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Abstract

We explore the evolution of the structure and performance of a social network in

a population of individuals who search for local optima in diverse and dynamic task

environments. Individuals choose whether to innovate or imitate and, in the latter

case, from whom to learn. The probabilities of these possible actions respond to

an individual’s past experiences using reinforcement learning. Among some of our

more interesting findings is that a population’s performance is not monotonically

increasing in either the reliability of the communication network or the productivity

of innovation. (Note: The pdf file of this paper contains figures in color and in black

& white. We recommend the latter for a black & white printer.)
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networks with Rob Axtell and Steve Durlauf. This research is supported in part by the National Science

Foundation through Grant SES-0078752.
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1 Introduction

The acceleration of scientific progress in seventeenth century Western Europe is often

attributed to the founding of learned societies and improved communication among con-

temporary researchers:

Here was a widely dispersed population of intellectuals, working in different

lands, using different vernaculars - and yet a community. What happened in

one place was quickly known everywhere else, partly thanks to a common

language of learning, Latin; partly to a precocious development of courier and

mail services; most of all because people were moving in all directions. In

the seventeenth century, these links were institutionalized ...... in the form of

learned societies with their corresponding secretaries, frequent meetings, and

periodical journals. [Landes (1998), pp.204-205]

The emergence of such formal and informal networks of scientists, triggered by im-

provements in communication technology and transportation, marked the beginning of

the institutionalization of scientific investigation which eventually paved the way to the

Industrial Revolution.

The latter half of the twentieth century has seen another major explosion in the for-

mation of such networks and informal communities. Thanks to the advent of the Internet

and the World Wide Web, the time delay in acquiring information has shrunk from weeks

(or, at best, days and, at worst, months) to minutes. In the communities of research

scientists, learning what others are working on and what methods they are deploying pre-

viously required mailing letters requesting working papers, frequent trips to professional

meetings and workshops, and laborious search in the dust-covered library stacks.1 All

this has changed dramatically in recent years. A letter sent using the postal service is

replaced with an email which arrives at the desktop of the other party within seconds

or directly downloading the paper off of the individual’s website. What is more, there

exist on-going projects that facilitate dissemination of research over the Internet via a

decentralized database of working papers, journal articles, and software components.2

1See Liberman and Wolf (1997) who investigate knowledge flows from conferences.
2RePEc (Research Papers in Economics) at “http://repec.org,” an international collaborative project

in Economics, links various sources of research publications in over 30 countries and enable their distri-

bution via electronic media. As of November 2002, they report that the “RePEc database holds over

176,000 items of interest, over 85,000 of which are available online.” Also, as of November 2002, SSRN

(Social Science Research Network) at “http://www.ssrn.com” claims to have in its eLibrary an abstract
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Downloading a working paper is now merely a matter of pointing a cursor and clicking.

The library, a physical institution that was once the hallmark of academic community, is

gradually disappearing into the network of connected computers which allow us to search,

check out, and read material at our desktop PCs.

The three hundred years of separation notwithstanding, these two episodes share a

common element; the prominent role played by the social learning network in achieving

and sustaining scientific progress at the macro level from the chance occurrences of local

innovations scattered across wide geographic areas. Furthermore, these issues are not

unique to scientific processes but also apply to markets and organizations; for what at

work is quite fundamental - finding better solutions to a stream of problems. Given this

relationship between local innovations and social learning via community networks, what

are the implications for an individual’s decision to engage in independent innovation or

to access the social network for observing the ideas of others? If the networks themselves

are an outcome of interactive choices among individuals as to whom to observe and whom

to ignore, what are the determinants of their emergent structure? Will an improvement

in communication technology be sufficient to generate superior performance at the indi-

vidual and the community level or are there other complementary factors essential for a

social network to realize these potential gains? Our objective is to explore these issues by

building an agent-based computational model of an evolving social network with poten-

tially innovative individuals and analyzing its emergent structure as well as its long run

performance.

The model developed in this paper encompasses several generic features of these

processes. First, agents are faced with problems to solve which we model as trying to

achieve a local optimum in the space of possible things that one can do.3 This optimum is

uniquely defined for each individual, where similarity among optima is to be interpreted as

similarity in the problems being solved. Second, agents must choose how to allocate their

effort between individual learning (innovation) and social learning (imitation). When they

engage in learning from others, an agent must decide from whom to learn which takes the

database of over 44,900 working papers and forthcoming papers as well as an electronic paper collection

of over 25,400 downloadable full text documents.
3 In defense of this view, we appeal to Kuhn’s (1962) interpretation of “normal science as puzzle-solving”

in which a scientist is someone driven by the desire to search for a solution (a goal yet unknown) to the

problem at hand: “Bringing a normal research problem to a conclusion is achieving the anticipated in a

new way, and it requires the solution of all sorts of complex instrumental, conceptual, and mathematical

puzzles. The man who succeeds proves himself an expert puzzle-solver, and the challenge of the puzzle

is an important part of what usually drives him on.” [Kuhn (1962), p.36]
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form of establishing links in a social network. These choices are made probabilistically

and the probabilities are adjusted over time based on personal experience. This modeling

structure allows us to examine the emergent structure of the social network in terms of

how observation probabilities are distributed across individuals as well as to track the

evolving choice between innovation and imitation for each individual. Our model also

captures the fact that the actual outcomes of these efforts tend to have a substantial

random aspect with a hint of serendipity.4 Third, all of this occurs in the context of a

changing environment as represented by stochastic movement in optima. This captures

the fact that individuals don’t typically solve one problem once and for all but instead

must solve a sequence of problems which, to varying degrees, can at least partially be

solved using solutions to previous problems.

This model is used to explore how the innovativeness of individuals and the reliability

of the communication technology impact network structure and performance and how

those relationships depend on the characteristics of the environment. Several interesting

properties emerge. When communication technology is sufficiently poor, the results are

quite intuitive. For example, performance is improved by enhancing the reliability of

communication and making agents more productive in innovation. However, when com-

munication is sufficiently efficacious, further enhancement of it can actually be detrimental

to performance. The intuition is that the increased social learning from a more reliable

network leads to local homogenization of agents in terms of their solutions to problems.

This lack of diversity within the social network results in a population of agents who are

ill-equipped to adapt to a changing environment. Second, when reliability is of moderate

quality, a rise in the productivity of innovation can be deleterious to average performance

in the population. The key insight here is that imitating others is both a social good and

a social bad. Engaging in imitation fails to add to the stock of knowledge but it does serve

to spread worthwhile ideas. Thus, an agent who imitates is improving the value of the

network which can enhance collective performance. When network reliability is moderate,

agents may be engaging in too much individual learning from a societal perspective; it

4See Mokyr (1990), p.152: “Over most of human history, technological change did not take place, as it

does today, in specialized research laboratories paid for by research and development budgets and following

strategies mapped out by corporate planners well-informed by marketing analysts. Technological change

occurred mostly through new ideas and suggestions occurring if not randomly, then certainly in a highly

unpredictable fashion. Demand conditions may have affected the rate at which these ideas occurred, and

may have focused them in a particular direction, but they did not determine whether a society would be

technologically creative or not.”
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might be better to tap into the network to pass along ideas and develop more useful links

(which can only be achieved through experience). By making agents more innovative,

this induces agents to use the network even less and thereby exacerbates the problem of

a poorly developed network and inadequate sharing of ideas. A third property is that

when network reliability is low, the social network is less structured when agents are more

innovative. The simple reason is that they choose to engage in more individual learning.

Since they then access the network less, they are less effective in developing worthwhile

links. When network reliability is high, however, the structure of the social network and

the capacity for innovation move together. This is driven by the fact that the quality

of a network, in terms of the population possessing a diverse array of useful ideas, rises

with the productivity of innovation. But that quality cannot be adequately tapped if

reliability is low. A more structured network emerges when both the reliability and the

quality (which depends on the capacity for innovation) of the network are high. While

innovation and imitation are substitutes at the individual level, they are complements at

the population level through the mechanism of social learning.

Related Work There is obviously an immense literature in sociology on networks.

