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Abstract

This paper characterizes collusive pricing patterns when buyers may detect the

presence of a cartel. Buyers are assumed to become suspicious when observed prices

are anomalous. We find that the cartel price path is comprised of two phases. During

the transitional phase, price is generally rising and relatively unresponsive to cost

shocks. During the stationary phase, price responds to cost but is much less sensitive

than under non-collusion or simple monopoly. The length of the transition phase is

decreasing in the variance of cost shocks. It is also shown that the cartel price path

may overshoot its long-run level so that price converges from above.
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1 Introduction

From an antitrust perspective, the two central tasks for a theory of price-fixing are identi-

fying conditions that facilitate collusion and, towards discerning the presence of a cartel,

characterizing the properties of collusive pricing. Though there is a large theoretical lit-

erature addressing these issues, work has generally failed to take account of an important

dimension to this problem. In light of the illegality of collusion, firms don’t just want

to achieve prices that raise profit and are internally stable; they also want to avoid cre-

ating suspicions that a cartel has formed. Given that if such suspicions emerge they

could initiate a process that ultimately means the collapse of the cartel and the levying

of substantial financial penalties, avoiding detection is as crucial as deterring deviations

by cartel members.

Towards developing a richer model of cartel pricing, this paper constructs a dynamic

computational model of cartel pricing which endogenizes detection. Recognizing that the

antitrust authorities do not generally detect collusion, the focus is on buyers which, in

many if not most price-fixing cases, are industrial buyers such as with the vitamins, lysine,

and graphite electrodes cartels. In deciding whether or not to form a cartel and, if they do,

what prices to set, the cartel takes into account how their prices influence the likelihood

of triggering detection of collusion by buyers. A modelling challenge arises in that it is

highly problematic to presume that buyers are consciously engaging in detection or that

they know what to look for as regards collusion. What strikes us as the most plausible

specification is that buyers become suspicious when they observe anomalous pricing; that

is, a price path that is unusual or inexplicable. We pursue this idea and develop a novel

theory of belief formation. Buyers are more likely to be suspicious when the likelihood

attached to recent prices is sufficiently small where this likelihood is based on buyers’

beliefs about price changes based on the empirical history of prices. The cartel’s problem

is then set up as a dynamic programming problem with an endogenous terminal date

determined by the buyer’s belief formation process. Associated with this terminal date is

a payoff based on the future profit stream after being caught colluding less any penalties

where these penalties depend on the prices and costs over the time of the cartel. An

important stochastic force in the model is firms’ cost. In light of the model’s complexity,

it is solved numerically.

Several systematic properties emerge. The cartel price path is comprised of a transition

phase - in which price moves largely irrespective of cost - and a stationary phase - in

which price is responsive to cost. In the transition phase, price initially rises though, for
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some parameter specifications, the price path overshoots so that it converges from above.

While price is sensitive to cost in the stationary phase, it is much less volatile than either

the non-collusive price or the simple monopoly price path. In industries with less cost

variability, the transition phase tends to be longer, price doesn’t rise as fast, and there is

more overshooting. Though the analysis is clearly intended to be exploratory, the ensuing

price paths are encouraging in that they look much more like actual cartel price paths

than what has thus far been produced by the theory of collusive pricing.1

RelatedWork Previous work has explored optimal cartel pricing under the constraint

of possible detection though using static formulations or restricted dynamic models. There

are three classes of models. First are static models which use a reduced form approach to

modelling detection or prosecution. The earliest paper is Block, Nold, and Sidak (1981)

which assumes the probability of detection is increasing in the price-cost margin. A second

class continues with an exogenous modelling of detection but considers a dynamic setting.

Cyrenne (1999) modifies Green and Porter (1984) by assuming that a price war, and

the ensuing raising of price after the war, results in detection for sure. Spagnolo (2000)

and Motta and Polo (2003) explore the effects of leniency programs on the incentives to

collude when the probability of detection and penalties are both fixed. Though considering

collusive behavior in a dynamic setting with antitrust laws, these papers exclude the

sources of dynamics that are the foci of the current analysis; specifically, they do not

allow detection and penalties to be sensitive to firms’ current and past pricing behavior.

More closely related is recent work by one of the authors (Harrington, 2003a,b,c). In

those papers, a dynamic theory of cartel pricing is developed in which price influences

the likelihood of detection but, contrary to the current paper, a reduced form approach is

used to model how prices influence detection. For example, the probability of detection is

assumed to be increasing in the extent of price changes or in the price level. In the current

paper, there is an explicit model of buyers’ beliefs which has the virtue of being able to

endogenously derive how detection depends on industry traits such as cost variability.

The third class of models are static but endogenize detection by modelling those who are

engaging in it. The original work was Besanko and Spulber (1989, 1990) who use a game

of incomplete information so that buyers or the antitrust authority are uncertain about

some relevant parameter which makes them uncertain about whether a cartel has formed.

Further work using this approach includes LaCasse (1995), Souam (2001), and Schinkel

and Tuinstra (2002). In comparison, our model has multiple periods - and thus can derive

1For some actual cartel price paths, see Levenstein and Suslow (2001).
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results on pricing dynamics - and it endogenizes detection using non-equilibrium beliefs

for buyers which we believe are more plausible.

2 Model

2.1 Market Conditions

Consider a symmetric oligopoly with a linear market demand function:

D (P ) = a− bP,

where a, b > 0. Firms have a common constant marginal cost of production. While

the demand function is assumed to be fixed over time, marginal cost is allowed to vary

stochastically. Letting ct be unit cost in t, industry profit is

π
¡
P, ct

¢
≡
¡
P − ct

¢
(a− bP ) .

As our analysis will focus on characterizing the joint profit maximizing price, industry

profit is all that matters. As we’ll see, the analysis is quite rich even without taking

account of incentive compatibility constraints which we plan to tackle in future work.

Subject to some boundary conditions, ct is a random walk with support [c, c]. Assume

0 ≤ c < c < a with the last inequality ensuring that, for all cost realizations, there exists

a common price such that firm profit is positive. The period t cost shock, denoted εt, is

normally distributed and iid over time. For future reference, let f
¡
·;µ, σ2

¢
denote the

density function for the normal distribution with mean and variance
¡
µ, σ2

¢
. The density

function on εt is then f
¡
·;µε, σ2ε

¢
. The stochastic process on cost is

ct =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c if ct−1 + εt < c

ct−1 + εt if c ≤ ct−1 + εt ≤ c

c if c < ct−1 + εt

or, equivalently,

ct = υ
¡
ct−1 + εt

¢
≡ max

©
c,min

©
ct−1 + εt, c

ªª
.

Firms commonly observe the current period’s cost prior to choosing price. For future

reference, the joint profit-maximizing price is

Pm
¡
ct
¢
≡ a+ bct

2b
.
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In the absence of forming a cartel, firms achieve a non-collusive solution which is

characterized by a common price bP (ct) with industry profit of
bπ ¡ct¢ ≡ ³ bP ¡ct¢− ct

´³
a− b bP ¡ct¢´ .

Given linear demand and cost functions, the analysis will focus on linear non-collusive

(equilibrium) pricing rules, bP ¡ct¢ = w0 + w1c
t,

where (w0, w1) ∈ [0, a/2b)× (1/2, 1] . This class of solutions includes the Nash equilibrium
to the price game with homogeneous goods, (w0, w1) = (0, 1) , and the Nash equilibrium

to the quantity game with homogeneous goods, (w0, w1) = (a/b (n+ 1) , n/ (n+ 1)) , as

well as the Nash equilibrium to the price game for some formulations of symmetrically

differentiated products.

