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Abstract This paper presents two axiomatic models of decision making under uncer-

tainty that avoid the use of a state space. The �rst is a subjective expected utility model

with action-dependent subjective probabilities and e¤ect-dependent preferences (the case of

e¤ect-independent preferences is obtained as a special instance). The second is a nonexpected

utility model involving well-de�ned families of action-dependent subjective probabilities on

e¤ects and a utility representation that is not necessarily linear in these probabilities (a prob-

abilistic sophistication version of this model, with action-dependent subjective probabilities

is obtained as a special case).
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1 Introduction

The notion of states of nature is a cornerstone of modern theories of decision-making under

uncertainty. Introduced by Savage [6], a state of nature formalizes the idea of complete

resolution of uncertainty�that is, the assignment of a unique consequence to each conceivable

course of action.1 For example, when betting on the outcome of a horse race the states of

nature correspond to the orders in which the horses may cross the �nish line (these are the

states of nature in Anscombe and Aumann [1]).

Theories of decision-making under uncertainty that invoke the notion of a state space

(that is, the set of all states of nature) require that the states be so de�ned as to render the

likely realization of alternative events (that is, subsets of the state space) independent of the

decision maker�s actions and render the valuation of the consequences independent of the

state in which they may obtain. Consequently, if the likely outcomes of a horse race may be

a¤ected by actions taken by decision makers (for example, a jockey throwing a race) then

the outcomes of the race no longer qualify as states of nature. Similarly, taking out health

insurance policy is betting on one�s state of health. The uncertainty involved is resolved

once the true state of the insured�s health becomes known. However, the likely realization of

alternative states of health is not independent of the life style (e.g., diet and exercise regimen)

adopted by the insured. Moreover, in general, the individual valuation of the indemnity is not

independent of the insuree�s state of health. Hence the states of the decision maker�s health

1Formally, a state of nature is a function on the set of courses of action, or acts, to the set of consequences.
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do not qualify as states of nature. If the framework of Savage is to be maintained, a di¤erent,

more abstract, formulation of a state space is called for in which the outcomes of the horse

race and the states of the decision maker�s health become random variables. However�and

here is the rub�in many situations involving decision-making under uncertainty, the state

space required to meet these conditions is too abstract and/or too complex to contemplate.

Except in special circumstances, the state space does not correspond to an image of the

world that decision makers invoke when making decisions under uncertainty.2

In Karni [2] I developed axiomatic subjective expected utility theories of decision-making

under uncertainty that dispense with the idea of a state space. In this paper I pursue this

approach using the Anscombe and Aumann [1] device of roulette lotteries. Taking advan-

tage of the richness of the choice space a¤orded by the availability of roulette lotteries, I

develop axiomatic subjective expected utility models with action-dependent subjective prob-

abilities and e¤ect-dependent utilities that are simple and transparent. Moreover, following

Machina and Schmeidler [4], [5], I also develop an axiomatic model of decision-making under

uncertainty in which action-dependent subjective probabilities are de�ned but the utility

representation is not necessarily linear in these probabilities. This theory allows for e¤ect-

dependent preferences and includes, as a special case, a version of Machina and Schmeidler�s

probabilistically sophisticated choice model with action-dependent subjective probabilities.

In the next section I lay out the analytical framework. The subjective expected utility

model is the subject matter of Section 3. Section 4 includes the more general nonexpected

2For additional examples, a more detailed discussion, and references, see Karni [2].

4



utility theory. Concluding remarks appear in Section 5. Section 6 contains the proofs.

2 The Model

2.1 The analytical framework

Let � be a �nite set whose elements are e¤ects. In the examples cited earlier, e¤ects are

possible outcomes of a horse race or the states of a person�s health. Let A be an abstract set

whose elements, referred to as actions. Actions correspond to initiatives that may be taken

by a decision maker that, he believes, a¤ect the likely realization of alternative e¤ects (e.g.,

doping a horse prior to running the race, quitting smoking). Let Z (�) be an arbitrary set

of prizes that are feasible if the e¤ect � obtains. Denote by �(Z (�)) the set of all simple

probability distributions on Z (�) :3 Elements of �(Z (�)) are referred to as roulette lotteries,

or simply lotteries.

Bets are e¤ect-contingent lottery payo¤s. Formally, a bet, b; is a function on � such

that b (�) 2 �(Z (�)): Denote by B the set of all bets (that is, B := ��2��(Z (�))). The

choice set is the product set C := A�B whose generic element, (a; b) ; is an action-bet pair.

Action-bet pairs represent conceivable alternatives among which decision makers may have

to choose. The set of consequences C consists of prize-e¤ect pairs, that is, C := f(z; �) j z 2

Z (�) ; � 2 �g:
3A distribution is simple if its support is �nite.
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A decision maker is characterized by a preference relation < on C (that is, a binary

relation having the usual interpretation, namely, (a; b) < (a0; b0) means that (a; b) is at

least as desireable as (a0; b0)). In other words, decision makers are supposed to be able to

choose, or express preferences, among action-bet pairs presumably taking into account their

beliefs regarding the in�uence of the actions on the likelihood of alternative e¤ects and,

consequently, on the desirability of the corresponding bets, and the intrinsic desirability of

the actions. The strict preference relation, �; and the indi¤erence relation, �; are de�ned

as usual.

