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Abstract

In this note we propose model selection criteria (MSC) for unconditional moment models
using empirical likelihood (EL) statistics in the construction of the MSC. The use of EL-statistics
in lieu of the J-statistics in the spirit of Andrews (1999) and Andrews and Lu (2001) leads to a
more transparent interpretation of the MSC by providing a closer analogy with MSC in standard
parametric likelihood models and emphasizing the common likelihood- (or information-) based
rationale underlying model selection procedures for both parametric as well as semi-parametric
models.

Exploiting insights from the recent literature on empirical likelihood (EL) estimation as an alterna-
tive to optimal Generalized Method of Moments (GMM) estimation (cf. Qin and Lawless (1994),
Kitamura and Stutzer (1997), Kitamura (1997), Imbens, Spady, and Johnson (1998), Tripathi and
Kitamura (2001)), we propose model and moment selection criteria (MSC) for unconditional moment
condition models based on the empirical log-likelihood statistic, in the spirit of Andrews (1999) and
Andrews and Lu (2001). In those papers, Andrews and Lu investigated model and moment selec-
tion criteria (MSC) for unconditional moment models using the GMM J-statistic. In this note, we
replace the J-statistic with the EL-statistics in the construction of the MSC (which include analogs
of Bayesian (BIC) and Hannan-Quinn (HQIC) information criteria as special cases).

The use of EL-statistics in lieu of the J-statistics allows a more transparent interpretation of the
MSC and provides a closer analogy with MSCs in standard parametric likelihood models. Like all
MSC, the selection criteria we propose operate under the assumption that at least one of the models
under consideration is correctly specified. For the situation where all the models are potentially
misspecified, Kitamura (2000) has developed information theoretic nonparametric likelihood tests

to choose between nonnested moment condition models.

*Hong and Shum gratefully acknowledge support from the NSF (SES-0079495, SES-0003352). We thank Xiaohong
Chen, Bo Honore and Yuichi Kitamura for insightful suggestions and helpful comments.



1 The Model Selection Problem for Moment Condition Models

Our notation closely follows that in Andrews and Lu (2001). Let g(X;v) be the collection of
moment conditions under consideration. Let b be the model selection vector that selects the elements
of v € RP to be estimated, and let ¢ be the moment selection vector which selects the moment
conditions in g (-) € R" to be used in the estimation of b% * %y, where % * % denotes Hadamard
(element-by-element) product. Let v, = 0% * %y denote the subvector of  that is estimated, and
let g. () = c% * %g (X;~y) denote the subvector of g (-) that is used in estimation.

In what follows, we refer to the pair (b,c) as a pair of moment and model selection vectors. Both
b and c are, respectively, p- and r-dimensional vectors composed of zeros and ones, and we use ||
(resp. |b]) to denote the total number of moments (resp. parameters) selected by the pair (b,c).
Furthermore, 7, denotes the |c|-dimensional vector of Lagrange multipliers corresponding to the g. (-)
moment conditions selected by ¢ in the construction of the empirical likelihood function described
below. Finally, |c| — |b| is the number of overidentifying restrictions, and throughout we assume that
|| = |b] > 0, so that the model is identified.

1.1 Empirical Likelihood-based Model Selection Criteria

We propose an empirical likelihood (EL) based model selection criteria (MSC), defined as

n
MSCEL,, (b,¢) = maxmin |- log (1 +7/g (Xi;%)) | + h (|| — [b]) kn
Tb Te
i=1
in which h (-) is a strictly increasing function and the sequence k, — oo but &,/n — 0. This MSC
can be interpreted as the usual (log) empirical likelihood criterion function, augmented by a penalty
function which varies with the number of overidentifying restrictions, as well as number of data

observations.

We follow Andrews and Lu (2001) in defining the following sets. We let BE denote the space of
(b, ¢) vectors, which can be viewed as the “parameter space” in the moment and model selection
procedure. Before proceeding further, we must define several other sets.

