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Summary. We provide a detailed portfolio analysis for a �nancial market with an atomless

continuum of assets. In the context of an exact arbitrage pricing theory (EAPT), we go beyond

the characterization of the existence of important portfolios (normalized riskless, mean, cost,

factor and mean-variance eÆcient portfolios) to furnish exact portfolio compositions in terms

of explicit portfolio weights. Such an analysis has not been furnished before in the context of

the asymptotic arbitrage pricing theory (APT). We also characterize conditions under which a

mean-variance eÆcient portfolio is a benchmark portfolio used in the EAPT to proxy essential

risk. We illustrate our results with several examples of speci�c �nancial markets.
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1 Introduction

The fundamental rationale for the consideration of in�nite asset markets in �nancial economics

is to provide an analytically viable formalization of a well-diversi�ed portfolio, one which con-

tains only factor, as opposed to idiosyncratic, variance. The theoretical task is to devise an

explanation for the intuition that under certain no arbitrage conditions, the risk premium of an

asset depends in a linear form only on systematic or factor risk. If the market is in equilibrium

in the sense that there is no possibility of gains from arbitrage, it will not reward any risk

that can be (naively) diversi�ed away. The original heuristic arguments of Ross are phrased

in terms of portfolios consisting of in�nitesimal amounts of an in�nite number of assets, the

so-called arbitrage portfolios, and appeal both to the absence of arbitrage opportunities and

to the classical law of large numbers to provide an asset pricing formula in which idiosyncratic

risk is (approximately) eliminated; see [24, pp. 196-199] and [25, pp. 67-68]. Such an argument

cannot be executed in a �nite universe of assets.

There have been two di�erent approaches to address these issues and to formalize Ross'

heuristics. The �rst is to consider markets with countable many �nancial assets, each of whose

one-period returns are assumed to have a �nite variance and hence to lie in a Hilbert space

L2(
) of square integrable functions on a sample space 
; see [23, 24, 25], [6], [7], among

others.1 In such a setting, the rate of return to any �nite portfolio also lies in L2(
) and the

weight of each asset in the portfolio's composition is well-speci�ed and clear. However, barring

trivial cases, no �nite portfolio can be well-diversi�ed, and the basic idea is to bypass this

issue by remaining in the (Hilbert) space of portfolio returns, and by de�ning a well-diversi�ed

portfolio as the limit, in the Hilbert space norm, of the returns of a sequence of �nite portfolios.

In short, to address the problem by a procedure that blurs the very distinction between the

return and the composition of an in�nite portfolio. An appeal to a version of the classical law

of large numbers then delivers a cancellation of the idiosyncratic risk in such a well-diversi�ed

portfolio. The same approach can be easily applied to markets with an asset index set of an

arbitrary in�nite cardinality under the assumption of no asymptotic arbitrage.2

The other approach is to consider markets with a continuum of assets with a special measure-

theoretic structure in which an exact law of large numbers for a continuum of random variables

allows the complete cancellation of idiosyncratic risk [28, 29]. In this continuum setting, port-

folios are identi�ed as the square integrable functions on the space T of asset names, i.e., as

elements of L2(T ), and the process of asset returns x is assumed to be an element of the parent

Hilbert space L2(T �
). The emphasis on the variance-covariance matrix, as in [6, 7], is trans-

ferred to an emphasis on the autocorrelation function of asset returns, and its denumerable

in�nity of eigenfunctions are identi�ed as factor loadings lying in one Hilbert space L2(T ), and

these in turn determine the corresponding factors in another Hilbert space L2(
).3 The exact

law of large numbers then says that all portfolios as de�ned this way have only factor risk and

are therefore well-diversi�ed automatically. In this concrete context of an idealized limit model,

one can forego asymptotics, and formulate a notion of the absence of arbitrage opportunities in

an exact, rather than asymptotic, form, and develop an exact arbitrage pricing theory, termed

1For a detailed discussion of earlier work, see [15, 16] and their references.
2See [15] and its references.
3For this type of structural result, see [28, 29] and Section 2 below.
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EAPT in [16].

Thus, both approaches formalize the cancellation of idiosyncratic risk and deliver an asset

pricing formula under the assumption of the absence of arbitrage opportunities, asymptotic

in one case and exact in the other.4 There are important di�erences in detail however: the

notion of exact arbitrage in the EAPT is both necessary and suÆcient for the factor pricing

formula to hold, and this formula implies and is implied by a beta pricing formula in which

the denumerable sources of factor risk in the factor pricing formula are collapsed into an

identi�able single source { a component of systematic risk termed essential risk { and the beta

of its corresponding benchmark index portfolio measures the risk premium of almost all assets.

But at this stage, a more relevant issue is whether we can go beyond an asset pricing formula

and present a more detailed portfolio analysis for �nancial markets where idiosyncratic risk is

exactly cancelled in well-diversi�ed portfolios. Such an analysis ought to address a variety of

outstanding and important questions: Can a normalized riskless portfolio be identi�ed in an

ensemble of risky assets? What are the necessary and suÆcient conditions for its existence?

Do there exist portfolios which generate the factors? Do cost and mean portfolios exist? Do

they generate the mean-variance eÆcient set? Can one compute the maximal (linear) tradeo�,

namely, the maximal Sharpe measure, between the mean and standard deviation of an eÆcient

portfolio?

All of these questions are answered here. Given the special measure-theoretic structure,

portfolio composition in terms of relative weights of any two assets can be clearly speci�ed,5

and we can go beyond formal properties to provide explicit formulae for a detailed study of

important portfolios. In contrast, such explicit portfolio weights cannot be given for a well-

diversi�ed portfolio under the asymptotic approach.6 Thus, concrete formulae of mean-variance

eÆciency that are lost in the asymptotic setting are recovered in the continuum setting. The

plan of the paper then is as follows: after a section on the mathematical underpinnings, and

another on the basics of the model, normalized riskless and factor portfolios are considered

in Section 4, mean and cost portfolios in Section 5, and mean-variance eÆcient portfolios in

Section 6. We illustrate the conditions of the theorems in Sections 4 and 5 by examples of

speci�c �nancial markets; see Table 1 for an overview. Section 7 concludes the paper with

two additional remarks, and an appendix collects some technicalities for the convenience of the

interested reader. These results, in terms of the formulae they provide, add a concrete and

computational aspect to the EAPT, and to one-period factor pricing models more generally,

that has not been reported before.

4The adjectives \asymptotic" and \exact" apply to the cancellation of idiosyncratic risk, to the asset pricing

formula and to the notion of arbitrage; compare [6, Theorem 1] and the theorems in Section 2 of [15] to [16,

Theorem 1].
5Here, one can usefully think of Aumann's [5] rendering of the Debreu-Scarf theorem, and note that the ques-

tion of working with �nite types does not arise in an investigation whose primary motivation is the formalization

of in�nite diversi�cation and di�useness in an idealized setting.
6In the simplest case where one takes 1=n each for the �rst n assets in a market with an in�nite sequence of

assets, the limit portfolio corresponds to the density charge, a purely �nitely additive measure; see [8, Exercise

9.8] and [32]. Portfolios based on purely �nitely additive measures on the set IN of natural numbers do not

give any relative portfolio weights explicitly as is done in this paper. Also, it is shown in [31] that statements

on diversi�cation in the framework of purely �nitely additive measures may not be reliable in the sense that

arbitrary results can be obtained.
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2 Mathematical Preliminaries and a Portmanteau Theorem

The model and results presented in this paper draw on vocabulary from four mathematical

sources: (i) elements of the theory of Hilbert spaces as presented in [27, Chapter 4] and in [10];7

(ii) integration theory, speci�cally integration on product measures, as presented in [19, Chapter

VIII] or [27, Chapter 7]; (iii) probability and statistics, speci�cally principal components and

factor analysis,8 as presented in [21] and [9]; (iv) the elements of nonstandard analysis, as

presented in [18] and [11] and, for applications in mathematical economics, in [1, 2]. In the

remainder of this section, we develop the terminology to state a portmanteau theorem that

serves as a point of departure for our analysis.

Let (T;T ; �) be the Loeb counting probability space on a hyper�nite set T . Note that

(T;T ; �) is an atomless measure space constructed from an internal counting probability space

on (T; �T ; ��). It is of course not necessary to use the counting measure on T ; it is simply

a natural one given our interest in the relative portfolio weights of assets.9 Let (
;A; P )
be another atomless Loeb measure (probability) space. As is by now well-understood in the

economics literature, Loeb measure spaces, even though constituted by nonstandard entities,

are standard measure spaces in the speci�c sense that any result proved for an abstract measure

space applies to them. For details regarding both of the above two statements, see Anderson

[1, 2] and his references.

The usual product space is denoted by (T � 
;T 
 A; � 
 P ). However, there is another

product space (T � 
;T 
L A; � 
L P ), called the Loeb product space, that extends the

usual product, retains the Fubini property and is rich enough for the study of a continuum

of independent random variables; see [29]. We begin by noting the interesting fact that the

completion of the standard product measure space (T � 
;T 
 A; � 
 P ); corresponding to

the standard measure spaces (T;T ; �) and (
;A; P ); is always strictly contained in the Loeb

product space (T � 
;T 
L A; � 
 P ); see [29, Proposition 6.6]. For simplicity, let U denote

the product �-algebra T 
A. Since the measure �
L P is an extension of �
P on the usual

product �-algebra T 
 A to the larger product �-algebra T 
L A, we use � 
 P to replace

� 
L P in the sequel, also for notational simplicity. We emphasize that we always work with

the larger product �-algebra T 
L A:
For an integrable real-valued process g on the Loeb product space, let E(gjU ) denote the

conditional expectation of g with respect to U ; see [20, Chapter VIII] for details as to conditional
expectations. This conditional expectation is a key operation, introduced in [28]. In our

context, such an operation involves both a product �-algebra U and a natural but signi�cant

extension of it, the Loeb product algebra T 
L A: As such, it has no natural counterpart in

standard mathematical practice or in nonstandard mathematics using only internal entities;

see [28, 29] for details.

As is usual, we shall refer to a measurable function of two variables as a process. Given

7The importance of the projection theorem and the Reisz representation theorem for the subject matter of

this paper has already been stressed; in particular, projection maps on Hilbert spaces have played a fundamental

role in [6], [7] and [15]. Here we shall also need some basic properties of compact operators on a Hilbert space.
8The relevance of these subjects has been discussed in some detail in [6] and in [7], and undoubtedly in an

extensive empirical literature. In this connection, also see [30].
9A common in�nitesimal unit allows a direct comparison; see the discussion in the paragraph below De�nition

1.
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a process g on the Loeb product space, for each t 2 T; gt denotes the function g(t; �) on 
;

and for each ! 2 
; g! denotes the function g(�; !) on T . The functions gt are usually called

the random variables of the process g, while the g! are referred to as the sample functions of

the process. Note that the measurability of gt and g! is a simple consequence of a Fubini type

result for Loeb product measures, also referred to as Keisler's Fubini theorem [18]. One can

understand a Fubini-type result on iterated integrals in the hyper�nite Loeb measure setting

as the simple observation that hyper�nite sums can be exchanged. Hereafter, when the need

arises, we simply change the order of integrals without an explicit statement on the application

of any Fubini-type results.