For all b; b0 2 B and � 2 [0; 1] ; de�ned (�b+ (1� �) b0) (�) = �b (�) + (1� �) b0 (�) ; for

all � 2 �: Assume that the set B is closed under this convex operation. For p 2 �(Z (�))

I use the notation b��p to denote the bet that result from replacing the ��coordinate of b

with the lottery p:

The analysis below invokes the concept of constant valuation bets of Karni [2]. To

grasp the idea of constant valuation bets, suppose that there is a subset, Â, of actions and

a subset, Bcv, of bets such that, for every given �b 2 Bcv, the variations in the decision-

maker�s well-being due to the direct impact of the actions in Â are compensated by the

impact of these actions on the likely realization of the di¤erent e¤ects. Once accepted

by the decision maker, a constant valuation bet manifests itself by the decision maker�s

indi¤erence among all the actions in Â. If the constant valuation bets are to be well-de�ned,

there must exist su¢ ciently many distinct actions in Â so as to render the coordinates

of each constant valuation bet unique in the sense of belonging to the same equivalence
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class of lotteries. To formalize this idea, let I (b; a) = fb0 2 B j (a; b0) � (a; b)g and

I (p; �; b; a) = fq 2 �(Z (�)) j (a; b��q) � (a; b��p)g:

De�nition 1: A bet �b 2 B is a constant valuation bet according to < if
�
a;�b
�
�
�
a0;�b

�
for

all a; a0 2 Â; and b 2 \a2ÂI
�
�b; a
�
if and only if b (�) 2 I

�
�b (�) ; �;�b; a

�
for all � 2 �

and a 2 Â:

To grasp the meaning of this de�nition, note that distinct actions correspond to distinct

beliefs regarding the likely realization of the di¤erent e¤ects. De�nition 1 requires that the

cardinality of the subset Â is at least that of the set of e¤ects �: In addition, as the proof

of Theorem 1 below indicates, Â must include j � j �independent�actions, inducing systems

of linear equations whose unique solutions are the vectors of utilities,
�
U
�
�b (�) ; �

��
�2� ;

associated with the constant valuation bets, �b 2 Bcv (<). To simplify the exposition, without

essential loss of generality, I assume, henceforth, that Â = A:4 In view of De�nition 1 and

the assumption that Â = A; if �b;�b0 2 Bcv (<) I shall write �b < �b0 instead of
�
a;�b
�
<
�
a;�b0

�
:

Given p 2 �(Z (�)) ; I denote by b��p the constant valuation bet whose �� coordinate is p:

Since < is given, to simplify the notation I refer to constant valuation bets according to <

as constant valuation bets and denote Bcv (<) by Bcv.

Given <; an e¤ect � 2 � is null given the action a if (a; b��p) � (a; b��q) for all p; q 2

�(Z (�)) ; and b 2 B; otherwise it is nonnull given the action a: Note that, given <; an
4In Karni [2] I explain the procedure by which the analysis may be extended to the case in which Â is a

proper subset of A:
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e¤ect may be null under some actions and nonnull under others. Denote by �(a) the subset

of e¤ects that are nonnull given a and let �c (a) be its complement in �:

Two e¤ects, � and �0 are said to be elementarily linked if there are actions a; a0 2 A such

that �; �0 2 �(a) \ �(a0) : Two e¤ects are said to be linked if there exists a sequence of

e¤ects � = �0; :::; �n = �
0 such that every �j is elementarily linked with �j+1:

The preference relation < is said to be nondegenerate if the strict preference relation, �;

is nonempty, otherwise the preference relation is degenerate. I assume throughout, that the

preference relation in nondegenerate, every pair of e¤ects is linked and every action-bet pair

has an equivalent constant valuation bet. Formally,

(A.0) The preference relation < is nondegenerate, every pair of e¤ects is linked and, for all

(a; b) 2 C, there is �b 2 Bcv such that
�
a;�b
�
� (a; b).

2.2 Continuous weak orders

The �rst two axioms are part of all the models below. These axioms are familiar and require

no further explanation.

(A.1) (Weak order) < is complete and transitive.

(A.2) (Action-wise Archimedean) For all a 2 A and b; b0; b00 2 B; such that (a; b) �

(a; b0) � (a; b00) there exist �; � 2 (0; 1) such that (a; (�b+ (1� �) b0)) � (a; b0) �
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(a; (�b+ (1� �) b00)) :

3 Subjective Expected Utility Theory

In this section I explore alternative subjective expected utility models.

3.1 E¤ect-dependent preferences

Action-wise independence is the independence axiom of expected utility theory applied to

elements of the choice set that having the same action as their �rst coordinate.

(A.3) (Action-wise Independence) For all a 2 A; b; b0; b00 2 B and � 2 (0; 1], (a; b) <

(a; b0) if and only if (a; (�b+ (1� �) b00)) < (a; (�b0 + (1� �) b00)) :

The next axiom requires that, for every given e¤ect, the ranking of lotteries be indepen-

dent of the action. In other words, conditional on the e¤ects, the risk attitude displayed by

the decision maker is independent of his actions. Formally,

(A.4) (Action-independent risk attitudes) For all a; a0 2 A; b 2 B; � 2 �(a;<) \

�(a0;<) and p; q 2 �(Z (�)); (a; (b��p)) < (a; (b��q)) if and only if (a0; (b��p)) <

(a0; (b��q)) :
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The �rst representation theorem below asserts that if assumption (A.0) holds then the

axiomatic structure depicted by (A.1) �(A.4) is necessary and su¢ cient for the existence

of a representation based on subjective expected utility with action-dependent probabilities

and e¤ect-dependent utilities. In particular, given any action, preferences among bets are

represented by a subjective expected utility functional with e¤ect-dependent utility functions.

Theorem 1 Let < be a preference relation on C and suppose that assumption (A.0) holds,

then

(a) The following conditions are equivalent:

(a.i) < satis�es (A.1) �(A.4).