BEL® = {(b,c) € BE : Eg? (~;v) = 0,for some v € T with v = 7% * %b}

where ¢? (-;y) denotes the population value of the empirical moment g.(X;7). In other words,
BELL is the set of (“feasible”) vectors (b, c) which select only models and moments that equal zero
asymptotically for some parameter vector. Finally,

MBELY = {(b,c) € BELY : |c| — [b| > |c*| — [b*] V(b*,c*) € MBELC} .

In short, MBELO is the set of “feasible” selection vectors (b, ¢) which maximize the quantity |c|— |b|,
the number of overidentifying restrictions.

Given these definitions, the next proposition introduces the notion of consistency for EL-based model
selection criteria.



Proposition 1 For (3, é) = argmaz M SCEL, (b,c), we have with probability converging to 1,
(b.¢) € ML,
In other words, we say that the EL-based MSC is consistent.

Proof: The proof is very similar to Andrews and Lu (2001). Take (b,c) € BE, but & BELO. Tt
follows from the KLIC interpretation of empirical likelihood that

1 n
max min - Z log (1 + 79 (Xs;)) = maxmin —Elog (1 + 719 (Xi; 7))

b Te =1 b Te
= ~Elog (1+ 1 g(Xis7;)) <0.

The last inequality also follows from the saddle point property of the empirical likelihood function.
When (b,c) ¢ BEL®, some of the moment conditions will be binding, so that 7* # 0. Since it is
always possible to choose 7. = 0, minimizing over 7, ensures —F log (1 +7¥g (Xisvg )) < 0. So by

assumption on K,

1
EMSCH (b,¢) 25 maxmin[—Elog (1 + 7.9 (Xi;%))] <0

b Te

On the other hand, if (b,¢) € BELY, then obviously 7 = 0 and

%Mscn (b,¢) 250

So the above two equations imply that (l;, é) € BELC with probability converging to 1.

On the other hand, for all (b,c) € BEL?,

max min l— Z log (1 + Tég (Xi; ’)’b))] =0,(1)

b T
ol c im1

But for |e1] — |b1] < |e2| — |b2] (i-e., the pair (ba,c2) has more overidentifying restrictions than the
pair (b1, c1)), such that both pairs are in BEL?,

(h(Jer| = |b1]) = b (Jea| — |b2])) K —> —00

So with probability converging to 1, MSC,, (ba,c2) > MSC,, (b1, ¢1), namely that (5, é) € MBEL®
with probability converging to 1. |

Given this general consistency result, we also consider two algorithms proposed in Andrews (1999)
and Andrews and Lu (2001) to choose (b, ¢) consistently.
1.2 Downward testing procedure

Andrews and Lu (2001) defines the downward-testing model selection procedure as follows. Starting
with vectors (b, ¢) € BE for which |c| — |b| (the number of overidentifying restrictions) is the largest,



we perform tests (described in detail below) with progressively smaller |c| — |b| (therefore the name
“downward” testing) until we find a test that cannot reject the null hypothesis that the moment
conditions considered are all correct for the given model b. (Note that for each value of |¢| — |b],
tests are carried out for each (b,¢) in BE with this value of |¢| — |b]). Let kpy denote the number
of overidentifying restrictions (i.e., |¢| — |b|) for this first test we find which cannot reject the null.
Given IAcDT, we take the downward testing estimator (EDT,éDT) to be the vector that maximizes
MSCy(b,c) over (b,c) € BE with |¢| — |b] = kpr-

Next we describe the tests used in the downward testing procedure described above. Consider the

log empirical likelihood ratio statistic:

n
2EL, (b,c) = 2maxmin |— Zlog(l +7i9 (Xis 1)) | -

b T
i c im1

As we know from Qin and Lawless (1994), if the moment conditions are correctly specified (in the
sense that 7* = 0 for the limit EL problem max, min,~ [—Elog (1 + 7* * g(X;;7))], then®

d
—QELn (b, C) — X|20|—|b‘

The downward-testing procedure looks for the first acceptance among (b, c) € BE of the test whose
rejection region is defined by

—2ELy (b,¢) > Nk = X3 ()

where X7 (a,) denotes the (1 — ay,)-th quantile of the chi-squared distribution with k = |¢| — |b|
degrees of freedom, and the sequence of critical values

Nk =00 and 7pr=o0(n) as n— oo

for each k = 1b),... ,]c|.

