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Abstract
This paper provides derivations necessary for solving an optimal consumption problem

with multiplicative habits and a CRRA ‘outer’ utility function, either for a microeconomic
problem with both labor income risk and rate-of-return risk, or for a macroeconomic
representative agent model.
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1 Introduction

The last few years have seen a renewal of interest in the old1 idea that habits may play a
key role in consumption behavior. The resurgence of interest in habits has been provoked
by the emergence of empirical findings that are difficult to explain using the traditional
model in which utility is time-separable.2

The early modern theoretical models of habit formation3 tended to take the ‘subtrac-
tive’ form in which utility is derived from the difference between current consumption
and the habit stock,

u(c, h) = v(c− h). (1)

where the habit stock h was usually set equal to the level of consumption in the previous
period,

ht = αct−1, (2)

and the ‘outer’ utility function v(x) usually took the quadratic form. Unfortunately,
quadratic utility has a host of implausible implications,4 and has consequently largely
been abandoned in the rest of the consumption literature, principally in favor of the
Constant Relative Risk Aversion (CRRA) form of utility which has much more attractive
properties.5

Some papers (notably Constantinides (1990), Dynan (forthcoming), and Campbell
and Cochrane (1999)) have used CRRA utility for the ‘outer’ utility function, but CRRA
utility in combination with the subtractive formulation of equation (1) has several theo-
retical problems, the gravest of which is that for microeconomically plausible parameter-
izations of consumption variation the accumulation equation (2) can easily lead to a zero
or negative argument to the function v, generating infinite negative utility. Campbell and

1Adam Smith (1776) spoke of the change over time in ‘customary’ consumption levels; Alfred Mar-
shall (1898) explicitly argues (see, e.g., pages 86–91 or pages 110–111) that habits are important in
consumption behavior; Pigou (1903) provides a more formal treatment; Duesenberry (1949) provides a
somewhat less ancient, and recently more famous, treatment.

2Habits have recently been proposed in three distinct domains of macroeconomic theory. Abel (1990),
Constantinides (1990), and Campbell and Cochrane (1999) have argued that habits may explain the eq-
uity premium puzzle; Carroll and Weil (1994) and Carroll, Overland, and Weil (2000) have proposed that
habits may be able to explain why high growth apparently causes saving to rise; and Fuhrer (forthcoming)
and Fuhrer and Klein (1998) have argued that habits may be necessary to explain the ‘excess smooth-
ness’ of aggregate consumption at high frequencies. Several papers (notably van de Stadt, Kapteyn, and
van de Geer (1985), Dynan (forthcoming), and Carroll and Weil (1994)) have also proposed habits as an
explanation for microeconomic results.

3By a ‘modern’ treatment I mean a treatment in an explicit dynamic optimizing model.
4Among them, the absence of a precautionary saving motive, the existence of a ‘bliss point’ beyond

which additional consumption reduces utility, and increasing absolute risk aversion.
5Recently, Alessie and Lusardi (1997) have shown how to solve the subtractive model when v is

of the Constant Absolute Risk Aversion (CARA) form, thus allowing for the first time the analytical
examination of the interaction between precautionary saving motives and habit formation. However,
CARA utility also has some theoretically unattractive features, notably that it does not rule out negative
consumption and that it implies that poor people and rich people reduce their consumption by exactly
the same dollar amount in reaction to a given risk. See Kimball (1990) or Carroll and Kimball (1996)
for further discussion of the unattractive properties of CARA utility.



Cochrane (1999) deal with this problem by replacing equation (2) with a highly nonlin-
ear (and nonintuitive) function that causes habits to drop simultaneously with drops in
consumption when consumption gets too close to the habit stock.

Partly in response to this and other theoretical problems with the subtractive model,
the recent literature6 seems to be trending toward the use of what might be termed the
‘multiplicative’ form of habits introduced by Abel (1990) and Gaĺi (1994),

u(c, h) = v(c/hγ),

with the habit stock a general adaptive process of the form

ht = ht−1 + λ(ct−1 − ht−1).

