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1 Introduction

Shapiro-Shapley introduce their 1961 memorandum (published 17 years later as Shapiro-Shapley

(1978)) with the remark that \institutions having a large number of competing participants are

common in political and economic life," and cite as examples \markets, exchanges, corpora-

tions (from the shareholders viewpoint), Presidential nominating conventions and legislatures."

They observe, however, that \game theory has not yet been able so far to produce much in

the way of fundamental principles of \mass competition" that might help to explain how they

operate in practice," and that it might be \worth while to spend a little e�ort looking at the

behavior of existing n-person solution concepts, as n becomes very large." In this, they echo

both von Neumann-Morgenstern (1944) and Kuhn-Tucker (1950),1 and anticipate Mas-Colell

(1998).2

Von Neumann-Morgenstern (1944) saw the number of participants in a game as a vari-

able, and presented it as one determining the \total set" of variables of the problem. \Any

increase in the number of variables inside a participant's partial set may complicate our prob-

lem technically, but only technically; something of a very di�erent nature happens when the

number of participants { i.e., of the partial sets of variables { is increased." After remarking

that the complications arising from the \fact that every participant is inuenced by the antici-

pated reactions of the others to his own measures" are \most strikingly the crux of the matter,"

the authors write:

When the number of participants becomes really great, some hope emerges that the

inuence of every particular participant will become negligible, and that the above

diÆculties may recede and a more conventional theory become possible. Indeed,

this was the starting point of much of what is best in economic theory. It is a

well known phenomenon in many branches of the exact and physical sciences that

very great numbers are often easier to handle than those of medium size.3 This

is of course due to the excellent possibility of applying the laws of statistics and

probabilities in the �rst case.

Two further points are explicitly noted. First, a satisfactory treatment of such \populous

games" may require \some radical theoretical innovations { a really fundamental reopening

of [the] subject." Second, \only after the theory of moderate numbers has been satisfactorily

developed will it be possible to decide whether extremely great numbers of participants will

simplify the situation."4 However, an optimistic prognosis is evident.5
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Nash (1950) contains in the space of �ve paragraphs a de�nitive formulation of the theory

of non-cooperative games with an arbitrary �nite number of players. This \theory, in contradis-

tinction [to that of von Neumann-Morgenstern], is based on the absence of coalitions in that

it is assumed that each participant acts independently, without collaboration and communica-

tion from any of the others. The non-cooperative idea will be implicit, rather than explicit.

The notion of an equilibrium point is the basic ingredient in our theory. This notion yields a

generalization of the concept of a solution of a two-person zero sum game." In a treatment

that is remarkably modern, Nash presented a theorem on the existence of equilibrium in an

n-person game, where n is an arbitrary �nite number of participants or players. In addition to

the von-Neumann-Morgenstern book, the only other reference is to Kakutani's generalization

of Brouwer's �xed point theorem.6

With Nash's theorem in place, all that an investigation into non-cooperative games with

many players requires is a mathematical framework that fruitfully articulates \many" and

the attendant notions of \negligibility" and \inappreciability." This was furnished by Milnor-

Shapley (1961) in the context of cooperative game theory. They presented an idealized limit

game with a \continuum of in�nitesimal minor players ..., an `ocean,' to emphasize the almost

total absence of order or cohesion." The oceanic players were represented in measure-theoretic

terms and their \voting power expressed as a measure, de�ned on the measurable subsets of the

ocean." The authors did not devote any space to the justi�cation of the notion of a continuum

of players; they were clear about the \bene�ts of dealing directly with the in�nite-person game,

instead of with a sequence of �nite approximants."7

With the presumption that \models with a continuum of players (traders in this instance)

are a relative novelty,8 [and that] the idea of a continuum of traders may seem outlandish to

the reader," Aumann (1964) used such a model for a successful formalization of Edgeworth's

1881 conjecture on the relation of core and competitive allocations. Aumann's discussion

proved persuasive because the framework yielded an equivalence between these two solution

concepts, and thereby a�ected a qualitative change in the character of the resolution of the

problem. Aumann argued that \the most natural model for this purpose contains a continuum

of participants, similar to the continuum of points on a line or the continuum of particles

in a uid." After all, \continuous models are nothing new in economics or game theory, [even

though] it is usually parameters such as price or strategy that are allowed to vary continuously."

More generally, he stressed the \the power and simplicity of the continuum-of-players methods

in describing mass phenomena in economics and game theory," and saw his work \primarily as
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an illustration of this method as applied to an area where no other treatment seemed completely

satisfactory." In Aumann (1964) four methodological points are made explicit.

1. The continuum can be considered an approximation to the \true" situation in which

there is a large but �nite number of particles (or traders or strategies or possible prices).

In economics, as in the physical sciences, the study of the ideal state has proved very

fruitful, though in practice it is, at best, only approximately achieved.9

2. The continuum of traders is not merely a mathematical exercise; it is the expression of

an economic idea. This is underscored by the fact that the chief result holds only for a

continuum of traders { it is false for any �nite number.

3. The purpose of adopting the continuous approximation is to make available the powerful

and elegant methods of a branch of mathematics called \analysis," in a situation where

treatment by �nite methods would be much more diÆcult or hopeless.

4. The choice of the unit interval as a model for the set of traders is of no particular sig-

ni�cance. In technical terms, T can be any measure space without atoms. The condition

that T have no atoms is precisely what is needed to ensure that each individual trader

have no inuence.10

In their work on the elimination of randomization (puri�cation) in statistics and game

theory, Dvoretsky-Wald-Wolfowitz (1950) had already emphasized the importance of Lya-

punov's theorem,11 and explicitly noted that the \non-atomicity hypothesis is indispensable

[and that] it is this assumption that is responsible for the possibility to disregard mixed strate-

gies in games ... opposed to the �nite games originally treated by J. von Neumann."12 With

the ideas of puri�cation and the continuum-of-traders in place, a natural next step was an

extension of Nash's theorem to show the existence of a pure strategy equilibrium. This was

accomplished in Schmeidler (1973) in the setting of an arbitrary �nite number of pure strate-

gies. Since there does not exist such an equilibrium in general �nite player games,13 this result

furnished another example of a qualitative change in the resolution of the problem. However,

the analysis of situations with a continuum of actions { the continuous variation in the price

or strategy variables referred to by Aumann14 { eluded the theory. In this chapter, we sketch

the shape of a general theory that encompasses, in particular, such situations. Our focus is on

non-cooperative games, rather than on perfect competition, and primarily on how questions

of the existence of equilibria for such games dictate, and are dictated by, the mathematical
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framework chosen to formalize the idea of \many" players. That being the case, we keep the

methodological pointers delineated in this introduction constantly in view. The subject has a

technical lure and it is important not to be unduly diverted by it. At the end of the chapter we

indicate applications but leave it to the reader to delve more deeply into the relevant references.

This is only because of considerations of space; of course, we subscribe to the view that there

ought to be a constant interplay between the framework and the economic and game-theoretic

phenomena that it aspires to address and explain.

2 Antecedent Results

We motivate the need for a measure-theoretic structure on the set T of players' names by

considering a model in which no restrictions are placed on the cardinality of T: For each player

t in T; let the set of actions be given by At; and the payo� function by ut : A �! IR; where A

denotes the product �t2TAt: Let the partial product �t2T;t6=i At be denoted by A�i: We can

present the following result.15

Theorem 1 Let fAtgt2T be a family of nonempty, compact convex sets of a Hausdor� topo-

logical vector space, and futgt2T be a family of real-valued continuous functions on A such that

for each t 2 T; and for any �xed a�t 2 A�t; ut(�; a�t) is a quasi-concave function on At: Then

there exists a� 2 A; such that for all t in T; ut(a
�) � ut(a; a

�
�t) for all a in At:

Nash (1950, 1951) considered games with �nite action sets, and his focus on mixed

strategy equilibria led him to probability measures on these action sets and to the maximization

of expected utilities with respect to these measures. Theorem 1 is simply an observation that

if the �niteness hypothesis is replaced by convexity and compactness, and the linearity of the

payo� functions by quasi-concavity, his basic argument remains valid.16 Once the closedness

of the \one-to-many mapping of the [arbitrary] product space to itself" is established, we can

invoke the full power of Tychono�'s celebrated theorem on the compactness of the product of

an arbitrary set of compact spaces, and rely on a suitable extension of Kakutani's �xed point

theorem.17 The upper semicontinuity result in Fan (1952), and the �xed point theorem in Fan

(1952) and Glicksberg (1952) furnish these technical supplements.

However, with Theorem 1 in hand, we can revert to Nash's setting and exploit the

measure-theoretic structure available on each action set. For each player t; consider the

measurable space (At;B(At)); where B(At) is the Borel �-algebra generated by the topology

on At: Let M(At) be the set of Borel probability measures on At endowed with the weak�
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topology.18 Without going into technical details of how to manufacture new probability spaces

(A;B(A);�s2T�s) and (A�t;B(A�t);�s6=t�s) from f(At;B(At); �t)gt2T ; and the �ne points of

Fubini's theorem on the interchange of integrals,19 we can deduce20 the following result from

Theorem 1 by working with the action sets M(At) and with an explicit functional form of the

payo� functions ut:

Corollary 1 Let fAtgt2T be a family of nonempty, compact Hausdor� spaces, and fvtgt2T

be a family of real-valued continuous functions on A: Then there exists �� = (��t : t 2 T ) 2

�t2TM(At) such that for all t in T;

ut(�
�) =

Z
A

vt(a)d�t2T�
�
t � ut(�; �

�
�t) for all � in M(At):

The question is whether any substantive meaning can be given to the continuity hy-

pothesis on the functions vt? The following result21 shows that it is not merely a technical

requirement but has a direct implication for the formalization of player interdependence.

De�nition 1 v : A �! IR is �nitely determined if for all a; b 2 A; v(a) = v(b) if there exists

a �nite subset F of T such that at = bt for all t 62 F: v is almost �nitely determined if for every

" > 0; there exists a �nitely determined function v" such that supa2A jv"(a)� v(a)j < ":

Proposition 1 For a real-valued function v : A �! IR; the following conditions are equivalent:

(1) v is almost �nitely determined.

(2) v is a continuous function on the space A endowed with the product topology.

(3) v is integrable with respect to any � 2 M(A) and its integral is a continuous function on

M(A):

Thus, if we conceive of a �nite set of players as a \negligible" set, the hypothesis of continuity

in the product topology implies strong restrictions on how player interaction is formalized.

If individual payo�s depend on the actions of a \non-negligible" set of players so that the

continuity hypothesis is violated, there may not exist any Nash equilibrium in pure or in mixed

strategies. The following example due to Peleg (1969) illustrates this observation.22

Example 1: Consider a game in which the set of players' names T is given by the set of

positive integers IN; the action set At by the set f0; 1g; and the individual payo�s by functions

on actions that equal the action or its negative, depending on whether the sum of the actions

of all the other players is respectively �nite or in�nite. Note that these functions are not

continuous in the product topology.23
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There is no pure strategy Nash equilibrium in this game. If the sum of all of the actions

is �nite in equilibrium, all players could not be playing 1, and players playing 0 would gain by

playing 1. On the other hand, if the sum of all of the actions is in�nite, all players could not

be playing 0, and players playing 1 would gain by playing 0.

