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Some Foundations for Multiplicative Habits
Models

Ryoji Hiraguchi1

July 15, 2004

Abstract

While consumption models with multiplicative habits are be-

coming increasingly popular, some important theoretical questions

about these models have not yet been addressed. This paper fills

three such gaps: Existence of an optimal consumption path; satis-

faction, by that path, of the consumption Euler equation; and con-

vergence of that path to the stationary (steady state) path.

1 Introduction

Economic models with habit formation are now becoming popular. How-

ever, mathematical foundations of such models are incomplete. The existing

literature2 has proceeded by making several implicit assumptions about the so-

lution to habits models which have not been proven. This paper examines the

circumstances under which these assumptions are justified, and finds parametric

restrictions that must be imposed for some of the conditions to hold true.

The first problem is that we cannot assume the existence of the optimal

1Email address: ryojihiraguchi@hotmail.com

1We thank Dr. Christopher Carroll for his valuable comments.

2A related paper by Alonso-Carrera et al. (2003) claims that the optimal interior path
exists under several conditions in a discrete time infinite horizon model. They show that the
interior path is optimal if the solution of the difference equations which is derived from the
first order conditions is unique, strictly positive, converges to a strictly positive stationary
path and satisfies the transversality condition. The problem is that they have not shown
that the conditions they impose hold true for the problem in question and in fact one of the
conditions they assume (uniqueness) is not true.
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path without proof as Carroll et al. (2000) or Francisco et al. (2004) did, for

example, because the utility function with habits is nonbounded, nonconcave

and time nonseparable. Furthermore, even if such an optimal path exists, the

path may not be the interior path satisfying the Euler equation.

The second problem is that there may be multiple Euler paths and then

the interior path that converges to the stationary growth path might not be

optimal. In fact, Carroll (2000) and Francisco et al. (2004) find two paths

which satisfy the Euler equation. Furthermore, as far as I know, nothing in the

existing literature rules out oscillatory paths. Indeed, Benhabib and Nishimura

(1985) show that two period cycles can be optimal in a dynamic model which

is similar to our model.

The third problem is that we cannot assume without proof that the opti-

mal path must satisfy the transversality condition. Carroll et al. (2000) and

Francisco et al. (2004) claim that one of the interior paths satisfying the Euler

equation is not optimal because the path violates the transversality condition.

Since the utility function they are using is nonconcave and time nonseparable,

the optimal path may not satisfy the condition.

Here we first show that the optimal path does exist3 and it satisfies the Euler

equation in a discrete time infinite horizon economic growth model. The model

can easily be applied to the consumption model with multiplicative habits in

Carroll (2000). Next we show that in AK growth model, the optimal path

converges to stationary growth path under one restriction on parameters. Fur-

thermore, the convergence of habit stocks is monotone. Finally we prove that

the transversality condition with respect to capital stock is necessary condition

and derive necessary terminal conditions on habit stock.

3Zapatero and Palmero (2003) study the Bellman equation with nonconcave and non-
bounded utility function, and show that under several assumptions we can use "maximum"
in the Bellman operator instead of "supremum". But it is not clear that our model satisfies
all these assumptions.
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2 Existence of the optimal interior path

2.1 Model

Here we will study the neoclassical growth model with a concave production

function. The problem can be written as:

sup

( ∞X
t=0

βtu (ct, ht)

)
(1)

subject to:

kt+1 = yt − ct + (1− δ) kt (2)

yt = Akαt (3)

ht+1 = (1− λ)ht + λct (4)

(k0, h0) = (k, h) ∈ R2++ , given (5)

kt ≥ 0 (6)

where yt is the income, δ is the depreciation rate, ct is the consumption, kt

is the capital stock, ht is the consumption habit stock and β is the discount

rate. kt satisfies:

kt+1 = F (kt)− ct (7)

where F (k) = Akα + (1− δ) k. Parameters satisfy A > 0, α ∈ (0, 1], δ ∈ [0, 1),
β ∈ (0, 1) and λ ∈ (0, 1]. We also assume that if α = 1, the depreciation rate

satisfies A+ (1− δ) > 1.

The utility function is given by:

u (c, h) =
1

1− ρ

³ c

hγ

´1−ρ
(8)

=
1

1− ρ

n
c1−γ

³ c
h

´γo1−ρ
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with ρ > 1 and 0 < γ < 1. Clearly u is not concave4.

2.2 Properties of the value function

Let the value function V be V (k, h) = sup
©P∞

t=0 β
tu (ct, ht)

ª
. For showing

that the consumption path which attains the supremum exists and the path

is interior, we prove several properties of the value function. Below we call

an allocation {ct, kt, ht}∞t=0 with initial stock (k0, h0) = (k, h) which satisfies

(2) , (4) , (5) and (6) as a feasible allocation.