We shall be working in a Hilbert space L2(T � 
) of square integrable functions on the

bigger product of two atomless Loeb probability spaces, the Loeb product space. Thus, for any

x 2 L2(T � 
), Z Z
T�


x2(t; !)d�
 P (t; !) < 1: (1)

We shall use the notation (�; �) to denote the inner products in the Hilbert spaces L2(T ) and

L2(
): Thus, for example, for any p; q 2 L2(T ); (p; q) =
R
T p(t)q(t)d�: For any x 2 L2(T �
);

let � be the mean function of the random variables embodied in the process x, which is to

say that for any t 2 T; �(t) =
R

 x(t; !)dP (!): It is clear that x is also �
 P -integrable. An

appeal to Keisler's Fubini-type theorem for Loeb measures then guarantees that � is a Loeb

integrable function on (T;T ; �). In fact, by the Cauchy-Schwarz inequality, it is clear thatZ
T
�2(t)d� �

Z Z
T�


x2(t; !)d�
 P (t; !) <1; (2)

and hence � is �-square integrable and belongs to the Hilbert space L2(T ): In the sequel, �(t)

will also be denoted by �t. A random variable with zero mean and a process with a null mean

function will be referred to as a centered random variable and a centered process respectively.

We now collect for the reader's convenience relevant results from [29, Corollary 4.8]), [28,

Theorems 1-3], as a portmanteau theorem.

Theorem A: Let f be a real-valued square integrable centered process on the Loeb product space

(T � 
; T 
L A; � 
 P ). Then f has the following expression: for � 
 P -almost all (t; !) in

T � 
;

f(t; !) =
1X
n=1

�n n(t)'n(!) + e(t; !);

with properties:

(i) �n; 1 � n <1 is a decreasing sequence of positive numbers; the collection f n : 1 � n <1g
is orthonormal; and f'n : 1 � n < 1g is a collection of orthonormal and centered random

variables.

(ii) E(f jU )(t; !) =
P
1

n=1 �n n(t)'n(!) and E(ejU ) = 0.

(iii) The random variables et are almost surely orthogonal, which is to say that for �
�-almost

all (t1; t2) 2 T � T; Z


et1(!)et2(!)dP (!) = 0:
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(iv) If p 2 L2(T ); then for P -almost all ! 2 
;

Z
T
p(t)e!(t)d�(t) = 0 and

Z
T
p(t)f(t; !)d�(t) =

1X
n=1

�n

�Z
T
p(t) n(t)d�(t)

�
'n(!):

(v) If � 2 L2(
); then for �-almost all t 2 T; it is orthogonal to et, and
Z


�(!)f(t; !)dP (!) =

1X
n=1

�n

�Z


�(!)'n(!)dP (!)

�
 n(t):

The structural result in Theorem A can be seen as a hyper�nite version10 of the classi-

cal factor model with a �nite population: the centered random variables 'n as factors, the

corresponding functions  n as factor loadings, and the decreasing sequence of numbers �n
as scaling constants, with the size of �n measures the role of the factor 'n in understand-

ing the correlational structure of f . It is worth emphasizing that the factors are endoge-

nously derived by virtue of the fact that the associated autocorrelation function of the process

f; R(t1; t2) =
R

 f(t1; !)f(t2; !)dP; by serving as a kernel, de�nes an integral operator K on

the space L2(T ): That is, K(p)(t1) =
R
T R(t1; t2)p(t2)d�(t2) for p 2 L2(T ): It is easily checked

that �2n is in fact the n-th positive eigenvalue of the operator K with eigenfunction  n, with

all the eigenvalues listed according to reverse order and repeated up to their corresponding

multiplicities. Note that if there are only m positive eigenvalues, then the in�nite sum in

Theorem A should be read in the sequel as a �nite sum of m terms. It is also clear that

'n(!) = (1=�n)
R
T f!(t) n(t)d�.

Conditions (i) and (ii) say that the conditional expectation E(f jU ) has a biorthogonal

expansion in which both the random variables 'n and the functions  n are orthogonal among

themselves. The corresponding continuous analogue for processes which are continuous in

quadratic means on an interval is often called the Karhunen-Lo�eve expansion theorem and is

well-known; see [20]. Note that it is a trivial matter to require the factors to be orthonormal, but

non-trivial to show that both factors and factor loadings can be orthogonal among themselves;

see [28, 29] for details.

3 The Model and Two Benchmark Results

We now have all that we need to present the basic ingredients of the exact arbitrage asset

pricing theory EAPT, rudiments of which are presented in [13] and [16]. The space (T;T ; �)
is to be used as the index set of asset names, and the space (
;A; P ) as the sample space, one

that formalizes all possible uncertain social or natural states relevant to the asset market. The

�nancial market (henceforth, also referred to simply as a \market") is a real-valued T 
L A-
measurable function x on T � 
, and the real-valued random variable xt is interpreted as the

one-period random return to an asset t in T: The assumption that x is in L2(T �
) guarantees

that the asset return process has a second moment. Let � be the mean function de�ned in

10For the �nite classical version, see [9], [21]; also [30].
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the previous section. The centered process f; de�ned by f(t; !) = x(t; !)� �(t); embodies the
unexpected or the net random return of all the assets, and is also �
 P -square integrable.

A portfolio is simply a function listing the amounts held of each asset. Since short sales

are allowed, this function can take negative values. The cost of each asset is assumed to be

unity, and hence the cost of a particular portfolio is simply its integral with respect to �: Since

we are interested in the mean and variance of the return realized from a portfolio, we shall

assume it to be a square integrable function. The random return from a particular portfolio

then depends on the random return, and the amounts held in the portfolio, of each asset t 2 T:
Formally,

De�nition 1 A portfolio is a square integrable function p on (T;T ; �). The cost C(p) of a

portfolio p is given by (p; 1) =
R
T p(t)d�(t): The random return of the portfolio p is given by

Rp(!) = (p; x!) =
R
T p(t)x(t; !)d�(t): The mean (or the expected return) E(p) and the variance

V (p) of the portfolio p are the mean and the variance of the random return Rp respectively.
11

Heuristically, d�(t) is interpreted as an in�nitesimal amount of an asset t and can be regarded

as a small accounting unit in some sense. Since �� is the counting probability measure on

T ,12 all the assets have the same small accounting unit. Thus, in the portfolio p; p(t)d�(t) is

the amount, and p(t)x(t; !)d�(t) is the return, of shares of asset t 2 T: For any two assets,

s and t in T; p(s) and p(t) measure their relative amounts in the portfolio p: Since a �nite

number multiplied by an in�nitesimal is still an in�nitesimal, the amount invested in, and

the return pertaining to, any asset is in�nitesimal, and this is the reason why any portfolio is

well-diversi�ed automatically.

Theorem A then formalizes the fact that a continuous ensemble of risk can be endogenously

decomposed into two parts: a systematic (factor) part and a idiosyncratic (non-factor) part.

It identi�es denumerably-many sources of risk, 'n; that \explain" the systematic part, and

furthermore, ranks the relative importance of these sources by positive numbers �n: The de-

pendence of an asset's rate of return on these sources is captured by the loading functions  n:

The residual to factor risk is idiosyncratic risk represented by et; which have no presence at all

in well-diversi�ed portfolios.

Rp(!) =

Z
T
p(t)�(t)d�+

1X
n=1

�n

�Z
T
p(t) n(t)d�

�
'n(!)

= (p; �) +
1X
n=1

�n(p;  n)'n(!): (3)

Hence, by the fact that 'n; n � 1; are orthonormal with means zero,

E(p) = (p; �) =

Z
T
p(t)�(t)d�;V (p) =

1X
n=1

�2n(p;  n)
2 =

1X
n=1

�2n

�Z
T
p(t) n(t)d�

�2
: (4)

11Since C(p) is the integral of the function p, one may tempt to think that is the mean of the portfolio p.
However, one has to bear in mind that the mean of the portfolio p actually refers to the mean of the random

return of the portfolio p.
12See the second paragraph of Section 2 above.
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In particular, p is a riskless portfolio, which is to say that V (p) = 0; if and only if p is orthogonal

to all of the  n; to be expressed henceforth as p ?  n for all n � 1:

Let L denote the closed subspace spanned by all of the  n; and consider the portfolio h

de�ned by projecting the constant function 1 on L?; the complementary subspace in L2(
)

orthogonal to L: For each n � 1, let sn = (1;  n) =
R
T  n(t)d�(t); and note that h is given by

h(t) = 1 �P1

n=1 sn n(t). Since h ?  n(�) for each n � 1; h is a riskless portfolio. Due to its

special nature, h will be called the intrinsic riskless portfolio. It is easy to see that

(h; h) =

Z
T
h2(t)d� = (h; 1) =

Z
T
h(t)d� = C(h) � h0 = 1�

1X
n=1

s2n; (5)

and hence h � 0 if and only if
P
1

n=1 s
2
n = 1.13 We can now de�ne a special parameter �0 by

�0 =

8<
:
R
T
�(t)h(t)d�R
T
h2(t)d�

=
R
T �(t)h(t)d�(t)=h0 if h 6� 0;

0 if h � 0.
(6)

This parameter �0 will be called intrinsic riskless parameter. Finally, for each n � 1, let

�n = (�;  n) =
R
T �(t) n(t)d�: If we view  n as a portfolio, �n and sn are respectively the

mean E( n) and cost C( n) of  n: Since � 2 L2(T ) from (2) above, we can also project it on

the closed subspace spanned by the constant function 1 and L; henceforth (L _ f1g): Let �s
be the projection of � on (L _ f1g)?: Also, let (L _ fhg) be the closed subspace spanned by

[h;  1(�);  2(�); � � �]: Since (L _ f1g) and (L _ fhg) are identical, we obtain

� = �0h+
1X
n=1

�n n + �s: (7)

Next, we present a formulation of an idea that is the conceptual driving force of the theory

EAPT developed in [16].

De�nition 2 A market does not permit exact arbitrage opportunities if for any portfolio p,

V (p) = C(p) = 0 implies E(p) = 0.

In the introduction, we mention how this notion of exact arbitrage can be shown to be equivalent

to an asset-pricing formula and thereby provide an analogue to Ross' theorem based on speci�c

restrictions on the distribution of asset returns, the so-called strict factor structure. As the

motivating questions in the introduction make clear, our concern here is not with this formula,

and so we record this benchmark result in a form more amenable to the analysis developed in

the sequel [15, Corollary 1].

Theorem 1 A market does not permit exact arbitrage opportunities if and only if �s = 0:

In conclusion we present an existence result which will allow us (in Remarks 1 to 10 below)

to manufacture variety of examples of speci�c �nancial markets that illustrate the various

conditions isolated in Theorems 2 to 5 for the existence or non-existence of di�erent kinds of

portfolios that serve as important markers for the analysis; see Table 1 for an overview.