With an infinite horizon, each firm’s payoff is the discounted sum of expected profits

where the common discount factor is δ ∈ (0, 1) .When firms are not colluding, the expected
present value of the industry’s profit stream at t (after the period’s cost is realized) is

denoted W (ct) and is defined recursively by:

W
¡
ct
¢
= bπ ¡ct¢+ δ

Z
W
¡
υ
¡
ct + ε

¢¢
f
¡
ε;µε, σ

2
ε

¢
dε.

2.2 Cartel Detection

If firms form a cartel, it is detected with some probability and firms incur penalties in

that event. In practice, detection occurs from a variety of sources; some of which are

related to price - such as customer complaints - and some of which are unrelated to

price - such as internal whistleblowers. Hay and Kelley (1974) find that detection was

attributed to a complaint by a customer or a local, state, or federal agency in 13 of 49

price-fixing cases and, for a more recent case, it was reported that the investigation into

collusion among graphite electrode manufacturers began with a complaint from a steel

manufacturer which is a purchaser of graphite electrodes (Levenstein and Suslow, 2001).

Anomalous pricing may cause customers to become suspicious and pursue legal action or

share their suspicions with the antitrust authorities.2 But, as a matter of practice, the

antitrust authorities do not engage in detection:

2The Nasdaq case is one in which truly anomalous pricing resulted in suspicions about collusion. It

was scholars rather than market participants who observed that dealers avoided odd-eighth quotes and

ultimately explained it as a form of collusive behavior (Christie and Schultz, 1994).

5



As a general rule, the [Antitrust] Division follows leads generated by disgrun-

tled employees, unhappy customers, or witnesses from ongoing investigations.

As such, it is very much a reactive agency with respect to the search for crim-

inal antitrust violations. ... Customers, especially federal, state, and local

procurement agencies, play a role in identifying suspicious pricing, bid, or

shipment patterns. [McAnney, 1991, pp. 529, 530]

In practice, it is buyers - and, in most cartel cases, they are industrial buyers - who

are part of the first line of detection.

In previous work on this topic by one of the authors (Harrington, 2003a,b,c), a reduced

from approach was taken to modelling detection. Various specifications were considered

including having the probability of detection be increasing in the price level and the

absolute value of the change in price. In this paper, we take on the more difficult task

of endogenizing detection by explicitly modelling buyers’ beliefs and how they come to

suspect that a cartel is present. To be clear, we are trying to model what leads buyers

to think that firms may have cartelized. There are thousands of industries, yet cartels

are suspected in only a few. Our goal is to model how firm behavior triggers suspicions

among buyers. The implicit assumption is that once suspicions emerge, an investigation

reveals evidence of collusion if indeed there is a cartel. Admittedly, this is only the start

of the process in that suspicions will typically be followed with a preliminary investigation

- by the potential plaintiffs or the antitrust authorities - to determine whether the case is

worth pursuing. And, if it is, there is still the process by which conviction or a settlement

is achieved. For the sake of parsimony, we focus on modelling the first stage - the creation

of suspicions about collusion - and presume that an investigation will reveal the truth.3

The classical game-theoretic approach to endogenizing buyers’ beliefs about a cartel

having formed is to model it as a game of incomplete information where buyers do not

know some firm trait relevant to cartel formation; for example, a common cost which is

privately known to the firms. A Bayes-Nash equilibrium is characterized for a setting in

which buyers observe price and then Bayesian update over the two possible events - a

3Though detection leads to conviction for sure, results would almost certainly go through if the prob-

ability of conviction is only required to be positive. The more restrictive aspect of this specification is

that the probability of firms paying penalties, conditional on an investigation, is independent of prices.

However, this is probably not a bad assumption. Though a cartel may be detected because of suspicious

pricing, price data is typically not central to achieving a conviction or a guilty plea; rather, it is "smok-

ing gun" evidence such as memos, meetings, and witnesses that are of primary importance. Prices are,

however, important in determining penalties and this our model allows for.
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cartel has formed and a cartel has not formed - using their prior beliefs over the unknown

firm trait and their knowledge of the collusive and non-collusive pricing functions. This

approach is used in Besanko and Spulber (1989, 1990) for the static setting. What makes

this approach problematic, in our opinion, is that it rests on the assumption that buyers

know how a cartel prices. It is the objective of this research project to characterize how a

cartel prices and to presume that buyers (or even the antitrust authorities) already know

the answer is simply denying reality. To begin, figuring out how a cartel prices meaning

solving a hard problem - how cartels price over time when they want to avoid detection

in the midst of endogenous penalties. It is a problem for which the experts - academic

economists and consultants - do not currently have an answer. Yet, taking the vitamins

case as an example, an equilibrium approach requires us to suppose that a mid-level

employee of Tyson Foods is going to have the sophistication to address a question that a

PhD Economist might not be able to solve. At this point, we often resort to the argument

that an economic agent doesn’t need to solve for another agent’s strategy but can learn it

from experience. But if this is the typical industry then there is no documented history

of collusion among input suppliers and thereby no experience from which the employee

can draw. Furthermore, even if employees had the tools and data to address this difficult

question, we contend it would not be optimal for them to do so. They have limited

time and resources and using them to develop a strategy for detecting collusion, given its

empirical frequency in the economy is low (as measured by detected cartels), would not

pass a cost-benefit analysis. Their time would be better spent scoping out new suppliers,

managing inventories, working out new contractual arrangements, controlling waste, and

the like rather than focusing on the unlikely outcome of there being collusion among

input suppliers. For these various reasons, we have chosen not to assume buyers know the

collusive pricing function.

Though buyers may not know how a cartel prices, it does not mean that detection

is exogenous, nor that buyers are oblivious to the possibility of collusion. Our working

assumption is that buyers are not consciously looking for collusion but when something

strange happens - like a sudden price increase or an unusual pattern in price changes - the

possibility of collusion enters into their mind. The observation of an "unlikely" price series

may trigger buyers to reevaluate their implicit model of how prices are determined and

thereby put into question their maintained hypothesis of competition. This could result

in a variety of alternative hypotheses with collusion being one of them. In the remainder

of this sub-section, we put forth a theoretical model of buyers’ beliefs and follow it with
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a description of how we implement it computationally.

2.2.1 Modelling Anomalous Events - Theoretical Specification

The task before us is to model what it means for buyers to observe an anomalous event.

It is such events that provide the epiphany to re-evaluate one’s presumptions about how

price is determined and which allow the possibility of collusion to move to the forefront

of a buyer’s mind. The spirit of the approach we take is based on the idea of hypothesis

testing.4 Buyers have a null hypothesis about the pricing process and become "suspicious"

when the observed price series is sufficiently unlikely under the null. Thus, one can think

of the discrete event of "becoming suspicious" as being associated with rejecting the null

hypothesis. There is a variety of ways in which to implement such an approach which

differ according to how the null hypothesis is determined as well as other details such as

the test for rejection but what it all boils down to is that buyers’ null beliefs are based on

price data when firms had been competing. Then, unbeknownst to the buyers, the firms

have cartelized. The issue is whether buyers will pick up the structural break.

