction of the two major com-
ponents of investment (see, e.g., Berndt, 1996), we form the two subag-
gregates ‘construction investment’ from the residential and non-residential
series and summarize the remainder, i.e. the difference of total GFCF and
construction investment, in a variable ‘non-construction investment’, which
we will identify with ‘equipment investment’ in the following. The share of
these two components in GDP output is shown in Figure 2. We denote the
logarithms of construction and of non-construction investment by z1 and z2,
while Y denotes the logarithm of GDP. Trivariate models will be developed
for X = (z1, z2, Y )

0, while the variables in focus are the logarithmic compo-
nent ratios z1 − Y , z2 − Y , and z − Y , with exp (z) = exp (z1) + exp (z2). In
the notation of the theoretical part of this paper, these variables define x.
For z1 − Y , z2 − Y , and z − Y , some descriptive unit-root test statistics

are summarized in Table 3. While in the case of the Dickey-Fuller tests
the lag order was determined by the AIC information criterion, a window
length of 4 was generally used for the Phillips-Perron version of the test. In
summary, unit roots are never formally rejected for any variable, although
the share of total GFCF comes closer to a rejection than the shares of the
subaggregates. This result is slightly at odds with visual impression and is
likely due to the long swings and high volatility of the total share series. The
result is confirmed by a multivariate cointegration test on the three variables.
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A search for the cointegrating rank according to the Johansen method (see
Johansen, 1995, for a detailed description) yields a rank of zero and hence
no cointegrating vector. This excludes the possibility of self-cointegration
and stationarity of any of the individual variables.
In summary, stationarity of the investment quota is not supported statis-

tically, although one may wish to impose it for longer-run prediction (large
h), for reasons of plausibility. By contrast, stationarity of subaggregate quo-
tas is unsupported by statistics as well as by plausibility.

5.2 Evaluations conditional on observed data

As candidates for stochastic forecasts, we use model-based predictions from
five models:

1. an unrestricted VAR in differences Φ(B) (∆Xt − µ) = ut with ut ∼
NID (0,σ2). Here, B denotes the backshift operator and µ is the mean
of the assumedly stationary ∆X. This model serves as a convenient
simple benchmark model. The degree of the lag polynomial Φ (.) is
determined by the AIC information criterion. Parameters Φ (.), µ, σ2

are determined by least squares.

2. a non-linear error-correction model that is specified as

∆Xt = µ+ α [ln {exp (z1,t−1 − Yt−1) + exp (z2,t−1 − Yt−1)}− δ]

+Γ∆Xt−1 + εt. (3)

This model implies difference stationarity of X and stationarity of the
investment-output ratio, though it imposes no restriction on the com-
ponent ratios exp (z1 − Y ) and exp (z2 − Y ). Thus, it reflects prior in-
formation from theory and from empirical evidence. Lag orders beyond
one were not considered. Some cursory residual analysis supported this
decision. Note that, while additional sophistication may be required if
modeling aims at retrieving precise parameter estimates, correct spec-
ification is not required for the definition of a forecasting tool. All free
parameters are determined by least squares. (see Escribano and
Mira, 2001, for general properties of non-linear error-correction mod-
els)
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3. a non-linear error-correction model as (3) with the additional constraint
that E∆X is a scalar vector. This variant avoids (or at least mitigates)
the tendency of the freely estimated model that the share of one of the
components approaches 0. While the long-run behavior of the com-
ponent ratios is still left unrestricted, deterministic divergence is ruled
out. This condition is called growth homogeneity in the following. Para-
meters are determined by a first-stage least-squares identification step
and a secondary adjustment of the constant µ.

4. a linear error-correction model with stationary subcomponent ratios.
This model imposes stationarity on ∆X as well as on z1 − Y and on
z2 − Y .

5. a VAR in differences with growth homogeneity. This variant of the
benchmark model avoids a particular feature of that model that may
look most implausible in medium-run (large h) predictions, though it
still assumes no equilibrium relation for any combination (linear or
non-linear) of the ‘level variable’ X.