First, let us show that the value function is negative. Since u (ct, ht) < 0,P∞
t=0 β

tu (ct, ht) ≤ u (c0, h) for all feasible allocations. Furthermore, c0 ≤ F (k)

for every allocation. It follows that:

V (k, h) ≤ u (F (k) , h)

Since (F (k) , h) ∈ R2++, u (F (k) , h) < 0 and then V (k, h) < 0. Furthermore,

since limk→0 u (F (k) , h) = −∞, we obtain:

lim
k→+0

V (k, h) = −∞

Second, we will show that V (k, h) > −∞. Let k∗ > 0 be such that k∗ ≤ k

and k∗ < F (k∗). We can easily check that such k∗ always exists. (If α =

1, A + 1 − δ > 1 from the assumption and then k∗ is well-defined.). Then

there exists a feasible allocation
©
c̄t, k̄t, h̄t

ª∞
t=0

with
¡
k̄0, h̄0

¢
= (k, h) which

satisfies c̄t = c̄ ≡ F (k∗) − k∗ > 0 for all t ≥ 1. Since c̄t is time independent
4 It is sufficient to show that the utility function is not quasi-concave. (Concave function

must be quasi-concave.) A set Sa = {(c, h) : u (c, h) ≥ −a} satisfies

Sa =
n
(c, h) : h ≤ [(ρ− 1) a]1/γ(ρ−1) c1/γ

o
where a > 0. Since 1/γ > 1, S is not convex and then u is not quasi-concave.
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constant, limt→∞ h̄t = c̄ and limt→∞ u
¡
c̄t, h̄t

¢
= (1− ρ)−1 c̄(1−γ)(1−ρ). Hence

this allocation satisfies −∞ <
P∞

t=0 β
tu
¡
c̄t, h̄t

¢
. These facts imply:

V (k, h) ∈ (−∞, 0) (9)

Third, we will show that V (k, h) is a nondecreasing function with respect

to k and a nonincreasing function with respect to h. Take a feasible alloca-

tion {ct, kt, ht}∞t=0 with (k0, h0) = (k, h). For {ct, kt, ht}∞t=0, the allocation
{c0t, k0t, h0t}∞t=0 with (k00, h00) = (k + dk, h) such that dk > 0 and c0t = ct for

all t is also feasible. This means that V (k + dk, h) ≥ V (k, h). Furthermore,

the allocation {c0t, k0t, h0t}∞t=0 with (k00, h00) = (k, h− dh) such that dh > 0 and

c0t = ct for all t is also feasible and this allocation satisfies h0t ≤ ht for all t.

Since ∂u/∂h < 0, this allocation satisfies
P∞

t=0 β
tu (ct, ht) ≤

P∞
t=0 β

tu (c0t, h
0
t)

and then V (k, h− dh) ≥ V (k, h).

Finally, using these basic properties, we can show the following lemma on

continuity of the value function. The continuity of the value function is impor-

tant for showing the existence of the optimal path.

Lemma 1 V (k, h) is continuous on (k, h) ∈ R2++.

Proof. In Appendix.

2.3 Bellman equation

Using the properties we showed in the last section, we can show that the value

function satisfies the Bellman equation. We will construct the optimal allocation

later by using this equation.
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At first we show that V (k, h) satisfies:

V (k, h) = sup
c∈(0,F (k))

{u (c, h) + βV (F (k)− c, (1− λ)h+ λc)} (10)

Since (F (k)− c, (1− λ)h+ λc) ∈ R2++ for (k, h) ∈ R2++ and c satisfies c ∈
(0, F (k)), the inside of the bracket at the right hand side of the Bellman operator

(10)is well-defined.

First suppose:

V (k, h) > sup
c∈(0,F (k))

{u (c, h) + βV (F (k)− c, (1− λ)h+ λc)}

for some (k, h). In this case, some feasible allocation {c∗t , k∗t , h∗t }∞t=0 with (k∗0 , h∗0) =
(k, h) satisfies F (k)− c∗0 > 0 and:

∞X
t=0

βtu (c∗t , h
∗
t ) > u (c∗0, h) + βV (F (k)− c∗0, (1− λ)h+ λc∗0) (11)

This means
P∞

t=1 β
t−1u (c∗t , h

∗
t ) > V (F (k)− c∗0, h

∗
1) , which establishes the

contradiction. Next suppose:

V (k, h) < sup
c∈(0,F (k))

{u (c, h) + βV (F (k)− c, (1− λ)h+ λc)} (12)

In this case, for some c∗, V (k, h) < u (c∗, h) + βV (F (k)− c∗, (1− λ)h+ λc∗).

This implies that, for some allocation {ct, kt, ht}∞t=0 with (k0, h0) = (k, h) and
c0 = c∗, V (k, h) <

P∞
t=0 β

tu (ct, ht). This also establishes the contradiction.