The more interesting point is that this game does not have any mixed strategy Nash

equilibrium either. If �� 2 �s2TM(f0; 1g) is such an equilibrium, there must exist a player t,

and a mixed strategy (1� p; p); 0 < p < 1; such that her payo� in equilibrium is given by

ut(�; �
�
�t) =

Z
A
�t

[�(f0g)vt(0;
X
s6=t

as) + �(f1g)vt(1;
X
s6=t

as)]d�
�
�t = p

Z
A
�t

vt(1;
X
s6=t

as)d�
�
�t;

where as denotes the action of player s: Since an individual player's payo� depends on whetherP
s 6=t as converges or diverges, player t obtains p or �p as a consequence of the following

zero-one law.24

Proposition 2 Let (
;F ; P ) be a probability space, and Xn be a sequence of independent

random variables. Then the series
P

n2INXn(!) converges or diverges for P -almost all ! 2 
:

In either case, player t would gain by playing a pure strategy (1 or 0 respectively), and hence

�� could not be a mixed strategy equilibrium.

While the exploitation of the independence hypothesis in Example 1 is fully justi�ed in

its non-cooperative context, the fact that an individual player does not explicitly randomize

on whether the sum of others' actions converges or diverges is less justi�able.25 The important

question to ask, however, is whether the above formalization of a \large" game is merely of

technical interest; or does it point to something that is false for the �nite case but true for the

ideal, and if so, to something that we can learn about the �nite case from ideal?

3 Interactions based on Distributions of Individual Responses

In Example 1, the set of players' names can be conceived as an in�nite (but �-�nite) measure

space consisting of a counting measure on the power set of IN; but it is precisely this lack

of �niteness that rules out consideration of situations in which a player's payo� depends in

a well-de�ned way on the proportion of other players taking a speci�c action. Such an idea

admits of a precise formulation if a measure-theoretic structure on the set of players' names is

explicitly brought to the fore in the form of an atomless probability space (T;T ; �); with the

atomless assumption formalizing the \negligible" inuence of each individual player. However,
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what needs to be underscored is that � is a countably additive, rather than a �nitely additive,

measure.26

A game is now simply a random variable from T to an underlying space of characteristics,

and its Nash equilibrium another random variable from T to a common action set A:27 We

shall also adopt as a working hypothesis, until Section 10, Aumann's (1964) statement that

the \measurability assumption is of technical signi�cance only and constitutes no economic

restriction. Nonmeasurable sets are extremely \pathological"; it is unlikely that they would

occur in the context of an economic model."

3.1 A Basic Result

The set of players is divided into ` groups or institutions,28 with T1; : : : ; T` being a partition of

T with positive �-measures c1; : : : ; c`. For each 1 � i � m, let �i be the probability measure

on Ti such that for any measurable set B � Ti, �i(B) = �(B)=ci. We assume A to be a

countable compact metric space.29 Let Ud
A be the space of real-valued continuous functions

on A�M(A)`; endowed with its sup-norm topology and with B(Ud
A) its Borel �-algebra (the

superscript d denoting \distribution"). This is the space of player characteristics, with the

payo� function of each player depending on her action as well as on the distribution of actions

in each of the ` institutions. We now have all the terminology we need to present.30

Theorem 2 Let G
d
be a measurable map from T to U

d
A. Then there exists a measurable

function f : T �! A such that for �-almost all t 2 T;

ut(f(t); �1f
�1
1 ; � � � ; �`f

�1
`

) � ut(a; �1f
�1
1 ; � � � ; �`f

�1
`

) for all a 2 A;

where ut = G
d(t) 2 Ud

A; fi the restriction of f to Ti; and �if
�1
i the induced distribution on A:

Since Theorem 2 is phrased in terms of distributions, it stands to reason that the most

relevant mathematical tools needed for its proof will revolve around the distribution of a cor-

respondence. What is interesting is that a theory for such an object can be developed on the

basis of the \marriage lemma". We turn to this.

3.2 The Marriage Lemma and the Distribution of a Correspondence

Halmos-Vaughan (1950) introduce the marriage lemma by asking for \conditions under which

it is possible for each boy to marry his acquaintance if each of a (possibly in�nite) set of boys is

acquainted with a �nite set of girls?" A general answer going beyond speci�c counting measures

is available in the following result.31
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Proposition 3 Let I be a countable index set, (T�)�2I a family of sets in T , and � = (��)�2I

a family of non-negative numbers. There exists a family (S�)�2I of sets in T such that for all

�; � 2 I; � 6= �; one has S� � T�; �(S�) = ��; S�\S� = ; if and only if for all �nite subsets

IF of I; �(
S
�2IF

T�) �
P

�2IF
��:

We can use Proposition 3 to develop results on the non-emptiness, puri�cation, convexity,

compactness and upper semicontinuity of the distribution of a correspondence as is required

for the application of �xed-point theorems.32 However the countability hypothesis on the range

of a correspondence deserves special emphasis; all of the results reported below are false for

particular correspondences from the unit Lebesgue interval to an interval,33 the former denoted

in the sequel by ([0; 1];B([0; 1]); �):

A correspondence F from T to A is said to be measurable if for each a 2 A, F�1(fag) =

ft 2 T : a 2 F (t)g is measurable. A measurable function f from (T;T ; �) to X is called a

measurable selection of F if f(t) 2 F (t) for all t 2 T . F is said to be closed- (compact-) valued

if F (t) is a closed (compact) subset of X for all t 2 T; and its distribution is given by

DF = f� f�1 : f is a measurable selection of Fg:

We can now present a simple and direct translation of Proposition 3 into a basic result

on the existence of selections.

Proposition 4 If F is measurable and � 2 M(A); then � 2 DF if and only if for all �nite

B � A; �(F�1(B)) � �(B).

Proposition 3 also yields a result on puri�cation.34 The integral is the standard Lebesgue

integral and fai : i 2 INg is the list of all of the elements of A:

Proposition 5 Let g be a measurable function from T into M(A); and � 2 M(A) such that

for all B � A; �(B) =
R
t2T g(t)(B)d�: If G is a correspondence from T into A such that for all

t 2 T; G(t) = supp g(t) = fai 2 A : g(t)(faig) > 0g; then there exists a measurable selection �g

of G such that ��g�1 = � .

After a preliminary de�nition, we can present basic properties of the object DF :

De�nition 2 A correspondence G from a topological space Y to another topological space Z is

said to be upper semicontinuous at y0 2 Y if for any open set U which contains G(y0), there

exists a neighborhood V of y0 such that y 2 V implies that G(y) � U .
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Proposition 6 (i) For any correspondence F; DF is convex. (ii) If F is closed-valued, then

DF is closed, and hence compact, in the space M(A). (iii) If Y is a metric space, and for

each �xed y 2 Y , G(�; y) is a closed-valued measurable correspondence from T to A such that

G(t; �) is upper semicontinuous on the metric space Y for each �xed t 2 T; then DG(�;y) is upper

semicontinuous on Y:

3.3 Sketch of Proofs

The convexity assertion in Proposition 6 is a simple consequence of Proposition 3. However,

the other two assertions rely on what can be referred to as an analogue of Fatou's lemma, which

is itself a direct consequence of Proposition 3.35

The proof of Theorem 2 follows Nash (1950) in its essentials; we now look for a �xed

point in the product space M(A)`; and consider the one-to-many best-response (countering)

mapping from T �M(A)` into A given by

(t; �1; � � � ; �`) �! F (t; �1; � � � ; �`) = Arg Maxa2Aut(a; �1; � � � ; �`):

The continuity and measurability assumptions on ut allow us to assert the upper semicontinuity

of F (t; � � �) and guarantee the existence of a measurable selection from F (�; �1; � � � ; �`):
36 We fo-

cus on the objects DF i(�;�1;���;�`) andG(�1; � � � ; �`) = �`
i=1DF i(�;�1;���;�`); where F

i(t; �1; � � � ; �`) =

F (t; �1; � � � ; �`) for each t 2 Ti; and �nish the proof by applying the Fan-Glicksberg �xed-point

theorem to the one-to-many mapping G :M(A)` �!M(A)`:

4 Two Special Cases

Theorems 1 and 2 concern large non-anonymous games in that each player is identi�ed by a

particular name or index t belonging to a set T: In this section, we focus on Theorem 2 and

draw out its implication for two speci�c contexts: one where a player is also parametrized by

the information at his disposal; and another anonymous setting where a player has no identity

other than his characteristics. The atomlessness assumption now formalizes \dispersed" or

\di�used" characteristics rather than \numerical negligibility."

4.1 Finite Games with Independent Private Information

Building on the work of Harsanyi (1967-68, 1973) and of Dvoretsky, Wald and Wolfowitz

already referred to above, Milgrom-Weber (1981, 1985) and Radner-Rosenthal (1982) use the

hypothesis of independence to present a formulation of games with incomplete information.37

11



In this subsection, we show how the dependence of individual payo�s on induced distributions

in this model allows us to invoke the puri�cation and existence results furnished as Proposition

5 and Theorem 2 above.

A game with private information consists38 of a �nite set I of ` players, each of whom

is endowed with an identical action set A,39 an information space (
;F ; �) where (
;F) is

constituted by the product space (�i2I(Zi � Xi);�i2I(Zi 
 Xi)); and a utility function ui :

A`
�Xi �! IR: For any point ! = (z1; x1; � � � ; z`; x`) 2 
; let �i(!) = zi and �i(!) = xi.

A mixed strategy for player i is a measurable function from Zi to M(A): If the players

play the mixed strategies fgigi2I ; the resulting expected payo� to the ith player is given by

Ui(g) �

Z
!2


Z
a`2A

� � �

Z
a12A

ui(a1; � � � ; a`; �i(!))g1(�1(!); da); � � � ; g`(�`(!); da)�(d!):

A pure strategy for player i is simply a measurable function from Zi to A: An equilibrium

in mixed strategies is a vector of mixed strategies fg?i gi2I ; such that Ui(g
?) � Ui(gi; g

?
�i) for

any mixed strategy gi for player i: An equilibrium b? in pure strategies is a puri�cation of an

equilibrium b in mixed strategies, if for each player i; Ui(b) = Ui(b
?).

Corollary 2 If, for every player i; (a) the distribution of �i is atomless, and (b) the ran-

dom variables f�j : j 6= ig together with the random variable �i � (�i; �i) form a mutually

independent set, then every equilibrium has a puri�cation.

Proof: Apply the change-of-variables formula and the independence hypothesis to rewrite the

individual payo� functions in a form that satis�es the hypothesis of Proposition 5. Check that

the pure strategy furnished by its conclusion yields a puri�cation of the original equilibrium.