Recall that the true underlying stochastic process is that firms’ common unit cost is a

random walk with cost changes being normally distributed. It is then natural to presume

that buyers believe price is a random walk,

P t = P t−1 + ηt,

where ηt is normally distributed. However, they do not know the mean and variance of the

distribution on price changes. One motivation for this specification is that buyers have the

maintained hypotheses that price is an affine function of cost and cost changes are normally

distributed but do not know the coefficients to the pricing function or the moments of the

cost distribution.5 To derive moments to their beliefs, buyers use observed prices. Buyers

have a memory of k periods so that, coming into period t, their data set is comprised of

the k most recent price changes,
©
∆P t−k, . . . ,∆P t−1ª , where ∆P τ ≡ P τ − P τ−1. The

ith moment of the sampling distribution coming into t is

mt−1
i ≡

µ
1

k

¶ t−1X
τ=t−k

(∆P τ )
i
.

4For the use of hypothesis testing in learning in games, see Foster and Young (2003).
5One might object at this point that there is an inconsistency in this formulation in that buyers

presume the stochastic price process is fixed when, in fact, it can change because of cartel formation.

But then that is really the heart of the problem. Will buyers pick up the "break" in the price process

associated with cartelization?
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Buyers’ beliefs over the period t price change are assumed to have a normal distribution

based on the sampling moments, N
³
mt−1
1 ,mt−1

2 −
¡
mt−1
1

¢2´
.

Now consider buyers "testing" a sequence of the z < k most recent observations, as

of the end of t. The idea is not that they test all these price changes at once but are, in

a sense, testing each price change as it occurs. Recall that buyers are not assumed to be

consciously engaging in this process. The likelihood of the z most recent price changes is

specified to be

lt ≡ Πtτ=t+1−zf
³
∆P τ ;mτ−1

1 ,mτ−1
2 −

¡
mτ−1
1

¢2´
.

This is like a moving likelihood in that the density function is updated along the way.

Allowing z ≥ 2 can capture the compound unlikeliness of having consecutive periods of
price increases when such price increases are atypical.6 The maximum likelihood is the

highest likelihood one could assign to price changes over the preceding z periods given

what buyers knew at the time the price change occurred. Lettingmlt denote the maximum

likelihood then

mlt ≡ Πtτ=t+1−zmaxyτ
f
³
yτ ;mτ−1

1 ,mτ−1
2 −

¡
mτ−1
1

¢2´
= Πtτ=t+1−zf

³
mτ−1
1 ;mτ−1

1 ,mτ−1
2 −

¡
mτ−1
1

¢2´
,

where the second equality follows by f having its mode equal to the first moment. Sus-

picions depend on realized likelihood relative to maximum likelihood: Lt ≡ lt/mlt. The

probability of detection is assumed to be a decreasing function of the relative likelihood

and, more specifically, takes the form:

φ
¡
Lt
¢
≡ α0 + α1

¡
1− Lt

¢α2 ,
where α0 ≥ 0 and α1, α2 > 0. In that α0 is independent of prices, it captures sources

of detection unrelated to price such as an internal whistleblower or incidental discovery

through an unrelated legal case.

It is important to keep in mind that our intent was to describe a generic non-equilibrium

belief formation process and not necessarily one designed to detect collusion. Given that

we are presuming buyers are not consciously looking for collusion, this strikes us as the

right approach.
6Though it needs to be emphasized that buyers are not engaging in pattern recognition. If buyers’

beliefs over price changes have a zero first moment - and thereby are symmetric around zero - then a

series of price changes - all with the same absolute value - will have the same likelihood. This means, for

example, that three consecutive price increases of size ε > 0 is just as likely as price changes of ε, −ε, and
ε.
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2.2.2 Modelling Anomalous Events - Computational Specification

There are several changes that need to be made to numerically implement this model.

One immediate problem is that the buyers have at least k state variables. In that we are

going to use dynamic programming to solve the cartel’s problem and buyers’ beliefs are

part of it, the dimensionality of the state space can be a serious obstacle to numerical

analysis. Rather than limit k, we pursue an approach approximating what was described

above.

Consider the following manipulation of the moments:

mt
i =

µ
1

k

¶ tX
τ=t−k+1

(∆P τ )i

=

µ
1

k

¶ t−1X
τ=t−k

(∆P τ )
i
+

µ
1

k

¶h¡
∆P t

¢i − ¡∆P t−k¢ii
= mt−1

i +

µ
1

k

¶h¡
∆P t

¢i − ¡∆P t−k¢ii .
Thus, in updating moment i in response to the observed price change at t, a weight of 1/k

is transferred from the t − kth observation to the tth observation. Now consider instead

transferring weight from all past observations - not just the t − kth observation - and

assigning it to the new observation,

mt
i =

µ
k − 1
k

¶
mt−1
i +

µ
1

k

¶¡
∆P t

¢i
.

Generalizing this equation of motion, we have

mt
i = λim

t−1
i + (1− λi)

¡
∆P t

¢i
.

With this specification, the two state variables (mt
1,m

t
2) help take the place of the data

set of k past price changes. Note that we can capture a "bigger" data set (that is, a higher

value for k) by setting a higher value for λi.

An analogous procedure can be done with the likelihood function. First, perform the
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following steps:

lt = Πtτ=t+1−zf
³
∆P τ ;mτ−1

1 ,mτ−1
2 −

¡
mτ−1
1

¢2´
= Πt−1τ=t−zf

³
∆P τ ;mτ−1

1 ,mτ−1
2 −

¡
mτ−1
1

¢2´⎛⎝ f
³
∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
f
³
∆P t−z;mt−z−1

1 ,mt−z−1
2 −

¡
mt−z−1
1

¢2´
⎞⎠

= lt−1

⎛⎝ f
³
∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
f
³
∆P t−z;mt−z−1

1 ,mt−z−1
2 −

¡
mt−z−1
1

¢2´
⎞⎠

=

⎡⎣ lt−1

f
³
∆P t−z;mt−z−1

1 ,mt−z−1
2 −

¡
mt−z−1
1

¢2´
⎤⎦ f ³∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
.

The approximation entails replacing

f
³
∆P t−z;mt−z−1

1 ,mt−z−1
2 −

¡
mt−z−1
1

¢2´
with the geometric average density for the previous z periods which is

¡
lt−1

¢1/z
. The

approximation is then

lt =

"
lt−1

(lt−1)1/z

#
f
³
∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
=

¡
lt−1

¢(z−1)/z
f
³
∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
.

Similarly, one can go through these steps for the maximum likelihood to derive the equa-

tion of motion for the relative likelihood:

Lt =
¡
Lt−1

¢ξ ⎡⎣ f
³
∆P t;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
maxy f

³
y;mt−1

1 ,mt−1
2 −

¡
mt−1
1

¢2´
⎤⎦

where ξ ∈ (0, 1) . A higher value for ξ corresponds with buyers using more price changes
in their "test." The state variables defining buyers’ beliefs are then reduced from the k

most recent price changes to (mt
1,m

t
2, L

t) .