Finally let us show that there exists c ∈ (0, F (k)) which attains the supre-
mum of (10). In other words, we can use "maximum" instead of "supremum"

in the Bellman operator. Define:

V̄k,h (c) = u (c, h) + βV (F (k)− c, (1− λ)h+ λc) (13)

6



where k and h are constant. V̄k,h is continuous on c ∈ (0, F (k)) and it satis-
fies limc→0 V̄k,h (c) = limc→F (k) V̄k,h (c) = −∞. It follows that V̄k,h (c) has a
maximum in c ∈ (0, F (k)). Hence V (k, h) satisfies:

V (k, h) = max
c∈(0,F (k))

{u (c, h) + βV (F (k)− c, (1− λ)h+ λc)} (14)

2.4 Construction of the optimal interior path

Using the Bellman equation (14), we can show the existence of the interior

optimal path. We prove the existence by constructing the optimal allocation

{c∗t , k∗t , h∗t }∞t=0 from the following process. (A similar method is explained in

Stokey and Lucas (1989).)

First, the initial capital stock and habit stock are given and let k∗0 = k and

h∗0 = h.

Next, suppose the values of k∗t and h∗t are determined for some t = s ≥ 0.
Let us determine c∗s, k∗s+1 and h∗s+1 by:

c∗s ∈ argmax
c∈(0,F (k∗s ))

{u (c, h∗s) + βV (F (k∗s)− c, (1− λ)h∗s + λc)} (15)

k∗s+1 = F (k∗s)− c∗s (16)

h∗s+1 = (1− λ)h∗s + λc∗s (17)

Clearly c∗s ∈ (0, F (k∗s)), k∗s+1 > 0 and h∗s+1 > 0 for all s.

Continuing the process, we can construct the feasible allocation {c∗t , k∗t , h∗t }∞t=0
with (k∗0 , h∗0) = (k, h). This allocation satisfies:

V (k, h) =

" ∞X
t=0

βtu (c∗t , h
∗
t )

#
+ lim

t→∞βt+1V
¡
k∗t+1, h

∗
t+1

¢
(18)

≤
∞X
t=0

βtu (c∗t , h
∗
t )
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where the last inequality comes from the fact that V ≤ 0. Furthermore,

since {c∗t , k∗t , h∗t }∞t=0 is feasible, V (k, h) ≥
P∞

t=0 β
tu (c∗t , h∗t ). It follows that

V (k, h) =
P∞

t=0 β
tu (c∗t , h∗t ). From the above process, it is clear that c∗t ∈

(0, F (k∗t )), k
∗
t+1 > 0 and h∗t+1 > 0 for all t.

These results are summarized by the following proposition.

Proposition 2 There exists a feasible allocation {c∗t , k∗t , h∗t }∞t=0 with (k∗0 , h∗0) =
(k, h) ∈ R2++ that maximizes

P∞
t=0 β

tu (ct, ht). In other words, V satisfies:

V (k, h) = max

( ∞X
t=0

βtu (ct, ht)

)
(19)

subject to (2) , (4) , (5) and (6). Furthermore, the optimal allocation {c∗t , k∗t , h∗t }∞t=0
satisfies k∗t > 0, c

∗
t ∈ (0, F (k∗t )) and h∗t > 0 for all t and then the optimal con-

sumption path is interior.

2.5 First order conditions

Finally let us derive the first order conditions which the optimal path has to

satisfy. The interior optimal path satisfies the following the first order condi-

tions. The utility function is continuously differentiable and we have already

shown that the optimal path is interior. Hence the first order conditions must

hold even if the utility function is nonconcave. Lagrangian is given by:

L =
∞X
t=0

βt {u (ct, ht) + νt (F (kt)− ct − kt+1) + ϕt (ht+1 − (1− λ)ht − λct)}
(20)

where νt and ϕt are the lagrange multipliers. The first order conditions with

8



respect to ct, kt+1, and ht+1 are given by:

ct : u1 (ct, ht) = νt + λϕt (21)

kt+1 : νt = βF 0 (kt+1) νt+1 (22)

ht+1 : ϕt + βu2 (ct+1, ht+1)− β (1− λ)ϕt+1 = 0 (23)

where t ≥ 0. From (21) and (23), we obtain:

u1 (ct, ht)−νt+λβu2 (ct+1, ht+1)−β (1− λ) {u1 (ct+1, ht+1)− νt+1} = 0 (24)

Hence the optimal path satisfies:

{F 0 (kt+2)− (1− λ)}©ut1 + λβut+12 − β (1− λ)ut+11

ª
(25)

= βF 0 (kt+2) {F 0 (kt+1)− (1− λ)}©ut+11 + λβut+22 − β (1− λ)ut+21

ª
where uti = ui (ct, ht).

3 Transversality conditions

Here we show several proposition on transversality condition. First of all, the

transversality condition with respect to kt is required for the optimal path. Next,

we derive some terminal condition with respect to ht which is very similar to

the transversality condition assumed in Francisco et al. (2004).