(a.ii) There exists a family of probability measures f� (�; a) j a 2 Ag on �; a family of

e¤ect dependent, continuous, utility functions fu (�; �) : Z (�) ! R j � 2�g, and a

continuous function f : R�A! R, increasing in its �rst argument, such that, for all

(a; b) ; (a0; b0) 2 C,

(a; b) < (a0; b0)

if and only if

f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (z; �) ; a

1A � f

0@X
�2�

� (�; a0)
X
z2Z(�)

u (z; �) b0 (z; �) ; a0

1A :
(1)

(b) fv (�; �) : Z (�)! R j � 2�g is another family of utility functions and g is another con-

tinuous function representing the preference relation in the sense of (a:ii) if and only
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if, for all � 2 �; v (�; �) = �u (�; �)+& (�) ; � > 0; and, for all a 2 A; g (�x+ & (a) ; a) =

f (x; a) ; where x 2 f
P

�2� � (�; a)
P

x2Z(�) u (z; �) b (z; �) j b 2 Bg and & (a) =
P

�2� & (�)� (�; a).

(c) The family of probability measures f� (�; a) j a 2 Ag on � is unique and � (�; a) = 0 if

and only if � is null given a:

The function f (�; a) captures the direct e¤ect of the action on the decision maker�s well-

being. The indirect e¤ect, due to variations in the likely realization of e¤ects, is captured

by the probability measures f� (�; a)ga2A.

3.2 E¤ect-independent preferences

Consider next the case of e¤ect-independent risk attitudes, that is, the case in which the

ranking of lotteries is the same across e¤ects. This is analogous to the Anscombe and

Aumann [1] state-independence, or monotonicity, axiom. Formally,

(A.5) (E¤ect independence) For all a 2 A; b 2 B; �; �0 2 �(a;<) ; and p; q 2 �(Z (�))\

�(Z (�0)) ; (a; b��p) < (a; b��q) if and only if (a; b��0p) < (a; b��0q) :

The next theorem establishes that if the preference relation satis�es e¤ect independence

in addition to the other axioms, then the utility functions that �gures in Theorem 1 have

the speci�c functional form u(z; �) = � (�)u (z) + � (�) ; � (�) > 0.
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Theorem 2 Let < be a preference relation on C and suppose that assumption (A.0) holds

then,

(a) The following conditions are equivalent:

(a.i) < satis�es (A.1) �(A.5).

(a.ii) There exists a family of probability measures f� (�; a) j a 2 Ag on �; a continuous,

real-valued function, u; on [�2�Z (�), � 2 R�++ and � 2 R�, and a continuous, real-

valued, functions f : R � A ! R, increasing in its �rst argument, such that, for all

(a; b) ; (a0; b0) 2 C,

(a; b) < (a0; b0)

if and only if

f

 X
�2�

� (�; a)
X
z2Z

[� (�)u (z) + � (�)] b (z; �) ; a

!
� f

 X
�2�

� (�; a0)
X
z2Z

[� (�)u (z) + � (�)] b0 (z; �) ; a0

!
(2)

(b) v and g is another set of functions representing the preference relation in the sense of

(a.ii) if and only if, for all � 2 �; v = �u+& (�) ; � > 0 and g (�x+ & (a) ; a) = f (x; a) ;

for all a 2 A and x 2 f
P

�2� � (�; a)
P

�2� [� (�)u (z) + � (�)] b (z; �) j b 2 Bg; where

& (a) =
P

�2� & (�)� (�; a).

(c) The family of probability measures f� (�; a) j a 2 Ag on � is unique and � (�; a) = 0 if

and only if � is null given a:
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One implication of Theorem 2 is that e¤ect-independent preferences (or risk attitudes) do

not imply e¤ect-independent utility functions. The utility functions are e¤ect independent

if and only if constant bets (that is, bets that are constant functions) are constant utility

bets. In other words, if u (z; �) = u (z) for all � 2 �:

4 Subjective Probabilities without Expected Utility

4.1 Motivation

Machina and Schmeidler [4], [5] argue, convincingly, that a choice-theoretic de�nition of

subjective probabilities does not require that the preference relation satisfy the axioms of

subjective expected utility. Invoking the analytical frameworks of Savage [6] and Anscombe

and Aumann [1], respectively, they show that a decision maker may be �probabilistically

sophisticated,� in the sense that his betting behavior implies the existence of unique sub-

jective probabilities on the state space, his choice among acts is determined by his pref-

erences among the induced distributions on the set of outcomes, and his preferences are

representable by a utility function that is not necessarily linear in the probabilities. How-

ever, as in expected utility theory, the de�nition of subjective probabilities in the theory

of probabilistically sophisticated choice of Machina and Schmeidler is based on an implicit,

unveri�able, assumption of state-independent outcome valuation. Moreover, requiring that

acts be fully characterized by their induced distributions on the set of consequences, they
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implicitly assume that the preferences are state independent.

My next objective is to develop, within the analytical framework of Section 2, a decision

theory that yields a de�nition of action-dependent subjective probabilities on the set of

e¤ects without requiring that the representation be linear in the probabilities. Unlike the

models of Machina and Schmeidler, the theory I propose does not require that the implicit

valuation of the consequences be e¤ect independent. However, if constant bets are constant

valuation bets a version of this model, analogous to probabilistic sophistication, is obtained

as a special case.

Some modi�cation of the lottery structure is introduced to simplify the presentation. Let

� = f�1; :::; �ng and, for each � 2 �; let Z (�) = [z��� ; z�� ] be intervals representing monetary

prizes: Denote by �z the (degenerate) lottery that yields the prize z with probability one.

Let �b�� =
�
�z���1

; :::; �z���n

�
and �b� =

�
�z��1

; :::; �z��n

�
be constant valuation bets that are the

maximal and minimal elements of C, respectively.5

4.2 Axioms

To obtain the desired generalization, I replace conditional independence, (A.3), that is re-

sponsible for the linear structure of the preference relation with two axioms that are analo-

gous to Machina and Schmeidler�s [5] axioms 5 and 6.