We can prove the following consistency result for the downward-testing estimators (EDT, épr), which
is analogous to Theorem 2 in Andrews and Lu (2001).

Proposition 2 With probability converging to 1, (EDT,éDT) € MBELO.

Proof: For any (b,c) € BE, but ¢ BEL®, we have in fact shown that
—2EL, (ba C) /nn,|c|—|b\ £ 0

since in this case, —2ELy(b,c) is Op(n).

Thus Apr < # (MBEL®) w.p. = 1. On the other hand, for any (b,c) € BEL?, an application of
corollary 4 of Qin and Lawless (1994) yields

—2EL < mpjc|=jp) w-p-—1

In consequence ip,r = # (MBEL®) w.p. — 1, and hence (EDT,éDT) € MBELY w.p. — 1. [ |

!Tndeed, the statements of Theorem 2 and Corollary 4 in Qin and Lawless (1994) are slightly incorrect. The correct

versions should read —Wg (00) — x?, and —W1 4, x%_p.



1.3 Upward testing procedure

We can also apply our EL-based MSC to the upward-testing procedure described in (Andrews
(1999)). Starting with vectors (b, ¢) € BE which have the smallest number of overidentifying restric-
tions |¢| — |b|, we perform tests (analogous to those described for the downward-testing procedure
above) with progressively more overidentifying restrictions (i.e., larger |c¢| — |b|; therefore the name
"upward testing”) until we find that all tests with the same value of |¢| —|b| reject the null hypothesis
that the moment conditions considered are all correct. Let IAcUT denote the largest value such that
for all k < kyr, there is at least one (b,¢) € BE with |¢| — |b| = k for which the null hypothesis
is not rejected. Given kyr, we take the upward testing estimator (byr,éur) to be the vector that
maximizes ELy(b,c) over (b,c) € BE with |¢| — |b| = kuz-

It is necessarily true that the upward testing procedure described here will never select a pair (b, ¢)
with more overidenntifying restrictions than the downward testing procedure; i.e.,

|I;UT| — |éur| < |I;DT| — |épr|. (1)

In order to avoid selecting a pair (b, ¢) with too few overidentification conditions, then, we make an
additional assumption (as in Andrews (1999)) to ensure consistency of byr and éyr:

Assumption 1 For each (b,c) € BE such that k = |c| — |b] < # (MBEL®), there exists (b, c) with
le| — |b] = & for which (b,c) € BELC.

Without this condition, the inequality (1) above may hold strictly, even asymptotically. Note that
this additional condition can be ensured by proper choice of the parameter space BE for the selection
vector (b, ¢). Under this additional condition,

Proposition 3 With probability converging to 1, (BUT,éUT) € MBELO.

Proof: For the same reason as in the previous proof, we see that k = |éyr| — |bur| < # (MBEL?)
w.p. — 1. On the other hand, assumption (1) implies that each k = |c| — [b| < # (MBELC), we
can find corresponding by and c;, such that (bg,cy,) € BELC, under which it is neccessary that

—2ELy (bk,ck) < Mn,jop|—|ox] w-P- —> 1

Consequently, kyr = |épr| — |bur| = # (MBEL®) w.p. — 1, and therefore (I;UT, éUT) € MBELO
w.p. — 1. |

1.4 Analogy with parametric likelihood model selection procedure

Andrews (1999) argued that the J-statistic based MSC was analogous to the model selection criteria
(such as the BIC, AIC and HQIC) often employed in parametric model selection procedures. When
we use EL to formulate the MSC, this analogy is even more transparent since, in this case, an
explicit likelihood- (or information-) based rationale also underlies the moment selection procedure,



just as in the fully parametric case. Notice that such a likelihood-based interpretation does not arise
naturally with the MSC based on the J-statistic.