3.1 Condition on capital stock

Here we will show that the transversality condition on kt is necessary condition

by using a method in Kamihigashi (2002).

Take the optimal allocation {c∗t , k∗t , h∗t }∞t=0 with (k∗0 , h∗0) = (k, h). For such

9



sequence, the allocation {ct, kt, ht}∞t=0 with (k0, h0) = (k, h) such that:

(ct, kt) = (c∗t , k
∗
t ) , t ≤ T − 1 (26)

(cT , kT ) =
¡
F (k∗T )− θk∗T+1, k

∗
T

¢
(27)

(cT+1, kT+1) =
¡
θc∗T , θk

∗
T+1

¢
(28)

(ct, kt) = (θc∗t , θk
∗
t ) , t ≥ T + 1 (29)

is also feasible, where θ ∈ (0, 1]. (We can recursively show that kt ≥ θk∗t for

such sequence.)

For such sequence,

0 ≤ u
¡
F (k∗T )− θk∗T+1, h

∗
T

¢− u
¡
F (k∗T )− k∗T+1, h

∗
T

¢
(30)

≤
∞X

t=T+1

βt {u (c∗t , h∗t )− u (ct, ht)}

≤
∞X

t=T+1

βt {u (c∗t , h∗t )− u (θc∗t , h
∗
t )}

=
¡
1− θ1−ρ

¢ ∞X
t=T+1

βtu (c∗t , h
∗
t ) (31)

because ht ≤ h∗t and u (θc∗t , h∗t ) = θ1−ρu (c∗t , h∗t ). It follows that:

0 ≤ βT

"
u
¡
F (k∗T )− θk∗T+1, h

∗
T

¢− u
¡
F (k∗T )− k∗T+1, h

∗
T

¢
1− θ

#
(32)

≤ 1− θ1−ρ

1− θ

" ∞X
t=T+1

βtu (c∗t , h
∗
t )

#
(33)
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This implies:

0 ≤ βT lim
θ→1

"
u
¡
F (k∗T )− θk∗T+1, h

∗
T

¢− u
¡
F (k∗T )− k∗T+1, h

∗
T

¢
1− θ

#
(34)

= βTu1
¡
F (k∗T )− k∗T+1, h

∗
T

¢
k∗T+1 (35)

≤ (1− ρ)

" ∞X
t=T+1

βtu (c∗t , h
∗
t )

#
(36)

Since limt→∞
P∞

t=T+1 β
tu (c∗t , h∗t ) = 0, we can conclude that:

lim
T→∞

βTu1 (c
∗
T , h

∗
T ) k

∗
T+1 (37)

= lim
T→∞

βTu1 (c
∗
T , h

∗
T ) (A (k

∗
T )

α
+ (1− δ) k∗T − c∗T ) (38)

= 0 (39)

Furthermore, since u1 (ct, ht) ct = (1− ρ)u (ct, ht), limt→∞ βtu1 (c
∗
t , h
∗
t ) c
∗
t =

0. This implies:

lim
T→∞

βTu1 (c
∗
T , h

∗
T ) k

∗
T = 0 (40)

This condition is called as a transversality condition defined in Stokey and

Lucas (1989).

3.2 Condition on habit stocks

Next let us show the following proposition on the terminal condition of habit

stocks and consumption.

First, using the first order conditions, we obtain:

βTu1 (c
∗
T , h

∗
T ) c

∗
T = βT νT c

∗
T + λβTϕT c

∗
T (41)

Since limT→∞ βTu1 (cT , hT ) cT = 0. Lagrange multipliers are nonnegative
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and then:

λ lim
T→∞

βTϕT c
∗
T = lim

T→∞
βT νT c

∗
T = 0 (42)

Furthermore, using (21), we obtain:

βTϕT (µh
∗
T + λc∗T ) + βT+1u2

¡
c∗T+1, h

∗
T+1

¢
h∗T+1 − βT+1µϕT+1h

∗
T+1 = 0 (43)

Since u2 (cT , hT )hT = −γ (1− ρ)u (cT , hT ), limT→∞ βT+1u2 (cT+1, hT+1)hT+1 =

0. This achieves:

lim
T→∞

n
βTϕTh

∗
T − βT+1ϕT+1h

∗
T+1

o
= 0 (44)

Notice that the above condition is weaker than the condition limT→∞
n
βTϕTh

∗
T

o
=

0.

4 Convergence to the stationary growth path

In this section, we prove that when α = 1 and then the production function

is y = Ak, the optimal path converges to the stationary growth path with the

growth rate
¡
Āβ
¢1/ρ−γ(ρ−1)

under the following condition on parameters:

[Assumption] Parameters λ, β, ρ and γ satisfy:

1− λ < β1/(ρ−1)(1−γ) (45)

As we will explain later, this condition assures that the optimal consumption

growth rate ct+1/ct exceeds µ.5

5 If we do not put this assumption, the consumption growth rate which satisfies the first
order conditions may be lower than µ. In that case, a growth rate of habit stock is different
from the consumption growth rate, because ht satisfies ht+1/ht = µ + λct/ht ≥ µ. It is not
easy to check whether such a path is optimal or not.
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At first we consider the case where Āβ = 1 and then we will extend the

result to the general case.