Models #1 to #4 can be viewed as assuming an increasing amount of
restrictions on long-run behavior. Model #1, which is formally supported
by the in-sample statistics reported in Table 3, assumes non-stationarity of
z − Y , z1 − Y , z2 − Y . Model #2 has stationary z − Y , but non-stationary
zj−Y , j = 1, 2. This is also true for model #3, which imposes a zero-drift re-
striction on the difference-stationary subcomponents ratios and is supported
by plausibility considerations. Finally, model #4 assumes stationarity for all
quotas. Model #5 restricts the deterministic part of model #1 but not the
stochastic part. Thus, it is more restrictive than model #1 but less restric-
tive than model #3, while such ranking is not possible between models #2
and #3.
Each model was used to generate h—step predictions for the last 50 ob-

servations of the available sample and for 1 ≤ h ≤ 40. In all error-correction
models, instability was excluded by changing unstable influences of the error-
correction terms to zero. This criterion was used separately at each time
point, such that the experiment is out-of-sample in all regards. In terms of
Section 2, all predictors conform to the cylinder-set condition. While various
other models could be used for a comparison, note that it is not necessary
to impose growth homogeneity on the linear cointegration model, as it is
fulfilled automatically.
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For the function g2 (x, y) = (x− y)2, i.e. mean squared errors, skeleton
prediction yields Figures 3—5. The graphs show loss as a function of h, where
G corresponds to (2), with n stopped at n = 50. The three ratios are targeted
separately, which we considered the most informative variant. Similarly,
one may consider joint measures on the vector series X or on a range of
horizons h ∈ {1, . . . , hmax}. See Clements and Hendry (1998, Ch.3)
for such suggestions. Stochastic mean prediction–all stochastic prediction
experiments were conducted with 200 replications–yields similar results to
the skeleton, even for the non-linear models #2 and #3. Results for expected
loss in stochastic prediction are displayed in Figures 6—8. For g1 (x, y) =
|x − y|, i.e. mean absolute errors, the ranking of forecasts is similar. The
benchmark model #1 in differences without any further restriction clearly
yields inferior forecasts. Contrary to the simulations of Engle and Yoo
(1987), cointegrating models dominate at almost all horizons for all series, not
only at larger horizons. Note, however, that we do not use the VAR in levels
as a benchmark that was used by Engle and Yoo but in differences, and
that we evaluate predictive accuracy for the (stationary or at least bounded)
ratios and not for the assumedly integrated variables, such as Y .
Between the ‘deterministic’ and the ‘stochastic’ evaluations, the ranking

of forecasting procedures is generally similar, with two exceptions.
Firstly, the benchmark model in differences with growth homogeneity

shows a much stronger relative performance in the deterministic than in the
stochastic evaluation. This puzzle may have a simple explanation. Growth
homogeneity removes a major obstacle for acceptable performance of a model
without long-run equilibrium conditions on average, while trajectories from
the corresponding processes diverge. To quote a common application of coin-
tegration, predicting income and consumption to grow at the same speed
implies parallel behavior of the two variables for the conditional expectation
but not for arbitrarily drawn trajectories. Stochastic prediction reveals the
missing equilibrium condition.
Secondly, the linear cointegration model performs better in the stochas-

tic experiment. For small h, linear cointegration achieves the best stochastic
forecasts for the equipment quota. This observation corresponds to a wide-
spread advantage of linear structures, which tend to generate reasonable tra-
jectories at shorter horizons, while their point predictions are not optimal.
At longer horizons, their performance deteriorates because of the possibly
spurious equilibrium conditions that are imposed in model #4.
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5.3 Evaluations conditional on simulated data