13We shall use the symbol � to denote a de�nition, or, in the case of a measurable function, equality almost

everywhere.
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Proposition 1 For all sequences fsng1n=1 and f�ng1n=1 of real numbers, and a decreasing

sequence f�ng1n=1 of nonnegative numbers with
P
1

n=1 s
2
n � 1;

P
1

n=1 �
2
n < 1; and

P
1

n=1 �
2
n <

1; for each given distribution � on IR with zero mean and unit variance, for all real numbers

��0 and a � 0; there exist (1) x and e in L2(T � 
); (2) a sequence of orthonormal functions

f ng1n=1 on (T;T ; �); and (3) a sequence of orthonormal centered random variables f'ng1n=1
on (
;A; P ); such that

(i)
R
T  n(t)d�(t) = sn for all n � 1; and h = 1�P1

n=1 sn n,

(ii) for �-almost all t 2 T; et has distribution �; and for � 
 �-almost all (s; t) 2 T � T , es
and et are independent,

14

(iii) there exists �s ? (L _ f1g) with
R
T �

2
s(t)d�(t) = a; and � = ��0h+

P
1

n=1 �n n + �s;
15

(iv) x(t; !) = �(t) +
P
1

n=1 �n n(t)'n(!) + e(t; !):

We relegate the proof of this result to the Appendix, and turn to a presentation of our sub-

stantive results.

4 Normalized Riskless Portfolios and Factor Portfolios

In this section we o�er necessary and suÆcient conditions for the existence of a normalized

riskless portfolio, as well as for all of the factors 'n(�) to be portfolio returns. In the �rst case,

we have to show the existence of a portfolio which has cost one, and whose non-zero return

is independent of the state of nature ! 2 
: In the second case, we have to �nd portfolios

whose random returns are precisely 'n: We begin with a formal speci�cation of the notion of

a normalized riskless portfolio.

De�nition 3 A portfolio r is a normalized riskless portfolio if V (r) = 0, C(r) = 1 and E(r) 6=
0.

The following theorem characterizes the existence of a normalized riskless portfolio. Unlike

[7, De�nition 1], our de�nition allows us to consider markets which o�er exact arbitrage op-

portunities, and thereby present a complete characterization. Also unlike the characterization

of the existence of a riskless portfolio in [7, Proposition 2], where a general parameter ' needs

to be checked for every N , we have a very simple characterization here in terms of the intrinsic

riskless portfolio and a parameter pertaining to it, and a parameter formalizing exact arbitrage

opportunities.

Theorem 2 There is a normalized riskless portfolio if and only if one of the following holds:

the intrinsic riskless portfolio h is not null and either (i) the intrinsic riskless parameter �0 6= 0;

or (ii) �0 = 0, and the market permits exact arbitrage opportunities.

14A process satisfying these two conditions are called almost i.i.d. in [29].
15According to the de�nition of �0 in Equation (6), if h � 0, then �0 = 0; however, ��0 may not be zero.
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Proof: If �0 6= 0, let r(t) = h(t)=h0. Then it is easy to check using Equations (3), (6) and (7)

that C(r) = 1 and the random return Rr � �0. Thus V (r) = 0, E(r) = �0 6= 0, and hence r

is a normalized riskless portfolio. Next, we consider the second case when �0 = 0, and both

h and �s are not null functions, the latter because of Theorem 1. Let r0(t) = h(t)=h0 + �s(t).

Then by Equations (3), (6) and (7) again, we obtain C(r0) = 1 and Rr0 �
R
T �

2
s(t)d�(t). Since

�s is not null, E(r
0) > 0, and hence r0 is a normalized riskless portfolio.

Now, we assume that the market has a normalized riskless portfolio r00. On projecting r00(t)

to the subspace (L _ fhg); we obtain r00(t) = r0h(t) +
P
1

n=1 rn n(t) + rs(t); where rs(t) ?
(L_fhg): Then by Equation (3), Rr00 =

R
T r

00(t)�(t)d�(t)+
P
1

n=1 rn�n'n(!): Since V (r
00) = 0;

we obtain rn = 0 for all n � 1: This fact, together with Equation (7), implies that

Rr00 =

Z
T
r00(t)�(t)d�(t) = r0

Z
T
h(t)�(t)d�(t) +

Z
T
rs(t)�(t)d�(t)

= r0�0

Z
T
h2(t)d�(t) +

Z
T
rs(t)�s(t)d�(t)

= r0�0h0 +

Z
T
rs(t)�s(t)d�(t)

Furthermore,

C(r00) =

Z
T
r00(t)d�(t) = r0h0:

Since we require that C(r00) = 1; we must have h nonnull. On the other hand, E(r00) is assumed

to be nonnull. Hence we cannot have both �0 = 0 and �s � 0. On combining these conditions

together, we obtain either condition (i) or condition (ii).

Proposition 1 allows one to construct various examples to show the existence or non-

existence of normalized riskless portfolios in the market. The following remarks show that

every condition in Theorem 2 is non-vacuous.16

Remark 1 By Theorem 2, the following two markets have no normalized riskless portfolios.

(i) Take s1 = 1 and sn = 0 for all n � 2 to obtain a market with h � 0: Note that we can

choose a to be zero or nonzero so that �s � 0 or �s 6� 0. (ii) Take a = 0, ��0 = 0, s1 = 1=2,

sn = 0 for all n � 2 to obtain a market with h 6� 0, �0 = 0 and �s � 0.

Remark 2 By Theorem 2, the following three markets have normalized riskless portfolios.

(i) Take a = 0, ��0 = 1, s1 = 1=2, sn = 0 for all n � 2 to obtain a market with h 6� 0, �0 = 1

and �s � 0. (ii) Take a = 1, ��0 = 0, s1 = 1=2, sn = 0 for all n � 2 to obtain a market with

h 6� 0, �0 = 0 and �s 6� 0. (iii) Take a = 1, ��0 = 1, s1 = 1=2, sn = 0 for all n � 2 to obtain a

market with h 6� 0, �0 = 1 and �s 6� 0.

In the following corollary, we do assume that the market does not permit exact arbitrage

opportunities. Since h � 0 implies that �0 = 0; the result singles out the importance of the

intrinsic riskless parameter �0 for the existence of a normalized riskless portfolio. In comparison

with [7, Proposition 2], we can give an explicit formula for all the possible portfolios which make

up the normalized riskless portfolio.

16We shall not specify that in Remarks 1 to 10 below, the choice of parameters has Proposition 1 as their

relevant context.
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Corollary 1 Assume that the market does not permit exact arbitrage opportunities. Then

there is a normalized riskless portfolio if and only if �0 6= 0. In this case, r is a normalized

riskless portfolio if and only if r = h=h0 + rs, where rs is a portfolio such that rs ? h and

rs ?  n for all n � 1: Moreover, the return of a normalized riskless portfolio must be �0.

Proof: The �rst result is clear from Theorem 1. Then we assume �0 6= 0. Let r be a portfolio

with the expansion r(t) = r0h(t) +
P
1

n=1 rn n(t) + rs(t); as the portfolio r00 in the proof of

Theorem 2. If r is a normalized riskless portfolio, then C(r) = r0h0 = 1 and rn = 0 for all

n � 1, and hence r = h=h0 + rs, where rs ? h and rs ?  n for all n � 1: The rest is clear.

When the market does not permit exact arbitrage opportunities, let us call a portfolio q a

dummy portfolio if q ? h and q ?  n for all n � 1: Since L2(T ) is non-separable, there are

plenty of dummy portfolios. So Corollary 1 simply says that r is a normalized riskless portfolio

if and only if r is the sum of h=h0 plus a dummy portfolio. The following lemma gives some

simple suÆcient conditions for a portfolio to be dummy.

Lemma 1 Assume that the market does not permit exact arbitrage opportunities. Let p be a

portfolio. Then

(i) p is a dummy portfolio if and only if E(p) = C(p) = V (p) = 0;

(ii) if either �0 6= 0 or h � 0, then any portfolio p; with Rp � 0 must be a dummy portfolio.

Proof: The necessity part of (i) is clear. To prove the suÆciency part of (i), assume that

E(p) = C(p) = V (p) = 0. By Equation (3), p ?  n for all n � 1: Since C(p) = 0, p ? 1; and

hence p is dummy.

For (ii), project p to (L _ fhg) to obtain p = p0h +
P
1

n=1 pn n + ps: By Equation (3),

Rp =
R
T p(t)�(t)d�(t) +

P
1

n=1 pn�n'n. Hence the assumption Rp � 0 implies that (p; �) =R
T p(t)�(t)d�(t) = 0, and pn = 0 for all n � 1. Since � = �0h +

P
1

n=1 �n n in the absence of

exact arbitrage opportunities, (p; �) = �0p0h = 0, and hence p ? h under the hypothesis that

either �0 6= 0 or h � 0, and thus p is dummy.

Next, we characterize those markets which allow all factors to be portfolio returns. In

the following theorem, as in Theorem 1, we do not assume the absence of exact arbitrage

opportunities in the market.

Theorem 3 All the factors 'n are portfolio returns if and only if one of the following holds:

(i) �0 6= 0; (ii) �(t) = 0 for �-almost all t 2 T ; or (iii) the market permits exact arbitrage

opportunities.

Proof: First assume that all the factors 'n are portfolio returns. Then there exists portfolios

qn(t) such that Rqn = 'n for all n � 1. By projecting qn(t) to (L _ fhg); we obtain

qn(t) = qn0h(t) +
1X

m=1

qnm m(t) + qns (t);
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where qns (t) ? (L _ fhg): Then by Equation (3),

Rqn(!) =

Z
T
qn(t)�(t)d�(t) +

1X
m=1

�mq
n
m'm(!):

For each n � 1, by the fact that Rqn = 'n, we obtain
R
T q

n(t)�(t)d�(t) = 0 and qnn = (1=�n),

and qnm = 0 if 1 � m 6= n <1. By Equation (7), we can obtain

Z
T
qn(t)�(t)d�(t) = qn0�0h0 +

1X
m=1

qnm�m +

Z
T
qns (t)�s(t)d�(t) = 0;

and hence qn0�0h0 + (�n=�n) +
R
T q

n
s (t)�s(t)d�(t) = 0 for all n � 1.

If (i), (ii) and (iii) in the statement of Theorem 3 all fail, then �0 = 0, � 6� 0 and �s � 0.

Then, �0 = 0 and �s � 0 imply that qn0�0h0+(�n=�n)+
R
T q

n
s (t)�s(t)d�(t) = �n=�n = 0 for all

n � 1. Thus �n = 0 for all n � 1, and hence � � 0, which contradicts with � 6� 0. Therefore if

all the factors 'n are portfolio returns, then one of (i), (ii) and (iii) must hold.