In this formulation, if consumption is always positive then h will always be positive
and so a CRRA utility function can be used for v without danger of introducing negative
infinite utility. Furthermore, the model’s two parameters are easy to interpret: γ indexes
the importance of habits, in the sense that if γ = 0 the model collapses to the standard
CRRA model in which consumers only care about the level of consumption (habits are
irrelevant) while if γ = 1 consumers care only about how their current consumption
compares to habits and do not care at all about the level of consumption. λ indexes the
speed with which habits ‘catch up’ to consumption; if λ = 0 the model again collapses to
the CRRA model because habits are simply a constant multiplicative factor in the utility
function, while if λ = 1 habits in the current period collapse to the previous period’s level
of consumption.

Despite its appeal, a general theoretical analysis of the multiplicative model of habits
similar to the treatments for the subtractive model given in Muellbauer (1988), Constan-
tinides (1990), Deaton (1992), and Alessie and Lusardi (1997) does not appear to have
been published.7 This paper fills that gap. Section II of the paper presents the formal
model and the first order conditions that can be used to solve the model numerically,
Section III explores the steady-state characteristics of the nonstochastic version of the
model and derives some analytical results, and Section IV presents difference equations
that characterize the evolution of the model toward the steady-state.

2 The Problem

The consumer’s goal is to

max Et

[
T∑
s=t

βs−tu(cs, hs)

]

where β is the constant time preference factor and all variables are as usually defined.

6Examples include Carroll, Overland, and Weil ((1997, 2000)), Abel (1999), Fuhrer (forthcoming),
and Fuhrer and Klein (1998).

7Abel (1990, 1999) provides asset pricing formulas; Carroll, Overland, and Weil (1997) sketch the
continuous-time perfect foresight solution; and Fuhrer (forthcoming) provides the Euler equation in the
form of an infinite series and finds numerical solutions for a perfect-foresight discrete-time version with no
growth, but no source known to the author provides either a general-purpose derivation under uncertainty
or provides the general analytical version of the discrete-time steady-state conditions.



Assume that the utility function is given by

u(c, h) =
(c/hγ)1−ρ

1− ρ (3)

which implies that the derivatives of the utility function with respect to its arguments
are

uc = (ch−γ)−ρh−γ (4)

uh = −γ(ch−γ)−ρch−γ−1 (5)

= −γuc(c/h). (6)

Bellman’s equation for this problem is

vt(xt, ht) =

max
{ct,wt}

u(ct, ht) +βEt[vt+1(x̃t+1, ht+1)] (7)

such that

Rt+1 = (1− wt)R+ wtRe,t+1 (8)

xt+1 = Rt+1[xt − ct] + yt+1 (9)

ht+1 = ht + λ(ct − ht) (10)

where R is the constant gross riskfree interest factor (equal to 1 plus the riskfree interest
rate), Re,t+1 is the (ex-ante stochastic) return on the risky asset (e is mnemonic for
‘equities’); wt is the portfolio weight given to the risky asset in period t; Rt+1 is the
portfolio-weighted rate of return between the end of period t and the beginning of period
t + 1; yt is labor income in period t; xt is ‘cash-on-hand,’ the total amount of resources
available to be spent in period t; and the notational convention for the treatment of
uncertainty is that in any expression whose expectation is being taken, a ∼ is put over
any variable whose value is uncertain as of the date at which the expectation is taken.
Thus, xt+1 warrants a ∼ in equation (7) because it is inside an Et[] expression, but does
not warrant a ∼ in equation (9) because no expectation is being taken.