If α = 1, the equation can be written by:

u1 (ct, ht) + λβu2 (ct+1, ht+1)− β (1− λ)u1 (ct+1, ht+1) (46)

= Āβ {u1 (ct+1, ht+1) + λβu2 (ct+2, ht+2)− β (1− λ)u1 (ct+2, ht+2)}

where Ā = A + 1 − δ. This equation appears in Carroll(2000). Let us call

the first order condition as the Euler equation.

4.1 Optimal path in the case with Āβ = 1

If Āβ = 1, the Euler equation (46) is given by:

ut1 + λβut+12 − β (1− λ)ut+11 = ut+11 + λβut+22 − β (1− λ)ut+21 (47)

(47) means that the value of ut1 + λβut+12 − β (1− λ)ut+11 is independent

of time t. Since u1 (c, h) = c−ρh−γ(1−ρ) and u2 (c, h) = −γc1−ρh−γ(1−ρ)−1 we
obtain:

c−ρt h
γ(ρ−1)
t − γβλc

−(ρ−1)
t+1 h

γ(ρ−1)−1
t+1 − β (1− λ) c−ρt+1h

γ(ρ−1)
t+1 = θ0, t ≥ 0 (48)

where θ0 is a constant. Now let µ = 1 − λ. µ satisfies µ ∈ [0, 1). Since
ct = λ−1 (ht+1 − µht), we can express (47) only by habit stocks:

h
γ(ρ−1)
t

(ht+1 − µht)
ρ =

γβh
γ(ρ−1)−1
t+1

(ht+2 − µht+1)
ρ−1 +

βµh
γ(ρ−1)
t+1

(ht+2 − µht+1)
ρ + θ (49)

where θ = θ0/λ
ρ is a constant. We obtain the following result on the sign of θ.

Lemma 3 Suppose Āβ = 1. Under the assumption (45), θ > 0 where θ is

13



defined in (49).

Proof. See Appendix.

Let τ = ρ− γ (ρ− 1) and ϕ = γλβ+βµ. If θ > 0, the difference equation of

habit stocks (49) has a unique stationary point:

h∗θ =
µ
1− ϕ

θ

¶1/τ
(50)

Since 1− ϕ > 0, h∗θ is always well-defined.

Now we will show several lemmas that is required for showing that the

optimal habit stock path {ht}∞t=0 is monotone.

Lemma 4 Suppose {ht}∞t=0 is the optimal path. If hs ≥ hs+1 and h∗θ ≥ hs+1

for some s ≥ 0, then ht ≥ ht+1 for all t ≥ s+ 1.

Proof. For such s, we can show that hs+1 ≥ hs+2. Since the right hand side of

(49) is increasing function with respect to ht+2, hs+1 ≥ hs+2 if and only if:

hγ(ρ−1)s (hs+1 − µhs)
−ρ (51)

= γβh
γ(ρ−1)−1
s+1 (hs+2 − µhs+1)

−(ρ−1)
+ βµh

γ(ρ−1)
s+1 (hs+2 − µhs+1)

−ρ
+ θ

≥ γβh
γ(ρ−1)−1
s+1 (hs+1 − µhs+1)

−(ρ−1) + βµh
γ(ρ−1)
s+1 (hs+1 − µhs+1)

−ρ + θ

= ϕλ−ρh−τs+1 + θ

On the other hand, ϕλ−ρh−τs+1 + θ ≤ λ−ρh−τs+1 because h∗θ ≥ hs+1 and

ϕ (h∗θ)
−τ
+ θ = λ−ρ (h∗θ)

−τ Then the following inequalities:

ϕλ−ρh−τs+1 + θ ≤ λ−ρh−τs+1 (52)

= (hs+1 − µhs+1)
−ρ h−τs+1

≤ (hs+1 − µhs)
−ρ hγ(ρ−1)s

14



always hold, where the last inequality is satisfied because a function f (x) =

(h− µx)−ρ xγ(ρ−1) is increasing and hs ≥ hs+1. Hence we can conclude that

(51) is always satisfied and then hs+1 ≥ hs+2. Since hs+1 ≥ hs+2 and h∗θ ≥ hs+2,

we can also show that hs+2 ≥ hs+3. It follows that ht ≥ ht+1, for all t ≥ s.

Lemma 5 Suppose {ht}∞t=0 is the optimal path. There is no s ≥ 0 such that
hs ≤ hs+1 and h∗θ < hs+1.

Proof. In Appendix.