The social network which arises and evolves endogenously in our model represents a form

of “social capital.” In defining social capital in the context of interdependent rational

actors, Coleman (1990) states:

[The] social relationships which come into existence when individuals at-

tempt to make best use of their individual resources need not only be seen as

components of social structures... [t]hey may also be seen as resources for the

individuals. [Coleman (1990), p. 300]

He further claims “an important form of social capital is the potential for information

that inheres in social relations.” In our model, the role of a social network as social capital

is implicit in the way agents deliberately and constantly adjust the imitation probabilities

on the basis of their experiences. The value of social capital in our context then depends

on the effectiveness with which the evolving network relationships facilitate the diffusion

of existing variations and/or newly generated ideas (innovations). That the value of social

capital depends on the structure of the existing network is central to the “strength of weak

ties” argument of Granovetter (1973, 1974). The literature on structural holes follows

the same line of thinking when it emphasizes the importance of brokers who connect

clusters in the social network (Burt, 1992). The central focus in this line of research,

however, is providing the unidirectional explanation for how the exogenously specified
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network structure affects the level of social capital. It does not tell us how the realized

social capital, which Coleman (1990) views as “resources for the individuals,” feeds back

into the very formation of the social network itself.

An exception is the work of Carley (1990, 1991). She develops a simulation model in

which inter-agent interaction leads to shared knowledge which then determines the likeli-

hood of further interactions. Her model differs from ours in two crucial ways, however.

First, she concentrates purely on the social network as the learning mechanism; individu-

als do not engage in “discovery” or innovation. The dynamic behavior of the network is

then solely driven by the endowed differences in knowledge across individuals. Second,

she specifies the likelihood of interaction between two agents as being determined directly

by the amount of information they share; the larger the set of common information, the

higher is the probability that they will interact again. This formulation is based on

the results from a large body of sociological literature which shows the direct connection

between similarity and interaction. In contrast, our model takes a more bottom-up ap-

proach. We assume that the agents are motivated by private goals. For each agent, the

probability of observing another agent is then adjusted on the basis of the past value of

other agents’ information in attaining his goal. This approach highlights our perspective

that the likelihood of an interaction between two individuals is an emergent outcome and

must be modelled as such. In the end, we do find that the similarity among goals -

which implies a similarity in information required to attain the goals - has a direct impact

on network formation. In this context, our model then provides a more foundational

agent-based explanation for the view that similarity leads to interaction.

There is also a small but growing literature in economics on endogenizing networks.

The typical approach there assumes an exogenously determined value associated a link

between two agents along with a cost that is incurred by one or both agents. Jackson and

Wolinsky (1996) characterizes the properties of a stable network - one in which no agent

wants to create or destroy links. Research that models the dynamic formation of a network

includes Bala and Goyal (2000), Hummon (2000), and Jackson and Watts (2001). They

consider a dynamic whereby agents adaptively their network so as to improve performance.

Though utilizing a distinct approach, a predecessor to these papers is Huberman and Hogg

(1995). This research differs from our model in several substantive ways. First, the payoff

to an agent from a given network is fixed while, in our model, it evolves because what

an agent can learn from another agent evolves. Second, they do not consider an agent’s

choice of innovation versus imitation but focus exclusively on network structure. Third,
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they do not allow agents to adapt their search process in response to experience while, in

our model, this is done through reinforcement learning.

Also within economics, our paper is relevant to the modern literature on endogenous

technical change and economic growth. That work tends to treat social learning as being

exogenous by specifying a spillover parameter applied to a fixed total stock of human

capital, while innovation is typically given central prominence as the endogenous driver

of growth.5 In this literature (see, for example, Romer, 1986, 1990; Grossman and Help-

man, 1991), growth is driven by technological change arising from deliberate investment

decisions made by profit-maximizing agents. We do not deny the fact that innovations

are the raw materials from which sustained economic growth can be generated; indeed,

they are prominent in our analysis. Rather, we claim that the full impact of innovation

on economic growth can not be realized unless accompanied by a properly formed social

learning network. Furthermore, we claim that the formation of such social networks must

be endogenous to the dynamics of any social system.

2 The Model

2.1 Agents, Tasks, Goals, and Performance

Consider a social system consisting of M individuals. Each individual i ∈ {1, 2, . . . ,M}
engages in an operation which can be broken down into N separate tasks. There are

several different methods which can be used for each task. The method chosen by an

agent for a given task is represented by a sequence of d bits (0 or 1) such that there are

2d possible methods available for each task. In any period t, an individual i is then fully

characterized by a binary vector of N ·d dimensions. Denote it by zi(t) ∈ {0, 1}Nd so that

zi(t) ≡ (z1i (t), ..., zNi (t)) and zhi (t) ≡ (zh,1i (t), ..., zh,di (t)) ∈ {0, 1}d is individual i’s chosen
method in task h ∈ {1, ..., N}. An example with N = 24 and d = 4 is given below:

task (h): #1 #2 #3 · · · · · · · #24

task methods (zhi (t)): 1101 0010 1001 · · · · · · · 1110

←− zi(t) −→
5This tendency goes back to Schumpeter (1951) whose theory of economic development focuses on the

rugged, individualistic, and innovative entrepreneur as the agent of change. This focus continues in the

modern literature though the act of innovation has been given a much more deliberate character than

Schumpeter had originally intended.
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Note that there are 16 (= 24) different methods (bit-configurations) for each task. What

is shown above for a given task represents a particular method chosen out of the 16

available methods. Given that the operation is completely described by a vector of 96

(= 24× 4) bits, there are then 296 possible bit-configurations for the overall operation.
In measuring the degree of heterogeneity between two methods vectors, zi and zj , we

shall use “Hamming distance” which is defined as the number of positions for which the

corresponding bits differ:

D(zi, zj) ≡
NX
h=1

dX
k=1

¯̄̄
zh,ki − zh,kj

¯̄̄
. (1)

Each individual possesses a goal vector which may be different from one period to the

next. Let bzi(t) ∈ {0, 1}Nd be the goal vector of agent i in period t. That bzi(t) can differ
across agents implies diversity in agents’ problems or, alternatively, in their environments

so that what is the optimum differs. The degree of turbulence in task environments is

captured by intertemporal variability in bzi(t).
The individuals are uninformed about bzi(t) ex ante, but engage in perpetual search

to get as close to it as possible. Given N tasks with d bits in each task and the goal vectorbzi(t), the period-t performance of individual i is then measured by πi(t), where
πi(t) = N · d−D(zi(t), bzi(t)). (2)

The performance of a social system is measured by how close the individuals are to their

respective goals. We let π(t) denote the population-average performance in period t,

π(t) =
1

M

MX
i=1

πi(t). (3)

2.2 Modeling Innovation and Imitation

In any given period, an individual’s search for an optimum is carried out through two

distinct mechanisms, innovation and imitation. Innovation occurs when an individual in-

dependently discovers and considers for implementation a random method for a randomly

chosen task. Imitation is when an individual selects someone and then observes and con-

siders for implementation some randomly chosen task currently deployed by that agent.6

We further assume for analytical simplicity that a single act of innovation or imitation is

restricted to a single task only.7

6 It may be useful to think of innovation and imitation as being analogous to mutation and crossover,

respectively, in evolutionary biology.
7An idea is then of length d and, in our context, a “task” is the unit of idea and observation.
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Whether obtained through innovation or imitation, an experimental method is actually

adopted if and only if its adoption gets the agent closer to her goal by lowering the

Hamming distance between her new methods vector and her goal vector. For clarity,

consider the following example with N = 5 and d = 2:

agent i’s goal vector: 0 1 1 0 1 0 0 1 0 1

agent i’s current methods vector: 0 1 0 1 1 1 0 0 1 1

The relevant operation has 5 tasks. In each task, there are four distinct methods which

can be tried: (0,0), (0,1), (1,0), and (1,1). The Hamming distance between i’s current

methods vector and her goal vector is then 5. Suppose i observes the method used for

task 4 by another agent j( 6= i ) whose methods vector is:

agent j’s current methods vector: 1 0 1 0 1 1 0 1 0 1

Since j’s method in task 4 is (0,1), when it is tried by agent i, her experimental methods

vector becomes:

agent i’s experimental methods vector: 0 0 0 1 1 1 0 1 1 1

which then reduces the Hamming distance to i’s goal to 4 and, hence, the experimental

methods vector then becomes i’s new methods vector.