Next assume that �0 6= 0. For all n � 1, let

pn(t) = � �n

�n�0h0
h(t) +

1

�n
 n(t):

Then, by Equations (3), (6) and (7), we obtain

Rpn =

Z
T
pn(t)�(t)d�(t)) + 'n

= � �n

�n�0h0
� �0

Z
T
h2(t)d�(t) +

�n

�n
+ 'n

= 'n:

Thus, each 'n is a portfolio return with E(pn) =
R

 'n(!)dP (!) = 0; V (pn) = 1; and

C(pn) =

Z
T
pn(t)d�(t) = � �n

�n�0h0
�
Z
T
h(t)d�(t) +

1

�n
sn

=
1

�n

�
sn �

�n

�0

�
:

Now if (ii) holds, one can simply take qn(t) = ( n(t)=�n) to obtain that Rqn = 'n. Finally,

if (iii) holds, let

qn(t) =
 n(t)

�n
� �n

�n
R
T �

2
s(t)d�(t)

�s(t):

The rest is easy to check.

The following remarks show that every case considered in Theorem 3 is possible.

Remark 3 Take a = 0, ��0 = 0, �1 = 1, �n = 0 for all n � 2 to obtain a market with � 6� 0,

�0 = 0 and �s � 0. By proper choices of sn; as in Remark 1 above, we can further specify

the market to obtain h � 0 or h 6� 0: In either case, Theorem 3 shows that not all factors are

portfolio returns in these markets.
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Remark 4 By Theorem 3, all factors are portfolio returns in the following three markets.

(i) The market in Remark 2(i) has �0 6= 0. (ii) The market in Remark 2(ii) has �s 6� 0. (iii)

Take ��0 = 0, �n = 0 for all n � 1 to obtain a market with � � 0.

The following corollary is a simpli�cation of Theorem 3 in a setting where there are no

exact arbitrage opportunities.

Corollary 2 Under the assumption that the market does not permit exact arbitrage opportu-

nities, all the factors are portfolio returns if and only if either �0 6= 0 or �(t) = 0 for �-almost

all t 2 T .

If �0 6= 0 and the market does not permit exact arbitrage opportunities, there is a normalized

riskless portfolio and all the factors are portfolio returns. In fact, for any random variable of

the form a0 +
P
1

n=1 an'n(!) with
P
1

n=1 a
2
n=�

2
n < 1, there is a portfolio with this random

return.

5 Mean and Cost Portfolios

In the previous section, we looked for portfolios whose associated random returns in the space

L2(
) have a given form. In this section, we look for portfolios whose random returns furnish

the mean and cost of the asset return xt for �-almost all t 2 T; which is to say, the continuous

linear functionals on L2(
) de�ned by the random returns of these portfolios give the values �t
and 1 to the elements xt, for �-almost all t 2 T . Formally, a portfolio m is said to be a mean

portfolio if the inner product (Rm; xt) = �t for �-almost all t 2 T . A portfolio c is said to be a

cost portfolio if the inner product (Rc; xt) = 1 for �-almost all t 2 T . We develop necessary and

suÆcient conditions for the existence of such portfolios. Mean and cost portfolios will provide

the basis for constructing various kinds of mean-variance eÆcient portfolios in the next section.

The following simple lemma shows that the mean and cost portfolios, as de�ned above, not

only give the right means and costs for individual assets but also for all portfolios. This is

consistent with the usual practice in the literature; see, for example, [26].

Lemma 2 If m is a mean portfolio, then for any portfolio p, the expected return E(p) of the

portfolio p is (Rm;Rp) =
R

RmRpdP (!). Analogously, if c is a cost portfolio, then for any

portfolio p, the cost C(p) of the portfolio p is (Rc;Rp) =
R

RcRpdP (!).

Proof: SinceRp =
R
T p(t)x(t; !)d�(t); (Rm;Rp) =

R

Rm(!)

R
T p(t)x(t; !)d�(t)dP (!): Hence,

by the de�nition of a mean portfolio,

(Rm;Rp) =

Z
T
p(t)

Z


Rm(!)x(t; !)dP (!)d�(t) =

Z
T
p(t)�(t)d�(t) = E(p);

and we are done. The proof for the case of cost portfolios is the same.

We shall now characterize the existence of a mean portfolio. The explicit formula for such

a portfolio is also given with the proof.
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Theorem 4 If either the intrinsic riskless parameter �0 6= 0 or the market has exact arbitrage

opportunities, i.e. �s is not null, then a mean portfolio exists. On the other hand, if �0 = 0

and �s � 0, then there is a mean portfolio if and only if
P
1

n=1(�
2
n=�

4
n) <1:

Proof: As in the proof of Theorem 2 , if �0 6= 0 or �s is not null, we can respectively de�ne a

portfolio m by m(t) = h(t)=�0h0 or by m(t) = (�s(t)=
R
T �

2
s(t)d�(t): It is clear that Rm � 1,

and hence E(p) = (Rm;Rp) for any portfolio p. Therefore m is a mean portfolio.

It remains to consider the case when �0 = 0 and �s � 0. Let m be a mean portfolio, i.e.,

(Rm; xt) = �t for �-almost all t 2 T: Letm(t) = m0h(t)+
P
mn n(t)+ms(t); wherems ? h and

ms ?  n for all n � 1: Note that Rm(!) =
R
T m(t)�(t)d�(t) +

P
1

n=1mn�n'n(!) and E(m) =R
T m(t)�(t)d�(t). Then for �-almost all t 2 T , (Rm; xt) = �(t)E(m)+

P
1

n=1mn�
2
n n(t) = �(t):

By the fact that �(t) =
P
1

n=1 �n n(t), we obtain that 
1X
n=1

�n n(t)

!
(E(m) � 1) +

1X
n=1

mn�
2
n n(t) = 0:

Thus, for �-almost all t 2 T ,
P
1

n=1

�
�n(E(m) � 1) +mn�

2
n

�
 n(t) = 0: Hence it follows from

the orthogonality of the  n that �n(E(m) � 1) +mn�
2
n = 0 for each n � 1. This means that

mn = (�n(1�E(m)))=�2n: If E(m) = 1, thenmn = 0; since E(m) =
P
1

n=1mn�n, we also obtain

E(m) = 0. This is a contradiction. Therefore E(m) 6= 1. By the fact that
P
1

n=1m
2
n <1, we

obtain that
P
1

n=1 �
2
n=�

4
n <1:

On the other hand, if
P
1

n=1 �
2
n=�

4
n <1, then we can simply de�ne a portfolio m by letting

m(t) =
1X
n=1

mn n(t); mn =

 
1 +

1X
n=1

�2n
�2n

!
�1

�n

�2n
; n � 1:

Note that the convergence of the series
P
1

n=1 �
2
n=�

4
n implies the convergence of

P
1

n=1 �
2
n=�

2
n,

since limn!1 �n = 0. Thus the above portfoliom is well-de�ned. By the previous computation,

it is clear that m is a mean portfolio with E(m) = (
P
1

n=1 �
2
n=�

2
n)=(1 +

P
1

n=1 �
2
n=�

2
n), and we

are done.

The following remark shows the existence of a market in which the conditions of Theorem

4 fail, and thus it has no mean portfolio.

Remark 5 Take a = 0, ��0 = 0, �n = 1=n and �n = 1=n for n � 1 to obtain a market with

�0 = 0, �s � 0, and
P
1

n=1(�
2
n=�

4
n) =

P
1

n=1 n
2 = 1. By proper choices of sn, we can further

specify the market to obtain h � 0 or h 6� 0: Theorem 4 shows that there is no mean portfolio

in this market.

The next remark shows that there are markets satisfying each of the three conditions in

Theorem 4 that guarantee the existence of a mean portfolio.

Remark 6 Theorem 4 shows that there is a mean portfolio in the following markets. Note that

we can further specify the market to obtain h � 0 or h 6� 0 by proper choices of sn.

(i) Remark 2 contains examples of markets with �0 6= 0 or �s 6� 0. (ii) Take a = 0, ��0 = 0, and

�n = �3n for n � 1 to obtain a market with �0 = 0, �s � 0, and
P
1

n=1(�
2
n=�

4
n) =

P
1

n=1 �
2
n <1.
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The next theorem characterizes the existence of a cost portfolio. As in the case of Theorem

4, explicit formulae are also included in the proof. Parts (i) and (ii) of the following theorem

are available in [16, Proposition 3], which are included here for the sake of completeness.

Theorem 5 (i) If the intrinsic riskless parameter �0 6= 0, then a cost portfolio exists if

and only if the market does not permit exact arbitrage opportunities, i.e., �s � 0, andP
1

n=1 (�0sn � �n)
2 =�4n <1:

(ii) If �0 = 0 and the intrinsic riskless portfolio h is not null, then there is no cost portfolio.

(iii) If h � 0 and �s 6� 0, then a cost portfolio exists if and only if
P
1

n=1 s
2
n=�

4
n <1.

(iv) If h � 0, �s � 0, and
P
1

n=1(s
2
n + �2n)=�

2
n < 1, then there is a cost portfolio if and only

if
P
1

n=1(sn � b�n)
2=�4n <1, where b = (

P
1

n=1(�nsn=�
2
n))=(1 +

P
1

n=1(�
2
n=�

2
n)).

Proof: Let c(t) = c0h(t) +
P
cn n(t) + cs(t) be a cost portfolio, i.e., (Rc; xt) = 1 for �-almost

all t 2 T , where cs is orthogonal to h and all the  n. By Equation (3),

Rc(!) =

Z
T
c(t)�(t)d�(t) +

1X
n=1

cn�n'n(!)

and E(c) =
R
T c(t)�(t)d�(t): Then �-almost all t 2 T ,

(Rc; xt) = E(c)�(t) +
1X
n=1

cn�
2
n n(t)

= E(c)�0h(t) +
1X
n=1

�
E(c)�n + cn�

2
n

�
 n(t) +E(c)�s(t)

= 1 = h(t) +
1X
n=1

sn n(t):

By the fact that �s, h, and all the  n are mutually orthogonal, we can obtain from the above

formula that E(c)�0h = h, E(c)�n + cn�
2
n = sn, and E(c)�s � 0.

For the proof of (i), note that �0 6= 0 implies that h is not null. Consider a cost portfolio

c as above. By the identity E(c)�0h = h, we have E(c) = 1=�0. The identity E(c)�s � 0

implies �s � 0. Moreover, for n � 1, cn = (�0sn � �n)=(�0�
2
n). Since c is a portfolio, we haveP

1

n=1 c
2
n <1, and hence

P
1

n=1((�0sn � �n)=�
2
n)

2 <1. On the other hand, if �0 6= 0, �s = 0,

and
P
1

n=1((�0sn � �n)=�
2
n)

2 <1, then we can de�ne a portfolio c0 by letting

c0(t) = c00h(t) +
1X
n=1

c0n n(t);

and where

c00 =
(1=�0)�

P
1

n=1 c
0

n�n

�0h0
; and c0n =

�0sn � �n

�0�2n
for all n � 1:

It is easy to check that E(c0) = 1=�0. By the computation in the previous paragraph, it is clear

that c0 is a cost portfolio.
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For the proof of (ii), consider �0 = 0 and h is not null. Suppose c is a cost portfolio. Then

as shown in the �rst paragraph of this proof, E(c)�0h = h. This implies that h � 0, which

contradicts the hypothesis. Therefore there is no cost portfolio in this case. In fact, in this

case, the portfolio h has a positive cost C(h) =
R
T hd�(t) =

R
T h

2d�(t) but with random return

Rh � 0. Thus C(h) is not equal to the inner product of Rh with the random return of any

other portfolio.