Lemma 6 Suppose {ht}∞t=0 is the optimal path. There does not exist t0 ≥ 0
such that ht ≥ ht+1 for all t ≥ t0 and limt→∞ ht < h∗ .

Proof. In Appendix.

Consequently, feasible allocations along the Euler path (49) satisfies the

following proposition.

Proposition 7 Suppose Āβ = 1. Then the optimal habit stock path satisfies

one of the following properties for some strictly positive constant h∗.

[1] ht ≥ ht+1 ≥ h∗ for all t ≥ 0 and limt→∞ ht = h∗.

[2] ht ≤ ht+1 ≤ h∗ for all t ≥ 0 and limt→∞ ht = h∗.

Furthermore, the optimal allocation satisfies:

lim
t→∞ht = lim

t→∞ ct = h∗ (53)

Proof. Monotonicity comes from the above lemmas. Since ct = λ−1 (ht+1 − µht)

and limt→∞ ht = h∗, limt→∞ ct = h∗.
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4.2 Optimal path for arbitrary A and β

Finally we will derive the property of the optimal consumption growth path

in the case where A and β are arbitrary. As we showed above, at the optimal

path, ut1+λβut+12 −βµut+11 > 0 under the assumption (45). The Euler equation

implies:

h
γ(ρ−1)
t

(ht+1 − µht)
ρ =

γβh
γ(ρ−1)−1
t+1

(ht+2 − µht+1)
ρ−1 +

βµh
γ(ρ−1)
t+1

(ht+2 − µht+1)
ρ + φ0

¡
Āβ
¢−t

(54)

where φ0 > 0 is a constant. Define h̄t = σ−tht where σ =
¡
Āβ
¢1/τ

. Substituting

ht = σth̄t into (54) yields:

h̄
γ(ρ−1)
t¡

σh̄t+1 − µh̄t
¢ρ = γ

Ā

h̄
γ(ρ−1)−1
t+1¡

σh̄t+2 − µh̄t+1
¢(ρ−1) + µ

Ā

h̄
γ(ρ−1)
t+1¡

σh̄t+2 − µh̄t+1
¢ρ + φ (55)

where φ > 0. This difference equation has one stationary point h̄∗φ > 0 which

satisfies:

h̄∗φ =
·
1− γ (σ − µ) /Ā− µ/Ā

φ (σ − µ)
ρ

¸1/τ
(56)

Since Ā ≥ 1, 1−γ (σ − µ) /Ā−µ/Ā and then the value is always well-defined.
Now let us prove that limt→∞ h̄t exists and limt→∞ h̄t > 0. First suppose

limt→∞ h̄t = 0. Define ḡt =
h̄t+1
h̄t

= σ−1gt. ḡt satisfies:

ḡτt (σḡt − µ)−ρ =
γ

Ā
(σḡt+1 − µ)−(ρ−1) +

µ

Ā
(σḡt+1 − µ)−ρ + φh̄τt+1 (57)

As we showed previously, under the assumption (45) , limt→∞ ḡt = ḡ∗ exists

and it satisfies:

σḡ∗ > µ (58)

ḡ∗(τ−1) =
σγ

Ā
+

µ

Ā
(1− γ) (ḡ∗)−1 (59)
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where τ = ρ− γ (ρ− 1). This implies that:

lim
t→∞

½
βt+1u (ct+1, ht+1)

βtu (ct, ht)

¾
= β lim

t→∞

(µ
σḡt − µ

σḡt+1 − µ

¶ρ−1
(σḡt)

−(τ−1)
)
(60)

=
³
γ + µ (1− γ) (σḡ∗)−1

´−1
> 1

where the last inequality holds because ḡ∗ > µ/σ, which contradicts the

optimality.

Hence the optimal allocation satisfies limt→∞ h̄t = h̄∗φ > 0. This implies:

lim
t→∞

ht+1
ht

= lim
σt+1h̄t+1
σth̄t

= σ (61)

In other words, the growth rate of habit stock approaches σ. Since σ > µ un-

der the assumption (45), the optimal consumption growth rate also approaches

σ. (limt→∞ (ht/ct) = λ−1 [limt→∞ (ht+1/ht)− µ] = λ−1 (σ − µ).) This shows

the following proposition.

Proposition 8 Under the assumption (45), the optimal consumption path con-

verges to stationary growth path with the growth rate σ =
¡
Āβ
¢1/ρ−γ(ρ−1)

.

