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1 Introduction

An organization is a collection of agents that interact and produce some form of
output. Formal organizations - such as corporations and governments - are typically
constructed for an explicit purpose though this purpose needn’t be shared by all or-
ganizational members. An entrepreneur who creates a firm may do so in order to
generate personal wealth but the worker she hires may have very different goals. As
opposed to more amorphous collections of agents such as friendship networks and
societies at large, organizations have a formal structure to them (though informal
structures typically emerge as well) with the prototypical example being a corpora-
tion’s organizational chart. This structure serves to define lines of communication
and the distribution of decision-making. Organizations are also distinguished by their
well-defined boundaries as reflected in a clear delineation as to who is and who is not
a member. This boundary serves to make organizations a natural unit of selection;
for example, corporations are formed and liquidated though they can also morph into
something different through activities like mergers.

The primary task of organization theory is to understand how organizations be-
have and to identify and describe the determinants of organizational performance.2

To take an agent-based approach means not having to assign an objective to an or-
ganization and instead modelling the agents that comprise it with explicit attention
to how decisions are made and how the interaction of these decisions produce orga-
nizational output. The smallest decision-making unit is then required to be smaller
than the organization itself. The anthropomorphic view associated with the theory
of the firm - firms are profit-maximizers - is not an agent-based model. Though neo-
classical economics has many agent-based models of organizations, including agency
theory and team theory, these models are generally quite restrictive in terms of the
assumptions placed on agent behavior, the number and heterogeneity of agents, the
richness of the interaction among agents, and the features of the environment. These
restrictions are forced upon scholars by virtue of the limited power of analytical meth-
ods. To derive universal results (“proving” them) requires limiting the size of one’s
universe (the class of models). While some structures are relatively simple in their
real form (for example, many auctions), organizations are inherently complex; they
are their own brand of society, plagued with conflicting interests while dealing with
multi-faceted problems amidst a coevolving environment. Proving universal results
is only achieved at the cost of severely restricting the richness of the setting.

A computational agent-based model uses the power of computing to “solve” a
model. A model is written down, parameter values are specified, random variables
are realized, and, according to agents’ behavioral rules, agent output is produced.
Organizational output comes from the specified mapping from the environment and
agents’ actions into the output space. At the end of vast CPU time, the simulation
output can yield results that are rich and insightful but ultimately are a collection of
examples, perhaps many examples - thousands of periods, hundreds of runs, dozens of

2A thoughtful statement as to what is an organization and what organization theory is about can
be found in Aldrich (1999).
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parameter configurations - but still noticeably finite. In deploying numerical methods,
the presumption is that the model is unsolvable by the human mind (in practice, not
necessarily in principle). If the use of computing power is not to reflect laziness
or ineptness on the modeler’s part, a computational agent-based model must then
have some minimum level of complexity - whether due to agent heterogeneity, the
structure of interactions among agents, a poorly behaved environment, dynamics, or
some other feature. A legitimate computational agent-based model is then not simply
one that is solved by a computer but rather one for which it is necessary that it be
solved by a computer.3

Organization theory is traditionally of two varieties: i) broad, institutionally rich,
and vague while using informal arguments articulated in a narrative; and ii) narrow,
simplistic, and mathematically precise while using formal logic articulated in a set of
assumptions, a statement of a theorem, and a proof. The appeal of computational
modelling is that it achieves middle ground in that it has the precision of (ii) and
the ability to handle a rich set of features as with (i). It trades off the universality of
results of (ii) for a richer model while maintaining rigor and formality. This trade-off
is generally judged to be a good one when it comes to modelling a complex entity
such as an organization.

In writing this chapter, the hope is to describe to the reader the central research
questions addressed, synthesize the models and methods deployed, and survey some
of the new insight being delivered. Given the incipiency of this literature, what we
will not provide is a coherent set of results because such has not yet emerged. Work on
computational agent-based models of organizations is very much in the exploratory
phase with highly varied approaches to pursuing a broad range of questions. Our
objective is to introduce it to economists in a methodological manner and provide a
broader and less idiosyncratic perspective to those who are already engaging in this
type of work.