Andrews (1999) noted that his J-statistic moment selection criterion was analogous to the parametric
model selection criteria in the sense that, among correct models, this criterion would choose the more
tightly specified model. Equation (6.6) in Andrews (1999) showed an equivalence result? between the
problem of maximizing the number of moment conditions (i.e. minimizing the number of excluded
moment conditions) and minimizing the number of parameters, among correctly specified models.
In this section, we show an analogous equivalence for EL-based MSC.

Since under the correct specification, EL is asymptotically equivalent to GMM estimation using the
optimal weighting matrix (see, for example Imbens, Spady, and Johnson (1998)), the use of EL-based
MSC provides a more transparent proof of this equivalence result by avoiding the issues associated
with choosing the optimal weighting matrix in GMM estimation, which arise when considering the
J-statistic.

We assume that all the models under consideration are correctly specified, and focus on the moment
selection problem (involving the moment selection vector ¢ and the associated Lagrange multipliers
7c). Therefore in what follows, we let b = T and v = - throughout, and assume that g.(-) is
sufficient for identification of . Our goal is to show the equivalence between

ElLn = maxmin l— > log (1 +7ige (Xi; 7))] 2)

Te N
i=1

where g. () is the subvector of g (-) selected by ¢, and

Vsl TeyT—e

EL,,, = max min l— Zlog (1+7lge (Xisy) + 7o (g-c (Xi37) — u))] (3)
i=1

where g_.(-) is the subvector of the totality of moment conditions g (-) that are excluded by the
selection vector ¢. p is of dimension r — |¢|, where r is the total number of moment conditions under
consideration. This equivalence is analogous to equation (6.6) in Andrews (1999), and implies that
the moment selection problem can alternatively be viewed as a model (i.e., parameter) selection
problem, with the augmented parameter vector (6, u)'.

The equivalence of (2) and (3) is easy to demonstrate; indeed, let (§,7.) solve (2), i.e. satisfy the
first order conditions

i ge (Xi39) -0

n T 5
Z % =0.

2The “op(1)” in Andrew’s statement of this result is actually not required.



Then it follows that (v = 4,7, = 7¢,7—c = 0) and
_ (v 9-c(Xi57) - 1
p= s ol Nl D s o
= 1479, (Xi59) — 1+ 7g. (Xi57)

solves the problem (3). Indeed, at these parameter values, one can easily verify the first order
conditions for the problem (3), there are four sets of them:

0 - Je (Xuﬁ/)

——FELy,=) ———"* =0
o.M 1+ Fige (XisA)
~1 09 (Xi37)
0 - Te 8
——FELy, = + =0
oy ZZZI 1+ 79 (Xi39)
g (X)) —
_88 EL,,, = gCEI’—”Yﬂ =0
T—c im1 1+ 7lge (Xi579)
d - 1
—FELy, =7_ ———— =0
o T "2 +7igc (Xi37)

i=1
It is also immediately obvious that at these parameter values the two empirical likelihood functions
are identical:

EL1, (’77 7~—C) = EL», (’77 1°2) 7~_Ca 0)

which is analogous to equation (6) in Andrews (1999). Thus the analogy of empirical likelihood based
moment and model selection procedures and Andrews’ J-statistic based procedures are complete.
The use of EL-based MSC allows us to generalize the likelihood-based rationale underlying the usual
MSC for parametric models to semi-parametric models in which the data-generating process is only
partially specified via population moment restrictions.

2 Monte Carlo Experiments

In this section we report the results from a simple study to compare model selection criteria based on
the J-statistic as proposed by Andrews (1999), Andrews and Lu (2001) and that based on empirical
likelihood methods. Formally, these criteria are written as:

MSCJn(b,c) = rr%n ngna('yb)IannC('Yb) — h(|c| = [b])kn

and

MSCELyp(b,¢) = maxmin |— Zlog(l +7'9(Xi, 1)) | + h(le| — [b])kn

-
b i=1
using the same notation as above.