5 Conclusions

In a discrete time neoclassical growth model with multiplicative habit which is

similar to Carroll et al. (2000), we derived the conditions under which the opti-

mal consumption path exists and satisfies the Euler equation. We also derived

the convergence of the optimal path to stationary growth path. Especially, the

17



optimal habit stocks is monotone, ruling out oscillatory path. These findings

help to put habit formation models on a more secure theoretical foundation.
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APPENDIX: PROOFS

Proof of Lemma 1. Before proving the lemma, let us show that V satisfies:

θ−(ρ−1)V (k, h) ≤ V (θk, h) ≤ V (k, h) (62)

V (k, h) ≤ V (k, θh) ≤ θ(1−γ)(ρ−1)V (k, h) (63)

where θ ∈ (0, 1]. For every feasible allocation {ct, kt, ht}∞t=0 with (k0, h0) =
(k, h), the allocation {c0t, k0t, h0t}∞t=0 with (k00, h00) = (θk, h) such that c0t = θct for

all t is also feasible. For this allocation, h0t clearly satisfies h
0
t ≤ ht. It follows

that θ−(ρ−1)u (ct, ht) ≤ u (c0t, h
0
t).

Next, for every feasible allocation {ct, kt, ht}∞t=0 with (k0, h0) = (k, θh), the
allocation {c00t , k00t , h00t }∞t=0 with (k000 , h000) = (k, h) such that c00t = ct for all t is also

feasible. Since ht ≥ θh00t for all t, the allocation satisfies:

u (ct, ht) ≤ θ(1−γ)(ρ−1)u (c00t , h
00
t ) (64)

These results mean the above inequalities.

Now take a sequence {dkn, dhn}∞n=0 such that (k + dkn, h+ dhn) ∈ R2++ and
limn→∞ (dkn, dhn) = (0, 0).

V (k + dkn, h+ dhn)− V (k, h) (65)

≤ V (k + |dkn| , h− |dhn|)− V (k, h)

≤ (1− |dhn/h|)(1−γ)(ρ−1) V (k + |dkn| , h)− V (k, h)

≤
n
(1− |dhn/h|)(1−γ)(ρ−1) (1 + |dkn/k|)−(ρ−1) − 1

o
V (k, h)
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and:

V (k + dkn, h+ dhn)− V (k, h) (66)

≥ V (k − |dkn| , h+ |dhn|)− V (k, h)

≥
n
(1 + |dhn/h|)−(1−γ)(ρ−1) (1− |dkn/k|)+(ρ−1) − 1

o
V (k, h)

Since V (k, h) > −∞, limV (k + dkn, h+ dhn) = V (k, h).

Proof of Lemma 3. First suppose θ < 0. Since
P∞

t=0 β
tu (ct, ht) =P∞

t=0 β
tu {(ht+1 − µht) /λ, ht} and then:

∂

∂ht+1

( ∞X
t=0

βtu

µ
ht+1 − µht

λ
, ht

¶)
= λ−1

©
ut1 + λβut+12 − βµut+11

ª
< 0

(67)

For the optimal allocation {ct, kt, ht}∞t=0 with (k0, h0) = (k, h), consider a new
allocation {c0t, k0t, h0t}∞t=0 with (k00, h00) = (k, h) such that:

h01 = h1 − dh

h0t = ht, t ≥ 2

where dh > 0 is constant. For such an allocation, {c0t}∞t=0 satisfies:

c00 = λ−1 (h01 − µh00) = c0 − λ−1dh (68)

c01 = λ−1 (h02 − µh01) = c1 +
¡
λ−1 − 1¢ dh (69)

c0t = ct, for t ≥ 2 (70)
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For sufficiently small dh, c0t > 0 for all t. Furthermore, {k0t}∞t=1 satisfies:

k01 = Āk − c00 (71)

= Āk − c0 + λ−1dh (72)

Ā−t−1k0t+1 = Āk −
tX

s=0

Ā−sc0t (73)

= Āk −
(

tX
s=0

Ā−sct

)
+
¡
λ−1 − Ā−1

¡
λ−1 − 1¢¢ dh

Since Ā ≥ 1, λ−1 − Ā−1
¡
λ−1 − 1¢ > 0 and then k0t+1 > 0 for all t ≥ 0. This

implies that this allocation is feasible. Furthermore, such an allocation satisfiesP∞
t=0 β

tu (c0t, h
0
t) >

P∞
t=0 β

tu (ct, ht) because:

∂

∂h1

∞X
t=0

βtu

µ
ht+1 − µht

λ
, ht

¶
< 0 (74)

This achieves the contradiction.

Next suppose θ = 0. Let gt =
ht+1
ht
. gt > µ because gt = µ + λct/ht and

λ > 0. The Euler equation (49) implies that gt =
ht+1
ht

satisfies:

gτt (gt − µ)
−ρ
= γβ (gt+1 − µ)

−(ρ−1)
+ βµ (gt+1 − µ)

−ρ (75)

where τ = ρ − γ (ρ− 1). If the difference equation (75) has a stationary point
g∗, then g∗ satisfies:

(g∗)τ = γβg∗ + βµ (1− γ) (76)

g∗ > µ (77)

Since τ > 1 and γβ > 0, clearly the solution of (76) and (77) is unique if it

exists.
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Now let us show that {gt}∞t=0 converges to the unique stationary point g∗

under the assumption (45).