2.3 Endogenizing Choices for Innovation and Imitation

In each period, an individual may engage in either innovation or imitation by using the

network. Exactly how does an individual choose between innovation and imitation and,

if he chooses to imitate, how does he decide whom to imitate? We model this as a

two-stage stochastic decision process with reinforcement learning. Figure 1 describes the

timing of decisions in our model. In stage 1 of period t, individual i is in possession

of the current methods vector, zi(t), and chooses to innovate with probability qi(t) and

imitate with probability 1− qi(t). If he chooses to innovate then, with probability µini , he

comes up with an idea which is a randomly chosen task h ∈ {1, . . . ,N} and a randomly
chosen method, zh0i , for that task such that the experimental method vector is z

0
i(t) ≡

(z1i (t), . . . , z
h−1
i , zh0i , z

h+1
i , . . . , zNi (t)). µ

in
i is a parameter that controls the productivity of

an agent’s innovation. This experimental vector is adopted by i if and only if its adoption

lowers the Hamming distance to his current goal vector, bzi(t). Otherwise, it is discarded:
zi(t+ 1) =

 z0i(t), if D(z0i(t), bzi(t)) < D(zi(t), bzi(t)),
zi(t), if D(z0i(t), bzi(t)) ≥ D(zi(t), bzi(t)). (4)
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Alternatively, with probability 1 − µini the individual fails to generate an idea, in which

case zi(t+ 1) = zi(t).

Now suppose individual i chooses to imitate in stage 1. Given that he decides to

imitate someone else, he taps into the network to make an observation. Tapping into the

network is also a probabilistic event, in which with probability µimi the agent is connected

to the network, while with probability 1 − µimi the agent fails to do so. µimi measures

the reliability of the communication technology and thereby the network. An agent that

is connected then enters stage 2 of the decision process in which another agent must be

selected to be studied and possibly imitated. Let pji (t) be the probability with which

i observes j in period t so
P

j 6=i p
j
i (t) = 1 for all i. If agent i observes another agent

l, the observation involves a randomly chosen task h and the current method used by

agent l in that task, zhl (t). Let z
00
i (t) = (z1i (t), . . . , z

h−1
i (t), zhl (t), z

h+1
i (t), . . . , zNi (t)) be

the experimental vector. Adoption or rejection of the observed method is based on the

Hamming distance criterion:

zi(t+ 1) =

 z00i (t), if D(z00i (t), bzi(t)) < D(zi(t), bzi(t)),
zi(t), if D(z00i (t), bzi(t)) ≥ D(zi(t), bzi(t)). (5)

If the agent fails to connect to the network, which occurs with probability 1 − µimi ,

zi(t+ 1) = zi(t).

The probabilities, qi(t) and {p1i (t), . . . , pi−1i (t), pi+1i (t), . . . , pMi (t)}, are adjusted over
time by individual agents according to a reinforcement learning rule. We adopt a version

of the Experience-Weighted Attraction (EWA) learning rule as described in Camerer and

Ho (1999).8 Using this rule, qi(t) is adjusted each period on the basis of evolving attraction

measures, Bin
i (t) and B

im
i (t), for innovation and imitation, respectively. The evolution of

Bin
i (t) and Bim

i (t) follow the process below:

Bin
i (t+ 1) =

 φBin
i (t) + 1, if i adopted a method through innovation in t

φBin
i (t), otherwise.

(6)

Bim
i (t+ 1) =

 φBim
i (t) + 1, if i adopted a method through imitation in t

φBim
i (t), otherwise.

(7)

where φ ∈ (0, 1]. Hence, if the agent chose to pursue innovation and discovered and
then adopted his new idea then the attraction measure for innovation increases by 1

after allowing for the decay factor of φ on the previous attraction level. If innovation

was pursued but was unsuccessful (which occurs if either he failed to generate an idea

8For a discussion of reinforcement learning mechanisms in general, see Sutton and Barto (2000).
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or succeeded in generating an idea but it turned out to be useless) or chose to pursue

imitation instead, then his attraction measure for innovation is simply the attraction level

from the previous period decayed by the factor φ. Likewise, a success or a failure in

imitation in t has the same influence on Bim
i (t+ 1). Given Bin

i (t) and Bim
i (t), one then

derives the choice probability of innovation in period t as follows:

qi(t) =

¡
Bin
i (t)

¢λ¡
Bin
i (t)

¢λ
+
¡
Bim
i (t)

¢λ (8)

where λ > 0. Note that λ is the agent’s sensitivity to attractions.9 The probability of

imitation is, of course, 1 − qi(t). The expression in (8) says that a favorable experience

through innovation (imitation) raises the probability that an agent will choose to innovate

(imitate) again in the future - a positive outcome realized from a course of action reinforces

the likelihood of that same action being chosen again.

The stage-2 attractions and the probabilities are derived similarly. Let Aj
i (t) be agent

i’s attraction to another agent j in period t. It evolves according to the rule below:

Aj
i (t+ 1) =

 φAj
i (t) + 1, if i successfully imitated j in t

φAj
i (t), otherwise.

(9)

∀j 6= i. The probability that agent i observes agent j in period t is adjusted each period

on the basis of the attraction measures, {Aj
i (t)}j 6=i:

pji (t) =

³
Aj
i (t)

´λ
P

h6=i
¡
Ah
i (t)

¢λ (10)

∀j 6= i,∀i, where λ > 0.

There are two distinct sets of probabilities in our model. One set of probabilities,

qi(t) and {pji (t)}j 6=i, are endogenously derived and evolve over time in response to the
personal experiences of agent i. Another set of probabilities, µini and µimi , are exogenously

specified and imposed on the model as parameters. They represent the state of existing

technologies and control the potential capabilities of individual agents to independently

innovate or to imitate someone else in the population via social learning.10 Of particular
9For analytical simplicity, we assume φ and λ to be common to all individuals in the population.
10One may view these as being completely determined by available technologies outside of our model.

For instance, the size of the manuscript libraries may have limited the magnitude of µim in ancient

Alexandria, while the invention of the printing press presumably raised it in the fifteenth century: “Limits

set by the very largest manuscript libraries were also broken. Even the exceptional resources which were

available to ancient Alexandrians stopped short of those that were opened up after the shift from script

to print. The new open-ended information-flow that commenced in the fifteenth century made it possible

for fresh finding to accumulate at an ever-accelerated pace.” [Eisenstein (1979), pp. 517-518]
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interest is understanding how these parameters influence the structure and performance of

the network and the rate of innovation which we will measure by the population-average

level of innovation:

q(t) ≡ 1

M

MX
i=1

qi(t) (11)

2.4 Modeling Turbulence in Task Environment

Central to the performance of a population is how it responds to an evolving environment

or, if we cast this in the context of problem-solving, an evolving set of problems to be

solved. It is such change that makes innovation and the spread of those innovations

through a social network so essential. Change or turbulence is specified in our model by

first assigning an initial goal vector, bzi(0), to each agent and then specifying a dynamic
process by which it shifts over time. In order to provide the possibility of a substantive

network forming, it is critical to allow for some persistent similarity in goals across subsets

of agents. This is achieved by initially partitioning the population into a fixed number of

groups; those agents belonging to the same group tend to have more similar goals - they

are working on similar problems - than those belonging to different groups. As such, for

any given agent there are two broad sources for social learning - another agent in the same

group and another agent in a different group. We expect the efficacy of social learning

to depend on the tightness of the goals within a given group relative to the tightness of

the goals between different groups. To explore this issue, we distribute the initial goal

vectors of agents in a sequence of steps described below.

Letting s ∈ {0, 1}Nd, define δ(s, κ) ⊂ {0, 1}Nd as the set of points that are exactly

Hamming distance κ away from s. The set of points within Hamming distance κ of s is

defined as

∆(s, κ) ≡
κ[
i=0

δ(s, i) (12)

∆(s, κ) is a set whose “center” is s.