Appropriate choices of the h(-) function and the sequence of constants deliver the BIC, AIC and
HQIC model selection criteria. We also consider the choice of h(-) as the identity mapping and



sequence of constants as k, = 1/n. Following Andrews and Lu (2001), we assess the relative
performance of these model selection criteria by comparing the probability with which the two
MSCs select:

1. The true (3°,c%);
2. Other consistent (b, ¢);

3. Inconsistent (b, c).

The model is specified by the set of equations:

Y = ag + o xy + 0.5y (4)
xr = n + 0.5uy (5)
2 =1 + 0.5 (6)
fe=mt +0.2u; (7)

where u; ~ N(0,1), 7, ~ N(0,1) and ¢; ~ N(0,1), all being independently distributed. Both z;
and f; are candidate instruments. The coefficients o and «; are assumed to be equal to one. The
fact that E[fiu:] # 0 implies that moment conditions constructed from the latter instrument f; are
invalid. Moment conditions are constructed from the following five possible instrument groups:

Group 1: constant, z, sinz

Group 2: constant, z, sinz, cosz

Group 3: constant, z, sinz, f

Group 4: constant, z, sin z, cos z, sin f

Group 5: constant, z, sinz, sin f, cos f

The econometrician is assumed to know that the Group 1 conditions are valid and seeks to deter-
mine the verity of the remaining moment conditions for estimation. In the above notation, Group
1 instruments are “other consistent (b,c)”, Group 2 instruments are the true (b°,c°), and the re-
maining instrument groups inconsistent (b,c¢). It is clear that the exercise can be generalized to
an arbitrary number of moment conditions and could also allow for “model selection” over sets of

possible regressors. We report the results for this model in the following. In subsection 2.2 we also
discuss the results for a variant of the model where heteroscedastic error structures are considered.



2.1 Homoscedasticity Results

Tables 1 and 2 detail an investigation of the small sample properties of the proposed empirical
likelihood based moment and model selection (MSCEL) test as compared to the J-statistic based
information criterion (MSCJ). The results are based on 1000 repetitions for five sample sizes. In
addition to the probabilities of each criteria selecting consistent, true and inconsistent moment
selection vectors, the small sample properties of the J-statistic and the empirical likelihood are
considered. In particular, since for correctly specified models both are asymptotically x? with
degrees of freedom equal to the number of over-identifying restrictions, the percentage of in-sample
rejections at the 5 and 10 percent levels are tabulated for instrument groups 1 and 2. As these
groups have 3 and 4 instruments respectively, it follows that they are x? distributed with 1 and 2
degrees of freedom.

Comparing alternative penalty functions for the MSCJ, it is clear that the probability of selecting
(6%, %) is generally greatest for the AIC for all sample sizes except N = 250. This is consistent
with Andrews and Lu (2001) which finds in a dynamic panel data context that the AIC performed
best for their smallest sample size (which is N = 250 for their Monte Carlo study). For the largest
sample size and the J-statistic based criteria using the BIC performed marginally better than the
HQIC, with considerable improvements on the AIC and v/N criteria. For MSCEL, the empirical
likelihood based criteria, the AIC performed similarly well. However, for the largest sample size the
HQIC performs marginally better than the AIC and BIC, with dramatic improvements on the v N

criterion.

Contrasting results for the MSCEL and MSCJ by penalty function, the MSCJ generally has a higher
probability of selecting (b°,¢c®). The gains are of the order of 5 to 10 percent for the BIC and HQIC
for sample sizes N = 40, 50 and 100 and considerably more for the v/N criterion. The MSCEL has
slightly higher probability for the AIC and HQIC for the largest sample size.

Finally, to check the asymptotic properties of the statistics under consideration, Table 2 presents
the sample probabilities of rejecting correctly specified models (ie those based on instrument groups
1 and 2) at the 5 and 10 percent level. It is obvious that the empirical likelihood tends to reject too
often for small sample sizes, though performs as desired in the largest sample size. The J-statistic
is well behaved.