Corollary 3 Under the hypotheses of Corollary 2, there exists an equilibrium in pure strategies

if for every player i; (i) ui(�; �i(!)) is a continuous function on A`
for �-almost all ! 2 
;

and (ii) there is a real-valued integrable function hi on (
;F ; �) such that �-almost all ! 2 
,

kui(a; �i(!))k � hi(!) holds for every (a1; � � � ; a`) 2 A`
.

Proof: By an appeal to the change-of-variable formula and the independence hypothesis,

rewrite the individual payo� functions in the form required in Theorem 2. Check that all of the

hypotheses of this theorem are satis�ed, and that the equilibrium furnished by its conclusion

is also an equilibrium in pure strategies.

We conclude with the observation that the above results are false without the indepen-

dence hypothesis or the cardinality restriction on the action set.40
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4.2 Large Anonymous Games

Once the space of characteristics has been formalized as the measurable space, (Ud
A;B(U

d
A))

in Section 3 with ` = 1 for example, it is natural to consider a game as simply a probability

measure on such a space.41 In this section, we show how the non-anonymous setting of Section

3 sheds light on the anonymous formulation of Mas-Colell (1984a).42 The hypothesis of a

countable compact metric action set A remains in force in this subsection.

A large anonymous game is a probability measure � on the measurable space of char-

acteristics, and it is dispersed if � is atomless. A probability measure � on the product space

(Ud
A �A) is a Cournot-Nash equilibrium distribution (CNED) of the large anonymous game �

if the marginal of � on Ud
A; �U ; is �, and if �(B� ) = 1 where

B� = f(u; a) 2 (Ud
A �A) : u(a; �A) � u(x; �A) for all x 2 Ag;

�A the marginal of � on A. A CNED � can be symmetrized if there exists a measurable function

f : Ud
A �! A and another CNED � s such that �A = � sA and � s(Graphf ) = 1; where Graphf is

simply the set f(u; f(u)) 2 (Ud
A �A) : u 2 Ud

Ag: In this case, � s is a symmetric CNED.

We see that these reformulations43 make heavy use of probabilistic terminology, and as in

any translation, give rise to additional questions stemming from the new vocabulary. The fact

that players' names are not a factor in the speci�cation of the game, and only the statistical

distribution of the types of players is given, is clear enough; what is interesting is that in the

formalization of a symmetric CNED, one is asking for a \reallocated" equilibrium in which

players with identical characteristics choose identical actions. Thus, an ad hoc assumption

common to many models can be given a rigorous basis. In any case, the simple resolution of

this question is perhaps surprising.44

Corollary 4 Every CNED of a dispersed large anonymous game can be symmetrized.

Proof: Let � be a CNED of the game �; and for each a 2 A; let Wa = fu 2 Ud
A : (u; a) 2 B�g:

(Wa)a2A is a countable family of subsets of B(Ud
A) such that for any �nite subset AF of A;

�(
[

a2AF

Wa) = �U(
[

a2AF

Wa) = �

0
@( [

a2AF

Wa)�A

1
A �

X
a2AF

�(Wa � fag)

=
X
a2AF

�(Ud
A � fag) =

X
a2AF

�A(fag):

Since � is an atomless probability measure on (Ud
A;B(U

d
A)); all the hypotheses of Proposition

3 are satis�ed, and there exists a family (Ta)a2A of sets in B(Ud
A) such that Ta �Wa; �(Ta) =

13



�A(fag): Now de�ne h : Ud
A �! A such that h(t) = a for almost all t 2 Ta; all a 2 A; and note

that the measure �(i; h)�1; i being the identity mapping on Ud
A; is the required symmetrization.

This yields the interesting characterization of symmetric equilibria as the extreme points

of a set of equilibria.45

Corollary 5 Let � be a dispersed large anonymous game. Then a CNED � of � is a symmetric

CNED if and only if � is an extreme point of the set �� = f� 2 M(Ud
A � A) : �U = �; �A =

�A; �(B� ) = 1g:

All that remains is the question of existence.

Corollary 6 There exists a symmetric CNED for a dispersed large anonymous game �:

Proof: In Theorem 2, use (Ud
A;B(U

d
A); �) as the space of players' names, and the identity

mapping i as the game. If f is the equilibrium guaranteed by the theorem, the measure

�(i; f)�1 is a symmetric CNED.

We conclude with the observation that these results are false without the dispersedness

hypothesis.46

5 Non-Existence of a Pure Strategy Nash Equilibrium

In this section, we present two examples of games without Nash equilibria, in which the set of

actions is a compact interval. Apart from their intrinsic methodological interest, these examples

are useful because they anchor the abstract treatment of Section 3 to concrete speci�cations that

one can compute and work with. Both examples are predicated on the fact that it is impossible

to choose from the correspondence47 on the Lebesgue unit interval de�ned by t �! ft;�tg; a

measurable selection that induces a uniform distribution �� on [�1; 1]:48

5.1 A Nonatomic Game with Nonlinear Payo�s

The following example49 is due to Rath-Sun-Yamashige (1995) who present it in the context

of Corollary 6 above.

Example 2: Consider a game G1 in which the set of players (T;T ; �) is the Lebesgue unit

interval ([0; 1];B([0; 1]); �); A is the interval [�1; 1]; and the payo� function of any player

t 2 [0; 1] is given by

ut(a; �) = g(a; �d(��; �)) � jt� jajj; 0 < � < 1; a 2 [�1; 1]; � 2M([�1; 1]);

14



where d(��; �) is the Prohorov distance between �� and � based on the natural metric on

[�1; 1],50 and g : [�1; 1] � [0; 1] �! IR+: If g(a; 0) � 0 for any a 2 [�1; 1]; there is no Nash

equilibrium that induces ��. The point is that one can choose the function g(�; �) such that the

best-response function based on a distribution � 6= �� induces a distribution di�erent from �

and therefore precludes the existence of a Nash equilibrium. An example of such a function is

the periodic function, with period 2`; ` 2 (0; 1]; and de�ned on [0; 2`] by

g(a; `) =

8><
>:

a=2 for 0 � a � (`=2)

(`� a)=2 for (`=2) � a � `

�g(a� `; `) for ` � a � 2`;

with g(a; `) = �g(�a; `) for a < 0; and extended in both directions. Indeed, this speci�cation

of g(�; �) furnishes an equicontinuous family of payo� functions.51

5.2 Another Nonatomic Game with Linear Payo�s

In Example 2, the distribution of societal responses enters an individual's payo� function in a

non-linear way; here we present an example in which players maximize expected utilities with

respect to this distribution and thereby lead to linear speci�cation. This example is due to

Khan-Rath-Sun (1997b), and unlike Example 2, does not involve the Prohorov metric.

Example 3: Consider a game di�erent from that in Example 2 only in that the payo� function

of player t is given, for a 2 [�1; 1]; � 2M([�1; 1]); by

ut(a; �) =

Z 1

�1
vt(a; x)d�(x); where vt(a; x) = �jt� jajj+ (t� a)z(t; x);

and the function z : [0; 1] � [�1; 1] �! IR is such that for all t 2 [0; 1];

z(t; a) =

8><
>:

a if 0 � a � t

t if t < a � 1

�z(t;�a) if a < 0:

This game does not have a Nash equilibrium. A distribution that is not uniform cannot be

an equilibrium.52 On the other hand, for a uniform distribution �; the value of the summary

statistic
R
A z(t; a)d� is zero for �-almost all t 2 [0; 1]; and hence requires that � be induced by

a measurable selection from the best-response correspondence on the Lebesgue unit interval

de�ned by t �! ft;�tg; which we have seen to be impossible. It is easy to check that ut(a; �)

is a jointly continuous function in its three arguments (t; a; �), and that the family of utility

payo� functions indexed by the name t is an equicontinuous family.
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5.3 New Games from Old

Now consider another game G2 manufactured from the game G1 in Example 2. In this game

the set of players (T;T ; �) is again given by the Lebesgue unit interval ([0; 1];B([0; 1])�); A by

[�1; 1]; and the payo� function of any player t 2 [0; 1] by vt : A�M([�1; 1]) �! IR where

vt(�; �) =

(
u2t(�; �) if 0 � t � (1=2)

u2�2t(�; �) if (1=2) < t � 1:

It is clear that the new game G2 is formed from G1 by endowing each player with a \twin" and

then by normalizing the space of players to the Lebesgue unit interval. It is clear that both

games G1 and G2 induce identical distributions on the space of characteristics. Hence, in some

essential macroscopic sense, the two games are identical. However, the point is that G2 has a

Nash equilibrium whereas G1 does not! It is easy to check that g : [0; 1] �! [�1; 1] is a Nash

equilibrium of the modi�ed game G2; where

g(t) =

(
2t if 0 � t � (1=2)

2t� 2 if (1=2) < t � 1:

6 Interactions based on Averages of Individual Responses

In light of these counterexamples, the question arises as to how far one can proceed if a player's

dependence on the distribution of societal responses is restricted to dependence on speci�c mo-

ments of the distribution. In this section, we focus on the �rst moment,53 and are thereby led to

integration, and a consequent linearity requirement on the action set. Since integration occurs

with respect to players' names, what is important in this connection is Aumann's observation

that the \chief mathematical tools are Lebesgue measure and integration [and that] Riemann

integration can not be substituted."

6.1 A Basic Result

We shall follow the notation of Section 3.2 but with the di�erence that the common action

set A is now conceived to be a nonempty compact subset of Euclidean space IRn; and the

space of player characteristics (Uav
A ;B(Uav

A )) is the space of real-valued continuous functions

on A � (con(A))`; endowed with its sup-norm topology and the induced Borel �-algebra (the

superscript av denoting \distribution"). We can now present54

Theorem 3 Let G
av

be a measurable map from T to U
av
A . Then there exists a measurable
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function f : T �! A such that for �-almost all t 2 T;

ut(f(t);

Z
s2T1

f1(s)d�1; � � � ;

Z
s2T`

f`(s)d�`) � ut(a;

Z
s2T1

f1(s)d�1; � � � ;

Z
s2T`

f`(s)d�`)

for all a 2 A, where ut = G
av(t) 2 Uav

A and fi is the restriction of f to Ti.