2.1 Optimality Conditions

2.1.1 First Order Conditions

The first order condition for this problem with respect to ct is (dropping arguments for
brevity and denoting the derivative of f with respect to x at time t as fxt ):

0 = uct + βEt

(
λvht+1 − R̃t+1v

x
t+1

)
(11)

uct = βEt[R̃t+1v
x
t+1 − λvht+1], (12)

and the FOC with respect to wt gives:

0 = Et

[
vxt+1

∂x̃t+1

∂wt

]
= Et

[(
R̃e,t+1 −R

)
[xt − ct]vxt+1

]
. (13)



2.1.2 Envelope Conditions

The Envelope theorem on the variable xt says:

vxt =
∂vt
∂xt

+

=0︷︸︸︷
∂vt
∂ct

∂ct
∂xt

vxt = βEt[R̃t+1v
x
t+1]. (14)

Substituting this into the FOC equation (12) gives

vxt = uct + βEt[λv
h
t+1]. (15)

Noting that ∂ht+1/∂ht = (1− λ), the Envelope theorem on the variable ht says:

vht =
∂vt
∂ht

+

=0︷︸︸︷
∂vt
∂ct

∂ct
∂ht

= uht + βEt[v
h
t+1

∂ht+1

∂ht
]

= uht + (1− λ)βEt[vht+1]. (16)

2.2 Numerical Solution

As with the standard time-separable model, no analytical solutions to this model appear
to exist for general forms of uncertainty. Numerical solution proceeds as follows.

The derivative of u(c, h) with respect to c can be substituted into equation (12) to
yield

(cth
−γ
t )−ρh−γt = βEt

(
R̃t+1v

x
t+1 − vht+1λ

)
(17)

c−ρt = hγ−γρt βEt

(
R̃t+1v

x
t+1 − vht+1λ

)
(18)

ct = h
γ(1−1/ρ)
t β−1/ρEt

(
R̃t+1v

x
t+1 − vht+1λ

)−1/ρ

. (19)

Given the existence of the marginal value functions in the next period vxt+1 and vht+1,
equations (19) and (13) can be jointly solved numerically for optimal ct and wt at some set
of grid points in (x, h) space, and approximate policy functions can be constructed using
any of several methods (see Judd (1998) for a catalog of options). The approximated
marginal value functions can be constructed on the same (x, h) grid by substituting the
optimal values of ct and wt into the envelope relations (14) and (16). With these marginal
value functions in hand, it is then possible to solve for optimal policy in period t− 1 and
so on to any earlier period by backward recursion.

Thus, to solve the finite-lifetime version of the model, simply note that in the final
period of life T the future marginal utilities are equal to zero so that

vcT = uc(ct, ht)

vhT = uh(ct, ht),

and backward recursion provides policy functions for all previous periods of life. An
infinite-horizon solution to the model can be defined as the finite-horizon solution as the
horizon approaches infinity.



3 The Steady-State

The discussion of numerical solution methods was suited to the use of the model to de-
scribe a microeconomic problem like that examined by Dynan (forthcoming) or van de Stadt,
Kapteyn, and van de Geer (1985). Models with habits have also recently been applied
in macroeconomic problems where the representative agent’s steady-state infinite-horizon
solution is relevant. It turns out that it is possible to solve analytically for the steady-state
of the perfect-foresight version of the model, as follows.

Roll equation (16) forward one period to get

vht+1 = uht+1 + (1− λ)β[vht+2], (20)

which can be substituted into (15) to yield

uct = vxt − λβ[uht+1 + (1− λ)βvht+2]. (21)

Now equation (15) can also be rolled forward one period and solved for β[vht+2]

β[vht+2] = (
1

λ
)
[
vxt+1 − uct+1

]
which can be substituted into equation (21)

uct = vxt − λβ
[
uht+1 +

(
1− λ
λ

)(
vxt+1 − uct+1

)]
(22)

= vxt − (1− λ)β[vxt+1]− β
[
λuht+1 − (1− λ)uct+1

]
(23)

= vxt −
(1− λ)
R

vxt − β
[
λuht+1 − (1− λ)uct+1

]
(24)

= (
R− (1− λ)

R
)vxt − β

[
λuht+1 − (1− λ)uct+1

]
(25)

which can be rolled forward one period and solved for vxt+1

vxt+1 =

(
R

R− (1− λ)