For (iii), we move to the case h � 0 and �s 6� 0. If there is a cost portfolio c, then it follows

from the identity E(c)�s � 0 in the �rst paragraph that E(c) = 0. Hence cn = sn=�
2
n: By the

fact that
P
1

n=1 c
2
n <1, we have

P
1

n=1 s
2
n=�

4
n <1.

On the other hand, if
P
1

n=1 s
2
n=�

4
n <1, then we can de�ne a portfolio c0 by letting

c0(t) =
1X
n=1

�
sn

�2n

�
 n(t)�

 
1X
n=1

�nsn

�2n
R
T �

2
sd�(t)

!
�s(t):

It is easy to check that E(c0) = 0. By the computation in the �rst paragraph, it is clear that

c0 is a cost portfolio.

Finally, for (iv), we consider the case when h � 0, �s � 0, and
P
1

n=1(s
2
n+�

2
n)=�

2
n <1. By

the Cauchy-Schwartz inequality, it is clear that the series
P
1

n=1 �nsn=�
2
n is convergent. Thus b

is well de�ned.

Let c be a cost portfolio as in the �rst paragraph. Then we obtain cn = (sn �E(c)�n)=�
2
n

for all n � 1: Now

E(c) =
1X
n=1

cn�n =
1X
n=1

�n(sn �E(c)�n)=�
2
n =

1X
n=1

(�nsn)=�
2
n �E(c)

1X
n=1

�2n=�
2
n;

which implies that E(c) = b. By the fact that
P
1

n=1 c
2
n < 1, we obtain that

P
1

n=1(sn �
b�n)

2=�4n <1.

On the other hand, if
P
1

n=1(sn � b�n)
2=�4n <1, then de�ne a portfolio c0 by letting

c0(t) =
1X
n=1

c0n n(t); c
0

n =
sn � b�n

�2n
; n � 1:

It is easy to check that E(c0) = b. By the computation in the previous paragraph, it can be

checked that c0 is indeed a cost portfolio.

For Case (i) of Theorem 5, Theorem 4 says that a mean portfolio always exists. The

following remark shows that each condition in Theorem 5(i) is realized in some market. An

example similar to that in Part (ii) of the following remark is furnished as Example 7 in [16].

Remark 7 Theorem 5(i) shows that there is a cost portfolio in the third market but not in the

�rst two markets.

(i) Take a = 1, ��0 = 1, s1 = 1=2, sn = 0 for all n � 2 to obtain a market with h 6� 0, �0 = 1,

and �s 6� 0. (ii) Take a = 0, ��0 = 1, s1 = 1=2, sn = 0 for all n � 2, and �n = �n = 1=n for

n � 1 to obtain a market with �0 6= 0, �s � 0, and
P
1

n=1 (�0sn � �n)
2 =�4n = 1. (iii) Take

a = 0, ��0 = 1, s1 = �1 = 1=2, and sn = �n = 0 for all n � 2 to obtain a market with �0 6= 0,

�s � 0, and
P
1

n=1 (�0sn � �n)
2 =�4n <1.

15



For Case (ii) of Theorem 5, there is de�nitely no cost portfolio. However, the following

remark shows that a mean portfolio may or may not exist in this case. Example 6 in [16]

shares some of the spirit of the example in Part (ii) of the remark.

Remark 8 Theorems 4 and 5(ii) show that there is a mean portfolio but no cost portfolio in

the �rst market but neither kind of portfolio in the second market.

(i) Take a = 1, ��0 = 0, s1 = 1=2, sn = 0 for all n � 2 to obtain a market with h 6� 0, �0 = 0,

and �s 6� 0. (ii) Take a = 0, ��0 = 0, s1 = 1=2, sn = 0 for all n � 2, and �n = �n = 1=n to

obtain a market with h 6� 0, �0 = 0, �s � 0, and
P
1

n=1(�
2
n=�

4
n) =1.

For Case (iii) of Theorem 5, Theorem 4 also guarantees the existence of a mean portfolio.

However, the following remark shows that a cost portfolio may or may not exist in this case.

An example similar to that in Part (i) of the remark appeared as Example 5 in [16].

Remark 9 Theorem 5(iii) shows that there is a cost portfolio in the �rst market but not in

the second. Note that the �rst market allows the possibility of gains from exact arbitrage and

yet it has both a mean and a cost portfolio.

(i) Take a = 1, s1 = s2 = 1=
p
2, sn = 0 for all n � 3 to obtain a market with h � 0, �s 6� 0,

and
P
1

n=1(s
2
n=�

4
n) < 1. (ii) Take a = 1, sn = �n = 2�n=2 for all n � 1 to obtain a market

with h � 0, �s 6� 0, and
P
1

n=1(s
2
n=�

4
n) =1.

The last remark of this section concerns Case (iv) of Theorem 5. We have seen from previous

remarks that a mean portfolio may exist but with or without a cost portfolio, or both do not

exist. These three possibilities can also happen in Case (iv) of Theorem 5 as shown in Parts

(i) - (iii) of the following remark. However, the example in Part (iv) of the remark illustrates

a fourth possibility; namely, a market in which a cost portfolio may exist without a mean

portfolio.

Remark 10 Theorems 4 and 5(iv) show that the �rst market has both a mean and a cost

portfolio, the second has neither, the third has only a mean portfolio, and the fourth, only a

cost portfolio.

(i) Take a = 0, s1 = s2 = �1 = �2 = 1=
p
2, and sn = �n = 0 for all n � 3 to obtain a

market with h � 0, �s � 0, and for which all the relevant series in Theorems 4 and 5(iv)

are convergent.

(ii) Take a = 0, sn = 2�n=2, �n = 2�3n=5 and �n = 2�n=3 for n � 1 to obtain a market with

h � 0, �s � 0, and
P
1

n=1(s
2
n=�

2
n) =

P
1

n=1 2
�n=3 < 1,

P
1

n=1(�
2
n=�

2
n) =

P
1

n=1 2
�8n=15 <

1. It can be checked that
P
1

n=1(s
2
n=�

4
n) =

P
1

n=1 2
n=3 =1,

P
1

n=1(�
2
n=�

4
n) =

P
1

n=1 2
2n=15 =

1, and
P
1

n=1(sn � b�n)
2=�4n =

P
1

n=1(1� b2�n=10)2 2n=3 =1.

(iii) Take a = 0, sn = 2�n=2, �n = 2�n and �n = 2�n=3 for n � 1 to obtain a market with h �
0, �s � 0, and

P
1

n=1(s
2
n=�

2
n) =

P
1

n=1 2
�n=3 <1,

P
1

n=1(�
2
n=�

2
n) =

P
1

n=1 2
�4n=3 <1. It

can be checked that
P
1

n=1(s
2
n=�

4
n) =

P
1

n=1 2
n=3 =1,

P
1

n=1(�
2
n=�

4
n) =

P
1

n=1 2
�2n=3 <1,

and
P
1

n=1(sn � b�n)
2=�4n =

P
1

n=1(1� b2�n=2)2 2n=3 =1.
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(iv) Let d =

r
(2�5=6

�2�4=3)

(1�2�5=6)(1�2�4=3)
. Take a = 0, sn = 2�n=2, �n = (2�n=2 � 2�n)=d and

�n = 2�n=3 for n � 1 to obtain a market with h � 0, �s � 0, and
P
1

n=1(s
2
n=�

2
n) =P

1

n=1 2
�n=3 < 1,

P
1

n=1(�
2
n=�

2
n) =

P
1

n=1 2
�n=3(1 � 2n=2)=d2 < 1. It can be checked

that b = (
P
1

n=1(�nsn=�
2
n)=(1 +

P
1

n=1(�
2
n=�

2
n)) = d,

P
1

n=1(s
2
n=�

4
n) =

P
1

n=1 2
n=3 = 1,P

1

n=1 �
2
n=�

4
n =

P
1

n=1(1�2�n=2)2 2n=3=d2 =1 and
P
1

n=1(sn�b�n)2=�4n =
P
1

n=1 2
�2n=3 <

1.

Next, we turn to the question of uniqueness of the mean and cost portfolio returns. We

�rst prove a simple proposition.

Proposition 2 Let p be any portfolio. If the inner product (Rp; xt) = 0 for �-almost all t 2 T ,
then Rp � 0.

Proof: It is easy to see that

(Rp;Rp) =

Z


Rp(!)

Z
T
p(t)x(t; !)d�(t)dP (!) =

Z
T
p(t)

Z


Rp(!)xt(!)dP (!)d�(t) = 0;

and hence Rp � 0.

For any mean portfoliosm1;m2 and any cost portfolios c1; c2, it is obvious that for �-almost

all t 2 T , the inner products (Rm1�m2
; xt) and (Rc1�c2 ; xt) are both equal to zero. The above

proposition implies that Rm1
= Rm2

and Rc1 = Rc2 .

6 Mean-Variance EÆcient Portfolios

In this section we turn to mean-variance eÆcient portfolios. We also identify all those bench-

mark portfolios that can be used to measure the risk premium of any asset through a pricing

formula based on a single portfolio proxying essential risk, the so-called beta pricing model of

asset returns, see [16, Section 2.4]. In addition, we furnish explicit formulae for the measure-

ment of the maximal trade-o� between return and risk, the so-called maximal Sharpe measure,

for all of the relevant situations. After presenting some basic de�nitions and results in Subsec-

tion 6.1, we consider in Subsection 6.2 the case where the mean and cost portfolio returns span

a two-dimensional space, and in Subsection 6.4, a one-dimensional space. Subsection 6.3 covers

the case where a cost portfolio does not exist. Each of the last three subsections describes in

detail the mean-variance eÆcient and benchmark portfolios as well as the relevant maximal

Sharpe measures. We shall assume throughout this section that the market does not permit

gains from exact arbitrage opportunities; namely, that �s � 0.

6.1 Basic de�nitions and results

We begin with a formal de�nition of mean-variance eÆcient portfolios.
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De�nition 4 A portfolio p is said to be mean-variance eÆcient if, for some real numbers a

and b; it is a solution of the following optimization problem

minV (p) subject to E(p) = a; C(p) = b:

In order to exhibit the trade-o� between mean and variance, we consider the return for

taking each additional unit of risk. This is the so-called Sharpe measure of a portfolio. One

may want to �nd the maximal trade-o� between mean and variance by formulating costless

portfolios. This de�nes the maximal Sharpe measure Æ below.