6.2 Lyapunov's Theorem and the Integral of a Correspondence

Let the integral of a correspondence F : T �! IRn be de�ned as

IF = f

Z
T

f(t)d� : f is an integrable selection of Fg:

Since the range of F is no longer countable, we need to modify the earlier de�nition of mea-

surability to require that the graph of F be an element of T 
 B(IRn): A measurable selection

theorem and Lyapunov's theorem on the range of an atomless vector measure then yield the

following analogue to Proposition 6.55

Proposition 7 (i) IF is nonempty and convex. (ii) If F is integrably bounded and compact-

valued, then IF is compact and IF = Icon F : (iii) If Y is a metric space, G a closed-valued

correspondence, and H an integrably bounded compact-valued correspondence, both from T �Y

into IRn
such that for each �xed t 2 T , G(t; �) is upper semicontinuous on Y , and for each �xed

y 2 Y; G(t; y) � H(t) for �-almost all t 2 T; then IG(�;y) is upper semicontinuous on Y:

6.3 A Sketch of the Proof

With Proposition 7 in hand, one simply follows56 all the guideposts laid out in the proof of

Theorem 2, but with the Kakutani �xed-point theorem applied to a one-to-many countering

or best-response mapping G : T � (con(A))` into A given by

(t; a1; � � � ; a`) �! F (t; a1; � � � ; a`) = Arg Maxa2Aut(a; a1; � � � ; a`):

7 An Excursion into Vector Integration

On comparing Theorems 2 and 3, the question arises as to why cardinality restrictions on action

sets are crucial when player interactions are based on distributions, but play no role when they

are based on averages. This discrepancy is more apparent than real: the induced distribution

of a random variable is also an average, in a clearly de�ned sense, of a related random variable

taking values in an in�nite-dimensional space, and the cardinality restrictions simply shift over
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from the sets themselves to the dimensionality of the space in which they are located. Thus,

even when the primary emphasis is explicitly on distributions,57 and the parameters of the

problem do not suggest it, the relevant backdrop is still that of vector integration.58

To see this, return to Proposition 5 and to the discussion of puri�cation results in Section

4, and recall that the integral of a measurable function g : T �! M(A) is obtained by

�xing a particular element B 2 T ; and then by integrating the resulting real-valued function

g(t)(B): However, g can also be reduced to a real-valued function by considering59 (x; g(t)) =R
A x(a)g(t; da); where x is a particular element of C(A); the space of continuous functions on

the compact set A endowed with their sup norm. This procedure de�nes another integral, the

so-called Gelfand integral
R
T g(t)d�(t); where

(x;

Z
T

g(t)d�(t)) =

Z
T

(x; g(t))d�(t) =

Z
T

Z
A

x(a)g(t; da)d�(t) for all x 2 C(A):

The point is that this integral is identical to the integral obtained by our �rst procedure, and

furthermore, the Gelfand integral of Æfg(�)g; the function obtained by \lifting" g(�) into the

space of probability measures, is the same as the induced distribution �g�1 of g:60

This discussion for the speci�c space C(A) and its dual (C(A))� can easily be transposed

to the general setting of a separable Banach space61 X and its dual X�: We can now de�ne the

Gelfand integral62 of any X�-valued function g(�) by requiring that

(x;

Z
T

g(t)d�(t)) =

Z
T

(x; g(t))d�(t) for all x 2 X:

In addition to its norm topology, X� is also endowed with the weak and weak� topologies, and it

is the Borel �-algebra generated by the latter that ensures that for any x 2 X; the real-valued

function (x; g(�)) is measurable, and furnishes the relevant weak� measurability criterion for

Gelfand integration.63 However, we can also simply work with a separable Banach space X

directly. In this case, we can be guided by Lebesgue integration, and focus on functions that are

pointwise limits of simple functions. This furnishes us with the so-called strong measurability

criterion, and a conventional notion of an integral, the so-called Bochner integral, based on

the convergence of the sums of these simple functions.64 With all of this terminology at our

disposal, we can present the following consequence of the results of Section 3.2.65

Proposition 8 Proposition 7 is valid for a correspondence F from T into a countably in�nite

subset of a separable Banach space or a dual of a separable Banach space. In the former case,

we can work with the norm or weak topologies and the Bochner integral; and in the latter, with

the weak
�
topology and the Gelfand integral.
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Proposition 8 is false without the cardinality restriction,66 a fact that underlies Examples 2

and 3 above.

We conclude this section with a result that views a set of integrable functions as a

productive object in its own right. Let L1(�;X) be the space of equivalence classes of Bochner

integrable functions equipped with the integral norm.67 This is a Banach space, and its dual

space Lw
1(�;X�) consists of equivalence classes of weak� measurable functions with essentially

bounded norm functions and equipped with the essential supremum norm.68 We can now

present analogues of results that play the same role in the sequel that Tychono�'s theorem

played in Section 2.69

Proposition 9 If A is a weakly compact subset of a separable Banach space X; L1(�;A) is

a weakly compact subset of the Banach space L1(�;X): If A is a norm bounded, weak
�
closed

subset of a dual Banach space X�; Lw
1(�;A) is a weak

�
compact subset of the Banach space

Lw
1(�;X�):

8 Interactions based on almost all Individual Responses

Even though in Theorem 1 payo� functions depend on the actions of each individual player

rather than on some statistical summary of these actions, the hypothesis of continuity in the

product topology reduces this apparent generality to dependence on the actions of an essentially

�nite number of players. In this section, we see how the measure-theoretic structure on the set

of players' names can be exploited to yield results for situations where an individual player's

payo� depends on the (equivalence class of the) entire function of individual responses.70

8.1 Results

Unlike earlier sections, we shall denote a game by the generic symbol G: We continue to assume

that product spaces are endowed with their product measurable or topological structures, and

that the space C(Y ) of continuous functions on a compact set Y is equipped with its sup norm

topology and the induced Borel �-algebra. We reserve the symbol X for a separable Banach

space, and except for the last result, work primarily with the weak and weak� topologies.71

Theorem 4 Let G be a measurable map from T to C(A � L1(�;A)); where A � X is convex

and weakly compact, and G(t)(�; g) � ut(�; g) is quasi-concave on A for any g 2 L1(�;A): Then

there exists f 2 L1(�;A) such that for �-almost all t 2 T; ut(f(t); f) � ut(a; f) for all a 2 A:
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This statement is valid for Lw
1(�;A) substituted for L1(�;A); and with A � X�

convex and

weak
�
compact.

It is clear in Nash (1950, 1951) that the question of the existence of pure-strategy equilib-

ria precludes the assumptions of convexity on the action set and of quasi-concavity of the payo�

function. Theorem 4 thus pertains to mixed-strategy equilibria, and one can ask whether it

yields any implications for settings without these assumptions. We present three corollaries in

this regard. Note that unlike the case of a �nite action set, it now makes a di�erence whether

pure strategies are conceived as extreme points of an action set or as Dirac measures on it.72

Corollary 7 If A is a compact Hausdor� space, there exists a CNED for a large anonymous

game.
73

Corollary 8 Let G be a measurable map from T into C(A�Lw
1(�;M(A))); and A a compact

metric space. Then for any � > 0; there exists f 2 Lw
1(�; ext(M(A))) and K� 2 T ; �(K�) �

(1� �) such that for all t 2 K�;Z
A

vt(a; f)f(t; da) �

Z
A

vt(a; f)d�(a) � � for all � 2M(A); where vt � G(t):

Corollary 9 Let G be a measurable map from T into C(A�A); A a convex and weakly compact

subset of X: Then for any � > 0; there exists f 2 L1(�; ext(A)) and K� 2 T ; �(K�) � (1 � �)

such that for all t 2 K�;

ut(f(t);

Z
T

f(t)d�(t)) � ut(a;

Z
T

f(t)d�(t))� � for all a 2 A;

where ut � G(t) and the integral is the Bochner integral. The above statement is also true for

Lw
1(�; ext(A)) where A � X�

and weak
�
compact, with the integral the Gelfand integral.

The following result reimposes cardinality restrictions on action sets to obtain exact

equilibria in the Banach setting.

Theorem 5 Theorem 3 is valid if A is a countable compact subset of X or of X�; with the

norm or weak topologies and the Bochner integral in the �rst case, and with the weak
�
topology

and the Gelfand integral in the second.
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8.2 Uhl's Theorem and the Integral of a Correspondence

In the discussion of his existence theorem, Aumann (1966; p. 15) noted that in \the presence

of a continuum of traders, the space of assignments is no longer a subset of a �nite-dimensional

Euclidean space, but of an in�nite-dimensional function space. This necessitates the use of

completely new methods ... of functional analysis (Banach spaces) and topology." There is

the additional handicap that Lyapunov's theorem fails in the in�nite-dimensional setting.74

However, it can be shown that an approximate theory of integration can be developed on the

basis that the closure of the range of a vector measure is convex and compact. For the weak

or weak� topologies, this is a consequence of the �nite-dimensional Lyapunov theorem; for the

norm topology, the result is due to Uhl (1969).75

8.3 Sketch of Proofs

Once we have access to the mathematical tools discussed above, the proofs are a technical

(functional-analytical) elaboration of the basic argument of Nash (1950), with the upper semi-

continuity of the best response correspondence being the essential diÆcult hurdle.76

9 Non-Existence: Two Additional Examples

On taking stock, we see that there exist exact pure strategy equilibria with cardinality restric-

tions on individual action sets (Theorem 5), and approximate pure strategy equilibria without

such restrictions and even in situations where an individual player's dependence on societal

responses is not limited to their distributions or averages (Corollary 8). In this section, we see

that there cannot be progress on this score without additional measure-theoretic restrictions

on the space of players' names.

9.1 A Nonatomic Game with General Interdependence

The following example is due to Schmeidler (1973), and it shows that Corollary 8 cannot be

improved even in the setting of two actions.

Example 4: Consider a game in which the set of players (T; T ; �) is given by the Lebesgue

unit interval ([0; 1];B([0; 1]); �); A by f�1; 1g; and the payo� function of any player t 2 [0; 1]

by

ut(a; f) = j a�

Z t

0
f(x)d� j; a 2 f�1; 1g; f 2 L1(�; f�1; 1g):
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This game does not have a Nash equilibrium. For any equilibrium f; the value of the summary

statistic h(t) =
R t
0 f(x)d� must be zero for all t 2 [0; 1]: This implies that f(t) = 0 for �-almost

all t, which contradicts the fact that f(t) is 1 or �1.

9.2 A Nonatomic Game on the Hilbert Space `2

The following example is due to Khan-Rath-Sun (1997a) and it shows that Theorem 5 cannot

be improved even when action sets are norm-compact. It is based on a function f : [0; 1] �! `2

where

f(t) =

�
1�Wn(t)

2n

�1
n=1

; W1(t) � �1; Wn(t) = (�1)[2
n�1t] for n � 2;

where [x] is the integer part of x: It can be shown77 that the range of f is norm compact, that

it is Bochner integrable with integral e � (1; (2�n�1)1n=1); and that (e=2) 62
R 1
0 f0; f(t)gd�(t):

Example 5: Consider a game in which the set of players (T;T ; �) is given by the Lebesgue unit

interval ([0; 1];B([0; 1])�); A is a norm compact subset of `2 containing f0g [ ff(t) : t 2 [0; 1]g;

and the payo� function of any player t 2 [0; 1] is given by

ut(a; b) = �h(t; a; f(t); � jjb� (e=2)jj) � kak � ka� f(t)k; 0 < � < 1; a 2 A; b 2 con(A);

where h : [0; 1] � `2 � `2 � IR+ ! IR+: If h(t; a; f(t); 0) = 0; it is easy to see that there is no

Nash equilibrium. The point is that one can choose the function h such that the best-response

function based on an element b 2 con(A) averages to a value b0 such that jjb0 � (e=2)jj 6=

jjb� (e=2)jj; and therefore precludes the existence of a Nash equilibrium. An example of such

a function is given by

h(t; a; b; �) =

�
�jsin t

�
�j � (kak + 1� (�1)[

t

�
]) � (ka� bk+ 1 + (�1)[

t

�
]) if � > 0

0 if � = 0
:

Finally, we observe that the same example works for a game in which compactness and

continuity are phrased in the weak rather than the norm topology on `2:

We conclude with the observation that the isomorphism between `2 and any separable

in�nite dimensional L2 space allows us to set Example 5 in the latter space. This is useful in

light of the use of L2 in models with information and uncertainty.