Two additional simplifications are made. First, for numerical purposes, the set of price

changes, denoted Φ, is assumed to be finite. Taking account of this property, buyers’ beliefs

over price changes are a discrete analogue to the normal distribution. So, f
¡
·;µ, σ2

¢
is

replaced with h
¡
·;µ, σ2

¢
where:

h
¡
η0;µ, σ2

¢
≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(η0;µ,σ2)P
η∈Φ f(η;µ,σ

2) if η0 ∈ Φ

0 otherwise

.
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In that the formulation rests on whether the buyers will pick up the break in the pricing

function as it goes from competition to collusion, buyers will enter the collusive regime

with beliefs based on non-collusive pricing data. Recognizing this fact and in order to

reduce the number of state variables, we will delete the state variable mt
2 by assuming

the variance of buyers’ beliefs over price changes is fixed at the variance of price changes

for the non-collusive case, w21σ
2
ε. This is a good approximation for what buyers would

have entering the cartel formation phase. What this rules out is allowing the variance

of price changes to adjust in response to firms’ prices. If such a response was allowed

then the sensitivity of the relative likelihood to the price series could evolve over time.

We consider this a second-order effect. More important is, given a particular relative

likelihood function, how the cartel can influence the likelihood that buyers assign to the

observed price series.

2.3 Cartel’s Problem

Suppose firms decide in period 1 to form a cartel. We can think of detection as the end

of the horizon with a terminal payoff of W (ct)−Xt−F where Xt is the cartel’s damages

in the event it is detected and F is any (fixed) fines. Though it is assumed that, once

caught, firms do not collude thereafter, we conjecture results are robust to allowing them

to restart collusion after some specified number of periods. The cartel’s damages are

assumed to evolve in the following manner:

Xt = βXt−1 + γx
¡
P t, ct

¢
where β ∈ [0, 1) , γ ≥ 0,

where P t is the cartel price at t. As time progresses, damages incurred in previous periods

become increasingly difficult to document and 1 − β measures the rate of deterioration.

x (P t, ct) is the level of damages incurred in the current period where γ is the multiple

of damages that a firm can expect to pay if found caught colluding. Damages depend

on both the price the cartel set and on ct because the latter determines the competitive

benchmark. We will specify the formula consistent with U.S. antitrust practice:

x
¡
P t, ct

¢
=
³
P t − bP ¡ct¢´ ¡a− bP t

¢
.

bP (ct) is referred to as the "but for" price and P t − bP (ct) as the "overcharge." It is
worth mentioning that government penalties have, in recent years, been sensitive to cartel

behavior and quantitatively significant (and thus no longer trivial compared to damages).

While the exact formula used to calculate government fines is unclear - formally, there is a
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formula but the "fudge" factor is big enough to leave the true formula unclear- it appears

to be related to the same types of variables as used in x (P t, ct) though may give weight

to the revenue involved, independent of the overcharge.7

In specifying the cartel’s problem, incentive compatibility constraints ensuring the

self-enforcing nature of the collusive arrangement are ignored. It seems natural to first

characterize the unconstrained joint profit-maximizing case which is challenging enough

in itself. When the cartel goes to choose price in period t, the state variables are¡
P t−1,Xt−1, ct,mt−1

1 , Lt−1
¢
where P t−1 is the lagged (common) price, Xt−1 is accu-

mulated damages, ct is current cost, mt−1
1 is the first moment of buyers’ beliefs on price

changes, and Lt−1 is the relative likelihood that buyers attach to recent prices. Letting

ηt denote the price change in period t, the equations of motion are

P t = P t−1 + ηt

ct+1 = υ
¡
ct + εt+1

¢
Xt = βXt−1 + γx

¡
P t−1 + ηt, ct

¢
mt
1 = λmt−1

1 + (1− λ) ηt

Lt =
¡
Lt−1

¢ξ
ϕ
¡
ηt,mt−1

1

¢
,

where

ϕ
¡
ηt,mt−1

1

¢
≡
"

h
¡
ηt;mt−1

1 , w21σ
2
ε

¢
h
¡
mt−1
1 ;mt−1

1 , w21σ
2
ε

¢# .
The set of price changes is slightly modified,

Φ
¡
P t−1¢ ≡ ©η ∈ Φ : P t−1 + η ∈

£
c, P

¤ª
,

to ensure that price remains in the set
£
c, P

¤
where P ≥ Pm (c) .

7A key implicit assumption is that the cartel anticipates the plaintiffs and/or antitrust authorities

being able to successfully identify the true but for price and successfully arguing in court as to its value.

In practice, this is a major source of contention. For an analysis of how a standard method for estimating

the but for price may be biased, see Harrington (2003d).
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The cartels’ value function is defined recursively:

V
¡
P t−1,Xt−1, ct,mt−1

1 , Lt−1
¢

= max
ηt∈Φ(P t−1)

π
¡
P t−1 + ηt, ct

¢
+ δφ

³¡
Lt−1

¢ξ
ϕ
¡
ηt,mt−1

1

¢´
×∙Z

W
¡
υ
¡
ct + ε

¢¢
f
¡
ε;µε, σ

2
ε

¢
dε− βXt−1 − γx

¡
P t−1 + ηt, ct

¢
− F

¸
+δ
h
1− φ

³¡
Lt−1

¢ξ
ϕ
¡
ηt,mt−1

1

¢´i
×Z

V
¡
P t−1 + ηt, βXt−1 + γx

¡
P t−1 + ηt, ct

¢
, υ
¡
ct + ε

¢
, λmt−1

1 + (1− λ) ηt,¡
Lt−1

¢ξ
ϕ
¡
ηt,mt−1

1

¢´
f
¡
ε;µε, σ

2
ε

¢
dε.

The cartel earns current profit of π
¡
P t−1 + ηt, ct

¢
by making a price change of ηt and, with

probability φ
³¡
Lt−1

¢ξ
ϕ
¡
ηt,mt−1

1

¢´
, the cartel is detected. In that event, firms receive

non-collusive profits thereafter and pay penalties. With the complementary probability,

the cartel is not detected in which case the future value is that attached to colluding given

the new values to the state variables.

To summarize, the parameters in the model are:

Parameters
Demand a, b > 0

Cost levels c ∈ [0, a) , c ∈ (c, a)

Cost shocks µε ∈ <, σ2ε > 0

Non-collusive solution w0 ∈ [0, a/2) , w1 ∈ (1/2, 1]

Penalty γ, F ≥ 0, β ∈ (0, 1)

Detection α0 ∈ [0, 1) , α1 ∈ (0, 1− α0] , α2 > 0

Time preferences δ ∈ (0, 1)

Updating ξ, λ ∈ (0, 1)

If a cartel is formed, it occurs in period 1 so that the accumulated damages entering into

period 1 is zero and the inherited price is the non-collusive price. The initial conditions

are then ¡
P 0,X0, c1,m0

1, L
0
¢
=
¡
w0 + w1c

0, 0, c0 + ε1,m0
1, L

0
¢
.

Thus, the system is initialized with
¡
c0,m0

1, L
0
¢
and requires a randomly selected sequence

of cost shocks, {εt}Tt=1 , where T is the length of the simulation.
In concluding, this model is unorthodox in that firms are "smarter" than buyers in

that firms know the process by which buyers detect collusion but buyers do not know how

firms choose prices. While some theorists may be uncomfortable with this departure from
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the standard set of assumptions, it strikes us as eminently plausible if not compelling.

Pricing is a first-order consideration for firms, while detecting collusion is far down the

list of things to do for a buyer, particularly in light of the low empirical frequency of

cartels.8

3 Cartel Pricing Patterns

Our analysis proceeds by first considering a benchmark case under a variety of initial

conditions. The benchmark parameter configuration is

a = 100, b = 1, c = 20, c = 40, γ = 1.5, F = 0, β = .75, δ = .75, ξ = .5,

λ = .75, µε = 0, σ
2
ε = 2, α0 = .05, α1 = .45, α2 = 2, w0 = 25, w1 = .75.