Suppose there are J groups in the population and let us randomly allocate the M

agents into these groups. Let ak be the set of agents belonging to group k ∈ {1, 2, ..., J}.
We define gk as the seed vector used to generate the initial goal vectors for all agents in

ak, bzi(0) ∈ ∆(gk, κ) ∀i ∈ ak, ∀k ∈ {1, 2, ..., J} (13)

All agents in ak then have goal vectors which lie within Hamming distance κ of the group

seed vector gk. The diversity among groups is modelled by allowing their group seed
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vectors to differ. Specifically, we define a seed vector U for the entire population and

randomly select the group seed vectors from ∆(U,X); the inter-group tightness of the

goals is controlled through X, the maximum Hamming distance between a group seed

vector and the population seed vector. Of course, the intra-group tightness of the goals

is controlled with κ as described in (13). Figure 2 depicts how these sets are related to

one another. With J = 4, the four group seed vectors are chosen from the set ∆(U,X).

Taking the seed vector for group 2, g2, ∆(g2, κ) is the set of vectors that are within

Hamming distance κ of g2. The initial goal vector for individual i, bzi(0), is then an
element of this set.

In period t, agent i has the current goal vector of bzi(t). In period t+1, his goal stays
the same with probability σ and changes with probability (1 − σ). The shift dynamic

of the goal vector is guided by the following stochastic process.11 The goal in t + 1,

if different from bzi(t), is then chosen iid from the set of points that lie both within the

Hamming distance ρ of bzi(t) and within Hamming distance κ of the original group seed
vector gk. Hence, defining Λ(bzi(t), ρ, gk, κ) as the set of points from which the goal in

t+ 1 is chosen, we have

Λ(bzi(t), ρ, gk, κ) ≡ (∆(bzi(t), ρ) \ bzi(t)) ∩∆(gk, κ). (14)

Figure 2 shows Λ(bzi(t), ρ, gk, κ) as the doubly shaded area which is the intersection of
∆(bzi(t), ρ) and ∆(gk, κ), minus bzi(t). Consequently, bzi(t+ 1) = bzi(t) with probability σbzi(t+ 1) ∈ Λ(bzi(t), ρ, gk, κ) with probability 1− σ

(15)

The goal vector for agent i who belongs to group k then stochastically fluctuates while

remaining within Hamming distance ρ of his current goal and Hamming distance κ of the

group’s initial seed vector. The former condition allows us to control the possible size of

the change while the latter condition allows us to maintain the intra-group tightness of

goals.12 The lower is σ and the greater is ρ, the more frequent and variable is the change,

respectively, in an agent’s goal vector. The higher is κ, the lower is the intra-group goal

congruence. The higher is X, the greater is the inter-group diversity in terms of their

goals.
11Because of the computational intensity inherent in our work, implementing the goal shift dynamics

in a computationally efficient manner is not trivial. In the Appendix is a description of the method

developed.
12 If we had instead allowed an agent’s goal to be a random walk without constraining it to ∆(gk, κ)

then, eventually, the distance between one agent’s goal and another agent’s goal would be independent

of whether they are in the same group so that intra-group tightness would have been lost.
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2.5 Measuring the Network Structure

A social network emerges when individuals rely on observation and imitation of others. A

main structural characteristic of a social network is its concentration: Does an individual

learn from many or from a relatively narrow set of other individuals? In our context,

this question can be addressed by observing the distribution of pji (t)’s. If an individual is

equally likely to imitate any other member of the population - so that pji (t) = 1/ (M − 1)
- there is no order in the social network as imitation is completely (that is, uniformly)

random. Alternatively, if the probability of observing another agent is concentrated on a

single individual - so that pji (t) = 1 for some j - then there is a maximal degree of order

in the network.

An appropriate measure for this purpose is that of Shannon’s (1948) “entropy” which

was originally defined in the context of information theory as an inverse measure of the

information content of a message. In adapting this measure for the context at hand, the

entropy measure for the social network of agent i is defined to be:

Ei(t) ≡ −
X
∀j 6=i

pji (t) · log2 pji (t). (16)

The value for Ei(t) can range from a minimum of 0 to a maximum of log2(M − 1).13
By taking an average of Ei(t) over all individuals in the population, we obtain the mean

entropy of the network system:

E(t) ≡ 1

M

X
i

Ei(t).

We say that the population network structure becomes more ordered (random) as E(t)

decreases (increases).

3 Simulation Design

We consider a population of 20 individuals with identical capacities for learning: µini =

µin and µimi = µim∀i. There are four (J = 4) distinct groups into which these agents

are allocated. Assuming N = 24 and d = 4, there are 96 total bits in a methods

vector.14 The initial methods vectors, zi(0)s, are independent draws from {0, 1}N×d.
13Ei(t) = 0 when the probability mass is entirely concentrated on one particular individual k 6= i so

that pki (t) = 1 and pji (t) = 0∀j 6= k, i. Conversely, maximal entropy is attained at Ei(t) = log2(M − 1) if
observation is equally likely for all individuals, pji (t) =

1
M−1∀j 6= i.

14The search space then contains over 7.9× 1028 possibilities.
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In any time period t, the state variables for individual i are then zi(t),bzi(t), {Aj
i (t)}∀j 6=i,

Bin
i (t), and B

im
i (t). The parameters of the model are µim, µin, φ, and λ, which govern an

individual agent’s decision-making, and X, κ, σ, and ρ, which control the environment by

specifying intra-group and inter-group goal congruence as well as the dynamics of the task

environments. So that results are not driven by the peculiarities of the initial methods

vectors, we will focus on the steady-state behavior of the social system with the particular

intent of understanding how it depends on these agent and environment parameters. The

only exceptions are that φ = 1 and λ = 1 and remain fixed; the attractions do not decay

over time and the individuals are moderately sensitive to attractions. Finally, the initial

attraction stocks are set at Aj
i (0) = 1∀i,∀j 6= i and Bin

i (0) = Bim
i (0) = 1∀i. Hence, an

individual is initially equally attracted to innovation and imitation and has no inclination

to observe one individual over another ex ante. Table 1 provides a comprehensive list of

parameters along with the set of values considered over the course of the simulations.

In each case, the model is run for 20,000 periods. For each period, qi(t) and {pji (t)}j 6=i
are collected as well as the performance of each individual, πi(t). Population averages

were then computed for these time series, thereby giving us E(t), q(t), and π(t) for each

replication. For each parameter configuration, we performed 20 replications - each of

20,000 periods in length - where we had fresh realization of the random variables including

the initial method vectors, the agents’ choices (recall that they are probabilistic), the

outcome of innovation and imitation, the seed vectors, and agents’ optima. The time

series for the relevant variables, such as the entropy and performance measures, were then

averaged over the 20 replications so as to generate the final time series reported here.

Hereinafter E(t), π(t), and q(t) will denote the final time series averaged over these 20

replications.

4 Baseline Simulation15

For the baseline simulation, we considered µin = .5 and µim = .5 so that, when in

the innovation mode, an agent generates an idea 50% of the time and, when in the

imitation mode, an agent observes another agent 50% of the time. The stability of the

task environment is set at σ = .75, so that the local optimum for an individual shifts 25%

of the time, and ρ = 4 so that in case of such a shift, four or less randomly chosen bits in

the goal vector will flip. We also assume moderate intra-group and inter-group diversity

15The source code, written in C++, is available upon request from Myong-Hun Chang.
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by setting κ = 16 and X = 16, respectively.

Figure 3 shows the results from the baseline simulation of the endogenous network.

These results are typical based on many other parameter configurations. The mean

performance of the population, shown in Figure 3(A), increases rapidly early on and

then converges to a steady-state. Towards understanding how the social network evolves,

Figure 3(B) plots the entropy measure. Recall that at t = 0 the attractions are all

identically equal to 1 so, consequently, pji (0) =
1

M−1∀j 6= i,∀i. The social network is then
starting from a point of maximum entropy of 4.25. As is shown in Figure 3(B), it then

monotonically declines to about 3.64 by the end of the 20,000 periods; 3.64 is equivalent

to the entropy of a fully random network with only 13.5 agents.16 The network is then

becoming increasingly ordered as each agent’s imitation is being concentrated on an ever

smaller set of other agents.