Before launching into specific models, let us offer a quick review of some of the
questions addressed by research so that these can frame the reader’s mind. What are
the determinants of organizational behavior and performance? How does organiza-
tional structure influence performance? How do the skills and traits of agents matter
and how do they interact with structure? What determines whether more skilled
agents and a more decentralized structure are complements or substitutes? What is
the proper balance of exploration and exploitation? How do the characteristics of the
environment - including its stability, complexity, and competitiveness - influence the
appropriate allocation of authority and information? How is behavior and perfor-
mance influenced when an organization is coevolving with other organizations from
which it can learn? Can an organization evolve its way to a better structure?

Related Literatures There are a number of closely related literatures that will not
be covered here. A more complete treatment of agent-based models of organizations

3Not all computational models of organizations are agent-based; Carroll and Harrison (1998)
being an example. Their formulation begins not with a specification of agents but rather a system
of equations describing hiring, socialization, and turnover.
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would discuss the extensive literature in neoclassical economics on organizations.4

These models are rich in their modelling of incentives but mired in poverty when
it comes to modelling agent heterogeneity, the cognitive limitations of agents, orga-
nizational structure, and the coevolving nature of a population of organizations. A
second related literature is on networks, for implicit in any non-degenerate model of
an organization is a network which describes how agents communicate and influence
each other. As there are two other chapters in this handbook devoted to networks
[Vriend (2005), Wilhite (2005)], we will generally exclude such work other than that
which is specifically designed to understand organizations. Thirdly is work on dis-
tributed artificial intelligence which develops better ways to solve problems through
the distribution of tasks among agents.5 While some of these models have something
meaningful to say regarding the questions of this chapter, the ultimate objective is
quite different. For example, as the objective is developing more efficient solutions
rather than better explaining organizations, it is common to assume agents’ goals co-
incide with the organizational goal. Finally, there is the line of work best referred to
as organizational engineering. This research develops a relatively literal description of
an organization which can then be calibrated and simulated to provide quantitative
answers to policy questions. As a result, the models are not designed to provide qual-
itative insight and have different objectives from the work that is reviewed here. At
the risk of unfairly over-generalizing, organizational engineering models are designed
for prediction, not explanation.

As to other review articles, the Introduction to Lomi and Larsen (2001) offers a
most enlightening historical perspective that draws on many scholarly antecedents.
The review article closest to what we are doing here is Carley and Gasser (1999)
though they give emphasis to organizational engineering. Sorensen (2002) provides
a nice review of organizational models based on the NK-approach (Kauffman, 1993)
and cellular automata. One of the best papers that discusses the general topic of
complexity and how it relates to issues in organization theory is Carroll and Burton
(2000). Collections of papers dealing with computational organization theory (not
just agent-based modelling) include Baum and Singh (1994), Carley and Prietula
(1994), Cohen and Sproull (1996), Prietula, Carley, and Gasser (1998), and Lomi
and Larsen (2001). Also see Baum (2002) for general work on organizations with
several entries dealing with computational modelling.

Roadmap and a Guide for Neoclassical Economists A synthesis of the central
features of computational agent-based models of organizations is provided in Section
2. The literature itself is partitioned according to the basic task with which an
organization is faced. Section 3 focuses on models for which organizations search
and learn; it represents the most well-developed body of work. Section 4 looks into
modelling the processing of information which is, roughly speaking, a production
function for organizational decision-making. Thus far, models are a bit mechanical

4Holmstrom and Tirole (1989), Milgrom and Roberts (1992),and Prendergast (1999) offer good
general treatments.

5See, for example, Durfee (1999) and Mackie-Mason and Wellman (2005).
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and the literature is not as developed. While these two research strands make up the
bulk of the literature, other issues are tackled and Section 5 describes the best work
on some of the more important organizational issues not covered in Sections 3 and
4. A critical appraisal is provided in Section 6 where we also identify some lines for
future work.