These evaluations assume that a specified model class is the correct one and
determines the free parameters by estimation from the full available sample.
From this estimated ‘pseudo-true’ model, artificial samples are generated
(‘parametric bootstrap’), which are then ‘predicted’ using all of the previ-
ously specified methods. One of the methods corresponds to the class used
for generating the data. These evaluations provide information on the rela-
tive merits with regard to the accuracy of forecasts from correctly specifying
the model class. Because of sampling variation in parameter estimation, the
true model class is not necessarily the best one at all forecast horizons.
Figures 9—11 rely on 200 replications both for the stochastic predictors

and for the pseudo-true model. The assumed true model class is the non-
linear cointegration model with the growth homogeneity restriction (#3).
Figures are drawn for mean absolute errors rather than g2, to allow a more
instructive visual separation of curves. For both criteria, the ranking is iden-
tical. Predictions based on the true model dominate at all horizons, while
the ranking of the other predictors varies. For the equipment investment
quota, the nonlinear model without the homogeneity restriction falls behind
the linear error-correction model, while for the construction and total quotas,
linear cointegration performs worse than the unrestricted nonlinear model.
The primitive models without any error-correction restriction are worst for
the construction and total quotas, whereas the differences VAR with growth
homogeneity achieves a similar performance as the unrestricted nonlinear
model for the equipment investment quota.
These simulations offer an informal test of whether the assumed model is a

likely data-generating mechanism for the British data, even though such tests
are not in the focus of our investigation. If a nonlinear error-correction model
actually had generated the British investment data, Figures 9—11 should
roughly match the features seen in the observational counterparts, Figures
6—8. While that correspondence is acceptable in general, there are some
noteworthy differences. The empirical plots support the linear cointegration
model as a forecasting tool at some prediction horizons, while this model is
not among the preferred ones for the simulation graphs. This mismatch may
indicate that true data behavior lies ‘in between’ the linear and the nonlinear
model, in the sense that the persistence of subcomponent quotas is stronger
than would be implied by the nonlinear error-correction model, though not
as strong as would be implied by the linear error-correction model. For both
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data sets, prediction errors increase monotonously for the bootstrap version,
while they deviate from monotonicity for the empirical version. This may
indicate that longer-run cycles play a larger role in empirical data than in all
suggested model classes. These longer-run cycles may reflect cycles in polit-
ical attitudes, as particularly construction investment is severely influenced
by policy decisions. Finally, the numerical values of mean absolute and mean
squared errors show noteworthy differences, which however is to be expected
due to sampling variation, if the data is viewed as a single observation of a
trajectory from a time-series process.
The different criteria are summarized graphically in Figures 12—14 for pre-

diction model #3, with model #3 assumed as the DGP for double stochastic
prediction. Although the model is non-linear, there is hardly any visible dif-
ference of the skeleton and the mean forecast. Stochastic prediction increases
the reported g values, though the correspondence with the doubling prop-
erty is not precise. The relative effect of double stochastic simulation varies
across series. For the total ratio and the equipment ratio, the expected loss
from double stochastic simulation is below that from stochastic prediction.
This may indicate some amount of incorrect specification in model #3 for
the observed data. In other words, assuming the data as being generated
from model #3 simplifies the prediction task artificially. Conversely, for the
construction ratio, double stochastic evaluation yields larger loss than sto-
chastic prediction. Generally, a mismatch of the true data-generating process
and the forecasting model should not discourage the usage of the forecasting
procedure, as long as no better prediction method has been found.

6 Summary and conclusion

The present paper is an attempt at forming a theoretical basis for measuring
relative prediction accuracy in empirical applications. A general framework
for such measurement has been defined for the cases of pure point predic-
tion, stochastic prediction, and checking forecasting properties by parametric
bootstrapping. The definitions are then employed in a practical macroeco-
nomic forecasting experiment.
The suggested definitions make up for the comments by Chatfield

(2000), who points to the uncertainty surrounding the statistical sampling
model in the application of popular tests for predictive accuracy, such as
the test by Diebold and Mariano (1995). We see this contribution as a
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beginning of more research in this direction, while at the same time our ap-
proach eliminates some of the problems that are mentioned in the literature.
Additionally, the presented approach comes closer to the needs of empirical
forecasters than some of the statistical approaches that are in current usage.
Choosing a prediction model from a set of candidates over a test range,