De�nition 5 Let Æ = sup jE(p)j=V 1=2(p) subject to C(p) = 0 and V (p) 6= 0.

We shall also need the following simple concept.

De�nition 6 The asset market is said to be trivial if the expected return function �(t) is a

constant for �-almost t 2 T:

The following lemma relates the benchmark portfolio M used in the beta asset pricing

equation to mean-variance eÆcient portfolios. Note that the proof of such a result is well

known (see, for example, [26]), and we include it here for the sake of completeness.

Lemma 3 Let M be a portfolio, and � and � some real numbers such that a beta asset pricing

equation holds, i.e., for �-almost all t 2 T , �t = � + � cov(xt;M). If � 6= 0, then M is

mean-variance eÆcient. In particular, it is mean-variance eÆcient when the market is not

trivial.

Proof: If V (M) is zero, M is already mean-variance eÆcient. So we can assume V (M) 6= 0.

For a portfolio p, since E(p) =
R
T p(t)�(t)d�(t), it is easy to obtain from the beta asset pricing

equation that E(p) = �C(p)+� cov(Rp;RM ) by changing the relevant integrals. In particular,

we have E(M) = �C(M) + �V (M), which implies that V (M) = (E(M)� �C(M)) =�. Now

let p be an arbitrarily given portfolio with mean E(M) and cost C(M). Then the equality

E(p) = �C(p) + � cov(Rp;RM ) implies that (E(M)� �C(M)) =� = cov(Rp;RM ). Hence

V (M) = cov(Rp;RM ) �
p
V (p)

p
V (M). Thus V (M) � V (p), which means that M is mean-

variance eÆcient.

Note that unlike [16, Theorems 2 and 3], a coeÆcient � is inserted in the beta asset pricing

equation in Lemma 3 above. In so far as the existence of a benchmark portfolio is concerned,

one can consider �M rather than M; and thus drop � from the equation without any loss of

generality. The reason to include � here is to have a sort of linearity among all the portfoliosM

which satis�es a beta asset pricing equation, and also because one can o�er nice interpretations

for the coeÆcients � and �: The interpretation in the following corollary presents the usual

form of the beta asset pricing equation, where the portfolio M is in fact assumed to be of unit

cost.
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Corollary 3 Let M be a portfolio, and � and � some real numbers such that for �-almost all

t 2 T , �t = �+� cov(xt;M). Assume V (M) 6= 0. Then � = (E(M) � �C(M)) =V (M). Denote

�t = cov(xt;M)=V (M), the beta of the asset t. Then �t = �+�t (E(M) � �C(M)) for �-almost

all t 2 T . Moreover, for any portfolio p, we have E(p) = �C(p) + �p (E(M)� �C(M)), where

�p is cov(p;M)=V (M), the beta of the portfolio p. Furthermore the following statements hold.

(i) If there is a normalized riskless portfolio r, then � is the return �0 of the portfolio r, and

thus �t � �0 = �t(E(M) � �0C(M)) for �-almost all t 2 T:

(ii) If there is no riskless asset, then � is the expected return of a zero beta portfolio with a

unit cost.

Proof: As in the proof of Lemma 3, E(M) = �C(M) + �V (M), and which implies that

� = (E(M)� �C(M)) =V (M). It is also obvious that for any portfolio p, we have E(p) =

�C(p) + (E(M)� �C(M)) �p. The rest is clear.

As indicated in Lemma 3, the portfolio M in the beta asset pricing equation is in general

mean-variance eÆcient. We conclude this subsection by a formal de�nition that singles out

portfolios satisfying the equation.

De�nition 7 A mean-variance eÆcient portfolio p is said to be a benchmark portfolio if there

are real numbers � and � such that for �-almost all t 2 T , �t = �+ � cov(xt; p).

6.2 Linear independence of mean and cost portfolio returns

In the literature on one-period asset pricing, it is often assumed that the mean and cost port-

folio returns span a two dimensional space. Here we characterize the case when the two are

dependent, and hence the characterization for the independent case follows easily.

Proposition 3 Let m be a mean portfolio and c a cost portfolio. Then the following are

equivalent:

(i) Rm and Rc are linearly dependent;

(ii) there is a real number � such that �(t) = � for �-almost all t 2 T ;

(iii) The following matrix is singular. 
(Rm;Rm) (Rm;Rc)

(Rc;Rm) (Rc;Rc)

!
=

 
E(m) E(c)

E(c) C(c)

!
:

Proof: IfRm andRc are linearly dependent, then there is a real number � such thatRm = �Rc

sinceRc is never zero. Then, by the de�nition of mean and cost portfolios, we have for �-almost

all t 2 T , �t = (Rm; xt) = �(Rc; xt) = �. Hence (i) =) (ii):

For (ii) =) (i), we assume that �(t) � � for some real number �. Note that for �-almost

all t 2 T , �t = (Rm; xt) = � = �(Rc; xt), and hence (Rm � �Rc; xt) = 0 for �-almost all t 2 T .
By Proposition 2, we have Rm � �Rc = 0, and hence (i) holds.
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Note that (i) =) (iii) is obvious. It remains to see that (iii) =) (i). Assume the matrix

in (iii) is singular. Then there is a real number � such that

((Rm;Rm); (Rm;Rc)) = (�(Rc;Rm); �(Rc;Rc)) :

Thus (Rm � �Rc;Rm) = 0 and (Rm � �Rc;Rc) = 0, which implies that (Rm � �Rc;Rm �
�Rc) = 0. Hence Rm = �Rc.

By the above proposition, if mean and cost portfolios exist, then the market is trivial if and

only if the two portfolio returns are linearly dependent.

The following simple lemma is useful for the explicit expressions of mean-variance eÆcient

portfolios. Part (i) of the lemma is well known (see, for example, [26]) and part (ii) is also

essentially known. We include the lemma for the sake of completeness.

Lemma 4 Assume that mean and cost portfolios m and c exist and that their returns are

linearly independent. Then the following statements are valid.

(i) A portfolio q is mean-variance eÆcient if and only if Rq is in the linear span of Rm and

Rc:

(ii) The portfolio p where

p(t) =
(aC(c)� bE(c))m(t) + (bE(m)� aE(c)) c(t)

E(m)C(c) � (E(c))2
;

is mean-variance eÆcient with mean a and cost b.

Proof: We begin with the proof of (i). For a portfolio q, let �Rm+�Rc be the projection of Rq

on the space spanned by Rm and Rc. De�ne a portfolio u and w by letting u(t) = �m(t)+�c(t)

and w(t) = q(t) � u(t). Then Rw ? Rm and Rw ? Rc, and hence E(w) = C(w) = 0,

E(u) = E(q) and C(u) = C(q). Since Ru ? Rw, we have V (q) = V (u) + V (w). Therefore, the

portfolio q is mean-variance eÆcient if and only if V (w) = 0, and thus (i) follows.

For the proof of (ii), note that by (i), we only have to choose real numbers � and � so

that the portfolio p = �m + �c has mean a and cost b. That is, �E(m) + �E(c) = a and

�C(m) + �C(c) = b. Since C(m) =
R

RcRmdP (!) = E(c), it is equivalent to solve the

following equations:  
E(m) E(c)

E(c) C(c)

! 
�

�

!
=

 
a

b

!
:

Since the relevant matrix is nonsingular by Proposition 3, we can obtain that

� =
(aC(c)� bE(c))

E(m)C(c) � (E(c))2
and � =

(bE(m)� aE(c))

E(m)C(c) � (E(c))2
:

We are done.

In addition to our standing assumption that the market does not allow gains from exact

arbitrage, we assume in the rest of this subsection that both mean and cost portfolios exist
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leading to a two-dimensional return space. Then, by Theorems 4 and 5, either �0 6= 0 or h � 0.

By plugging in the formulae for the mean and cost portfolios in Section 4 into the formula

in Lemma 4(ii), we obtain immediately all the mean-variance eÆcient portfolios for these two

cases. The formulae for benchmark portfolios and the maximal Sharpe measure Æ can also be

obtained easily. The results for the case �0 6= 0 are in Proposition 4 and Corollaries 4 and 5.

The results for the case h � 0 are in Proposition 5 and Corollaries 6 and 7.

We �rst consider the case where �0 6= 0. Since the cost portfolio exists, Theorem 5(i)

says that
P
1

n=1 (�0sn � �n)
2 =�4n <1: In this case, �0 is the riskless interest rate as noted in

Theorem 2, and Theorem 4 also shows that a mean portfolio exists. In addition, Proposition 3

indicates that the mean and cost portfolios are independent when the market is not trivial.

Proposition 4 Let a and b be two arbitrary real numbers. Assume that �0 6= 0, �s � 0, and

that the asset market is not trivial and cost portfolios exist. Then the portfolio p de�ned by

p(t) =

h
a
�
1 +

P
1

n=1
(�0sn��n)

2

�2n

�
� b�0

i
m(t) +

�
b�20 � a�0

�
c(t)P

1

n=1
(�0sn��n)

2

�2n

is mean-variance eÆcient with mean a and cost b, where m(t) = h(t)=(�0h0) is a mean portfolio,

and c(t) = c0h(t) +
P
1

n=1 cn n(t) is a cost portfolio with

c0 =
(1=�0)�

P
1

n=1 cn�n

�0h0
; and cn =

�0sn � �n

�0�2n
for all n � 1:

Moreover, if q is any mean-variance eÆcient portfolio with mean a and cost b, then q is the

sum of p and a dummy portfolio qs.

Proof: By Theorems 3 and 4, mean and cost portfolios have the form as given in the statement

of the above proposition. It is clear that E(m) = 1, E(c) = 1=�0, and

C(c) =
1

�20
+

1X
n=1

�2nc
2
n =

1

�20

 
1 +

1X
n=1

(�0sn � �n)
2

�2n

!
:

The rest is clear from Lemmas 1 and 4.

By taking the portfolios described in the previous proposition, we can simply check when p is

a benchmark portfolio. The following corollary is then simple to establish. Here we note that by

[16, Corollary 3], the existence of a benchmark portfolio is equivalent to
P
1

n=1 (�0sn � �n)
2 =�4n <

1, and hence the assumption on the existence of a cost portfolio is also necessary for the ex-

istence of a benchmark portfolio in the case �0 6= 0.

Corollary 4 Under the hypotheses of Proposition 4, a mean-variance eÆcient portfolio p is a

benchmark portfolio if and only if E(p) 6= �0C(p), which is also equivalent to V (p) 6= 0.
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Proof: Let q be a mean variance eÆcient portfolio with mean a and cost b in the situation

considered in Proposition 4. Then it is easy to check that

cov(xt; q) =

�
b�20 � a�0

�P
1

n=1 �
2
ncn n(t)P

1

n=1(�0sn � �n)2=�2n

=
(b�0 � a)

P
1

n=1(�0sn � �n) n(t)P
1

n=1(�0sn � �n)2=�2n

=
(a� b�0) (

P
1

n=1 �n n(t)� �0(1� h(t)))P
1

n=1(�0sn � �n)2=�2n

=
(a� b�0)(�(t)� �0)P
1

n=1(�0sn � �n)2=�2n;

and the rest is clear.