5This assumption is analogous to the assumption of Machina and Schmeidler [5] that the set of outcomes

includes a best and worst outcome.
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Given � 2 � and a lottery p 2 �(Z (�)) ; denote by Fp the cumulative distribution

function corresponding to p: Then, as usual, p is said to �rst-order stochastically dominate q

if Fq (z) � Fp (z) for all z 2 Z (�) :This dominance relation is denoted p �1 q: If, in addition,

the inequality is strict for some z 2 Z (�) ; then the dominance relation is strict and is

denoted p >1 q:

The axiom of conditional monotonicity asserts that, given a 2 A; b 2 B; and � 2

�(a) ; the restriction of < to f(a; b��p) j p 2 �(Z (�))g � C is strictly monotonic with

respect to �rst-order stochastic dominance. Formally,

(A.6) (Conditional monotonicity) For all a 2 A; � 2 �; b 2 B; and p; q 2 �(Z (�)), if

p �1 q; then (a; b��p) < (a; b��q) : If p >1 q and � is nonnull under a then (a; b��p) �

(a; b��q) :

Let Y � T � � then, given a 2 A and �b00;�b0 2 Bcv such that �b00 � �b0; a �bet on Y

conditional on T� is a bet b̂ such that b̂ (�) = �b00 (�) if � 2 Y and b̂ (�) = �b0 (�) if � 2 T .

The next axiom requires that, for every given action, if the decision maker is indi¤erent

between betting on Y conditional on T and betting on the outcome of a coin �ip with

probability of winning �, also conditional on T; then he must remain indi¤erent when the

constant valuation bets that �gure in the bet on Y conditional on T change, and/or when

the lotteries on any other e¤ect change. Formally,
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(A.7) (Conditional replacement) For any a 2 A and Y � T � �; if0BBBBBB@a;
26666664
�b�� (�) � 2 Y

�b� (�) � 2 T � Y

�b� (�) � 2 �� T

37777775

1CCCCCCA �

0BBBBBB@a;
26666664
��b�� (�) + (1� �)�b� (�) � 2 Y

��b�� (�) + (1� �)�b� (�) � 2 T � Y

�b� (�) � 2 �� T

37777775

1CCCCCCA
then, for all �b0, �b00 2 Bcv such that �b00 � �b0 and b 2 B;0BBBBBB@a;

26666664
�b00 (�) � 2 Y

�b0 (�) � 2 T � Y

b (�) � 2 �� T

37777775

1CCCCCCA �

0BBBBBB@a;
26666664
��b00 (�) + (1� �)�b0 (�) � 2 Y

��b00 (�) + (1� �)�b0 (�) � 2 T � Y

b (�) � 2 �� T

37777775

1CCCCCCA :

4.3 Action-dependent subjective probabilities without expected

utility

The following theorem asserts that a preference relation satis�es weak order, conditional

Archimedean, conditional monotonicity, and conditional replacement if, and only if, there

exist a unique family of action-dependent subjective probabilities, f� (a) j a 2 Ag; on � and

a real-valued utility function, V on A�B representing < such that, for any action-bet pair,

(a; b) 2 C, (a; b) ! V
�
a;��2�� (�; a) b��b (�)

�
: The reader will �nd the following matrix

useful in �guring out the meaning of the expression ��2�� (�; a) b��b (�): Given a bet b; and

�i 2 �; b��ib (�i), is a constant valuation bet depicted in the corresponding column of the
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following matrix:

� �1 �2 ::: �n

�1 �b1 (�1) = b (�1) �b2 (�1) ::: �bn (�n)

�2 �b1 (�2) �b2 (�2) = b (�2) ::: �bn (�2)

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

�n �b1 (�n) �b2 (�n) ::: bn (�n) = b (�n)

A real-valued function, H, on a convex subset, S, of a linear space is mixture continuous

if H (�p+ (1� �) q) is continuous in � for all p; q 2 S:

Theorem 3 Let < be a preference relation on C. Suppose that C has a maximal and minimal

elements that are constant valuation bets and that assumption (A.0) holds then,

(a) The following conditions are equivalent:

(a.i) < satis�es (A.1), (A.2), (A.6), and (A.7).

(a.ii) There exist a family of probability measures f� (a) j a 2 Ag on �; and a real-valued

function V on A � B, that is mixture continuous in its second argument, such that,

for all (a; b) ; (a0; b0) 2 C,

(a; b) < (a0; b0), V
�
a;��2�� (�; a) b��b (�)

�
� V

�
a0;��2�� (�; a

0) b��b0 (�)
�
: (3)
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Moreover, the family of probability measures f� (a) j a 2 Ag on � is unique and � (�; a) =

0 if and only if � is null given a:

The next Lemma shows that, if the set of constant valuation bets is convex the V (a; �) =

U (�) for all a 2 A:

Lemma 4 Let < be a preference relation on C satisfying (A.1), (A.2), (A.6), (A.7). Sup-

pose that C has a maximal and minimal elements that are constant valuation bets and

that assumption (A.0) holds. If Bcv is convex then the function V in Theorem 3 satis�es

V (a; �) = U (�) for all a 2 A:

4.4 Probabilistically sophisticated choice

In the special case in which constant bets are constant-valuation bets, the model of the

preceding section reduces to a probability sophisticated choice model with action-dependent

subjective probabilities. Notice that, in this case, Z (�) = Z for all � 2 � and the set of

constant bet is convex by de�nition.

Theorem 5 Let < be a preference relation on C. Suppose that C has a maximal and minimal

elements that are constant valuation bets, that assumption (A.0) holds and constant bets are

constant valuation bets. Then

(a) The following conditions are equivalent:
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(a.i) < satis�es (A.1), (A.2), (A.6), and (A.7).