10 A Richer Measure-Theoretic Structure

In the light of the counterexamples presented above, the question arises whether additional

measure-theoretic structure on the set of players' names will allow the construction of a more
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robust and general theory. In asking this, we are guided by the emphasis of Aumann (1964)

that it is not the particularity of the measure space but its atomlessness that is important from

a methodological point of view.78 As a result of a particular class of measure spaces introduced

by Loeb (1975), the so-called Loeb measure spaces, a richer structure is indeed available, and

it is ideally suited for studying situations where non-atomic considerations such as strategic

negligibility or di�use information are an essential and substantive issue.

10.1 Atomless Loeb Measure Spaces and their Special Properties

A Loeb space ( �T ;L( �T ); L(��)) is a \standardization" of a hyper�nite internal probability space

( �T ; �T ; ��); and constructed as a simple consequence of Caratheodory's extension theorem and

the countable saturation property of the nonstandard extension.79 It bears emphasizing that a

Loeb measure space, even though constituted by nonstandard entities, is a standard measure

space, and in particular, a result pertaining to an abstract measure space applies to it. For

applications, its speci�c construction can usually be ignored,80 and one simply focuses on its

special properties not shared by Lebesgue or other measure spaces.81 We now turn to those

properties.82

Proposition 10 If an atomless Loeb space ( �T ;L( �T ); L(��)) is substituted for (T;T ; �); Propo-

sitions 5, 6, and 8 are valid without any cardinality restrictions.

Proposition 11 Two real-valued random variables x and y on a Loeb counting probability

space
83

have the same distribution i� there is an internal permutation that sends x to y:

10.2 Results

The special properties of correspondences de�ned on a Loeb measure space delineated by Propo-

sition 10 can be translated into results on exact pure-strategy equilibria for games with many

players but with action sets without any cardinality restrictions.

Theorem 6 If an atomless Loeb space ( �T ;L( �T ); L(��)) is substituted for (T;T ; �); Theorems

2 and 5 are valid without any cardinality restrictions on A:

These results bring out the fact that the non-existence claims in Examples 2, 3 and

5 do not hold for the idealized Loeb setting. Indeed, one can show that in the �nite-player

versions of the games presented in these examples, approximate equilibria exist and that these

approximations get �ner as the number of players increases.84 Thus, it is natural to ask what
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it is about the idealized Lebesgue setting that makes the exact counterparts of these equilibria

disappear. Since Lebesgue measurability of a function can be represented in the Loeb setting

under the condition that \in�nitesimally close" points in the domain of the function have

\in�nitesimally close" values, the answer lies in the fact that in asking for an equilibrium

that is by de�nition Lebesgue measurable, we have injected a cooperative requirement into

an essentially non-cooperative situation. What is particularly interesting is that there may be

no such equilibrium even in situations when Lebesgue measurability is ful�lled for the game

itself, i.e., when players with \in�nitesimally close" names have \in�nitesimally close" payo�

functions. Thus the use of Lebesgue measurability for the modelling of large �nite game-

theoretic phenomena fails at two levels: �rst, it restricts the types of large �nite games to some

special classes, and second, even with this restriction, the ideal limits of approximate equilibria

cannot be modeled.

In referring to continuum-of-players methods in the context of non-cooperative game

theory, Mas-Colell (1984a; p. 20) is clear that a \literal continuum of agents ... should be

thought of only as a limit version of the Negligibility Hypothesis. It is an analytically useful

limit because results come sharp and clean, unpolluted by �'s and Æ's, but it is also the less

realistic limit." Elsewhere, Mas-Colell-Vives hope that the \conclusions are not too misleading

when applied to realistic situations."85 We have already emphasized the distinction between

two types of idealized limiting situations, and we now observe that results based on hyper�nite

Loeb measure spaces can be \asymptotically implemented" for a sequence of large but �nite

games as a matter of course. One only needs to control the extent to which the characteristics

are allowed to vary by focussing on a \tight" sequence of mappings.86 The following result based

on a compact metric action set87 illustrates this particular advantage of the Loeb formulation.88

Corollary 10 For each n � 1, let a �nite game Gn
be a mapping from T n = f1; 2; � � � ; ng

into U
d
A; and fT

n
1 ; � � � ; T

n
` g be a partition of T n

. Assume that the sequence of �nite games is

tight and that there is a positive number c such that jT n
i j=n > c for all suÆciently large n and

1 � i � `. Then for any � > 0; there exists N 2 IN such that for all n � N; there exists

gn : T n
�! A such that for all t 2 T n; and for all a 2 A;

unt (gn(t); �
n
1 g

�1
n ; � � � ; �n` g

�1
n ) � unt (a; �

n
1 g

�1
n ; � � � ; �n` g

�1
n )� �;

where unt � Gn(t), and �ni is the counting probability measure
89

on T n
i ; i = 1; � � � `:

It is also one of the strengths of a Loeb counting measure space that anomalies presented

in Section 5.3 cannot arise as illustrated by the following result.
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Corollary 11 Let G and F be measurable maps from T to U
d
A; such that �iG

�1
i = �iF

�1
i for

i = 1; � � � ; `; where Gi and Fi are restrictions of G and F to Ti respectively. Then there exists

automorphisms �i : (Ti; �i) �! (Ti; �i) for each i = 1; � � � ; ` such that Gi(t) = Fi(�i(t)) for

almost all t 2 Ti. Let f : T �! A be a Nash equilibrium of the atomless game F and de�ne

g : T �! A such that g(t) = f(�i(t)) for all t 2 Ti. Then g is a Nash equilibrium of the

atomless game G and every Nash equilibrium of G is obtained in this way.

10.3 Sketch of Proofs

Once we have access to the theory of distribution and integration of a correspondence de�ned

on an atomless Loeb measure space, the proof of Theorem 6 is a straightforward consequence

of the basic argument that we trace to Nash. Corollary 10 follows from the nonstandard

extension,90 and Corollary 11 from Proposition 11.

11 Large Games with Independent Idiosyncratic Shocks

When von Neumann-Morgenstern referred to the \excellent possibility of applying the laws of

statistics and probabilities" to games with a large number of players, they did not have in mind

the cancellation of individual (independent) risks through aggregation or diversi�cation. Both

\Crusoe" and a participant in a social exchange economy are \given a number of data which

are \dead"; they are the unalterable physical background of the situation [and] even when they

are apparently variable, they are really governed by �xed statistical laws. Consequently [these

purely statistical phenomena] can be eliminated by the known procedures of the calculus of

probabilities." Instead of these individual \uncontrollable factors [that] can be described by

statistical assumptions", their primary focus was on \alien" variables that are the \product of

other participants' actions and volitions" and which cannot be \obviated by a mere recourse

to the devices of the theory of probability".91

Recent and ongoing work in economic theory, however, considers economic situations in

which a continuum of (albeit identical) participants are exposed to individual chance factors.92

This literature appeals to a basic intuition underlying the theory of insurance whereby the

the classical law of large numbers is used to eliminate independent (idiosyncratic or non-

systematic) risks. However, the diÆculty in formalizing this intuition in the usual context

of a continuum of random variables was pointed out early on by Doob (1937, 1953): the

assumption of independence renders the sample function of the underlying stochastic process

\too irregular to be useful". What is needed is a suitable analytical framework that renders
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the twin assumptions of independence and joint measurability compatible with each other. In

this section, we discuss the nature of the diÆculty, and show how the richer measure-theoretic

structure discussed in Section 10, but now on a special product space, o�ers a viable solution

to it.

11.1 On the Joint Measurability Problem

We couple the space of players' names (T; T ; �) with another probability space (
;A; P ) to

represent the sample space. Let (T�
;T 
A; �
P ) be the usual product probability space. We

shall refer to the functions f(t; �) on 
 and f(�; !) on T respectively as the random variables

and the sample functions. The random variables ft are said to be almost surely pairwise

independent if for �-almost all t1 2 T; f(t1; �) is independent of f(t2; �) for �-almost all t2 2 T .

The following result illustrates the joint measurability problem in a particularly transparent

way.93

Proposition 12 Let f be a jointly measurable function from the usual product space (T �


; T 
A; �
P ) to a complete separable metric space X. If the random variables ft are almost

surely pairwise independent, then for �-almost all t 2 T; ft is a constant random variable.

11.2 Law of Large Numbers for Continua

The diÆculty that is brought to light in Proposition 12 is overcome in the context of a Loeb

product space ( �T� �
; L( �T 
 �A); L(��
 �P )) constructed as a \standardization" of the hyper�nite

internal probability space ( �T � �
; �T 
 �A; ��
 �P ): This special product space extends the usual

product space ( �T � �
; L( �T ) 
 L( �A); L(��) 
 L( �P )), retains the crucial Fubini property, and

is rich enough to allow many hyper�nite collections of random variables with any variety of

distributions.94 For simplicity, a measurable function on ( �T � �
; L( �T 
 �A); L(��
 �P )) will also

be called a process. We also assume that both L(��) and L( �P ) are atomless. We can now

present a version of the law of large numbers for a hyper�nite continuum of random variables,

and refer the reader to Sun (1996a, 1998a) for details and complementary results.95

Proposition 13 Let f be a process
96

from ( �T � �
; L( �T 
 �A); L(��
 �P )) to a complete separable

metric space X. Assume that the random variables f(t; �) are almost surely pairwise indepen-

dent. Then for L( �P )-almost all ! 2 �
, the distribution �! on X induced by the sample function

f(�; !) on �T is equal to the distribution � on X induced by f viewed as a random variable on

�T � �
.
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Since solutions to individual maximization problems are not unique, the need for a law

of large numbers for set-valued processes arises in a natural way, where a set-valued process

is a closed-valued measurable correspondence from a product space to X: Such a law can be

derived from Proposition 13.97 What is more diÆcult is the following result showing that

possible widespread correlations can be removed from selections of a set-valued process.

Proposition 14 Let F be a set-valued process from �T � �
 to a complete separable metric space

X. Assume that F (t; �) are almost surely pairwise independent. Let g be a selection of F with

distribution �. Then there is another selection f of F such that the distribution of f is �; and

f(t; �) are almost surely pairwise independent.

11.3 A Result

We can now use this substantial machinery to present a result for a large non-anonymous game

in which individual agents are exposed to idiosyncratic risks, but in equilibrium the societal

responses do not depend on a particular sample realization, and each agent is justi�ed in

ignoring other players' risks.

Theorem 7 Let G : �T � �
 �! U
d
A be a game with individual uncertainty, i.e., the random

payo�s G(t; �) are almost surely pairwise independent.
98

Then there is a process f : �T� �
 �! A

such that f is an equilibrium of the game G, the random strategies f(t; �) are almost surely

pairwise independent, and for L( �P )-almost all ! 2 �
, f(�; !) is an equilibrium of the game

G(�; !) with constant societal distribution L(��
 �P )f�1
.