Note that if the trade-o� parameter Æ is achieved by some portfolio, then the portfolio

must be mean-variance eÆcient. It is easy to obtain the following corollary by computing the

variance of the portfolio p in Proposition 4 for the case b = 0.

Corollary 5 Under the hypotheses of Proposition 4, we have

Æ =

vuut 1X
n=1

�
�0sn � �n

�n

�2
:

Proof: For any portfolio q with V (q) 6� 0, E(q) = a and C(q) = 0, consider the portfolio p in

Proposition 4 with E(p) = a and C(p) = 0. Then p becomes

p(t) =
a
�
1 +

P
1

n=1
(�0sn��n)

2

�2n

�
m(t)� a�0c(t)P

1

n=1(�0sn � �n)2=�2n
;

and hence

V (p) =
a2�20

P
1

n=1 �
2
nc

2
n

(
P
1

n=1(�0sn � �n)2=�2n)
2
=

a2P
1

n=1

�
�0sn��n

�n

�2 :

But jE(p)j=V 1=2(p) =

rP
1

n=1

�
�0sn��n

�n

�2
for a 6= 0. Since p is mean-variance eÆcient, we

know V (p) � V (q), and hence, for a 6= 0,

jE(q)j=V 1=2(q) � jE(p)j=V 1=2(p) =

vuut 1X
n=1

�
�0sn � �n

�n

�2
:

If a = 0 and V (q) 6= 0, we have jE(q)j=V 1=2(q) = 0, and thus our formula for Æ is validated.

Next we consider the case h � 0. Assume that both mean and cost portfolios exist. By

Theorem 4, the existence of a mean portfolio implies that
P
1

n=1 �
2
n=�

4
n < 1. By the proof of
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Theorem 5(iv), the existence of a cost portfolio c implies that
P
1

n=1(sn � E(c)�n)
2=�4n < 1,

and hence
P
1

n=1 s
2
n=�

4
n < 1. From the convergence of these two series, it is clear that all

the series in the following Proposition 5 are convergent. It presents explicit formulae for all

mean-variance eÆcient portfolios. Note that the relevant formulas are more complicated than

those in Proposition 4. This is partially due to the fact that there is no normalized riskless

portfolio in the market and thus the mean portfolio given here is already quite complicated.

Proposition 5 Let a and b be arbitrary real numbers. Assume that h � 0, �s � 0, and that

the asset market is not trivial and both mean and cost portfolios exist. Then the portfolio p

de�ned by

p(t) =

�
a

��
1 +

P
1

n=1
�2n
�2n

�P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2�
� b

P
1

n=1
�nsn
�2n

�
m(t)

P
1

n=1
�2n
�2n

P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2

+

�
b
P
1

n=1
�2n
�2n
� a

P
1

n=1
�nsn
�2n

�
c(t)

P
1

n=1
�2n
�2n

P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2
is mean-variance eÆcient with mean a and cost b, where m(t) =

P
1

n=1mn n(t) and c(t) =P
1

n=1 cn n(t) are the mean and cost portfolios respectively with

mn =

 
1 +

1X
n=1

�2n
�2n

!
�1

�n

�2n
; cn =

sn � �n

�2n
and  =

P
1

n=1(�nsn = �
2
n)

1 +
P
1

n=1(�
2
n=�

2
n)
:

Moreover, if q is any mean-variance eÆcient portfolio with mean a and cost b, then q is the

sum of p and a dummy portfolio qs.

Proof: By Theorems 3 and 4, the given m and c are indeed mean and cost portfolios with

E(m) = (
P
1

n=1 �
2
n=�

2
n)=(1 +

P
1

n=1 �
2
n=�

2
n) and E(c) = . We also have

C(c) =
1X
n=1

cnsn =
1X
n=1

s2n
�2n

� 
1X
n=1

�nsn

�2n
=

�
1 +

P
1

n=1
�2n
�2n

�P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2
1 +

P
1

n=1
�2n
�2n

:

Hence

E(m)C(c) � (E(c))2 =

P
1

n=1
�2n
�2n

P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2
1 +

P
1

n=1
�2n
�2n

:

Note that the fact that the market is not trivial implies that E(m)C(c) � (E(c))2 is not zero.

The rest is clear from Lemmas 1 and 4.

The following Corollary 6 characterizes the benchmark portfolios.

Corollary 6 Under the hypotheses of Proposition 5, a mean variance eÆcient portfolio p

is a benchmark portfolio if and only if E(p) 6= C(p)(�=�); where � =
P
1

n=1 �
2
n=�

2
n; � =P

1

n=1 s
2
n=�

2
n, and � =

P
1

n=1 �nsn=�
2
n.
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Proof: By using the notation introduced in the statement of the corollary, the portfolio de�ned

by

p(t) =

�
a[(1 + �)� � �2]� b�

�
m(t) + (b�� a�c(t)

�� � �2

has mean a and cost b. Then it is easy to obtain that

Rp =

�
a[(1 + �)� � �2]� b�

�
Rm + (b�� a�)Rc

�� � �2
:

Note that cov(xt; p) = (xt;Rp)�E(xt)E(p), and hence

cov(xt; p) =

�
a[(1 + �)� � �2]� b�

�
�(t) + b�� a�

�� � �2
� a�(t) =

(a� � b�)�(t) + b�� a�

�� � �2
;

where the fact that m and c are the mean and cost portfolios is used. Hence p is a benchmark

portfolio if and only if E(p) 6= C(p)(�=�):

The last corollary of this subsection provides an exact formula for the maximal Sharpe

measure Æ.

Corollary 7 Under the hypotheses of Proposition 5, we can obtain

Æ =

vuuuut
P
1

n=1
�2n
�2n

P
1

n=1
s2n
�2n
�
�P

1

n=1
�nsn
�2n

�2
P
1

n=1
s2n
�2n

:

Proof: As in the proof of Corollary 5, our Æ is equal to jE(p)j=V 1=2(p) for p in Proposition 5

with E(p) = 1 and C(p) = 0. We use the notation of Corollary 6. Hence

p(t) =

�
(1 + �)� � �2

�
m(t)� � c(t)

�� � �2
:

Thus

V (p) =

P
1

n=1 �
2
n

��
(1 + �)� � �2

�
mn � �cn

�2
(�� � �2)2

=

P
1

n=1 �
2
n

��
(1 + �)� � �2

�
1

(1+�)
�n
�2n
� � sn

�2n
+ �2 1

1+�
�n
�2n

�2
(�� � �2)

2

=

P
1

n=1

�
� �n
�n
� � sn�n

�2
(�� � �2)

2

=
�2
P
1

n=1(
�n
�n
)2 � 2��

P
1

n=1
�nsn
�2n

+ �2
P
1

n=1(
sn
�n
)2

(�� � �2)
2

=
�2�� 2��2 + �2�

(�� � �2)
2

=
�

�� � �2
:

Therefore Æ =
p
(�� � �2)=�), and we are done.
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6.3 The case of no cost portfolios

In this subsection, we consider a situation where a mean portfolio exists, and �0 = 0 and

h 6� 0. By Theorem 5(ii), cost portfolios do not exist. However, we can still �nd mean-variance

eÆcient portfolios with any given means and costs when there is no possibility of gains from

exact arbitrage and when the mean function is not the constant zero. Since a mean portfolio

exists, Theorem 4 implies that
P
1

n=1 �
2
n=�

4
n <1. We �rst prove a version of Lemma 4.

Lemma 5 Assume that �0 = 0, h 6� 0, �s � 0, � 6� 0, and there is a mean portfolio m. Then

a portfolio q is mean-variance eÆcient if and only if Rq is a multiple of Rm.

Proof: For a portfolio q with mean a and cost b, de�ne portfolios

u =

�
a

E(m)

�
m+

�
b

h0
� ac(m)

h0E(m)

�
h

and w = q�u. Note that, by the second part of Theorem 4, the assumptions of the lemma imply

that E(m) 6= 0, and hence the portfolios are well de�ned. It is easy to check that C(u) = b and

Ru is (a=E(m))Rm =
(Rm;Rq)

(Rm;Rm)
Rm, the projection of Rq on the linear space spanned by Rm,

and hence Rw ? Rm. Thus V (q) = V (u) + V (w). Therefore, the portfolio q is mean-variance

eÆcient if and only if V (w) = 0, and thus the lemma follows.

The following proposition characterizes all the mean-variance portfolios in this setting.

Proposition 6 Let a and b be arbitrary real numbers. Assume that �0 = 0, h 6� 0, �s � 0,

� 6� 0, and that a mean portfolio exists. Then the portfolio p de�ned by

p(t) =

"
b

h0
�

a
P
1

n=1
�nsn
�2n

h0
P
1

n=1(�
2
n=�

2
n)

#
h(t) + a

P
1

n=1
�n
�2n
 n(t)P

1

n=1(�
2
n=�

2
n)

is mean-variance eÆcient with mean a and cost b. Moreover, if q is any mean-variance eÆcient

portfolio with mean a and cost b, then q is the sum of p and a dummy portfolio qs.

Proof: As shown in Lemma 5, the portfolio

p =

�
a

E(m)

�
m+

�
b

h0
� ac(m)

h0E(m)

�
h

is mean-variance eÆcient. Here we choose m to be the mean portfolio de�ned in the last

paragraph of the proof of Theorem 4. Then

E(m) =

P
1

n=1 �
2
n=�

2
n

1 +
P
1

n=1 �
2
n=�

2
n

and C(m) =
1X
n=1

mnsn =

 
1 +

1X
n=1

�2n
�2n

!
�1 1X

n=1

�nsn

�2n
;

and hence we obtain the formula for p as described.
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Next, let q = q0h+
P
1

n=1 qn n + qs such that q is mean-variance eÆcient with mean a and

cost b. Then we must have Rq = Rp, and hence Rq�p = 0. This implies that qn � pn = 0 for

all n � 1. Now

C(q) = q0h0 +
1X
n=1

qnsn = q0h0 +
1X
n=1

pnsn

and C(p) = p0h0 +
P
1

n=1 pnsn. By C(p) = C(q) and h0 6= 0, we obtain p0 = q0. Therefore

q = p+ qs.

Let q be a mean variance eÆcient portfolio with mean a and cost b in the situation considered

in Proposition 6. Then it is easy to check that cov(xt; q) = a�(t)=(
P
1

n=1 �
2
n=�

2
n): Hence the

following corollary is clear.

Corollary 8 Under the hypotheses of Proposition 6, a mean-variance eÆcient portfolio q is a

benchmark portfolio if and only if E(q) 6= 0, which is equivalent to V (q) 6= 0.

Next, let p be a mean-variance eÆcient portfolio with mean a and cost b as in Proposition

6. Then it is easy to check that V (p) = a2=
P
1

n=1(�
2
n=�

2
n), and hence we can obtain a formula

for the maximal Sharpe measure Æ as follows.