Table 1: Selection Probabilities

N
30
40
50
100
250

30
40
50
100
250

30
40
50
100
250

30
40
50
100
250

BIC Criterion

Empirical Likelihood

J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.009 0.327 0.644 0.011 0.319 0.770
0.003 0.364 0.633 0.009 0.422 0.569
0.008 0.385 0.607 0.022 0.472 0.506
0.002 0.588 0.410 0.024 0.766 0.210
0.001 0.947 0.052 0.020 0.976 0.004

AIC Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.043 0.437 0.520 0.083 0.452 0.537
0.046 0.557 0.397 0.089 0.584 0.327
0.061 0.598 0.341 0.118 0.630 0.252
0.065 0.803 0.13 0.137 0.801 0.062
0.061 0.939 0.000 0.163 0.837 0.000

HQIC Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.023 0.400 0.577 0.046 0.400 0.554
0.017 0.477 0.506 0.032 0.528 0.440
0.030 0.504 0.466 0.061 0.588 0.351
0.019 0.730 0.251 0.051 0.837 0.112
0.014 0.972 0.014 0.062 0.938 0.000

V/N Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.001 0.186 0.813 0.000 0.137 0.863
0.000 0.154 0.846 0.000 0.152 0.848
0.001 0.166 0.834 0.000 0.186 0.814
0.000 0.172 0.828 0.000 0.339 0.661
0.000 0.311 0.689 0.000 0.767 0.233

10
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Table 2
Small Sample Properties of the Empirical Likelihood and J-Statistic
Empirical Likelihood J-Statistic
X*(10,1) x*(5,1) x*(10,2) x*(5,2)  x*(10,1) x*(51) x*(10,2) x*(5,2)
30 0.178 0.101 0.216 0.156 0.108 0.051 0.092 0.037
40 0.176 0.099 0.197 0.116 0.111 0.050 0.091 0.048
50 0.157 0.082 0.182 0.117 0.092 0.042 0.092 0.037
100 0.148 0.089 0.160 0.099 0.110 0.055 0.099 0.046
250 0.116 0.063 0.123 0.062 0.094 0.041 0.092 0.042

2.2 Heteroscedasticity Results

To allow for heteroscedastic errors the Monte Carlo design is generalized as

Yt = o + 01T + Uy (8)
zy = 0.5n7 + 0.5 (9)
us = YN (2¢) (10)

2y = 0.5n7 + 0.5¢, (11)
fe = 0.5n7 + 0.5u; (12)

The assumptions of the previous design continue to hold. N(z) is the Normal CDF and describes
the functional form of heteroscedasticity.

The results under this design are detailed in Tables 3 and 4. In contrast to the previous design, for
both the MSCEL and MSCJ, the AIC is only marginally better than the HQIC, though the gains
are larger when compared to the BIC and v/N criteria. Over all sample sizes the MSCEL appears to
perform best when the HQIC is adopted, while the MSCJ performs better for smaller sample sizes
under the HQIC and better for lager sample sizes under the BIC. Constrasting results across the
MSCEL and MSCJ for each criterion, we note that the MSCEL performs better for the N = 30, 40
and 50 samples, across all possible criteria. For the larger sample sizes the MSCJ tends to do better,
except for the HQIC. The asymptotic properties of the empirical likelihood and the J-statistic for
correctly specified models are analyzed in Table 4, analogously to Table 2 for the previous Monte
Carlo design. Once again, the empirical likelihood statistic tends to reject the model in-sample too
often for smaller sample sizes.

We conclude from the two sets of Monte Carlo results that while the MSCJ performs better than
the MSCEL for a simple instrumental variables model in relatively large size samples, this inference
is not robust to the inclusion of non-normally distributed variables and heteroscedastic errors. This
suggests the MSCEL to be a useful alternative to the MSCJ.



Table 3: Selection Probabilities

N
30
40
50
100
250

30
40
50
100
250

30
40
50
100
250

30
40
50
100
250

BIC Criterion

Empirical Likelihood

J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.037 0.605 0.358 0.021 0.525 0.454
0.028 0.680 0.292 0.023 0.647 0.330
0.018 0.741 0.241 0.033 0.725 0.242
0.008 0.873 0.119 0.023 0.929 0.048
0.003 0.980 0.017 0.008 0.992 0.000