The probability of detection is a quadratic in the relative likelihood with a range of

[.05, .5] . As ξ = (z − 1) /z then ξ = .5 is equivalent to buyers using the two most recent

price changes in deciding on whether the price series is "suspicious." The discount factor

is set at the relatively low value of .75 because convergence is very slow for high values

of δ (and also high values of β). (w0, w1) = (25, .75) corresponds to the Nash equilibrium

price for the quantity game when there are three firms. We suspect that the particular

demand parameters and range of cost levels are unimportant for results and thus will not

experiment with them but instead focus precious CPU time on other parameters. Note

that the number of firms is not a parameter in the model. Given symmetry and that

we ignore incentive compatibility constraints, the cartel solution is independent of the

number of firms (though it implicitly matters through the non-collusive solution).

To ascertain robustness, we will also consider the following 12 modifications to the

benchmark case:

σ2ε ∈ {1, 3, 4} , γ ∈ {2.25, 3} , (w0, w1) = (0, 1) , δ = .9,

β = .9, (ξ, λ) ∈ {(.25, .25) , (.75, .9)} , α1 = .2, α2 = 3.

A description of the numerical methods is provided in the Appendix.

8But let us state the caveat that buyers may consciously look for collusion if the industry has a history

of past collusion. If we concede that point then the model is relevant to those industries without such a

history.
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3.1 General Analysis

The initial task is to identify how a cartel price path compares to that for a non-collusive

industry. The following procedure is used to produce a collection of price paths for this

purpose.

Step 1 Randomly select initial conditions for cost and buyers’ beliefs. c0 is selected

according to a uniform distribution with support [25, 35] , m0
1 is selected according

to a uniform distribution with support [−1, 1] , and L is selected according to a

uniform distribution with support [.25, .75] with L0 = L
1

1−ξ .9

Step 2 Randomly select a sequence of 120 cost shocks.

Step 3 Run the non-collusive model for periods 1-40 and then run the collusive model

for periods 41-120 (that is, a cartel is formed in period 41). Continue to run the

non-collusive model for periods 41-120 for purposes of comparison.

Though the conditions at period 1 are random, the initial conditions when the cartel is

formed are generated by non-collusive pricing in the preceding 40 periods. This serves to

provide a more accurate simulation of what a newly formed cartel would face with respect

to what buyers believe are "typical" price changes. In analyzing these price paths, keep

in mind that the non-collusive price path is an affine function of cost, 25 + .75ct, so that

movements in it can be used to track cost (cost movements are then 33% larger than the

reported non-collusive price movements). In that any individual simulation is dependent

on the particular initial conditions and sequence of cost shocks, we’ve conducted more

than 100 simulations and report representative results here.

For the benchmark parameter configuration, Figure 1 presents eight randomly selected

simulated price paths. The first observation is that there are two clearly identifiable phases

to collusion. The initial "transition" phase involves a steady rise in price which appears

largely unrelated to cost shocks (at a minimum, the direction of price is unrelated to

cost shocks). For example, in Figure 1g, the transition phase runs from period 41 to

about period 65. In some instances, this steady rise in price is followed by a fall in

price. For example, in Figure 1a, the transition phase runs until about period 70, with

pricing rising until period 60 and then falling thereafter. We’ll return to this point later.

The ensuing "stationary" phase has price move with cost though, in comparison to the

9Note that if L0 = L
1

1−ξ then L1 = L if the relative likelihood of the period 1 observation is L. We

specify L0 = L
1

1−ξ so that the intial conditions are not changed as ξ is changed.
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non-collusive price path, the collusive price is much less sensitive to cost shocks. This

two-phase structure was found to hold for all parameter configurations and we provide

some simulated price paths for σ2ε = 4 (Figure 2), (ξ, λ) = (.25, .25) (Figure 3), and δ = .9

(Figure 4).

Result #1 The cartel price path has a transition phase - in which price moves largely

independent of cost - and a stationary phase - in which price is responsive to cost.

The transition phase involves a steady rise in price though may conclude with a

modest decline in price.

Let us explain these findings. When formed in period 41, the cartel inherits the non-

collusive price of 25 + .75c40. Ideally, it would like price to be much higher, generally in

the vicinity of the simple monopoly price of 50 + .5c40.10 However, if it were to rapidly

raise price, it would very likely create suspicions among buyers since, in light of preceding

price changes, price rises of that magnitude are perceived as being highly unlikely. Hence,

the cartel gradually raises price so that this series of price changes is not too unlikely in

light of buyers’ beliefs. Of course, buyers’ beliefs are adapting so as price rises they come

to expect more price increases (a point to which we’ll return later). At the same time,

cost is changing which alters the target price for the cartel. However, unless there are

some large negative cost shocks, the target will generally remain above the cartel’s price

for some length of time; this implies a steadily rising price as part of the transition phase.

For example, consider the path in Figure 1-d and recall that cost wanders in the interval

[20, 40] and that a non-collusive price of 40 corresponds to a cost of 20 and that a cost

of 20 means a simple monopoly price of 60. Even though cost falls after the formation of

the cartel, price steadily rises until it hits around 60 at which point the cartel shifts into

the stationary phase.

During the stationary phase, the cartel is adjusting price to cost for the usual reasons

but, in doing so, it wants price movements to be consistent with buyers’ beliefs so as to

avoiding triggering detection of collusion. This has a number of implications that we’ll

develop over the course of our discussion. If buyers have come to expect price increases

then the cartel may need to raise price even if cost is unchanged or falls slightly. Similarly,

the cartel cannot respond commensurately to large cost shocks which means that extreme

cost changes are not passed through as with a non-collusive industry. This suggests that

price variability is less under collusion and that cost shocks may take a longer time to
10 It may want a price below the simple monopoly price in order to reduce the amount of expected

damages.
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pass through. The responsiveness of the cartel price to cost is most easily seen for large

trends in cost. In Figure 1-b, cost rises over periods 60-85 and price rises with it though

the hills and valleys are milder. In Figure 1-d, cost rises sharply over periods 110-120 and,

though the response is lagged and more gradual, price eventually rises sharply as well.

In Figure 1-e, cost rises then falls over periods 95-120 and the cartel price follows that

movement in a lagged manner. It is clear from Figures 1-4 that the cartel price path is

much less sensitive to cost than the non-collusive price path and we’ll provide some more

systematic evidence shortly.

The speed with which price rises during the transition phase is closely linked to the

parameters influencing buyers’ beliefs. Comparing the price paths for σ2ε ∈ {1, 2, 3, 4} , the
transitional phase is shorter and price rises faster when the cost variance is higher. The

results for σ2ε = 2 (Figure 1) and σ
2
ε = 4 (Figure 2) are reported here. Recall that buyers’

beliefs over price changes are based on the non-collusive price variance, w21σ
2
ε. As cost

variability rises so does the variability of buyers’ beliefs over price changes. This means

that a series of price increases, when the expected price change is positive but small or

negative, is perceived as being more likely because price is perceived as more volatile. As

the probability of detection is then less sensitive to the price path, the cartel can raise

price quicker without being as concerned about detection. In other words, there is less

of a need to manipulate buyers’ beliefs - as buyers implicitly have a stricter criterion to

consider something anomalous - though it is still important to restrain price changes and

have price increase gradually.