(a.ii) There exist a family of probability measures f� (�; a) j a 2 Ag on �; and a mixture

continuous, strictly monotonic, real-valued function, V; on �(Z) such that, for all

(a; b) ; (a0; b0) 2 C,

(a; b) < (a0; b0), V

 X
�2�

� (�; a) b (�)

!
� V

 X
�2�

� (�; a0) b0 (�)

!
: (4)

Moreover, the family of probability measures f� (�; a) j a 2 Ag on � is unique and

� (�; a) = 0 if and only if � is null given a:

5 Concluding Remarks

Using the device of roulette lotteries, I develop an analytical framework as well as axiomatic

subjective expected utility and nonexpected utility models of decision-making under uncer-

tainty that dispense with the notion of states of the nature. In these models the choice set

consists of actions-bet pairs, where bets are lottery-valued functions on a set of e¤ects. De-

cision makers are supposed to believe that they may a¤ect the likelihood of di¤erent e¤ects

by their choice of actions. The main results of this paper are:

(a) A general subjective expected utility theory with action-dependent subjective proba-

bilities and e¤ect-dependent utilities. The case of e¤ect-independent preferences is obtained

as special instances.
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(b) A nonexpected utility theory involving well-de�ned families of action-dependent sub-

jective probabilities on e¤ects and utility representations. The utility assigned to action-bet

pairs depends on the convex combination of constant-valuation bets corresponding to the

coordinates of the bet, where the weights are the action-dependent subjective probabilities.

A probabilistic sophistication version of this model is obtained as a special case in which

constant bets are the constant-valuation bets.

6 Proofs

6.1 Proof of Theorem 1

(a) (a:i)! (a:ii). By the von Neumann�Morgenstern theorem, < satis�es (A.1), (A.2), and

(A.3) if and only if there exists a family of functions fw (�; �; a) : Z (�) ! R j � 2 �g such

that, for every given a 2 A and all b; b0 2 B;

(a; b) < (a; b0),
X
�2�

X
z2Z(�)

w (z; �; a) b (z; �) �
X
�2�

X
z2Z(�)

w (z; �; a) b0 (z; �) : (5)

Moreover, fŵ (�; �; a) : Z (�) ! R j � 2 �g is another set of functions representing < in the

sense of (5), if and only if ŵ (�; �; a) = � (a)w (�; �; a) + �(�; a); � (a) > 0: If � is null given a

then w (�; �; a) is a constant function.

Invoking the uniqueness of the functions w (�; �; a) ; let

X
z2Z(�)

w (z; �; a)�b� (z; �) = 0 for all a 2 A and � 2 �: (6)
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Equation (6) implies that, if � is null given a then w (�; �; a) = 0.

By (A.0) < is nondegenerate. Axiom (A.4) implies that, for all a; a0 2 A that are

elementarily linked and � 2 �(a) \ �(a0) ; there are numbers � (�; a; a0) > 0 and � (�; a; a0)

such that, for all z 2 Z (�) ;

w (z; �; a) = � (�; a; a0)w (z; �; a0) + � (�; a; a0) : (7)

Equations (6) and (7) imply that, for all a; a0 2 A and � 2 �(a) \�(a0) ;

X
z2Z(�)

w (z; �; a)�b� (z; �) =
X
z2Z(�)

[� (�; a; a0)w (z; �; a0) + � (�; a; a0)] �b� (z; �) = � (�; a; a0) = 0:

(8)

Probabilities: Set � (�; a) = 0 for all � =2 �(a) : For every � 2 � let A (�) = fa 2

A j � 2 �(a)g: For every � 2 �; �x a 2 A (�) and let f� (�; a)ga2A be a set of probability

measures on � de�ned by the solution to the system of equations

� (�; a)� �(a;a0;�)� (�; a0) = 0; for all a0 2 A (�)� fag and � 2 �(a) \�(a0) (9)

and X
�2�

� (�; a) = 1 for all a 2 A: (10)

Next I show that the probability measures f� (�; a)ga2A on � are well-de�ned. To simplify

the exposition let wa (b(�); �) :=
P

z2Z(�)w (z; �; a) b (z; �) for all a 2 A; b 2 B and � 2 �:

Claim: There exists a unique solution to the system of equations (9) and (10).

Proof. Let A = fa1; :::; ang and �(a) = f�1(a); :::; �m(a)g: Write equations (9) and (10)
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in matrix notation as follows: M�t=
, where

� =
�
�
�
�1(a1); a1

�
; :::; �

�
�m(a1); a1

�
; :::; �

�
�1(an); an

�
; :::; �

�
�m(an); an

��
t denotes the transpose of �, 
 is a

Pn
i=1m (an) column vector whose last n coordinates are

1 and all the other coordinates are 0 and M is the (
Pn

i=1m (ai))� (
Pn

i=1m (ai)) matrix of

coe¢ cients of corresponding to the system of equations (9) and (10). 6

Suppose that M is singular. Take �b 2 Bcv and de�ne �a :=
P

�2�wa
�
�b (�) ; �

�
; for all

a 2 A: Let

wt =
�
wai
�
�b
�
�1(ai)

�
; �1(ai)

�
; :::; wai

�
�b
�
�m(ai)

�
; �m(ai)

��n
i=1
:

Then, by equations (6) and (7), Mwt=�, where � a
Pn

i=1m (an) column vector whose last

n coordinates are �ai, i = 1; :::; n; and all the other coordinates are 0: Since M is singular

and wt exists, there exist b̂ 6= �b such that

ŵt=
�
wai

�
b̂
�
�1(ai)

�
; �1(ai)

�
; :::; wai

�
b̂
�
�m(ai)

�
; �m(ai)

��n
i=1

satis�esMŵt= � and ŵt 6= wt: Thus

X
�2�

wa
�
�b (�) ; �

�
= �a =

X
�2�

wa

�
b̂ (�) ; �

�
; 8a 2 A: (11)

6For example, if A = fa; a0g and � = f�; �0g = �(a) = � (a0) then

M =

0BBBBBBBBBB@

1 0 �� (a; a0; �) 0

0 1 0 ��
�
a; a0; �0

�
1 1 0 0

0 0 1 1

1CCCCCCCCCCA
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Equations (5) and (11) imply that
�
a; b̂
�
�
�
a;�b
�
for all a 2 A: But ŵt 6= wt implies that

b̂ (�) =2 I
�
�b (�) ; �;�b; a

�
for some � 2 � and a 2 A:

Now �b 2 Bcv hence, by transitivity, b̂ 2 Bcv: This contradicts the uniqueness of constant

valuation bets in De�nition 1. HenceM is non-singular and the system of equations (9) and

(10) has a unique solution.