in the hope that the ranking for larger n will correspond to the in-sample
ranking, is a natural approach. Comparable procedures are commonly ap-
plied to various statistical problems in time series. For an example, we name
the choice of bandwidth in nonparametric modeling, as suggested by Fan
and Yao (2003, p. 323). An alternative approach, which aims at establish-
ing more sophisticated prediction models by gauging them against a given
‘primitive’ benchmark model on the basis of ‘significance’, appears to be less
attractive.
Following the framework of this paper, future research should address the

empirical significance of recurrent features in the comparison among the pre-
diction methods. The differences between the pure stochastic forecast and
the double stochastic simulation are of particular interest. We conjecture
that double stochastic simulation yields a variant of measuring the distance
between processes. Furthermore, double stochastic simulation ignores spe-
cific features of the sample in favor of the assumed parametric structure. In
contrast, stochastic prediction fully reflects the sample-specific features of
the given data set. The match or mismatch of the two approaches could add
to the existing toolkit for developing forecast models.
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Tables and figures

Table 1: Areas of same distance for MAE—type criteria. Curves give points
at a distance of 0.2 and 0.4 for true data (1, 3) and (−0.5,−1.5). From top
left, criteria are MAE, MAPE, sMAPE, and modified sMAPE.

27



Table 2: Areas of same distance for MSE—type criteria. Curves give points
at a distance of 2.5 for true data (1, 3), (−0.5,−1.5), and (−1, 3). Criteria
are MSE and NMSE.
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Table 3: Unit root tests on British series

log(IFC/GDP) log(IFE/GDP) log(IF/GDP)
Dickey-Fuller tests
augmenting lags 2 1 1
µ—statistics -0.752 -1.234 -2.003

Phillips-Perron tests
window length 4 4 4
statistics -1.121 -1.406 -2.310

IFC is construction investment, IFE is equipment investment, IF is total
fixed investment, GDP is gross domestic product.
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Figure 1: Shares of investment components in British GDP. Quarterly data
1965:1—2002:3.
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Figure 2: Shares of constructed investment components in British GDP. Here,
“construction” comprises residential and non-residential construction, while
“equipment” comprises all categories of total fixed investment excluding con-
struction.
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Figure 3: Mean squared error for the skeleton prediction for the total invest-
ment quota.
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Figure 4: Mean squared error for the skeleton prediction for the construction
investment quota.
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Figure 5: Mean squared error for the skeleton prediction for the equipment
investment quota.

34



Figure 6: Expected mean squared errors for stochastic prediction, calculated
from averaging across 200 replications. Predicted variable is the UK total
investment quota.
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Figure 7: Expected mean squared errors for stochastic prediction, calculated
from averaging across 200 replications. Predicted variable is the UK con-
struction investment quota.
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Figure 8: Expected mean squared errors for stochastic prediction, calculated
from averaging across 200 replications. Predicted variable is the UK equip-
ment investment quota.
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Figure 9: Expected mean absolute errors for double stochastic simulation
based on 200 replications. Predicted variable is a parametric bootstrap
version of the British total investment quota, assuming a non-linear error-
correction model with growth homogeneity as the DGP.
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Figure 10: Expected mean absolute errors for double stochastic simulation
based on 200 replications. Predicted variable is a parametric bootstrap ver-
sion of the British construction investment quota, assuming a non-linear
error-correction model with growth homogeneity as the DGP.
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Figure 11: Expected mean absolute errors for double stochastic simulation
based on 200 replications. Predicted variable is a parametric bootstrap ver-
sion of the British equipment investment quota, assuming a non-linear error-
correction model with growth homogeneity as the DGP.
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Figure 12: Effect of the stochastic nature of mean-squared error loss on
forecasting performance for the total investment to output ratio. Predictor
(and DGP for double stochastic evaluation) is based on the non-linear error-
correction model with growth homogeneity.
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Figure 13: Effect of the stochastic nature of mean-squared error loss on fore-
casting performance for the construction investment to output ratio. Predic-
tor (and DGP for double stochastic evaluation) is based on the non-linear
error-correction model with growth homogeneity.
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Figure 14: Effect of the stochastic nature of mean-squared error loss on fore-
casting performance for the equipment investment to output ratio. Predictor
(and DGP for double stochastic evaluation) is based on the non-linear error-
correction model with growth homogeneity.
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