ξ and λ are the updating parameters for buyers’ beliefs and should be influential in

transitional pricing. A buyer’s current expectation on price changes is a weighted average

of the previous period’s expectation, which is given weight λ, and the current price change.

As λ is reduced, the expectation then becomes more sensitive to recent price changes. This

means, for example, that if firms pursue a series of price increases when buyers initially

expected no price changes, buyers’ beliefs will respond quick to these price increases and

thus buyers are less likely to find them anomalous. As ξ is reduced, the relative likelihood

of the price series puts more weight on the most recent price changes; in essence, the test

of the likelihood of recent price changes uses a shorter price series. Therefore, similar to a

lower value for λ, the likelihood of triggering detection is less sensitive to price changes in

the distant past. Moving from (ξ, λ) equal to (.5, .75) (Figure 1) to (.25, .25) (Figure 3),

buyers’ beliefs respond quicker and, as shown by the simulated price paths, the length of

the transition phase shortens and price rises more rapidly. This property is confirmed for
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unreported results for (ξ, λ) = (.75, .9) . Buyers’ beliefs adjust quicker to the price rises

which not only means price rises are less likely to trigger detection but they induce the

cartel to lay the groundwork for future price increases by raising price more in the current

period. This highlights how the cartel price path is driven not only by the desire to have

price movements appear reasonable to buyers but also how the cartel can manipulate

what is perceived to be reasonable.

Result #2 The transitional phase is shorter and the transitional price path rises faster

when: i) the variance of cost shocks is greater; and ii) buyers’ beliefs are more

sensitive to recent price changes.

To more systematically explore price variability during the stationary phase, we ran

the following procedure. The first two steps are the same as before except that, in step 2,

we generate a sequence of 200 cost shocks. The third step serves to produce a collection

of stationary price paths.

Step 3’ Run the non-collusive model and the collusive model for periods 1-200. Using

data from periods 101-200, calculate the variance of price.

For each of the 13 parameter configurations, this simulation is performed ten times.

Table 1 reports the price variance (averaged across those ten runs) along with the range

of the price variance, under both collusion and non-collusion.11 As the results show,

the cartel price path is much less variable than the non-collusive price path. For the

benchmark case, for example, the variance of the non-collusive price path has a minimum

value of .7945 (over the ten runs), while the variance of the collusive price path has a

maximum value of .0994. This reflects the desire of the cartel to keep suspicious price

movements to a minimum. Also note that the theoretical price variance for a monopolist

is on the order of (1/2)2 σ2ε so that the cartel price variance is much lower than that as

well.

Not surprisingly, as the cost variance rises, the cartel price variance rises with it;

see Table 2. More interesting is that price variability rises faster than cost variability

as reflected in the ratio of the price variance to σ2ε falling with respect to σ2ε. As the

cost variance rises, so does the variance of the non-collusive price. Hence, buyers’ beliefs

become more diffuse which makes it harder to trigger suspicions. As a result, the cartel

can make price more responsive to cost without as much risk of collusion being detected.
11 If cost had an unbounded support then the theoretical non-collusive price variance would be w21σ

2
ε =

.5625σ2ε.
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Result #3 The variability of the cartel price is much less than that of the non-collusive

price and the simple monopoly price. The variance of the cartel price increases

faster than the variance in cost.

It is worth discussing here an assumption on the evolution of buyers’ beliefs on price

changes. Upon formation of the cartel, buyers’ beliefs are based on the non-collusive price

path. For that reason, we assumed that the variance of buyers’ beliefs on price changes

is w1σ2ε. But we also assumed that this variance remained fixed over the life of cartel.

The reason was a pragmatic one - adding the variance of price changes as a sixth state

variable would impose a severe computational burden that might prevent us from solving

for the value function. To what extent does this assumption of a fixed variance to buyers’

beliefs bias our results? During the transitional phase, this assumption is probably fine

because the issue is whether buyers will consider the cartel price path unlikely based on

their beliefs prior to cartel formation. More problematic is during the stationary phase

when the variance on price changes would adjust if given a chance. We conjecture that

our results would be robust to that modification. Since our analysis showed the cartel

price path is less variable than the non-collusive price path, buyers would reduce the

estimated variance on price changes below w1σ
2
ε which would cause the cartel to smooth

out price changes even more. Hence, the stationary cartel price path would still be much

less volatile than the non-collusive or simple monopoly price paths.

3.2 Deterministic Cost Case

A challenge in identifying properties of the collusive price path is that any individual series

depends on the realization of the cost shocks which makes it difficult to discern how firms

are "trying" to change prices. In other words, any price path is a confluence of the cartel’s

target path and the change in the target path due to the change in cost. To isolate the

intended trajectory for price, we use the policy function solved for the stochastic model

and simulate it when cost is unchanging: ct = c0 ∀t. The initial conditions are:¡
c0,m0

1, L
¢
=
³
30, 0, .75

1
1−ξ
´
.

At a cost of 30, the simple monopoly price is 65. Note that the cartel price path is now

deterministic (subject to the caveat of being detected but we report the price path in the

event that it is not detected).

For the benchmark parameter configuration, Figure 5 reports the time series on price,

change in price, average price change as perceived by buyers (that is, first moment),
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probability of detection, value of the cartel, and accumulated damages. The value of

forming a cartel starts around 3950 which exceeds the non-collusive value of 3680. The

long-run value of the cartel is about 4370 though moves non-monotonically. This is due

to a variety of forces at work. When the cartel begins, it has no damages which serves to

raise the value of collusion. However, it also inherits the non-collusive price and bigger

price increases bring with them a larger chance of detection. As time moves on, damages

accumulate (though they also can move non-monotonically) which lowers the collusive

value but this is typically more than compensated by inheriting a higher price, which not

only means higher profit but it makes it easier to achieve yet higher prices. The latter

results in a falling probability of detection; the probability of detection is initially around

13% and then declines to its steady-state level of 5%.

Turning to the price path, detection considerations are a severe constraining influence

on price, as suggested by the stochastic price paths. Though the steady-state price is just

a little below the simple monopoly price of 65, it takes many periods to get to that level.

The striking property, however, is that price overshoots its long-run price. After several

periods above the long-run price, the cartel lowers price and eventually settles down.12

Returning to Figure 1, overshooting - that is, price rises then falls during the transition

phase - occurs in cases a, c, d, e, and h. We now know this is not a feature of movements

in cost but is rather the intended trajectory for price. This overshooting phenomenon is

present in some but not all of the cases we’ve examined. Figure 6 shows the price paths

for σ2ε ∈ {1, 3} , Figure 7 for (ξ, λ) ∈ {(.25, .25) , (.75, .9)} , and Figure 8 for δ = .9 and

(w0, w1) = (0, 1) (which is when the non-collusive solution is the competitive solution).

The overshooting is observed in several of these cases and, in some, even entails price

temporarily exceeding the simple monopoly price of 65; see σ2ε = 1, (ξ, λ) = (.75, .9), and

(w0, w1) = (0, 1) .

What underlies these dynamics is that the cartel is trying to systematically raise price

in such a manner that the buyers don’t perceive the price series as anomalous. Of course,

what buyers consider anomalous is itself endogenous and depends on how firms have

priced in the past. What this means is that the cartel wants to raise price sufficiently

gradually so as to get buyers accustomed to its price changes. But there is a problem.