Utilities: For any given � 2 �; z 2 Z (�) and a 2 A; de�ne u (z; �; a) = w (z; �; a) =� (�; a)

if � (�; a) > 0 and u (z; �; a) = �u otherwise. Note that, for all a 2 A and � 2 �(a0) \�(a),

u (z; �; a0) =
w (z; �; a0)

� (�; a0)
=

w (z; �; a)

�(a;a0;�)� (�; a0)
=
w (z; �; a)

� (�; a)
= u (z; �; a) ; (12)

where the third inequality is implied by (9). Hence u (z; �; a) = u (z; �; a0) := u (z; �) for

all a; a0 2 A and � 2 �(a0) \ �(a) : By (A.0) any two e¤ects are linked implying that

u (z; �; a) = u (z; �) for all a 2 A and � 2 �(a) :

By de�nition, w (z; �; a) = � (�; a)u (z; �) for all a 2 A; � 2 �; and z 2 Z (�). De�ne <a

on B as follows, b <a b0 if (a; b) < (a; b0) : Then, for each a 2 A; <a is represented by the

subjective expected utility functional

(a; b) 7!
X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (z; �) : (13)

Representation: Fix �a 2 A and, for each a 2 A de�ne a function f (�; a) : R! R by

X
�2�

� (�; �a)
X
z2Z(�)

u (z; �)�b (z; �) = f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �) ; a

1A ; 8�b 2 Bcv: (14)
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Then, for all a 2 A; f(�; a) is well-de�ned, strictly increasing, continuous function, and f(�; �a)

is the identity function.

Next I show that, for all (a; b) and (a0; b0) in C,

(a; b) < (a0; b0), f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (z; �) ; a

1A � f

0@X
�2�

� (�; a0)
X
z2Z(�)

u (z; �) b0 (z; �) ; a0

1A :
(15)

By (A.0), there is a constant valuation bet �b such that (a; b) <
�
a;�b
�
�
�
a0;�b

�
< (a0; b0) : By

the representation (13),

(a; b) <
�
a;�b
�
,
X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (z; �) �
X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �)

and

�
a0;�b

�
< (a0; b0),

X
�2�

� (�; a0)
X
z2Z(�)

u (z; �)�b (z; �) �
X
�2�

� (�; a0)
X
z2Z(�)

u (z; �) b0 (z; �) :

But, by equations (14),

�
a;�b
�
�
�
a0;�b

�
, f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �) ; a

1A = f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �) ; a0

1A :
The conclusion follows by transitivity of < and monotonicity of fa for all a 2 A:

This completes the proof that (a:i)) (a:ii) :

(a:ii) ) (a:i) : The fact that (a:ii) implies axioms (A.1), (A.2), and (A.3) follows from

the von Neumann�Morgenstern theorem. Axiom (A.4) follows immediately from the fact

that
P

z2Z(�) u (z; �) b (z; �) is independent of a:
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(b) Suppose that, for all � 2 �, v (�; �) = �u (�; �) + & (�) ; � > 0; and g (�x+ & (a) ; a) =

f (x; a) ; where & (a) =
P

�2� & (�)� (�; a). Then, for all a 2 A,

g

0@X
�2�

� (�; a)
X
z2Z(�)

v (z; �) b (�) ; a

1A = f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (�) ; a

1A
Hence, (15) implies that (a; b) < (a0; b0) if and only if

g

0@X
�2�

� (�; a)
X
z2Z(�)

v (z; �) b (�) ; a

1A � g

0@X
�2�

� (�; a0)
X
z2Z(�)

v (z; �) b0 (�) ; a0

1A :
Let fv (�; �)g�2� and g be a representation of < in the sense of (a:ii). Then, by the unique-

ness of the additive representation (5) of <a, for every a 2 A and � 2 �; v (�; �)� (�; a) =

� (a)u (�; �)� (�; a) + � (�; a), � (a) > 0. But, by the normalization, v
�
�b� (�) ; �

�
� (�; a) =

� (�; a) : Hence v
�
�b� (�) ; �

�
= � (�; a) =� (�; a). But the left-hand side of the last equation is

independent of a; hence � (�; a) =� (�; a) = & (�). Let & (a) =
P

�2� & (�)� (�; a) :

Next observe that, v (b (�) ; �) = � (a)u (b (�) ; �) + & (�) : But the left-hand side of the

equation is independent of a: Thus � (a) = � for all a 2 A: Hence, for all (a; b) 2 C,

g

0@X
�2�

� (�; a)
X
z2Z(�)

v (z; �) b (z; �) ; a

1A = g

0@�X
�2�

� (�; a)
X
z2Z(�)

u (z; �) b (z; �) + & (a) ; a

1A :
But for all a; a0 2 A and �b 2 Bcv,

f

0@X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �) ; a

1A = f

0@X
�2�

� (�; a0)
X
z2Z(�)

u (z; �)�b (z; �) ; a0

1A
and

g

0@�X
�2�

� (�; a)
X
z2Z(�)

u (z; �)�b (z; �) + & (a) ; a

1A = g

0@�X
�2�

� (�; a0)
X
z2Z(�)

u (z; �)�b (z; �) + & (a0) ; a0

1A :
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Thus, g (�x+ & (a) ; a) = f (x; a) ; for all a 2 A and x 2 f
P