So as to extract away the impact of initial conditions as well as focus on the long-run

properties of the system, our analysis will concentrate on the key endogenous variables at

the steady-state. Figure 3(A) shows that the social system reaches the steady-state by t =

10,000. The speed of convergence to the steady-state varies, depending on the parameter

values. By taking our measurements as per-period averages over the time periods between

15,000 and 20,000, we are confident that our observations represent the system’s behavior

on the steady-state. To this end, define eE, eπ, and eq as the steady-state values of the
endogenous variable:

eE ≡ µ 1

5000

¶ 20,000X
t=15,001

E(t), eπ ≡ µ 1

5000

¶ 20,000X
t=15,001

π(t), eq ≡ µ 1

5000

¶ 20,000X
t=15,001

q(t).

In the remaining part of the paper, the focus is on exploring the impact of µim, µin, σ,

ρ, X and κ on eE, eπ, and eq.17
16As there are five agents in each agent’s group, it is not then true that each of these groups form their

own networks. This doesn’t occur for a variety of reasons. First, it is possible that agents in other groups

might be more similar though that won’t hold on average. Second, even if agents outside of one’s group

are less similar than those in one’s group, randomness in what agents adopt and what is observed could

cause an agent to learn more from non-group agents and thus induce the establishment of stronger links

with them.
17 It is important to remember that the system never settles down as agents’ goals are always stochas-

tically changing and, as a result, agents are always changing their behavior and their methods vector.

These reported variables - eE, eπ, eq - are then to be interpreted as the means of the stationary distribution
for this stochastic process.
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5 The Structure of Networks

It is clear from the baseline simulation that individuals improve their performance over

time by engaging in a relentless pursuit of local optima via innovation and imitation.

What is less obvious is whether the endogeneity of the social network makes a difference

in performance. Is it beneficial for the population of agents to engage in reinforcement

learning regarding from whom to learn? Could they be equally successful in locating

local optima if the network remained fixed over time? Before delving into the comparative

dynamics of our social system, let us first investigate whether the network endogeneity

does indeed have a beneficial effect on the performance of the social system.

Recall that an agent engages in two stages of reinforcement learning. In stage 1, an

agent chooses innovation or imitation. If imitation was chosen then, in stage 2, an agent

is selected for observation. The choice probabilities in both stages are adjusted over

time through reinforcement learning. As it is the stage-2 adjustment of the imitation

probabilities which makes our network endogenous, in what follows we will maintain

reinforcement learning in stage 1 and compare the performance of the social system for

when the stage-2 imitation probabilities are adjusted through reinforcement learning - the

case of an endogenous network (and denoted EE) - and when they remain fixed at 1
M−1

over the entire horizon - the case of a fixed network (and denoted EF ). Hence, under EF

the social network is stuck at being fully random while EE starts at maximum entropy

but agents can alter their probabilistic links with other agents. Our purpose is to show

that the performance of the social system under EE is distinctly different from that under

EF so that reinforcement learning with regards to the social network does indeed make

a difference.18

For the baseline parameter values, Figure 4(A) reports the differential performance

under EE and EF , eπEE − eπEF , for various values of µim and µin for X = 16 and

κ = 16. Clearly, network endogeneity is beneficial, since eπEE−eπEF > 0 as long as µim is

sufficiently high so that the network is sufficiently reliable. When µim is low, network en-

dogeneity makes little difference which makes sense since agents find it difficult to observe

other agents’ methods vector and thus they prefer to rely on innovation. In comparing

18Note that the stage-1 choice remains endogenous under EF as well as EE. If the fixed network is

inherently inferior to the endogenous network, our setup will allow the agents to shift away from imitation

and toward innovation as the chosen search strategy. This endogenous increase in the rate of innovation

will then compensate, to some extent, for the shortcomings arising from using the fixed network. If we

can show that the network endogeneity makes a difference even in the presence of such a neutralizing

force, our result will be all the more strengthened.
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the differential performance under different values of µin, note that the threshold value

of µim for which network endogeneity starts to become valuable rises in µin. When µin

is higher, it takes a comparably higher value of µim for an agent to engage in non-trivial

amounts of imitation and the endogeneity of the social network is irrelevant unless agents

are at least trying to learn from others in the population.

We find that the value of network endogeneity tends to increase in X and decrease

in κ: See Figure 4(B) for when X = 32 and Figure 4(C) for when κ = 8 and compare

them to Figure 4(A). The intuition is simple. When the difference between the groups

increases, either by having the groups move away from one another in terms of their goals

(that is, an increase in X) or by having the goals within each group be more similar to

one another (that is, a decrease in κ), it becomes more valuable to form and adjust a

social network so as to allow one to selectively learn from others in the population.19

The next issue of interest is the internal structure of these networks. As seen in

Figure 3(B), the entropy measure declines over time as the agents adjust their stage-2

choice probabilities: The agents tend to concentrate on an increasingly narrower set of

other agents to observe and imitate. To whom are they attracted? Is learning mutual so

that agent i, who chooses to learn from agent j, also a primary source of knowledge for

agent j as well? How strong is the tendency for mutual learning within groups?

These questions can be answered only by going beyond the measure of entropy and

delving into the relationships between the stage-2 choice probabilities of agents in the

population. Letting pji (t) denote the time series of p
j
i (t) averaged over the 20 replications,

agent i’s steady-state choice probability of observing agent j is defined by:

epji ≡ 1

5000

20,000X
t=15,001

pji (t). (17)

Figure 5 plots pairs of choice probabilities, (epji , epij), as points in a probability space
for all i and j, i 6= j. Since there are 20 agents in our experiment and each agent can

then observe 19 other agents, there are 190 distinct points in total. For each point,

the horizontal coordinate is the probability agent i observes agent j and the vertical

coordinate is the probability agent j observes agent i. First, note that these probabilities

19With steady-state performance being around 70-75 (for this parameter configuration), an improve-

ment of 1 or 2 as a result of having an endogenous network may not seem much but this can be deceptive.

Performance is around 50 when µim = 0 = µin in which case network endogeneity makes up about 5-10%

of the improvement from randomly endowed methods. Furthermore, network endogeneity leads to an

improvement that is comparable to a rise in the rate of innovation from µin = .5 to µin = .75 (or from

µin = .75 to µin = 1) when µim = .2 (Figure 11(C)).
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range widely from 0.02 to 0.15, though there is a concentration of these points at lower

probabilities, around 0.04. More importantly, the plot clearly indicates that there is a

positive relationship between epji and epij such that a relatively high (low) epji is paired with
a relatively high (low) epij . In other words, social learning tends to be mutual. For a more
thorough verification of this property, we computed correlations between epji and epij ; see
Table 2. The correlation is positive in all cases and is generally rather high. Furthermore,

the correlation appears to increase in X - see Table 2(B) for when X is raised to 32 - and

decrease in κ - see Table 2(C) for when κ is lowered to 8. Mutuality in learning is stronger,

the greater is the inter-group diversity in goals and the lower is intra-group diversity.

To delve further into network structure, let us impose a bit more structure without

losing any generality. Suppose agents are initially allocated to different groups in a

non-random way so that group 1 contains agents 1 through 5, group 2 contains agents

6 through 10, group 3 contains agents 11 through 15, and group 4 contains agents 16

through 20. The steady-state observation probabilities, epji , are described in Figure 6,
where agent i’s (the observer’s) identity is represented along the vertical frame and agent

j’s (the target’s) identity is represented along the horizontal frame. A scaled value of epji
is then captured by the grey shading of the cell located on ith row and jth column. The

lighter (darker) is the shading, the higher (lower) is the probability with which agent i

observes agent j. Since an agent observes herself with zero probability, the diagonal cells

are shaded completely black. The most striking feature of the figure is the emergence

of four adjoining square (5×5) blocks of cells along the diagonal, having lighter shades.
Each block measures the probabilities of various agents observing members of the same

group. Clearly, not only is learning mutual, it is also more active among agents sharing

similar goals.20 Considered together with the results reported in Table 2, it indicates that

such intra-group mutual learning is more intensive when the groups are more segregated

and isolated from one another.
20As noted earlier, Carley (1991) constructs a model of endogenous social groups in which the probability

of interaction between agent i and agent j is solely determined by how much information they share.