When the cartel price reaches its long-run steady-state level, the buyers have largely seen

price increases and have come to expect such (that is, mt
1 > 0). Notice in Figure 8 that

12Though there is a steady-state cycle, we believe this is an artifact of the discreteness of the price

space and is of little importance.
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the steady-state price is 65 and is first reached around period 20, at which point the

expected price increase is about 1.25. As buyers expect price to rise by 1.25 each period,

a series of zero price changes is apt to be perceived as anomalous. The cartel instead

gradually lowers the rate of price increases so as to make detection less likely. As price

may not come down fast enough, the cartel may eventually have to engage in some price

decreases. As shown, the cartel continues to raise price up to about 68 at which point

price is brought back down and then converges to 65.

Consistent with this explanation, overshooting is noticeably more when the variance

of cost shocks is less (compare σ2ε = 1 with σ2ε = 3), buyers’ beliefs are more sluggish

(compare (ξ, λ) = (.75, .9) with (ξ, λ) = (.25, .25)), and the cartel weighs the future less

(compare the benchmark case of δ = .75 with δ = .9). If cost shocks are less variable than

buyers are more likely to become suspicious since their beliefs are less diffuse. There is

then more of a need to manipulate prices in order to manipulate beliefs. If buyers beliefs

are more sluggish then they respond slower which means more manipulation is required.

In considering the role of the discount factor, first note that a cartel faces an intertemporal

trade-off as raising price faster means higher current profit but a lower future payoff due to

greater damages and a higher probability of detection. A more patient cartel then tends

to raise price more gradually so they bring the price path in for a "softer landing." It is

when price rises faster that buyers come to expect bigger price increases and overshooting

is more significant.

Result #4 The cartel price path exhibits more overshooting when: i) the cost variance

is greater; ii) buyers’ beliefs respond slower; and iii) firms value the future more.

Do we think that overshooting is a real phenomenon? The available empirical evidence

on cartel pricing doesn’t really speak to the issue in that no one has looked for it. Though

it is a natural implication of strategic cartel pricing when buyers’ beliefs are empirically

based, its empirical relevance is unclear. In any case, this overshooting pattern is not

ubiquitous and occurs only for some parameter configurations. If the data doesn’t reveal

such a pattern, it may just be telling us that the parameter values are more consistent

with, say, δ = .9 than with δ = .75.

4 Concluding Remarks

The analysis of this paper is very much exploratory in intent. It is presented as an initial

attempt to model cartel pricing while specifying a plausible belief structure regarding
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detection. On the plus side, it is able to produce cartel price paths which are starting to

look like real cartel price paths. The analysis produced a number of systematic properties

of which the most significant are that the cartel price path is comprised of a transition and

stationary phase and that, in the stationary phase, the cartel price is much less volatile

than either the non-collusive price or the simple monopoly price.

The structure is rich enough so that it can be adapted to encompass other features of

cartels that have thus far eluded theoretical analysis. Here are two such features. First, one

could adapt the model to endogenize cartel meetings. Suppose each meeting brings with it

an enhanced probability of detection but only at those meetings can be price be changed.

The cartel must then decide on the frequency of meetings; more frequent meetings allow

price to be more responsive to cost but at the risk of being caught. One of the more

interesting elements to cartel practice is the large number of meetings conducted. For

example, the electrical and mechanical carbon and graphite products cartel met on average

more than once a month over 1988-99 (European Commission, 2003), while the sodium

gluconate cartel met at least 25 times over 1987-95 (Arbault, 2002). This significant

empirical fact has not been addressed by existing theory.

A second feature is to endogenize cartel formation. Consider a parsimonious reduced

form approach in which the parameters to the non-collusive pricing rule, (wt
0, w

t
1) , are

Markovian. One could imagine that the non-collusive regime is actually tacit collusion

and the particular supergame equilibrium is driven by various (unmodelled) factors. If the

non-collusive pricing rule results in the price-cost margin being sufficiently high then it

may not be worthwhile to form a cartel but it will be if competition is sufficiently intense.

One could then generate price series in which cartels naturally form and thereby have a

theory which describes not only what the price path looks like after cartel formation but

also prior to it.

On the negative side, this approach has had to make a number of strong assumptions

about the buyer belief formation process. Just as buyers having equilibrium beliefs is too

sophisticated for this context, our approach may be too naive in that buyers are purely

empirical and don’t use any understanding about collusion. It also does not take account

of what might be a relevant dimension to the problem which is that buyers may also

receive noisy signals of cost changes. In the vitamins case, one source of observed cost

changes was exchange rate fluctuations since vitamins were produced in Europe and sold

in the U.S. A buyer could, in principle, ask whether the observed change in exchange rates

"rationalizes" the observed change in price under the hypothesis of competition. Or if the
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cartel is energy-intensive, changes in energy prices could play a similar role. It would be

useful to amend our approach to incorporate such external signals to better model buyers’

beliefs.

Pluses and minuses aside, the primary intent of this research is to begin the process

of developing better models of price-fixing cartels. There is rich institutional information

on cartels that we can use in our modelling and a growing set of empirical properties that

we can try to explain. We hope that this paper will encourage others to develop models

that can capture the richness observed in cartel behavior.
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5 Appendix: Numerical Methods

The process that we used to come up with a numerical version ofW (c) is a straightforward

application of the value function iteration method. First, discretize the state space, [c, c],

for c and denote it C. Second, use a m-node Gaussian quadrature to approximate the

density function for the cost shock f(ε;µε, σ
2
ε). Third, use the following algorithm to

derive W (c):

Step I [Initialization]: Set W (0)(c) = 0, ∀ c ∈ C. For all c ∈ C, compute the non-
collusive price bP (c) and the associated current period profit [ bP (c)− c]D( bP (c)).

Step II [Interpolation]: Given W (k)(c), for all c ∈ C, compute:

Eε[W (υ(c+ ε))] ≡
Z

W (υ(c+ ε))f(ε;µε, σ
2
ε)dε

∼=
mX
i=1

Pr .(εi)W
(k)(υ(c+ εi)),

and derive W (k+1)(c) = [ bP (c)− c]D( bP (c)) +Eε[W (υ(c+ ε))].

Step III [Convergence check]: Compute the infinite norm for W (k+1)(c) −W (k)(c).

Stop and set W (c) =W (k)(c), if the value ' 0; otherwise, go back to Step II.13

With knowledge on W (·), V (·) is solved using the collocation method. Different from
value function iteration, it starts with an initial approximation of the unknown function

V (·) which is a linear combination of some known basis functions. By Miranda and Fackler
(2002), a k−degree approximation for V (·), where k ≡ kP × kX × kc × km1 × kL, can be

represented as:

V (P,X, c,m1, L) ∼=
kPX
iP=1

kXX
iX=1

kxX
ix=1

km1X
im1

=1

kLX
iL=1

eiP iXicim1 iL
ϕiP iXicim1 iL

(P,X, c,m1, L)

= [ΓL(L)⊗ Γm1(m1)⊗ Γc(c)⊗ ΓX(X)⊗ ΓP (P )]e,

where ki is the degree of approximation for dimension i ∈ {P,X, c,m1, L}, Γi(i) is a
1 × ki vector of basis functions over dimension i, and e is a k × 1 vector with properly
stacked coefficients. One can start with a initial guess of e and fix it by requiring the

approximant to satisfy the Bellman equation at the k nodes. The Chebychev polynomial

with the associated Chebychev nodes is used for the basis functions.14

13As, in general, υ(c+ εi) /∈ C, evaluation of W (k)(υ(c+ εi)) at step II uses first-degree interpolation

(table lookup).
14 See Judd (1999) and Miranda and Fackler (2002) for the pros and cons of different interpolation

methods.
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The state space is defined and the Γi(·) functions and ki nodes are chosen for each

state variable. Given the nodes, the choice set (action space) is constructed for each

state.15 For each state and action, compute h(·) and h(·)/maxh(·).16 The new state

is then derived according to the equations of motion.17 Compute the following: current

period profit, π(P 0, c), the probability of detection, φ (L0), and the expected non-collusive

payoff Eε[W (c0)]. Finally, we use the following algorithm to derive the numerical version

of V (·):

Step I [Initialization]: Initialize e(0) and, thereby, V (0)(·).