AIC Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.104 0.667 0.229 0.095 0.663 0.242
0.089 0.757 0.154 0.119 0.724 0.157
0.103 0.785 0.112 0.155 0.745 0.100
0.101 0.875 0.014 0.158 0.835 0.007
0.077 0.923 0.000 0.147 0.853 0.000

HQIC Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.071 0.649 0.280 0.052 0.623 0.325
0.058 0.739 0.203 0.055 0.720 0.225
0.049 0.779 0.172 0.081 0.761 0.158
0.041 0.902 0.057 0.065 0.917 0.028
0.017 0.981 0.002 0.043 0.957 0.000

V/N Criterion
Empirical Likelihood J-Statistic

Other Consistent Truth Inconsistent Other Consistent Truth Inconsistent
0.007 0.483 0.510 0.000 0.305 0.695
0.005 0.522 0.473 0.000 0.380 0.620
0.049 0.555 0.396 0.001 0.461 0.538
0.000 0.632 0.368 0.000 0.733 0.267
0.000 0.720 0.280 0.000 0.967 0.033

12



13

Table 4
Small Sample Properties of Empirical Likelihood and J-Statistic
Empirical Likelihood J-Statistic
X*(10,1) x*(5,1) x*(10,2) x*(5,2)  x*(10,1) x*(51) x*(10,2) x*(5,2)
30 0.171 0.111 0.249 0.177 0.118 0.057 0.096 0.032
40 0.160 0.095 0.211 0.136 0.122 0.049 0.075 0.030
50 0.153 0.087 0.210 0.137 0.116 0.063 0.103 0.046
100 0.135 0.076 0.188 0.128 0.112 0.059 0.097 0.048
250 0.112 0.061 0.145 0.800 0.108 0.051 0.082 0.038

3 An Information Theoretic Alternative to EL-based MSC

An information theoretic alternative to empirical likelihood is to base the model selection criteria
based on the empirical Kullback-Leibler Information Criterion (KLIC) between the specified family
of distributions (satisfying the population moment restrictions) to the observed population. This is
the exponential tilting approach, which has been used in Kitamura (2000) and Imbens, Spady, and
Johnson (1998). A model selection criterion based on the exponential tilting approach would be:

L~ L roix.
MSCET, = maxminnlog | — Z eTdXam) | 4 o (el = 101)
T Te s

It is known that (cf. Kitamura (2000) and Imbens, Spady, and Johnson (1998)) min.,, max,, 2 37 | e7-9(Xiim) £,

Ee2 9(Xi%) | 1f the model is correctly specified, 7¥ = 0, log Eerd o(Xink) = 0, and

1o~ oix..
max minn log (5 Z eTcg(wab)> =0,(1)
i=1

b Te

On the other hand, under misspecification, 7} # 0, log Ee™ 9(Xii%) < 0, and

1o ix.
max min n log <_ Z ercg(X,-,'n,)> —oo
n

c T
it b i1
Hence with the same condition on the penalization sequence
Fn @ Kp = 00, kn =0(n),

a model and moment selection procedure based on M SCET, would also consistently select the
correct moment and model specification (b, ¢) with the largest degree of overidentification (|c| — |b]).

Proposition 4 For (IA), é) = argmaxM SCET, (b, c), with probability converging to 1,

(13, c) € MBELO
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4 Conclusions

In this note, we propose empirical likelihood based model and moment selection criteria for un-
conditional moment models and showed that they consistently select the correctly specified model
with the largest degree of overidentification, in the spirit of Andrews (1999) and Andrews and Lu
(2001). In the more general situation in which two moment models under consideration can be
both misspecified, Kitamura (2000) developed information theoretic nonparametric likelihood ratio
tests for selecting the unconditional moment condition that is closer to the underlying population
in the sense of KLIC, extending the parametric likelihood ratio testing principle of Vuong (1989) to
potentially misspecified moment condition models.

Elsewhere, Kitamura (2000) has developed nonparametric likelihood ratio tests which are useful for
the situation in which a pair of models can both be misspecified. The model and moment selection
criteria (MSC) proposed in this note are useful under the alternative assumption that at least one
of a large (potentially > 2) collection of models under consideration is correctly specified.
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