However, in her formulation, the agents are not goal-driven and the resulting mutual learning between

members of the same group arises from the specification of these interaction probabilities at the social

level, rather than from the deliberate choices made at the individual agent-level.
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6 Comparative Dynamics

Having explored the emergent structure of networks, the next step is to investigate how

performance is influenced by the reliability of the communication technology supporting

the network and the productivity of agents for engaging in innovation and, furthermore,

how this relationship is impacted by features of the environment such as the turbulence

in the task environments and inter-agent goal diversity.

6.1 Impact of the Reliability of the Network

Figure 7 plots eE, eq, and eπ for various values of µim ∈ {0, .05, .1, .15, .2, .25, ..., .9, .95, 1},
given the baseline parameter values, µin = .5, σ = .75, X = 16, κ = 16, and ρ = 4.

Figure 7(A) shows that when there is minimum reliability, µim = 0, the mean entropy at

the steady-state remains at its initial value of 4.25 which corresponds to a fully random

network. It gradually drops as µim increases and then is essentially constant once µim

achieves a sufficiently high level (.4 in this case). Further improvements in reliability

mildly raise entropy for reasons that are unclear.

Figure 7(B) shows that the endogenous probability of choosing innovation, eq, is near
its maximum value of 1 when the reliability of the communication technology is at its

minimum, µim = 0. As µim rises, the rate of innovation correspondingly declines as a

more reliable network encourages agents to engage in more imitation as well as forming a

more useful network (as reflected in falling entropy). However, the impact of a marginal

gain in µim on eq varies, depending on the level of µim. When µim is low, eq declines at
an increasing rate up to µim ' 0.35. Beyond that point, eq declines at a decreasing rate.
Most interesting is Figure 7(C), where the steady-state performance of the social sys-

tem, eπ, is plotted as a function of the network reliability, µim. The plot has the S-shape
of a logistic curve, where the performance initially rises at an increasing rate until reaching

an inflection point, at which the marginal gain is maximal, and then ending up in a region

of diminishing returns. Performance achieves its maximum level at a point of maximum

reliability of the network.

The logistic curve shape of eπ with respect to µim is universal to all parameter configu-
rations considered. However, a notable property of Figure 7(C) is not universal. Figure 8

plots steady-state performance as a function of µim for the same parameters as in Figure

7 except that µin is lowered to .25 and κ to 4; agents are less productive at innovation

and the degree of intra-group goal congruence is higher. Performance is now declining
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in network reliability when reliability is sufficiently great (specifically, µim ≥ .3). Quite

surprisingly, an improvement in the communication technology leads to a deterioration

in performance. Further simulations reveal that the non-monotonicity of eπ in µim is a

general property for some part of the parameter space. In particular, the simulation

results reported in Figures 9 and 10 show that eπ declines in µim when σ is low, ρ is high,

and/or X is high.

Property 1: When the reliability of the network (µim) is sufficiently low, steady-state

performance (eπ) is increasing in reliability. When the reliability of the network is
sufficiently high and the task environment is sufficiently volatile (σ low and/or ρ

high) and/or the goal diversity among groups is sufficiently great (X high), perfor-

mance is decreasing in reliability.

Why does the reliability of the network have a deleterious effect on performance?

Recall that there are two search strategies in our model, innovation (individual learning)

and imitation (social learning). For a given value of µin, an increase in µim raises the

rate at which existing useful practices diffuse in the population which certainly improves

the short-run performance of an average agent. However, in the longer run, its impact is

more subtle because agent behavior regarding innovation, imitation, and network links is

adapting. In particular, a more reliable network means both that new ideas are diffused

faster, imitation tends to substitute for innovation, and the greater use of imitation allows

a more structured network to form. All of these effects have the implication of making

agents in a network more alike as they observe and adopt the practices of others. When

the task environment is relatively stable, this lack of diversity is not a problem and more

critical is that the more rapid social learning allowed by a higher value of µim (and the

commensurate fall in entropy) speeds up convergence to local optima. But when the task

environment is sufficiently volatile then agents have to continually modify their tasks. For

that purpose, homogenization of the network is seriously harmful as it is less likely that

anyone in the network will have useful tasks that would serve the new environment well.

While individually it may make sense to more intensively utilize the network when it is

more reliable, the ensuing lack of diversity that occurs - due to imitation crowding out

innovation - is detrimental from a collective perspective. This explains why, under certain

conditions, steady-state performance can decline in response to a more reliable network.

Better communication does not necessarily mean higher performance when agents can

adjust their mix of innovation and imitation and their network links.
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As to the role of inter-group diversity (as measured by X), first note that when X is

low that the optima of agents from different groups tend to overlap to a greater extent.

This leads to social learning that is more global in nature in that an agent tends to more

frequently observe other agents in different groups than when optima are tightly clustered

around distinct groups. The implication of such global learning in our context is that it

allows inter-agent diversity to survive over time instead of leading the social system to a

collection of isolated homogeneous clusters of individuals who are unable to flexibly adapt

to changing environments because of the lack of diversity.21 This is portrayed in Figures

10(A)-(B).

What we have seen in this section is the critical role that persistent diversity plays in

promoting steady-state performance in the context of a changing environment. A simple

improvement in the reliability of the network may harm long-run performance because

of how agents adapt their rates of innovation and imitation. Enhanced communication

technology can induce too much imitation with a resulting loss of diversity to respond to

future environments. In that case, an individual agent’s capacity to carry on independent

innovation is crucial in supplying the necessary fuel for the effective operation of the social

networks. On that issue, we turn next.

6.2 Impact of the Productivity of Innovation

Given the relationship between network reliability and performance, the next task is to

explore how this relationship depends on the capacity of agents to innovate. Obviously,

agents who are more productive at innovation have an immediate virtue through enhancing

individual learning but it is also beneficial from a social perspective as it implies a wider

variation in methods in the population and this is the raw material for, in the short-run,

responding to a changing environment. This suggests that more innovative agents are also

beneficial from a social learning perspective. However, as the results below will show, what

is key for that to be true is that the network is well-developed for diffusing ideas and that

depends not only on the exogenously-determined reliability but also the endogenously-

determined structure of the network. Thus, the extent to which a higher capacity for

innovation improves performance depends on how well the network is developed which

depends on how extensively agents use it which depends on their innovation-imitation

21Note that for a higher value of X, there is more inter-group diversity in the population. However,

this diversity is not particularly useful for the agents, as their goals are very different and the likelihood

of learning anything useful from the agents in other groups is much lower.
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mix which depends on the capacity for innovation and thus we are back full circle. The

ensuing results are then far from transparent at this point.

Figure 11(A) reports the frequency with which agents choose to innovate on average,eq, as a function of network reliability, µim, for various innovation capabilities, µin ∈
{0, .25, .5, .75, 1}. The impact of µin on the frequency with which agents try to innovate
is monotonic: eq rises as µin is increased. Populations with more innovative members will
indeed engage in more innovation, irrespective of network reliability. The steady-state

entropy of the social network, eE, is plotted as a function of µim in Figure 11(B) for

varying values of µin. Note that, as µin goes up, entropy falls more slowly in µim but

tends to converge to a lower steady-state value. Consequently, an increase in µin causes

the network to be less ordered when µim is low, while it results in a more ordered network

when µim is high.

Property 2: When network reliability is low, the order of the social network and the

capacity for innovation are inversely related. When network reliability is high, the

order of the social network and the capacity for innovation are positively related.