The basic idea for the proof of Theorem 7 is straightforward. On an appeal to Theorem

6, we know that there exists a measurable function g : T � 
 �! A such that

G(t;!)(g(t; !); L(��
 �P )g�1) � G(t;!)(a; L(��
 �P )g�1) for all a 2 A:

Now �nish the proof by applying Proposition 14 to the set-valued process

(t; !) �! F (t; !) = Arg Maxa2AG(t;!)(a; L(
��
 �P )g�1):

12 Other Formulations and Extensions

The formulation of a large game that we have explored in this chapter hinges crucially on the

formalization of players' characteristics by a metric space U ; along with its Borel �-algebra. A
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large non-anonymous game is then simply a measurable function with such a range space, and

its anonymous counterpart the induced measure on it. Thus a random variable and its law

constitute basic elements in the relevant vocabulary, and one can exploit this observation to

incorporate a variety of additional aspects into the basic framework.

Two formulations deserve special mention. The �rst of these considers99 \very large"

or \thick" games based on a space of characteristics given U � [0; 1]; where U is interpreted

as the space of \types," and there is a continuum of each type. In such a setting, one can be

explicit about the cardinality of each type through the so-called \mass revealing" function, and

questions concerning symmetric equilibria in which player t of type u; where (u; t) 2 U � [0; 1]

plays an action independent of t; can be investigated.100 The advantage of this formulation

is that a correspondence de�ned on such a space of characteristics has a distribution with

well-behaved properties of the kind we saw in Propositions 5, 6, and 10, even when the range

space is compact metric, and without having to go into the Loeb setting.101 The second

formulation concerns dynamics, and a setting in which a game is constituted by an in�nite

sequence of distributions over a space of actions and states.102 By using the \value function"

and other techniques from stochastic dynamic programming, questions relating to the existence

and stationarity of equilibria can be investigated in such a setting.

In terms of elaborations on the basic framework, there has been a substantial amount

of work that investigates games with a richer space of characteristics: di�erent actions sets,103

upper semi-continuous payo�s104 and more generally, non-ordered preferences,105 uncertainty,

imperfect information, di�erring beliefs and imperfect observability represent a selective list.106

Issues of existence and of continuity of equilibria have both been investigated, and this work

has led both to interesting technical issues, and to changes in viewpoint. For example, in

the presence of non-ordered preferences, one is led to the problem of choosing selections of

functions of two variables, continuous in one and measurable in the other.107 Even without

non-ordered preferences but with weakened continuity hypotheses on payo�s, it is fruitful to

regard a player as a continuous function from societal responses to a space of preferences, and

this leads to deeper topological questions.108 Similar changes in viewpoint have proved useful in

the case of uncertainty and imperfect information where the space of characteristics is enlarged

to include a sub-�-algebra for each player, which leads to the formulation of a measurable

structure on the space of sub-�-algebras of a given �-algebra.109 Re�nements of the concept

of Nash equilibrium are also considered in the setting of large games.110 Yet another example

is a focus on the space L(T;M(A)) of so-called Young measures, and the use of this as a
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unifying framework.111 Whereas it is incontestable that this work has incorporated a variety

of additional considerations into one comprehensive framework, we leave it to the reader's

judgement to determine what new game-theoretic phenomena have been brought to light.

13 A Catalogue of Applications

Any discussion of applications must begin with Cournot (1838).112 As noted by Roberts,

he was the \�rst to make the role of large numbers explicit in his analysis [of] quantity-

setting noncollusive oligopoly, [and his] model yields prices in excess of marginal costs with this

divergence decreasing asymptotically to zero as the number of �rms increases."113 In addition

to numerical negligibility, Cournot also raised the question of product diversity.

The e�ects of competition have reached their limit when each of the partial produc-

tions Dk is inappreciable, not only with respect to the total production D = F (p)

but also with respect to the derivative F 0(p) so that the partial production could

be subtracted from D without any appreciable variation resulting in the price of

the commodity. This hypothesis is the one which is realized, in social economy, for

a multitude of products, and, among them, for the most important products. It

introduces a great simpli�cation into the calculations.114

A particularly vigorous aspect of the research program initiated by Cournot concerns

what Mas-Colell (1982b) has termed the Cournotian foundation of perfect competition. \Un-

der the Negligibility Hypothesis the Cournot quantity-setting equilibrium is identical with the

Walras price-taking equilibrium. Every seller has an in�nitesimal upper bound on how much it

can sell. Therefore no seller can inuence aggregate production; hence no seller can inuence

the price system." This non-cooperative justi�cation of the price-taking assumption leads nat-

urally to the question of the minimum eÆcient scale of production and, more generally, to the

optimality properties of Nash equilibria.115 Indeed, once one recognizes that \price-taking be-

havior is, in a mass market, the natural consequence of message-taking behavior," it is a short

step to the result of Hammond (1979a, 1979b) that a competitive equilibrium is \incentive

compatible" in a continuum economy in the sense that no single agent can inuence the terms

of trade by deviations from \straightforward behavior."116 We are thus led to the imposition

of game-theoretic structures and thereby to the literature on implementation and mechanism

design for the allocation of resources in a large economy.117
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A canonical example of an anonymous mechanism is of course the Walrasian equilib-

rium, and the relevance of a Nash equilibrium for the existence of a Walrasian equilibrium

is well-understood.118 Indeed, once one considers Walrasian equilibria in environments with

widespread externalities,119 player interaction is no longer limited to dependence only on the

mean message, and we loose the so-called aggregation axiom which has played a crucial role

in the convergence and implementation literature. Without it, we are led to monopolistic

competition.120 As observed by Samuelson (1967), it was \Chamberlin's contention that pro-

liferation of numbers alone need not lead to perfection of competition. [It] does not mean that

the limit as N ! 1 is zero-market imperfection. Instead the limit may be at an irreducible

positive degree of imperfection. It is an increase, in some sense, of the density of numbers

that everybody recognizes to be the relevant situation that needs to be appraised." There is

now a substantial literature that attempts a formulation of Chamberlin-Robinson imperfect

competition as a large game.121

The inadequacy of numerical negligibility as a sole desideratum for optimality is most

transparent in the case of information, and here one has to formalize what one means by the

proposition that \when agents are informationally small, the ineÆciency due to asymmetric

information is small."122 However, with a viable analytical framework for discussing both types

of negligibility, there is an emerging literature on the microfoundations of macroeconomics.123

This includes economics of search,124 and of the foundation of the �rm.125 Indeed, the im-

portance of economic environments with many agents is ubiquitous, and limited only by the

imagination and technical competence of the investigator. A selective list would certainly in-

clude applications to the stock market,126 stochastic rationing mechanisms,127 design of tax and

subsidy schemes for attaining second-best equilibria,128 voting models,129 evolutionary game

theory,130 and the economics of fashion and \social inuences".131

14 Conclusion

There are two distinct motivations for the study of non-cooperative games with many players.

On the one hand, they delineate qualitative changes in the resolution of particular problems,132

and on the other, they allow formulation of questions that have resisted formal treatment.

Thus, in opposition to �nite games, Nash equilibria of large games are eÆcient, their pure

strategy versions exist, and in models with enough institutional features, these games are well-

suited for studying incentives in a variety of industrial structures, particularly monopolistic

competition. However, when we take stock and evaluate where we currently stand relative
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to the work of Cournot and Nash, it may be worthwhile to keep in mind the distinction

between technical and conceptual advances emphasized by von Neumann-Morgenstern. On a

technical level, we certainly have a more sophisticated understanding of the importance of the

precise form of player-interdependence and of di�erent kinds of measurable structures, and these

become especially important with in�nite action sets, widespread externalities, and independent

shocks. In this case, distribution and integrals assume separate and distinct identities, and the

importance of geometry and Lyapunov's theorem, already explicit in Dvoretsky, Wald and

Wolfowitz, and brought to the fore by Aumann, shades into probability and the law of large

numbers for a continuum of random variables. On a conceptual level, however, the extent to

which the mathematical theory of large games currently o�ers a canonical model and an array

of uniform techniques for handling a variety of important applications, remains to be seen in

the future.
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competition."
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stern (1944 edition) rather than from Cournot (1838); see Nash (1950), as well as the more detailed
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8After the statement that the \references can still be counted on the �ngers of one hand," Aumann
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space in the setting of large games.
15Theorem 1 in its precise form is due to Ma (1969); see also Fan (1966). The hypothesis of
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16This existence proof is furnished in Nash (1950). Since the payo� function is a \polylinear form
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reader loses nothing of substance by thinking of each At as the unit interval. However, since we are no

longer dealing with �nite action sets, the compactness hypothesis needs to be made explicit.
18The use of the weak� topology in this context goes back to Glicksberg (1952); for details,

see Billingsley (1968) and Parthasarthy (1967). Note also that Glicksberg did not utilize any metric

hypothesis on the action sets; see Khan (1989) for dispensing with this hypothesis in another context.
19For measures on in�nite product spaces, see, for example, Ash (1972; Section 2.7 and 4.4) or

Lo�eve (1977; Sections 4 and 8). For Fubini's theorem, see, in addition to these references, Rudin (1974;

Chapter 7).
20The compactness of M(At) is a basic property of the weak� topology known as Prohorov's

theorem; see, for example, Billingsley (1968) or Parthasarathy (1967). The quasi-concavity of ut is

straightforward, and its continuity follows from Proposition 1 below. One can also furnish a direct proof

based on the Schauder-Tychono� theorem along the lines of Nash (1951), as in Peleg (1969).
21De�nition 1 and Proposition 1 are due to Peleg (1969), who should be referred to for a proof.
22It is worth pointing out here that there are both countably additive and non-countably additive

correlated equilibria in the example below; see Hart-Schmeidler (1989) for a discussion and references.
23If e denotes an in�nite sequence of 1's and en the sequence with 1 in the �rst n places and 0

everywhere else, the sequence fengn2IN converges to e; but ut(en) is 1 for all n � 1 while ut(e) is -1.
24See Ash (1972; Section 7.2) or Lo�eve (1977; Section 16.3).
25If each player is allowed to attach equal probability to the outcome under the zero-one law,

there would be a mixed strategy Nash equilibrium. For the implications of introducing individual

subjective mappings from the probabilities formalizing societal responses to the space of probabilities

on probabilities, see Chakrabarti-Khan (1991).
26As discussed in the introduction, this is necessitated by the needs of mathematical analysis.