)[
β
[
λuht+2 − (1− λ)uct+2

]
+ uct+1

]
. (26)

Finally, from equations (25) and (14) we have

uct = [Rβvxt+1](
R− (1− λ)

R
)− β

[
λuht+1 − (1− λ)uct+1

]
(27)

=
[
Rβ
(
β
[
λuht+2 − (1− λ)uct+2

]
+ uct+1

)]
− β

[
λuht+1 − (1− λ)uct+1

]
, (28)

which is the Euler equation for this problem. An alternative form is

uct − β[Ruct+1] = β
[
Rβ
(
λuht+2 − (1− λ)uct+2

)
−
(
λuht+1 − (1− λ)uct+1

)]
. (29)

Note that if λ = 0 so that the reference level for ‘habits’ never changes, or if γ = 0 so that
habits should not matter, the problem simplifies, as it should, to uct = [Rβuct+1] which is
the Euler equation for the standard time-separable problem without habits.



Now let us assume that there is a perfect-foresight solution to the model in which the
growth rate of consumption and the habit stock are both equal to a constant σ, so that
the ratio of consumption to habits is constant at ct

ht
= χ which implies that ht = ct/χ.

Substituting this formula for h into the equations for the derivatives of c and h gives

uct = c−ρt (ct/χ)
γ(ρ−1)

= cργ−γ−ρt χγ(1−ρ)

uht = −γuctχ.

Note that this implies that we can rewrite

λuht − (1− λ)uct = uct(−γλχ− (1− λ)) (30)

Defining κ = β(−γλχ − (1 − λ)), rolling equation (30) forward one and two periods
and substituting into equation (28) gives

uct = Rβ
(
uct+2κ+ uct+1

)
− uct+1κ (31)

= Rβ
(
uct+2κ

)
+ uct+1(Rβ − κ) (32)

cργ−γ−ρt = Rβ
(
cργ−γ−ρt+2 κ

)
+ cργ−γ−ρt+1 (Rβ − κ). (33)

Now if consumption is growing at rate σ each period, then ct+1 = σct and ct+2 = σ2ct.
Substituting these expressions into equation (33) and dividing both sides by cργ−γ−ρt gives:

1 = Rβ
(
(σ2)ργ−γ−ρκ

)
− σργ−γ−ρ(Rβ − κ), (34)

or defining η = σργ−γ−ρ this becomes a quadratic equation in η:

0 = 1− η(Rβ − κ)− Rβη2κ (35)

which has the two solutions

η =

{
1
Rβ
,

− 1
κ
,

(36)

yielding the two possible solutions for steady-state growth

σ =

{
(βR)1/(ρ+γ(1−ρ))

(β[γχλ+ (1− λ)])1/(ρ+γ(1−ρ)).
(37)

The first of these potential solutions reduces to σ = (βR)1/ρ if γ = 0, which matches
the usual formula for consumption growth in the time-separable case. By contrast, the
second solution does not reduce to the optimal time-separable solution when γ = 0 and
so cannot be an optimum.8

8Another way to see that the second solution cannot be optimal is to note that the implied growth
rate is independent of interest rates.



We can also solve for the steady-state value of χ, the ratio of consumption to habits.
Expand the accumulation equation for h:

ht+1 = λct + (1− λ)ht
= λct + (1− λ)(λct−1 + (1− λ)ht−1)

= λct(1 + (1− λ)ct−1/ct + (1− λ)2ct−2/ct . . . )

= λct
1

1− σ−1(1− λ) ,

ct/(σht) = (1/λ)
[
1− σ−1(1− λ)

]
χ = (1/λ) [σ − (1− λ)]

It is also possible to solve for the level of consumption in a version of the model where
labor income is growing by a constant factor G from period to period and the gross
interest factor R is constant (both of these conditions will hold in the steady-state of a
standard neoclassical growth model). If consumption grows at rate σ every period, then
the present discounted value of consumption is9

PDVt(c) = ct(1 + σ/R+ (σ/R)2 + . . . )

= ct
1

1− σ/R.