Step II [Interpolation]: Given V (k)(·), evaluate the expected collusive payoffEε[V
(k)(·)]

at the resulting new state for each state and action.

Step III [Maximization]: Maximize π(·)+δφ (·) (Eε[W (·)]−X 0 − F )+δ(1−φ (·))Eε[V
(k)(·)]

and set the maximized value as V (k+1).

Step IV [Updating]: With V (k) and V (k+1), solve for e, and update e(k) to e(k+1).

Step V [Convergence check]: Compute the infinite norm for e(k+1) − e(k). Stop and
set V (·) = V (k+1)(·), if this value ' 0; otherwise, go back to Step II.

Given the collusive value function, the simulated price paths were created by maximiz-

ing the value function for each realization of the state, given a sequence of cost shocks.18

Given the initial values for these state variables,

P 0 = w0 + w1c,X
0 = 0, c1 = c,m0

1, L
0 = L1/(1−ξ),

this leaves three variables, (c,m0
1, L), unspecified. To avoid interpolation beyond the

specified state space, the smallest Chebchev node for the damage state variable is used.

Given (P 0, X0, c1, m0
1, L

0), construct the choice set: η ∈ Φ(P 0).19 For each η ∈
Φ(P 0), compute h(η) and h(η)/maxh(η), derive the new states (P (η), X(η),m1(η), L(η))

according to the equations of motion, and calculate the current period profit π(P (η), c1),

15 In general, the action space for price changes with P ∈ [P, P ] is Φ(P ) ≡ [P − P, P − P ] and we use

the following discretized subset, {η ∈ Φ(P ): P + η ∈ [P +m1, P +m1] ∩ [0, P ]}.
16To calculate h(·), the normal probability density function is used instead of the Gaussian quadrature

approximant.
17Throughout the numerical process, only two states are evaluated: the initial state as decided by the

approximation method and the new state given by the equations of motion.
18We found this gave more stable results than approximating the policy function and using it for

generating the price path.
19Again, we consider a discretized subset of Φ(P 0) : {η ∈ Φ(P 0): P 0+η ∈ [P 0+m1, P

0+m1]∩ [0, P ]}.
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the probability of detection φ (L(η)), the expected non-collusive payoff Eε[W (c1+ε)], and

the expected collusive payoff Eε[V (P
1, X1, c1+ ε, m1

1, L
1)].20 The rest of the calculation

involves solving the maximization problem and thereby deriving η1:

η1 ≡ argmax
η∈Φ(P 0)

π(P (η), c1) + δφ (L(η))
¡
Eε[W (c1 + ε)]−X(η)− F

¢
+δ(1− φ (L(η)))Eε[V (P (η),X(η), c

1 + ε,m1(η), L(η))].

After deriving η1, set P 1 = P 0+η1, and update (X0,m0
1, L

0) to (X1,m1
1, L

1) according

to the equations of motion, while randomly selecting ε1 and setting c2 = c1 + ε1 (for the

stochastic cost case) and setting c2 = c1 (for the determistic cost case). With (P 1,

X1, c2,m1
1, L

1), the process is repeated for at least 140 periods.

The results in this paper are based on the number of nodes as listed under Case I

in the table below with the node placement determined by the Chebychev method. To

test the robustness of this approximation, the value function was re-calculated for the

following additional cases which vary in the number of nodes.

Number of Nodes

State variable/Case I II III IV V VI VII VIII

P t−1 ∈ [20, 80] 6 7 7 8 7 7 8 8

Xt−1 ∈ [0, 5000] 5 4 5 4 4 5 4 5

ct ∈ [20, 40] 5 5 4 4 4 5 5 4

mt−1
1 ∈ [−2.5, 2.5] 5 5 5 5 5 5 5 5

Lt−1 ∈ [0, 1] 5 5 5 5 5 5 5 5

Total # of states 3,750 3,500 3,500 3,200 2,800 4,375 4,000 4,000

We generally gave more nodes to the price state variable because that is the one most likely

to be non-monotonic and, hence, more nodes might make a greater difference. Though

some properties of the value function do change, the price paths are very robust with the

exception of a few cases when m0
1 = −1. The range of Xt−1 is changed to [0, 10000] when

γ = 3, β = .9, and (w0, w1) = (0, 1) .

For the computation, all the value function iterations were done on a Dell PrecisionTM

Workstation 340 with 2.0 GHz Intel
R°
XeonTM CPU. For the path simulations, we used a

Dell OptiPlexTM SX270T with 3.0 GHz Intel
R°
Patinum

R°
4 CPU. The computing time

for the value function in the benchmark case was about 3.18 hours, while each price path

simulation (for 200 periods) took about 11 minutes.

20Note that the cost shock is in the path simulations. We use the expected value operator, Eε[·] , for
notational consistence.
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Figure 5. Benchmark: Deterministic Cost 
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Parameters
Min Max Average Min Max Average

Benchmark 0.0616 0.0994 0.078 0.7945 1.1958 0.9667

σε
2 = 1 0.0225 0.0374 0.0289 0.3338 0.6685 0.4854

σε
2 = 3 0.1265 0.1668 0.1441 1.3022 1.8679 1.5755

σε
2 = 4 0.2199 0.2828 0.2546 1.1591 3.4468 1.9802

γ = 3 0.0633 0.0853 0.0753 0.7264 1.3753 1.0152

γ = 2.25 0.0597 0.1035 0.0774 0.6175 1.2552 0.955

(ξ , λ) = (0.25, 0.25) 0.0517 0.0898 0.0633 0.7073 1.2636 0.9404

(ξ , λ) = (0.75, 0.9) 0.0246 0.0366 0.0314 0.7473 1.367 1.053

(ω0 , ω1) = (0, 1) 0.1857 0.2195 0.2066 1.4383 2.2561 1.818

(α0 , α1 , α1) = (0.05, 0.2, 2) 0.0659 0.1102 0.0826 0.7537 1.2683 1.0087

(α0 , α1 , α1) = (0.05, 0.45, 3) 0.098 0.1208 0.1091 0.6048 1.1991 0.9343

β  = 0.9 0.0623 0.1418 0.0862 0.8099 1.3123 1.0152
δ  = 0.9 0.0591 0.0794 0.0702 0.8814 1.1546 1.0007

σε
2

1

2

3
4

Collusion Non Collusion

Table 1: Variance of Price

Table 2

Collusive Price Variance Ratio of σε
2 to collusive price variance

0.029 34

0.255 16

0.078 26

0.144 21