For interpretive diÆculties, and even absurd results, that follow from �nitely additive measures, see, for

example, Hart-Schmeidler (1989) and Sun (1999c).
27There is little doubt that an extension to di�erent action sets can be obtained by working with

the hyperspace of closed subsets of a complete separable metric space. This idea is standard in general

equilibrium theory; see Hildenbrand (1974; particularly Section B. II). For the use of this hyperspace in

another relevant context, see Sun (1996b and 1999b).
28The motivation for this will become apparent when we turn to the special case of �nite games

with private information. One may draw a contrast here with Chakrabarti-Khan (1991) where the pa-

rameter ` is allowed to vary with each player deciding for herself how to conceive of societal strati�cation.
29This assumption shall also remain in force throughout the next section. However, nothing of

substance is lost if the reader thinks of the set A; at �rst pass, as consisting of only two elements.
30As noted in the introduction, Schmeidler (1973) considered the case that ` = 1 and A is �nite.
31This is in itself a special case of the result in Bollob�as-Varopoulos (1974), whose paper should

be referred to for a proof based on the theorems of Hall and of Krein-Milman. For the proof of the special
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case used here, see Rath (1996a). For the proof of the case where A is a �nite set, see Hart-Kohlberg

(1974; pp. 170-171) and Hildenbrand (1974; p. 74).
32As discussed above, Nash (1950) is the relevant benchmark. The analogy with the theory of

integration of a correspondence reported in Aumann (1965) should also be evident to the reader.
33See Artstein (1983), Hart-Kohlberg (1974), and Sun (1996b). For approximate results, see these

papers and Hart-Hildenbrand-Kohlberg (1974) and Hildenbrand (1974). For an expositional overview,

see Khan-Sun (1997) and Sun (1999b).
34The proof is an exercise, but one needs the metrizability property of the weak� topology on

M(A); see Khan-Sun (1996b) for details. As emphasized above, this puri�cation result is a generalization

of the corresponding result of Dvoretsky, Wald, and Wolfowitz to the case of countable actions.
35See Lemma 1 and its proof in Khan-Sun (1995b). For full details of the proof of Proposition 6,

see Khan-Sun (1995b; Section 3).
36The �rst assertion is Berge's (1959; Section III.6) maximum theorem, and the second is its

measure-theoretic version; see Castaing-Valadier (1977; Theorems III.14 and III.39) and Debreu (1967).

An exposition of these results in the context of game theory is available in Khan (1986b). For the full

details of the proof of Theorem 2, see Khan-Sun (1995b).
37A detailed elaboration of this subject is beyond the scope of this chapter; see Chapter 41 of

this Handbook.
38We con�ne ourselves to settings where all the players have an identical action set, and there are

no information or type variables that are common to all of the players. For these essentially notational

complications, as well as for the details of the computations involved in the proofs below, see Khan-Sun

(1995b).
39Recall that the hypothesis of a countable compact metric action set is in force.
40For the �rst, see Aumann et al. (1983); and for the second, Milgrom-Weber (1985; Footnote

18), Khan-Rath-Sun (1999), and Khan-Sun (1999). The possibility of a positive result without the

severe cardinality restrictions is suggested in Fudenberg-Tirole (1991; Theorem 6.2, p. 236).
41This idea is explicit in general equilibrium theory; see Kannai (1970; Section 7), Hart-Hildenbrand-

Kohlberg (1974), and Hildenbrand (1975).
42Also see the formulations of Milgrom-Weber (1981, 1985) and Green (1984).
43This reformulation is due to Mas-Colell (1984a), and comes into non-cooperative game theory

via general equilibrium theory; see Hart-Hildenbrand-Kohlberg (1974).
44The proof of Corollaries 4 and 6 has a somewhat tortured lineage. Corollary 4 in the case of

�nite A was �rst proved directly by Khan-Sun (1987), and the general case in Khan-Sun (1995a, 1995c).

Corollary 6 in the case of �nite A was proved by Mas-Colell (1984a) as a consequence of Kakutani's

�xed-point theorem via results in Aumann (1965). The proof given here is due to Khan-Sun (1994).
45For two di�erent proofs, one based on the Douglas-Lindenstrauss theorem and the other on a

direct construction of suitable measures, see Khan-Sun (1995a).
46See Examples 1 and 2 in Rath-Sun-Yamashige (1995). The fact that they are also false without

the cardinality assumption on A will be dealt with in detail below.
47This correspondence has a canonical status in general equilibrium theory and goes back at least

to Debreu; see Kannai (1970; Section 7).
48Let f be such a measurable selection, and let E = ft 2 [0; 1] : f(t) 2 [0; 1]g: Then ��(E) =

�(f�1(E)) = �(E): Since �� = (1=2)�; �(E) = 0; and hence ��([�1; 0]) = �f�1([�1; 0]) = �(ft 62
Eg) = 1; a contradiction.

49This is Example 3 in Rath-Sun-Yamashige (1995); see also Section 2 in Khan-Rath-Sun (1997a).
50See Billingsley (1968; p. 237-238) or Hildenbrand (1974; p. 49) for a de�nition.
51This furnishes the possible interpretation that there is a \bound on the diversity of payo�s." At

any rate, it shows that nonexistence has nothing to do with the measurability of the function specifying

the game.
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52This assertion, though elementary, requires some delicate computations; see Khan-Rath-Sun

(1997b) for details.
53As in Schmeidler (1973), but see Rauh (1997) for formulations involving higher moments.
54When ` equals one and the Lebesgue interval ([0; 1];B([0; 1]); �) is the space of players' names,

Schmeidler (1973) presents this result with A being the unit simplex in IRn, and Rath (1992) proves the

general case. Note that Remark 4 in Schmeidler (1973) does not cover this general case since a general

utility function on a compact set A is usually not relevant to any quasi-concave function on the convex

hull of A.
55For Lyapunov's theorem, see Lyapunov (1940) for the original statement; and Jamison (1974),

Castaing-Valadier (1977), Diestel-Uhl (1977), and Loeb-Rashid (1987) for modern treatments. For a

proof of Proposition 7, see Aumann (1965, 1976) and Hildenbrand (1974).
56This direct proof is due to Rath (1992). The proof in Schmeidler (1973) for the case that A is

the unit simplex in IRn is based on a a puri�cation argument.
57Distributions are emphasized, for example, in Milgrom-Weber (1981, 1985), Mas-Colell (1984a)

and, in the context of general equilibrium theory, in Hart-Hildenbrand-Kohlberg (1974) and Hildenbrand

(1975).
58We follow the terminology of the mathematical literature in reserving the term \vector integra-

tion" for integration of functions taking values in an in�nite-dimensional space; see Diestel-Uhl (1977)

and their references.
59Note the abuse of notation in expressing the value of the probability measure g(t) at B 2 T ;

by g(t;B):
60See Khan-Rath-Sun (1997a; Section 3) for details of these claims.
61For the basic de�nitions, see, for example, Royden (1968; Chapter 10) or Rudin (1973).
62See Diestel-Uhl (1977; Chapter II). For early applications of this integral in mathematical

economics and game theory, see Bewley (1973) and Khan (1985a, 1986a).
63For basic properties of the weak and weak� topologies, see Diestel (1984). For di�erent notions

of measurability and their interrelationships, see Talagrand (1984).
64Since we are ignoring the predual, the above discussion can really be phrased in terms of any

separable Banach space X: We may also point out here that there is yet another integral based on the

reduction of a vector function to a real-valued function by evaluating it with respect to elements of its

dual rather than its predual. This leads to the Pettis integral, a more elusive notion about which we

shall have nothing to say here; see Talagrand (1984) for details and further references.
65See Khan-Sun (1996a) for details of proof.
66See Sun (1997) for counterexamples, and Khan-Sun (1997) and Sun (1999b) for an expositional

overview; also Rustichini (1989).
67For any f 2 L1(�;X); jjf jj1 =

R
T
jjf(t)jjd�; see Diestel-Uhl (1977; Chapter II) for details.

68For any f 2 Lw
1
(�;X�) jjf jj1 = ess supt2T jjf(t)jj; see Dincleanu (1973).

69The �rst statement in the proposition below is due to Diestel (1977); see Khan (1984) for an

alternative proof based on James' theorem. The second statement is a consequence of the Banach-

Alaoglu theorem; see Castaing-Valadier (1977; Chapter V). For a leisurely discussion of the importance

of these results for large games, see Khan (1986b).
70Thus, in contrast to the model of section 2, instead of an arbitrary product of the players'

actions, we assume measurable \pro�les" of such actions. In contrast to the models of Sections 3 and

6, the situations considered here can be conceived as one of \widespread" externalities. Note, however,

that this terminology has a di�erent meaning in the work of Hammond (1995, 1998, 1999).
71The reason for this is that compact sets in the norm topology sets are \small"; a norm compact

set in any normed linear space is contained in the closed convex hull of a sequence converging to zero;

see Diestel (1984; Theorem 5; p. 3). However, see Toussaint (1984). We may also point out here that

the hypothesis of weakly compact action sets guarantees that weakly measurable pro�les are strongly
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measurable as a consequence of the Pettis measurability theorem; see Diestel-Uhl (1977; Chapter II)

and Uhl (1980).
72We shall use the notation ext(A) to denote the set of extreme points of a set A: Note that in

Corollary 8 below, ext(M(A)) is the set of Dirac measures on A:
73See Section 4.2 above for de�nitions and comparisons.
74See Diestel-Uhl (1977; Chapter IX) for discussion and counterexamples. In particular, they

observe that the examples \suggest that nonatomicity may not be a particularly strong property of

vector measures, particularly from the point of view of the Lyapunov theorem in the in�nite dimensional

context."
75We leave it to the reader to develop the approximate analogues of Proposition 7; for details of the

theory, see Hiai-Umegaki (1977), Artstein (1979), Khan (1985a), Khan-Majumdar (1986), Papageorgiou

(1985, 1987, 1990), Yannelis (1991a).
76For a detailed proof of Theorem 4, see Khan (1985b, 1986a). The proof of Corollary 7 exploits

the convexity hypothesis of M(A); see Mas-Colell (1984a) and Khan (1989) for a direct proof. For the

details of proofs of Corollaries 8 and 9, see Schmeidler (1973), Khan (1986a), Pascoa (1988b, 1993b).