In explaining this property, we know from Figure 11(A) that an increase in µin in-

duces the population to lean toward innovation relative to imitation regardless of network

reliability. As there is less social learning, reinforcement learning implies the network is

less ordered. Examination of Figure 11(B) reveals this is the case when network reliability

is low as entropy is rising in µin when µim ≤ .35. However, when network reliability is

high, a second force comes into play because a higher value for µin also raises the value to

learning from others since they are more likely to have discovered useful methods. Thus,

the quality of the network - in terms of agents having a diverse array of useful ideas - rises

with the productivity of innovation. Innovation is the fuel for improvements in system-

wide performance by creating variations in the population which can be diffused among

its members through the social network. But that quality cannot be adequately tapped if

reliability is low. Thus, when µim is low, agents find that accessing the network is unpro-

ductive as it is hard to observe other agents’ ideas. Agents then respond to being more

innovative by simply substituting away from imitation to innovation. However, when µim

is high, agents find that they can better access the ideas of others and, since agents are

highly innovative, there are many worthwhile ideas floating about. Increased quality and

reliability of the network then work together to result in a more ordered network even

though innovation is more productive. The key point is that the value to imitation and

the value to developing links in the network are dependent on the innovativeness of agents.
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Innovation and imitation are substitutes in search but, through the mechanism of social

learning, they are also complements.

Having described how the capacity for innovation impacts network structure, let us

next turn to its effect on population performance. Figure 11(C) reports how µin influences

the relationship between steady-state performance, eπ, and network reliability, µim. Note
that the eπ curve retains the S-shape for all values of µin. However, the position of the

curve for varying values of µin exhibits an interesting pattern: as µin rises, the eπ curve
shifts up and to the right. This leads to a rather surprising result that steady-state

performance can decrease in the capacity for innovation and thus that performance can

be maximized by having moderately innovative agents.

When µim is sufficiently low, a population mainly improves on the basis of individual

learning through innovation because of the poor reliability of the social network. As inno-

vation is the primary source of improvement, greater innovativeness enhances performance

as shown in Figure 11(C). On the other hand, for sufficiently high µim, the population

extensively deploys both innovation and imitation. As network reliability achieves its

maximum value, there is diminishing returns to network reliability so that the mix of

innovation and imitation is fairly insensitive. Once again, higher levels of innovativeness

tend to produce higher performance (though the relationship is not quite as strong as

when µim is low). Where things get interesting is for intermediate values of µim as it is

here that the effect of µin becomes more complex. To begin, imitation is both a social

good and a social bad. By imitating others, rather than developing new ideas, an agent is

not adding to the stock of knowledge. However, by helping to spread worthwhile ideas, an

agent is improving the value of the network and thereby social performance. When net-

work reliability is moderate, agents may be engaging in too much individual learning from

a societal perspective. It might be better to tap into the network to pass along ideas and

develop more useful links (which can only be achieved through experience). By making

agents more innovative, this induces them to use the network even less, thereby exac-

erbating this problem. We then find that when network reliability is moderate, greater

innovativeness can be deleterious from a societal perspective. By inducing the population

to concentrate more on diffusing local innovations across the social system, a reduced

capacity for innovation can lead to superior performance.

Figures 12-15 explore how this non-monotonicity of performance with respect to in-

novation productivity depends on the characteristics of the environment. The ensuing

properties are summarized below.
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Property 3: When the reliability of the network is sufficiently low, performance is in-

creasing in the capacity for innovation. When the reliability of the network is mod-

erate and the task environment is sufficiently volatile (σ low and/or ρ high) and/or

the individual goals of the agents are not too dissimilar (X low and/or κ low),

performance is maximized at a moderate capacity for innovation.

The volatility in the task environment is captured by 1 − σ, the frequency of the

goal change, and ρ, the variability of the goal change. Figure 12 shows performance

as a function of µim for µin ∈ {.25, .5, .75, 1} and σ ∈ {.75, .95, .99}. Imitation and the
development of a useful network is more valuable when the environment is changing more

frequently as then individual learning is woefully inadequate for keeping up with these

changes. One needs the diversity of ideas of the population at large and, as a complement,

a well-developed network. It is in such a situation that making agents more innovative

will encourage them to engage in more individual learning when the population of agents

taken as a whole would do better by engaging in more imitation and the development of

better links. We then find that, under a moderately reliable network, a greater capacity

for innovation decreases performance when the environment is volatile (σ = .75) but

enhances performance when the environment is stable (σ = .99). For similar reasons,

more innovative products can be deleterious when ρ is high as then the changes in the

environment tend to be bigger on average (holding fixed the frequency with which those

changes occur); see Figure 13.

The impact of inter-group and intra-group goal diversity on the relationship between

innovativeness and performance is reported in Figures 14 and 15. Of course, performance

decreases both in X and κ as goal heterogeneity is deleterious (though heterogeneity in

tasks is advantageous). Speaking to Property 3, the opportunities for social learning and

development of a useful network diminish as goals become more diverse both globally and

locally. Thus, the deleterious effect of a greater capacity for innovation is less pronounced

as agents rely more upon individual learning. When individual learning is the dominant

method of search, performance rises monotonically in the ease with which new ideas are

generated.

7 Concluding Remarks

Progress, whether scientific, economic or social, is driven by innovation - which serves to

produce a diversity of ideas - and imitation through a social network - which serves to
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properly diffuse these ideas. This paper is, to our knowledge, one of the first to model

all three primary forces - the discovery of new ideas, the observation and adoption of the

ideas of others, and the endogenous development of a social network. At the individual

level, innovation and imitation are substitutes, as an agent can choose to allocate effort

to discovering new ideas or to observing the ideas of others. However, at the social level,

innovation and imitation are complements. More innovation provides a better pool of

ideas that imitation can take advantage of through a social network. In our model, the

quality of the social network is driven by three factors. First, the exogenous reliability

of the communication technology which controls the likelihood that an agent observes

another agent’s idea. Second, the value of the ideas that are observed. This is the result

not only of innovation but also how rapidly useful ideas diffuse which depends on the

regularity with which the network is accessed. Third, the quality of the links between

agents which is itself the product of past experience with the network as agents reinforce

those links that have proven to be a productive source of ideas in the past. These last

two factors are not only endogenous but provide an increasing returns mechanism in that

a network is of higher quality if it is used more frequently and agents will use a network

more frequently when it is of higher quality.

By endogenizing both the innovation-imitation mix and the structure of the social

network, our analysis has been able to uncover some subtle determinants of the perfor-

mance of a population, in particular the role of the capacity of agents for innovation

and the reliability of the communication technology for conveying ideas. While a more

reliable communication technology is beneficial in that it leads to a greater diffusion of

ideas, it has the undesirable by-product of reducing diversity in ideas as agents replace

their own ideas with the most useful ones discovered and, in addition, they engage in

more imitation and less innovation. This by-product is not seriously detrimental when

the problems faced by agents are relatively stable but when they are changing sufficiently

fast then the loss of diversity means a loss of the raw material for adaptation. This results

in performance being less when reliability is greater. From a social perspective, agents are

engaging in too much imitation though, at an individual level, their innovation-imitation

mix is appropriate.

A second subtle result concerns how performance depends on the capacity of agents

for innovation. When that capacity is enhanced, agents invest more effort into innovation

which actually may cause performance of the population to decline. When network relia-

bility is only moderately good, it may be socially (though not individually) beneficial to
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engage in more imitation. Even though this reduces the development of new ideas, it leads

to a more developed social network and thus greater diffusion of ideas. By making agents

more innovative, this induces them to use the network even less, thereby exacerbating the

inadequate development of the network. We then find that, when agents endogenously

determine how much effort to put into innovation and imitation, greater innovativeness

can be deleterious from a societal perspective. By inducing the population to concen-

trate more on diffusing local innovations across the social system, a reduced capacity for

innovation can lead to superior performance.

A natural extension of our model is to allow agents to be heterogeneous in their

capacity for innovating and imitating. Some agents are more creative and thus are more

productive in generating new ideas when they choose to engage in the act of discovery.

Other agents may be more sociable or more capable of understanding the ideas of others

and thus find it easier to learn what other agents are doing. Such heterogeneity raises

interesting questions about the properties of the social network. To what extent does

this heterogeneity lead to more order? Are links strongest with certain types of agents?

Do agents tend to form links with those who are most innovative or those who are most

imitative (and thus may be best connected to others in the population)? Enriching our

model in this manner should generate further insight into the forces underlying progress

and growth.
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Appendix

Generating a Vector within Hamming distance κ of s ∈ {0, 1}Nd

Note that ∆(s, κ) is the set of all points in {0, 1}Nd that are within Hamming distance

κ of s such that ∆(s, κ) ≡ ∪κi=0δ(s, i), where δ(s, i) is the set of points which are exactly
Hamming distance i away from s. One way to computationally generate a vector r in

∆(s, κ) is as follows:

1. Flip each bit (of Nd total bits) in s with probability 1
2 to get s

0.