�2� u
�
�b (�) ; �

�
� (�; a) j �b 2

Bcvg = f
P

�2� u (b (�) ; �)� (�; a) j b 2 Bg, where the last equality folllows from (A.0):

(c) The uniqueness of f� (�; a)ga2A and the fact that � (�; a) = 0 if and only if � is null

given a follows from the de�nition of the probabilities and the Claim: �

6.2 Proof of Theorem 2

(a) (a:i)! (a:ii) : By Theorem 1, for all a 2 A, �; �0 2 �(a) ; and p; q 2 �(Z (�))\�(Z (�0)) ;

(a; b��p) < (a; b��q),
X
z2Z(�)

u (z; �) p (z) �
X
z2Z(�)

u (z; �) q (z) (16)

and

(a; b��0p) < (a; b��0q),
X

z2Z(�0)

u (z; �0) p (z) �
X

z2Z(�0)

u (z; �0) q (z) : (17)

Hence, by axiom (A.5),

X
z2Z(�)

u (z; �) p (z) �
X
z2Z(�)

u (z; �) q (z),
X

z2Z(�0)

u (z; �0) p (z) �
X

z2Z(�0)

u (z; �0) q (z) : (18)

Thus, by the uniqueness of the von Neumann�Morgenstern utility function, for all a 2 A

and � 2 �(a) ;

u (�; �) = � (�)u (�; �0) + � (�) ; � (�) > 0: (19)

De�ne u (�; �0) := u (�) then (a:ii) follows from Theorem 1. Hence (a:i)! (a:ii) :

The proof that (a:ii) implies axioms (A.1)�(A.4) follows from Theorem 1. The proof that

it also implies axiom (A.5) is straightforward.
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The proofs of parts (b) and (c) follow from the corresponding parts of Theorem 1. �

6.3 Proof of Theorem 3

(a) (a:i)) (a:ii) : Axiom (A.6) implies that for every given a 2 A;
�
a;�b��

�
< (a; b) <

�
a;�b�

�
:

By (A.0),
�
a;�b��

�
�
�
a;�b�

�
: Hence, by axioms (A.2) and (A.6), for each (a; b) 2 C, there

exists a unique number v (a; b) 2 [0; 1], de�ned by

v (a; b) = Supfv j (a; b) <
�
a;
�
v�b�� + (1� v)�b�

��
g;

such that (a; b) �
�
a; v (a; b)�b�� + (1� v (a; b))�b�

�
: The proof of the last assertion is by the

usual argument (see Kreps [3]). Moreover, axioms (A.2) and (A.6) also imply that, for every

a 2 A; v(a; �) is mixture continuous and monotonic with respect to �rst order stochastic

dominance. Hence, for all (a; b) ; (a; b0) 2 C;

(a; b) < (a; b0), v (a; b) � v (a; b0) : (20)

By (A.0), for every (a; b) 2 C, there is �b 2 Bcv such that (a; b) �
�
a;�b
�
: Thus v (a; b) =

v
�
a;�b
�
: Fix �a 2 A and for all a 2 A de�ne a real-valued function F (�; a) on [0; 1] by

F
�
v
�
a;�b
�
; a
�
= v

�
�a;�b
�
; for all �b 2 Bcv: Then, for all (a; b) ; (a0; b0) 2 C;

(a; b) < (a0; b0), F (v (a; b) ; a) � F (v (a0; b0) ; a0) : (21)

For every a 2 A and � 2 � de�ne � (�; a) by

�
a;�b���

�b�� (�)
�
� (a; � (�; a)�b�� + (1� � (�; a))�b�): (22)
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By the preceding discussion � (�; a) 2 [0; 1] is well-de�ned, and � (�; a) = 0 if and only if �

is null.

By (A.0) �(a) is not empty. Fix a 2 A and, without loss of generality, let �1 be a nonnull

e¤ect under a. Consider two constant valuation bets, �b00 and �b0; such that �b00 � �b0: For every

i = 1; :::; n� 1 and a 2 A, let �i (a) be given by

�
a;�b00 (�1) ; :::;�b

00 (�i) ;�b
0 (�i+1) ; :::;�b

0 (�n)
�
�
�
a; �i (a)�b

00 + (1� �i (a))�b0
�
: (23)

Then �i (a) 2 [0; 1] is well de�ned, and (by (A.7) with T = �) is independent of the con-

stant valuation bets �b00 and �b0 assigned to the subset of e¤ects f�1; :::; �ig and f�i+1; :::; �i+ng

provided that �b00 � �b0: Let �0 (a) = 0; and de�ne

� i (a) = �n�1 (a)�n�2 (a) :::�i (a) (1� �i�1 (a)) ; i = 1; :::; n� 1;

and

�n (a) = (1� �n�1 (a)) :

Then �ni=1� i (a) = 1:

But b��ib (�i) (�i) = b (�i) ; for all i = 1; :::; n: Hence, by repeated application of axiom
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(A.7), for any (a; b) 2 C,0BBBBBBBBBBBBBBBBBBBBBB@

a;

0BBBBBBBBBBBBBBBBBBBBBB@

b (�1) on �1

b (�2) on �2

b (�3) on �3

b (�4) on �4

:

:

b (�n) on �n

1CCCCCCCCCCCCCCCCCCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCA

�

0BBBBBBBBBBBBBBBBBBBBBB@

a;

0BBBBBBBBBBBBBBBBBBBBBB@

�1 (a) b (�1) + (1� �1 (a))b��2b (�2) (�1) on �1

�1 (a) b��1b (�1) (�2) + (1� �1 (a))b (�2) on �2

b (�3) on �3

b (�4) on �4

:

:

:

:

b (�n) on �n

1CCCCCCCCCCCCCCCCCCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCA

�

0BBBBBBBBBBBBBBBBBBBBBB@

a;

0BBBBBBBBBBBBBBBBBBBBBB@

�2 (a)
h
�1 (a) b��1b (�1) + (1� �1 (a))b��2b (�2)

i
(�1) + (1� �2 (a)) b��3b (�3) (�1) on �1

�2 (a)
h
�1 (a) b��1b (�1) + (1� �1 (a))b��1b (�2)

i
(�2) + (1� �2 (a)) b��3b (�3) (�2) on �2

�2 (a)
h
�1 (a) b��1b (�1) + (1� �1 (a)) b��2b (�2)

i
(�3) + (1� �2 (a)) b (�3) on �3

b (�4) on �4

:

:

:

:

b(�n) on �n

1CCCCCCCCCCCCCCCCCCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCA

� ::: �

0BBBBBBBBBBBBBB@
a;

0BBBBBBBBBBBBBB@

� 1 (a) b (�1) + � 2 (a) b��2b (�2) (�1) + � � �+ �n (a) b��nb (�n) (�1) on �1

� 1 (a) b��1b (�1) (�2) + � 2 (a) b (�2) + � � �+ �n (a) b��nb (�n) (�2) on �2

�

�

� 1 (a) b��1b (�1) (�n) + � 2 (a) b��2b (�2) (�n) + � � �+ �n (a) b (�n) on �n

1CCCCCCCCCCCCCCA

1CCCCCCCCCCCCCCA
=
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�
a;
�
� 1 (a) b��1b (�1) + � 2 (a) b��2b (�2) + :::+ �n (a) b��nb (�n)

��
=
�
a;�ni=1� i (a) b��ib (�i)

�
:

Thus any action-bet pair (a; b) ; is indi¤erent to the action-bet pair
�
a;~b
�
where ~b is a convex

combination of the constant valuation bets corresponding to the coordinates of the original

bet b: Hence �
a;�b����j

�b�
�
� (a; � (�j; a)�b�� + (1� � (�j; a))�b�); (24)

where � (�j; a) = �i6=j� i (a) : But this implies that, � (�j; a) = � (�j; a) for all �j; j = 1; :::; n;

and a 2 A; and (a; b) �
�
a;��2�� (�; a) b��b (�)

�
:

De�ne V
�
a;��2�� (�; a) b��b (�)

�
= F (v (a; b) ; a) : Then, by (21), for all (a; b) ; (a0; b0) 2

C,

(a; b) < (a0; b0), V
�
a;��2�� (�; a) b��b (�)

�
� V

�
a0;��2�� (�; a

0) b0��b
0 (�)

�
: (25)

This completes the proof that (a:i)) (a:ii) : The proof that (a:ii)) (a:i) is immediate.

To prove the uniqueness of f� (�; a) j a 2 Ag; let f� (�; a) j a 2 Ag be another family

of probability measures on � and W a real-valued function on A � B representing < in

the sense of (25). Then, for some a 2 A and � 2 � ; � (�; a) > 
 > � (�; a) : Consider the

action-bet pairs
�
a;�b����

�b�
�
and

�
a; 
�b�� + (1� 
)�b�

�
: Note that

� (�; a)�b�� + (1� � (�; a))�b� >1 
�b�� + (1� 
)�b� >1 � (�; a)�b�� + (1� � (�; a))�b�:

Since W (a; �) is strictly monotonic increasing with respect to �rst order stochastic domi-
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nance, we have

W
�
a; � (�; a)�b�� + (1� � (�; a))�b�

�
> W

�
a; 
�b�� + (1� 
)�b�

�
: (26)

This implies
�
a; b����b

�� � �a; 
b�� + (1� 
)�b�� : By the same argument,
V
�
a; � (�; a)�b�� + (1� � (�; a))�b�

�
< V

�
a; 
�b�� + (1� 
)�b�

�
: (27)

Thus
�
a; 
b�� + (1� 
)�b�

�
�
�
a;�b����

�b�
�
: A contradiction. �

6.4 Proof of Lemma 4

Suppose that < satis�es (A.1), (A.2), (A.6), (A.7) and Bcv is a convex set. By Theo-

rem 3, < is represented by (a; b) 7! V
�
a;��2�� (�; a) b��b (�)

�
. But Bcv is convex, hence

��2�� (�; a) b��b (�) 2 Bcv: Thus, by de�nition, for all a; a0 2 A,
�
a;��2�� (�; a) b��b (�)

�
��

a0;��2�� (�; a) b��b (�)
�
:Hence, by Theorem 3, V

�
a;��2�� (�; a) b��b (�)

�
= V

�
a0;��2�� (�; a) b��b (�)

�
:=

U
�
��2�� (�; a) b��b (�)

�
: �

6.5 Proof of Theorem 5

(a) (a:i) ) (a:ii): Since constant bets are constant valuation bets, b��p = [p; :::; p] for all

� 2 � and, by de�nition, Bcv is a convex set: Thus, for the purpose of this proof, the constant

valuation bet b��p is identi�ed with p:

By Lemma 4 the preference relation < on C is represented by V
�P

�2� � (�; a) b��b (�)
�
;

where for every a 2 A; � (�; a) is a unique probability measure on �: But b��b (�) =
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[b (�) ; :::; b(�)] :Hence, by the identi�cation above,
P

�2� � (�; a) b��b (�) =
P

�2� � (�; a) b (�) :

Thus, for all (a; b) ; (a0; b0) 2 C

(a; b) < (a0; b0), V

 X
�2�

� (�; a) b (�)

!
� V

 X
�2�

� (�; a0) b0 (�)

!
: (28)

The other parts of the theorem follow from the proof of Theorem 3. �
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