Alternative direct proofs of these corollaries based on the ideas of Rath (1992) and the approximate

integration theory discussed in Section 8.2 can also be furnished. The proof of Theorem 5 is a routine

consequence of Proposition 8; see Khan-Rath-Sun (1997a) for details.
77For details as to these properties, see Khan-Rath-Sun (1997a). This function can be traced to

Lyapunov; see Diestel-Uhl (1977; Chapter IX).
78In hindsight, one sees the same emphasis in the papers of Dvoretsky, Wald and Wolfowitz. It is

also worth mentioning that Aumann concludes his paper by deferring to subsequent work a discussion

of \the economic signi�cance of the Lebesgue measure of a coalition." However, Debreu (1967) did point

out \the identi�cation of economic agents with points of an analytic set seems arti�cial".
79In addition to Loeb (1975), see Cutland (1983), Hurd-Loeb (1985), Lindstrom (1988), Anderson

(1991, 1992), and Khan-Sun (1997).
80The relevant analogy is to the situation when a a user of Lebesgue measure spaces can a�ord

to ignore the construction of a Lebesgue measure, and the Dedekind set-theoretic construction of real

numbers on which it is based.
81The importance of Loeb measure spaces for game theory and mathematical economics is dis-

cussed, in particular, in Anderson's Chapter 14 in this Handbook; also see Rashid (1987), Anderson

(1991), Khan-Sun (1997), and Sun (1999b).
82The �rst proposition is due to Sun (1996b, 1997) and the second to Keisler (1988; Theorems

2.1 and 2.3); see Khan-Sun (1997) and Sun (1999b) for expositional overviews. The fact that the second

proposition is false for Lebesgue spaces was known to von-Neumann (1932).
83This is a speci�c instance of a Loeb measure space based on the hyper�nite set N! = (1; � � � ; !);

where ! is an \in�nitely large" integer, endowed with the counting probability measure on the set N!

of all internal subsets of N!: It is obtained by taking the \standard part" of the values of this �nitely

additive measure to obtain a countably additive measure and then its extension to the completion of

the smallest �-algebra containing N!: For details, see the references in Footnote 79 above.
84See Khan-Sun (1999; Section 7) for details.
85See Mas-Colell-Vives (1993; paragraph 2), who begin with the statement, \We have argued

elsewhere (see Mas-Colell (1984 a and b), Vives (1988)) that strategic games with a continuum of

players constitute a useful technique in economics."
86For a de�nition, see Billingsley (1968) or Parthasarathy (1967), and in the context of economic

application, Hildenbrand (1974).
87Thus, as in Section 3 but now without countability requirements on A; Ud

A is the space of

real-valued continuous functions on A �M(A)`; endowed with its sup-norm topology and with B(Ud
A)

its Borel �-algebra.
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88For a detailed treatment of the asymptotic theory, see Khan-Sun (1996b, 1999). Note that

this theory furnishes approximate results for the large but �nite case rather than for an idealized limit

setting as in Milgrom (1981, 1985), Aumann et al. (1983), Khan (1986a), Hausman (1987), Pascoa (1988,

1993b). Note also that these results have nothing to say about the rate of convergence problem as in

Mas-Colell (1998), Kumar-Satterthwaite (1985), Gresik-Satterthwaite (1989), Satterthwaite-Williams

(1989). Also see Rashid's (1983, 1985, 1987) work based on the Shapley-Folkman theorem for games

with a �nite number of players and a common �nite action set.
89Note that �ni g

�1
n is the distribution on A induced by the restriction of gn on Tn

i and is given

for any i = 1; � � � ; `; by (1=jTn
i j)
P

s2Tn

i

Ægn(s) where for any a 2 A, Æa denotes the Dirac measure at a.
90This particular advantage of the nonstandard model, stemming from the simultaneous exploita-

tion of �nite and continuous methods, is by now well-understood; see Rashid (1987), Anderson (1991),

Sun (1999b) and their references.
91See Section 2.2 titled \Robinson Crusoe" Economy and Social Exchange Economy in von

Neumann-Morgenstern (1953; pp. 9-12).
92See, for example, the references in Feldman-Gilles (1985), Aiyagari (1994), Sun (1998a, 1999a),

and Barut (2000).
93See Sun (1998b; Proposition 1) for details of a proof based on Fubini's theorem and the unique-

ness of Radon-Nikodym derivatives. Earlier versions of this result are shown in Doob (1953). For

additional complementary results, as well as an expositional overview, see Sun (1999c) and Hammond-

Sun (2000).
94The �rst result is in Anderson (1976), the second in Keisler (1977) and the third in Sun (1998a).
95For an expositional overview, see Sun (1999b).
96In the context at hand, this implies by a version of Fubini's theorem due to Keisler (1977, 1984,

1988), the measurability of f(�; !) for L( �P )-almost all ! 2 �
, and of f(t; �) for L(��)-almost all t 2 �T :
97See Sun (1999 a and b). The same papers contain the details pertaining to Proposition 14 below.

Note that the extension of the classical law of large numbers to correspondences is well-understood; see

Arrow-Radner (1979), Artstein-Hart (1981) and their references.
98Here Ud

A is the space in Section 3.1 with ` = 1.
99This formulation is due to Green (1984), with further work by Hausman (1987, 1988) and

Pascoa (1993a, 1997). As we have seen in Sections 4.2, 8.2, and 10.3, Mas-Colell's (1984a) formulation

of an anonymous game dispenses with the unit interval and focusses solely on U :
100See Pascoa (1993b) for an approximate theorem in this context.
101The driving force behind this is the fact that any probability measure on the space U � A

can be represented as the induced distribution of a function (i; f) : U � [0; 1] �! U � A; see Hart-

Hildenbrand-Kohlberg (1974; pp. 164-165) and also Aumann (1964), Hausman (1987), Rustichini (1993)

and Khan-Sun (1994) for related arguments. Indeed Hausman (1987) uses this fact as the basis for a

de�nition of large games that are \thick".
102This formulation is due to Jovanovic-Rosenthal (1988) with further work by Mass�o-Rosenthal

(1989), Bergin-Bernhardt (1992), Mass�o (1992), and Chakrabarti (2000).
103This is an important consideration especially in the context of applications to the existence

of competitive equilibrium, and constitutes so-called \generalized games" or \abstract economies"; see

Hausman (1987, 1988), Khan-Sun (1990), Tian (1992 a and b), and Toussaint (1984); the last one is set

in the context of an arbitrary index of players.
104See Balder (1991), Khan (1989) and Rath (1996b).
105For action sets in a �nite-dimensional space, see Khan-Vohra (1984). For general action sets,

see Khan-Papageorgiou (1987a and b), Khan-Sun (1990), Kim-Prikry-Yannelis (1989), and Yannelis

(1987). For diÆculties of interpretation in the context of non-anonymous games, see Balder (2000).
106For the last four aspects, see Balder (1991, 1996), Chakrabarti-Khan (1991), Khan-Rustichini

(1991, 1993), Kim-Yannelis (1997), and Shieh (1992).
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107These are the so-called \Caratheodory selections"; see Artstein-Prikry (1987), Khan-Papageorgiou

(1987a), Kim-Prikry-Yannelis (1987, 1988), and Yannelis (1991b).
108See Khan (1989) and Khan-Sun (1990), where the space of upper semi-continuous functions on

the action set are topologized by the hypotopology of Dolecki-Salonetti-Wets, and the space of players

by the compact-open topology.
109See Khan-Rustichini (1991), Chakrabarti-Khan (1991), and Balder-Rustichini (1994).
110See Rath (1994, 1998).
111See Balder (1995a and b) who makes an \externality mapping" an integral part of the de�nition

of the game; also Valadier (1993), and Balder (1999a and b).
112Indeed, what we have been referring to as Nash equilibria are also termed Cournot-Nash

equilibria, Nash-Cournot equilibria, or simply Cournot equilibria: Dubey et al. (1980), Allen (1994),

and Novshek-Sonnenschein (1983) are respective examples.
113The quote is taken from the two di�erent entries listed under Roberts (1987).
114See the �rst paragraph of Chapter VIII titled Of Unlimited Competition in Cournot (1838).
115The quote is from Mas-Colell (1998); also see Jaynes et al. (1978), Mas-Colell (1980, 1983,

1984b), Novshek (1980), Novshek-Sonnenschein (1978, 1980, 1983), Postlewaite-Schmeidler (1978), and

Roberts-Postlewaite (1976). Questions of the rate of convergence are explored in Gresik-Satterthwaite

(1989) and Satterthwaite-Williams (1989). Price-setting competition is explored in Allen (1994), Allen-

Hellwig (1986 a and b, 1989), Gabszewicz-Vial (1972), and Roberts (1980).
116An intuitive suggestion of such a result was given by Hurwicz (1972). See also Dubey et al.

(1980; p.340).
117See Myerson's Chapter 24 in this Handbook. The literature is voluminous but the basic refer-

ences for environments with a continuum of agents are Dubey et al. (1980), Hammond (1979a, 1979b),

Champsaur-Laroque (1982), Mas-Colell-Vives (1993), and Herv�es-Beloso et al. (1999). Makowski-

Ostroy (1987, 1992) discuss the importance of large numbers in the context of a speci�c mechanism.

See Cordoba-Hammond (1998) for some asymptotic results. For an overview, see Sonnenschein (1998)

and his references.
118The basic insight is of course that of Arrow-Debreu (1954) and has engendered the literature

on abstract economies; see Debreu (1952), Shafer-Sonnenschein (1975). Khan-Vohra (1984), Balder-

Yannelis (1991), Yannelis (1987) consider this in an environment with a continuum of agents; see Balder

(2000) for a critique.
119As in McKenzie (1955), Chipman (1970), Shafer-Sonnenschein (1976), and Hammond (1995,

1998, 1999). For the speci�c form of externality stemming from public goods in the sense of Samuelson

(1954), see Khan-Vohra (1985), Sonnenschein (1998), and their references.
120See Dubey et al. (1980; p. 346), in particular, for a defence of this axiom. However, as

they observe, there are environments where \the concept of mean ... is ... irrelevant to the equilibrium

problem. It may not even be de�ned."
121See Hart (1979a, 1980, 1982, 1984), and Mas-Colell (1984b) for an asymptotic setting, and

Pascoa (1988, 1993a) for the continuum.
122We have already seen the importance of di�use information in Section 4.1. One can alterna-

tively consider the set-up of a large exchange economy, as in Gul-Postlewaite (1992), or of bargaining,

as in Mailath-Postlewaite (1990), or of an industry, as in Rob (1987).
123See Jovanovic-Rosenthal (1988) for a sketch of such a research program.
124See Lucas-Prescott (1974), Rauh (1996, 2000a, 2000b), and the McMillan-Rothschild Chapter

27 in this Handbook.
125As Hart (1979b) observes, \If each �rm is negligible relative to the aggregate economy { a

�rm's shareholders will want the �rm to maximize the (net) market value of its shares." Also see Kelsey-

Milne (1996), Kihlstrom-La�ont (1979), and Lucas (1978). It is of interest that Kelsey-Milne rely on

results established for an abstract economy in Khan-Vohra (1984).
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126Constantinedes-Rosenthal (1984), Hart (1979a), Haller (1988b), Kihlstrom-La�ont (1992), Nti

(1988).
127See Gale (1979), Weinrich (1979) and their references.
128See Guesnerie (1981, 1995) and Dierker-Haller (1990); also Mas-Colell-Vives (1993).
129We began this chapter with a statement of Shapiro-Shapley on the relevance, in principle, of

large games to the study of voting behavior in large societies; for recent work, see Chapters 29 and 30

in this Handbook, and the relevant section in Jovanovic-Rosenthal (1988). Also see Khan (1998) for the

relevance of large games to questions of a more interdisciplinary nature.
130See Wieczorek (1996) and the Hammerstein-Selten Chapter 28 in this Handbook.
131See Karni-Schmeidler (1990), and for an application to restaurant pricing, Karni-Levin (1994).
132This motivation was already stressed in another context by Aumann (1964), where he is less

than enthusiastic about generalizations where such changes do not obtain. Referring to the examination

of Edgeworth's conjecture in the context of in�nite commodities, he writes \This would serve no useful

purpose. Our result holds for any number of commodities, many or few, so there is nothing to be gained

by considering only the case of `many' commodities."
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