Corollary 9 Under the hypotheses of Proposition 6, we obtain Æ =
pP

1

n=1 �
2
n=�

2
n.

6.4 The linear dependence of mean and cost portfolio returns

Finally, we consider the case when the market is trivial. By Proposition 3, the mean and cost

portfolios are linearly dependent if they exist. In this case, there is no meaningful trade-o�

between mean and variance, and taking more risk without spending more does not lead to

a higher return. The expected return is simply linearly dependent on the cost with a �xed

coeÆcient. Thus, it is no longer true that for every pair of given amount of return and cost,

there is a mean-variance eÆcient portfolio corresponding to it. The following proposition

describes all the relevant mean-variance eÆcient portfolios.

Proposition 7 Let b be a real number. Assume that the asset market is trivial, with the

expected return function � being equal to a constant �.

(i) If h 6� 0, then the variance of the portfolio p de�ned by p(t) = b h(t)=h0 is zero with mean

�b and cost b, and hence is also mean-variance eÆcient.

(ii) If h � 0 and
P
1

n=1 s
2
n=�

4
n <1, then the portfolio p de�ned by

p(t) = b

P
1

n=1
sn
�2n
 n(t)P

1

n=1
s2n
�2n

is mean-variance eÆcient with mean �b and cost b.

Moreover, if q is any mean-variance eÆcient portfolio with cost b, then q is the sum of the

portfolio p in (i) or (ii), and a dummy portfolio qs:
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Proof: We begin with the proof of (i). Since � � �, it is clear that E(q) = �C(q) for any

portfolio q. We can only allow the value of cost to be a variable. The portfolio p = b h=h0 has

mean �b and cost b. Since its variance is zero, it must be mean-variance eÆcient. Next, let

q = q0h +
P
1

n=1 qn n + qs be a mean-variance eÆcient portfolio with cost b. Then Rq must

be constant, which implies that qn = 0 for all n � 1. Since C(q) = q0h0 = b, we can obtain

q0 = b=h0, and hence q = p+ qs.

For the proof of (ii), note that the cost portfolio exists in this case. Since we do not have

to consider a constraint involving the mean, as in Lemma 5, we can obtain that a portfolio q

is mean-variance eÆcient if and only if Rq is a multiple of Rc. By Theorem 5(iv) and the fact

that � = �, we obtain a cost portfolio c with

c(t) =

 
1 + �2

1X
n=1

s2n

!
�1 1X

n=1

sn

�2n
 n(t):

The portfolio p de�ned in (ii) is a multiple of c with cost b, and hence also mean-variance

eÆcient.

Next, if q is a is mean-variance eÆcient portfolio with cost b, then Rq�p must be zero. By

Lemma 1(ii), q � p must be a dummy portfolio.

When the asset market is trivial, it is clear that every mean-variance eÆcient portfolio is a

benchmark portfolio. One can simply take the coeÆcient in front of the covariance in De�nition

7 to be zero. Note that here we already use � to be the constant expected return of all the

assets. As noted earlier, there is no meaningful trade-o� between mean and variance for a

trivial market. However, we can de�ne a trade-o� between cost and variance.

De�nition 8 Let Æc = inf V 1=2(p)=C(p) subject to C(p) 6= 0.

Note that Æc measures the minimum risk for each additional cost. As in the previous cases,

we can obtain the following simple corollary, whose proof will be omitted.

Corollary 10 Assume the market is trivial. Then (i) if h 6� 0, then Æc = 0; (ii) if h � 0 andP
1

n=1 s
2
n=�

4
n <1, then Æc = 1=

�pP
1

n=1(s
2
n=�

2
n)
�
.

7 Concluding Remarks

The results obtained in this paper rely crucially on two results developed in [28] and [29]. The

�rst is an exact law of large numbers that allows the complete removal of idiosyncratic risk in a

portfolio. This is the reason why all of the formulae for the variety of portfolios presented above

only contain factor risks. The second result is a generalization of the Karhunen-Lo�eve expansion

theorem to the hyper�nite setting. It is the bi-orthogonality property in such an expansion

that renders possible the computation of various portfolios.17 The underlying measure-theoretic

framework uses Loeb measures.18 As emphasized above, the advantage of the Loeb measure

17These two results form the backbone of the portmanteau theorem in Section 2 above.
18For other ongoing work in �nancial economics based on the Loeb space, see [3, 4] and [22].
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framework is that it provides a richer product measure space for a viable study of a continuum

of random variables with low intercorrelation.19

We conclude this paper with two remarks pertaining to Loeb spaces in the substantive

context of this paper. First, Hilbert spaces based on atomless Loeb probability spaces, as

used here and unlike those based on the unit Lebesgue interval, are non-separable. This shows

up, perhaps most dramatically, in Proposition 1, which guarantees the existence of �nancial

markets allowing for the possibility of gains from exact arbitrage despite the presence of a

general in�nite-dimensional factor subspace. Second, in the introduction to this paper, we

have used the (asymptotic) APT as a benchmark against which to present the (exact) APT.

However, the reader should note that many of our results, based as they are on a Loeb space,

can be asymptotically implemented to a setting with a large but �nite number of assets; see

[16, Section 3.2]. Such an implementation is conceptually distinct from the (asymptotic) APT

and involves analogues of the key parameters (sn; �n; h; �0) for �nite markets. We leave this as

an exercise for the interested reader.

8 Appendix

The proof of Proposition 1 hinges on the following lemma on in�nite matrices, which should be well

known in the literature on Hilbert spaces. We include it for the sake of completeness.

Lemma 6 Let �0; �1; �2; � � � be a complete orthonormal basis for the Hilbert space `2 of sequences of

real numbers. For each j = 0; 1; 2; � � � ; let �j = faijg1i=0. If the sequence �j is viewed as the j + 1-th

column vector of an in�nite matrix, then the row vectors are also orthonormal in `2.

Proof: Let
P
1

l=0 ailajl = bij : We have to show that bij = Æij , which is one when i = j and zero

otherwise.

1X
i=0

aikbij =

1X
i=0

aik

 
1X
l=0

ailajl

!
=

1X
l=0

ajl

 
1X
i=0

aikail

!

=

1X
l=0

ajlÆkl = ajk =

1X
i=0

aikÆij :

This implies that
P
1

i=0 aik(bij�Æij) = 0 for all k = 0; 1; 2; � � � : Since the �k's form a complete orthonor-

mal basis for `2, this implies bij = Æij for all i = 0; 1; 2; � � � ; and all j = 0; 1; 2; � � � :

We can now present

Proof of Proposition 1: Let �0 = (s0; s1; � � �)0 be an in�nite column vector such that s20 = 1�
P
1

n=1 s
2

n:

Find column vectors �1; �2; � � � so that �0; �1; �2; � � � is a complete orthonormal basis for `2: For any

j = 0; 1; 2; � � � ; let �j = faijg1i=0: By Lemma 6, the sequences �i = faijg1j=0 for any i = 0; 1; 2; � � � is
orthonormal in `2:

Now consider a orthonormal sequence of functions i; i = 0; 1; � � � on T such that 0 is the unit

function, and all the other functions have mean zero. It is always possible to �nd such a sequence of

functions on T since � is atomless. De�ne for each i = 1; 2; � � � ;  i =
P
1

j=0 aijj : Certainly the sequence

f ig1i=1 is orthonormal. Also, for any i = 1; 2; � � � ;
R
T
 id� = ai0

R
T
0d� = ai0 = si:

19It is proved in [31] that almost all sample functions are not Lebesgue measurable in a setting where a

continuum of random variables are indexed by points in the unit interval; see also [14] and its references.
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We now pick an orthogonal sequence f'ng1n=1 of random variables on 
 with mean zero and variance

one. It is always possible to �nd such a sequence of random variables on 
 since P is atomless.

Next, we invoke [29, Theorem 6.2] to assert the existence of a process e such that the random

variables et are almost i.i.d. with the almost common distribution �: We appeal to Theorem A(iv) to

claim that for P -almost all ! 2 
;
R
T
e!(t)d�(t) = 0 and

R
T
 n(t)e!(t)d�(t) = 0 for all n � 1: We can

now invoke [29, Theorem 7.16] to assert that the sample functions ! 2 
; e! are almost i.i.d. and the

almost common distribution must be � (by the exact law of large numbers in [28] and [29]). Pick one

such ! such that e! has distribution � and e! 2 (L _ f1g)?; de�ne �s =
p
ae!:

The proof is �nished.
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Market
Parameters1 Types of Portfolios

Normalized Factor
3

Mean
4

Cost
5

Riskless
2

h � 0; �s 6� 0 Remark 1(i) Remark 4(ii) Remarks 6(i), 9(i) Remark 9

h � 0; �s � 0 Remark 1(i) Remark 3 Remarks 5, 6(ii), 10 Remark 10

h 6� 0; �0 = 0; �s � 0 Remark 1(ii) Remark 3 Remarks 5, 6(ii), 8(ii) Remark 8(ii)

h 6� 0; �0 = 0; �s 6� 0 Remark 2(ii) Remark 4(ii) Remarks 6(i), 8(i) Remark 8(i)

h 6� 0; �0 6= 0; �s � 0 Remark 2(i) Remark 4(i) Remark 6(i) Remark 7(ii, iii)

h 6� 0; �0 6= 0; �s 6� 0 Remark 2(iii) Remark 4(ii) Remark 6(i) Remark 7(i)

1. Recall that �0 = 0 when h � 0 and that the converse is false.

2. This column illustrates Theorem 2: 9 normalized riskless portfolio () (h 6� 0 and (�0 6= 0 or �s 6= 0)):

3. This column illustrates Theorem 3: All factors are portfolio returns () (�0 6= 0 or � � 0 or �s 6= 0):

Remark 4(iii) concerns the case � � 0 not tabulated here.

4. This column illustrates Theorem 4: (i) 9 mean portfolio if �0 6= 0 or �s 6= 0:

(ii) If (�0 = 0 and �s = 0); 9 mean portfolio ()
P
1

n=1
(�2

n
=�

4
n
) <1:

5. This column illustrates Theorem 5: (i) If (�0 6= 0)9 cost portfolio () (�s � 0 and
P
1

n=1
(�0sn � �n)

2
=�4

n
<1):

(ii) If (�0 = 0 and h 6� 0); 6 9 cost portfolio.

(iii) If (h � 0 and �s 6� 0); 9 cost portfolio ()
P
1

n=1
s2
n
=�4

n
<1.

(iv) If (h � 0; �s � 0; and
P
1

n=1
(s2
n
+ �2

n
)=�2

n
<1);

9 cost portfolio ()
P
1

n=1
(sn � b�n)

2=�4
n
<1,

where b = (
P
1

n=1
(�nsn=�

2
n
))=(1 +

P
1

n=1
(�2

n
=�2

n
)).

Table 1: Existence and Non-existence of Di�erent Kinds of Portfolios

under Varying Market Parameters