Assuming G < R, the present discounted value of labor income is

PDVt(y) = yt(1 +G/R+ . . . )

=
yt

1−G/R.

Equating the present discounted value of consumption with the PDV of resources, we
have

ct
1

1− σ/R =
yt

1−G/R + xt

ct = (1− σ/R)

[
yt

1−G/R + xt

]
,

or, substituting the solution for σ from above,

ct = (1− R−1(Rβ)1/(ρ+γ(1−ρ)))

[
yt

1−G/R + xt

]
.

4 Dynamics of the Perfect Foresight Model

Analysis of growth models often proceeds by linearizing the model around the steady-
state. For the usual neoclassical model this involves linearizing the aggregate budget

9In order for this derivation to be valid, it is necessary to have σ < R.



constraint and the difference equation for consumption. We derive here the difference
equations for σ and χ under the assumption that the real interest rate is constant. This
is the correct procedure in an endogenous growth model with a fixed rate of return to
capital; the extension to the neoclassical production function would add a third equation
to the system derived here, describing the evolution of the gross interest factor as derived
from the standard neoclassical production function.

The key step in obtaining the steady-state approximations is to find the difference
equations that govern the evolution of χ and σ. Begin by defining σt = ct/ct−1 and
χt = ct/ht, and note that

ct/ht =
σtct−1

ht
(38)

= σt
ct−1

ht−1

ht−1

ht
(39)

= σtχt−1
ht−1

(1− λ)ht−1 + λct−1
(40)

χt = σtχt−1
1

(1− λ) + λχt−1
. (41)

Substituting in for uct and uht in the Euler equation gives:

c−ρt h
γ(ρ−1)
t = β

[
c−ρt+1h

γ(ρ−1)
t+1 (R+ (1− λ) + γλχt+1)−Rβc−ρt+2h

γ(ρ−1)
t+2 ((1− λ) + γλ(χt+2))

]

1 =

[
ct+1

ct

]−ρ(
ht+1

ht

)γ(ρ−1)

β

[
R+ ((1− λ) + γλχt+1)

− Rβ
[
ct+2

ct+1

]−ρ(
ht+2

ht+1

)γ(ρ−1)

((1− λ) + γλχt+2)

] (42)

and use the fact that (ht+1/ht) = [(1− λ) + λχt] (see equations (39)-(41)) to obtain

1 = σ−ρt+1((1− λ) + λχt)
γ(ρ−1)β

[
R + ((1− λ) + γλχt+1)

− Rβσ−ρt+2 ((1− λ) + λχt+1)
γ(ρ−1) ((1− λ) + γλχt+2)

] (43)

σρt+1((1− λ) + λχt)
γ(1−ρ)/β −R− ((1− λ) + γλχt+1) =

−Rβσ−ρt+2 ((1− λ) + λχt+1)
γ(ρ−1) ((1− λ) + γλχt+2))

σ−ρt+2 =
R + ((1− λ) + γλχt+1)− σρt+1((1− λ) + λχt)

γ(1−ρ)/β

Rβ ((1− λ) + γλχt+2) ((1− λ) + λχt+1)
γ(ρ−1)

(44)

σt+2 =

[
R + ((1− λ) + γλχt+1)− σρt+1((1− λ) + λχt)

γ(1−ρ)/β

Rβ ((1− λ) + γλχt+2) ((1− λ) + λχt+1)
γ(ρ−1)

]−1/ρ

. (45)

Equations (41) and (45) are difference equations for χ and σ which can be linearized
or log-linearized around the steady-state values derived above to allow analysis of the
near-steady-state behavior of the model.



5 Conclusions

This paper provides the derivations necessary to solve a problem with multiplicative
habits and a CRRA outer utility function, either for a microeconomic problem with
both labor income risk and rate-of-return risk, or for a perfect-foresight macroeconomic
representative agent model. These solutions should be useful for researchers who want to
further explore the properties of multiplicative habit formation models.
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