2. If s0 ∈ ∆(s, κ), then set r = s0 and terminate. Otherwise, go back to step 1.

This procedure is repeated until we find an s0 which is in ∆(s, κ). While this approach

has the advantage of being simple to code, it is computationally inefficient, especially for

low values of κ. Given the size of the space of methods, ∆(s, κ) may be a rather small

subset of it. It may then take many draws before we land an s0 in ∆(s, κ). As an

alternative, we propose the following procedure which utilizes our knowledge of the size

of δ(s, i) for all i.

First, note that the vector r we wish to generate could be an element in any one of

δ(s, i)s, i = 0, ..., κ, where δ(s, i) ⊆ ∆(s, κ). We can first select a subset, δ(s, l), based

on the probability that r is exactly Hamming distance l away from s. This probability

is determined by the size of δ(s, l) relative to the size of ∆(s, κ). To be specific, given s,

the size of δ(s, l) is the number of ways in which exactly l bits in s can be flipped:

|δ(s, l)| =
µ
Nd

l

¶
=

(Nd)!

l! (Nd− l)!
(18)

The total size of ∆(s, κ) is then
Pκ

i=0

¡
Nd
i

¢
and the probability that a chosen vector r is

an element in δ(s, l) is ¡
Nd
l

¢Pκ
i=0

¡
Nd
i

¢ . (19)

Using these probabilities, we can select the subset within which r will lie. Suppose the

chosen subset is δ(s, x) so that r will be exactly Hamming distance x away from s. Now,

randomly select x bits in s and flip them to get r.

Modelling Intertemporal Goal Shifts

Let sk(t) be the goal vector for an agent in group k in period t. We will ignore the

index for agents as the procedure is identical for all agents. Given sk(t), define δ(sk(t), i)
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as the set of points which are exactly Hamming distance i away from sk(t). Given that

the goal is going to shift, which occurs with probability 1− σ, compute for all l > 0 the

probability of sk(t+ 1) being a point in δ(sk(t), l) as¡
Nd
l

¢Pκ
i=1

¡
Nd
i

¢ . (20)

Given the probabilities thus constructed, follow the procedure below:

1. Using the probabilities, select a target subset δ(sk(t), l) from which r will be chosen.

2. Given the value of l thus selected, randomly choose l positions in sk(t) and flip the

bits in those positions. Let the resulting vector be denoted s0.

3. If s0 ∈ ∆(gk, κ), then sk(t+ 1) = s0. Otherwise, go back to step 1.
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Table 1: List of Parameters

notation definition
baseline

values
parameter values considered

µin exogenous rate of innovation .5 {0, .25, .5, .75, 1}
µim exogenous rate of imitation .5 {0..05, .1, .15, .2, ..., .9, .95, 1}
X inter-group goal diversity 16 {0, 4, 8, 16, 32, 64, 96}
κ intra-group goal diversity 16 {4, 8, 16, 32}
σ inter-temporal goal stability .75 {.5, .75, .95, .99}
ρ inter-temporal goal variability 4 {1, 4, 8}

notation definition parameter value

M number of agents 20

J number of groups 4

φ attraction decay factor 1

λ agent’s sensitivity to attraction 1

Aj
i (0),∀i,∀j 6= i i’s attraction to j in t = 0 1

Bin
i (0),∀i i’s attraction to innovation in t = 0 1

Bim
i (0),∀i i’s attraction to imitation in t = 0 1
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Table 2: Correlation between pji and pij

(A) X = 16; κ = 16

µim

.25 .5 .75 1

0 .352657 .34733 .29233 .480061

.25 .807451 .773048 .664245 .506862

µin .5 .586809 .823839 .806357 .689279

.75 .406306 .791755 .799773 .784047

1 .268945 .681329 .860758 .821619

(B) X = 32; κ = 16

µim

.25 .5 .75 1

0 .540246 .60035 .736072 .630133

.25 .901541 .862012 .835666 .795593

µin .5 .786882 .941283 .906933 .878898

.75 .546645 .892148 .93532 .911084

1 .385492 .837522 .930428 .949636

(C) X = 16; κ = 8

µim

.25 .5 .75 1

0 .649251 .718233 .741049 .706987

.25 .875383 .851206 .83393 .845132

µin .5 .870919 .920375 .857695 .837231

.75 .735823 .922655 .907393 .90641

1 .57091 .912438 .905253 .910782
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Figure 3:  Baseline Time Series
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Figure 4:  Value of Network Endogeneity
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Figure 5:  (pè i
j,pè ji )-plot

X = 16; κ = 16; µin = µim = .5;
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Figure 6:  pè i
j with Non-Random Agent Allocation

X = 16; κ = 16; µin = µim = .5;
σ = .75; ρ = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
j

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

pi
j : endogenous probability of i imitating j



Figure 7:  Baseline Steady-States
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Figure 8:  Non-Monotonicity of Steady-State Performance

X = 16; κ = 4; µin = .25;
σ = .75; ρ = 4
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Figure 9:  Impact of s and r  (X = 16;  k = 16)HAL
 X = 16, κ = 16, ρ = 4
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Figure 10:  Impact of X and k  (s = .75; r = 4)HAL
σ = .75, ρ = 4, κ = 16
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Figure 11:  qè  and E
è
  (s = 0.75;  X = 16;  k = 16;  r = 4)
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Figure 12:  Impact of s (X = 16;  k = 16; r = 4)
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Figure 13:  Impact of r (s = .75; X = 16;  k = 16)
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Figure 14:  Impact of X (s = .75; k = 16;  r = 4)
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Figure 15:  Impact of k (s = .75; X = 16;  r = 4)
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g3 

U

g2 

g1 

g4 

zˆ¯i HtL

∆ Hzˆ¯i HtL, ρL  

Λ Hz̄ˆi HtL, ρ, g2, κL ∆ Hg2, κL

∆ HU,XL  

Figure 2

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang


Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang

Myong-Hun Chang



Figure 3:  Baseline Time Series
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Figure 4:  Value of Network Endogeneity
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Figure 5:  (pè i
j,pè ji )-plot

X = 16; κ = 16; µin = µim = .5;
σ = .75; ρ = 4
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Figure 6:  pè i
j with Non-Random Agent Allocation

X = 16; κ = 16; µin = µim = .5;
σ = .75; ρ = 4
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Figure 7:  Baseline Steady-States
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Figure 8:  Non-Monotonicity of Steady-State Performance

X = 16; κ = 4; µin = .25;
σ = .75; ρ = 4
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Figure 9:  Impact of s and r  (X = 16;  k = 16)
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Figure 10:  Impact of X and k  (s = .75; r = 4)HAL
σ = .75, ρ = 4, κ = 16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mim

70

72

74

76

78

80

pè

Steady-State Performance

X = 96

X = 64

X = 32

X = 16

X = 8

X = 4

X = 0

HBL
 σ = .75, ρ = 4, X = 16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mim

60

65

70

75

80

85

90

pè

Steady-State Performance

k = 32

k = 16

k = 8

k = 4



Figure 11:  qè , E
è
, and pè   (s = 0.75;  X = 16;  k = 16;  r = 4)
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Figure 12:  Impact of s (X = 16;  k = 16; r = 4)
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Figure 13:  Impact of r (s = .75; X = 16;  k = 16)
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Figure 14:  Impact of X (s = .75; k = 16;  r = 4)
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Figure 15:  Impact of k (s = .75; X = 16;  r = 4)

HAL  κ = 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mim

88
88.5

89
89.5

90
90.5

91

pè

Steady-State Performance Hk = 4L

min=1.0

min=.75

min=.5

min=.25

HBL  κ = 8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mim

81
82
83
84
85
86
87

pè

Steady-State Performance Hk = 8L

min=1.0

min=.75

min=.5

min=.25

HCL  κ = 32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
mim

58

60

62

64

pè

Steady-State Performance Hk = 32L

min=1.0

min=.75

min=.5

min=.25