Let f (x) = xτ −γβx−βµ (1− γ). Under (45), f (µ) = µτ −βµ < 0. Hence

the solution of f (x) = 0 satisfies x > µ and g∗ really exists. We can also easily

check that gt ≤ gt+1 if and only if gt+1 ≤ g∗. Then limt→∞ gt = g∗ and :

lim
t→∞

βt+1u (ct+1, ht+1)

βtu (ct, ht)
= lim

t→∞

(
β

µ
gt − µ

gt+1 − µ

¶ρ−1
g−τ+1t

)
(78)

=
³
γ + µ (1− γ) (g∗)−1

´−1
> 1

where the last inequality holds because g∗ > µ. Hence
P∞

t=0 β
tu (ct, ht) = −∞.

Since V (k, h) > −∞, such a path is not the optimal path. In other words, θ > 0
has to hold at the optimal path.

Proof of Lemma 5. We can easily show that if hs ≤ hs+1 and h∗θ < hs+1 for

some s, ht ≤ ht+1 for all t ≥ s. Since (49) can have only one stationary point,

limt→∞ ht =∞. (49) implies:

µ
ht+1
ht
− µ

¶−γ(ρ−1)
(ht+1 − µht)

−τ (79)

= γβh
γ(ρ−1)−1
t+1 (ht+2 − µht+1)

−(ρ−1) + βµh
γ(ρ−1)
t+1 (ht+2 − µht+1)

−ρ + θ

Since gt ≥ 1 and limt→∞ ht = ∞, the left hand side of (49) approaches 0 as t
goes to ∞. This establishes a contradiction.

Proof of Lemma 6. Suppose not. In this case, limt→∞ ht = 0. The Euler

equation (49) implies:

gτt (gt − µ)
−ρ
= γβ (gt+1 − µ)

−(ρ−1)
+ βµ (gt+1 − µ)

−ρ
+ θhτt+1 (80)
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Since limt→∞ hτt+1 = 0 and gt+1 ≤ 1, for any ε > 0, there exist Tε ∈ N such
that:

θhτt+1 ≤ θε (gt+1 − µ)
−ρ (81)

for all t ≥ Tε. This implies that:

gτt (gt − µ)
−ρ ≥ γβ (gt+1 − µ)

−(ρ−1)
+ βµ (gt+1 − µ)

−ρ (82)

and:

gτt (gt − µ)
−ρ ≤ γβ (gt+1 − µ)

−(ρ−1)
+ (βµ+ θε) (gt+1 − µ)

−ρ (83)

for all t ≥ Tε. First of all, for each ε ≥ 0, consider a sequence {ĝt (ε)}∞t=Tε
such that ĝTε = gTε and:

ĝt
τ (ĝt − µ)

−ρ
= γβ (ĝt+1 − µ)

−(ρ−1)
+ (βµ+ θε) (ĝt+1 − µ)

−ρ (84)

for t ≥ Tε + 1. We can easily see from the difference equation (84) that

for fixed ĝt, the value of ĝt+1 is uniquely determined and these values satisfy

dĝt+1/dĝt > 0. Furthermore, gTε+1 satisfies:

ĝTε+1 (0) ≥ gTε+1 ≥ ĝTε+1 (ε)

Hence we can recursively prove that:

ĝt (0) ≥ gt ≥ ĝt (ε) for all t ≥ Tε (85)
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Now let fε (x) = xτ − γβx− (βµ+ θε) (1− γ). The assumption (45) means

µτ − βµ < 0 and then fε (µ) = µτ − βµ− θε (1− γ) < 0. Hence the solution of

fε (x) = 0 is unique and satisfies x > µ. It follows that the stationary point of

the above difference equation, ĝ∗ (ε) really exists and satisfies:

ĝ∗ (ε)τ = γβ (ĝ∗ (ε) − µ) + (βµ+ θε)

We can easily check that ĝt (ε) ≤ ĝt+1 (ε) if and only if ĝt+1 (ε) ≤ ĝ∗ (ε). Hence

we can conclude that limt→∞ ĝt+1 (ε) = ĝ∗ (ε). Using (85), we can conclude

that lim sup gt ≤ ĝ∗ (0) and lim inf gt ≥ ĝ∗ (ε). Since ε can be arbitrary small

and limε→0 ĝ∗ (ε) = ĝ∗ (0),6 we obtain:

lim
t→∞ gt = ĝ∗ (0) > µ (86)

This implies:

lim
t→∞

βt+1u (ct+1, ht+1)

βtu (ct, ht)
=
³
γ + µ (1− γ) (ĝ∗ (0))−1

´−1
> 1 (87)

where the last inequality holds because ĝ∗ (0) > µ. Such a sequence has to

satisfy
P∞

t=0 β
tu (ct, ht) = −∞. It follows that such a path is not the optimal

path.

6We can show the equation strictly, but this relationship is obvious graphically.
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