For the neoclassical economist largely unfamiliar with computational agent-based
modelling, we recommend focusing on Sections 2 and 3. Section 2 introduces many
concepts and elements of this modelling approach and, in its final subsection, con-
trasts neoclassical and computational agent-based models and suggests why a neo-
classical economist should be interested in these methods. The search and learning
literature reviewed in Section 3 is the closest in style to that conducted by neoclassical
economists and, in addition, we take the opportunity to begin synthesizing existing
results and contrasting the associated insight with what one would get using a neo-
classical approach. We ask: What do we learn from the computational agent-based
approach that we would not have learned from using the neoclassical approach?

2 How to model an organization

How can intelligence emerge from nonintelligence? To answer that, we’ll

show that you can build a mind from many little parts, each mindless by itself.

... These we’ll call agents. Each mental agent by itself can only do some simple

thing that needs no mind or thought at all. Yet when we join these agents in

societies - in certain very special ways - this leads to true intelligence. [Marvin

Minsky, The Society of Mind (1986), p. 17]

The typical neoclassical description of a firm - the organization that has drawn the
most attention within economics - is as a profit-maximizing entity. Being a single-
agent formulation, it represents a rather uninteresting model of an organization.6

Similarly, there are models in the agent-based literature, such as the early work of
Levinthal (1997), that model an organization as a single agent adaptively learning.
However, to be a meaningful agent-based model of an organization, an agent must be
“smaller” than the organization itself. But then, how does organizational behavior
emerge from a collection of agents making choices? Just as Marvin Minsky asks how
mindless components can form a mind and produce intelligence, we ask how agents
- representing human actors - can form an organization and produce output beyond
the capacity of any individual agent.

This section is divided into five parts. The first part reviews the concept of an
agent. An agent represents the smallest decision-making unit of an organization. Next
we turn to examining the various dimensions of an organization; what transforms a
collection of agents into an organization? The third section describes the environment
into which an organization is placed and the task with which it is presented. The

6Though no economist would see the theory of the firm as a model of an organization, this
misses the point. The theory of the firm is used to make predictions about corporations which are
organizations.
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fourth section offers a brief discussion on computationally implementing an agent-
based organizational model. In the final section, this approach is contrasted with the
more standard approach in economics.

2.1 Agents

There are many definitions of an “agent” in the agent-based literature. An agent is
said to be purposeful, autonomous, adaptive, and so on. While these terms serve to
convey a sense of what the researcher is after, they only shift the question of “what
is an agent?” to “what does it mean to be purposeful? autonomous? adaptive?”
Perhaps the best we can do is to describe our intent - what is this thing called an
agent suppose to represent? - and what we actually do - how is an agent instantiated?
In almost all models of organizations, an agent represents a flesh-and-blood human.7

Being purposeful may mean adjusting behavior to improve some measure of well-
being; being autonomous may mean choosing actions even if they are in conflict with
an organizational goal; being adaptive may mean modifying behavior in response to
past experiences. Though the terms are vague, the way in which they are implemented
has substantive content.

The neoclassical approach in economics to modelling agents takes preferences and
beliefs as primitives. Typically, an agent is endowed with a utility function and, given
beliefs over that which is unknown to the agent, acts to maximize expected utility or,
in an intertemporal setting, the expectation of the discounted sum of utility. When
an agent is making choices in a multi-agent context and what is best depends on what
others do - and this certainly describes an organization - this approach is augmented
with the (Bayes-Nash) equilibrium assumption that each agent understands how other
agents behave. This doesn’t necessarily mean that agents know exactly what others
will do but they do know other agents’ decision rules - how private information
maps into actions. Agents have complete understanding though may lack complete
information.

In contrast to the assumption of a hyper-rational agent, it is standard in the
computational agent-based literature to assume agents are boundedly rational. The
most concise statement of this modelling approach is that agents engage in adap-
tive search subject to various cognitive constraints (and not just informational con-
straints). These models may continue to deploy the optimization framework though
assuming myopic optimization and that beliefs are empirically-based rather than the
product of understanding what is optimal behavior for others. Agents observe but
do not necessarily theorize. For example, a common specification is that an agent
engages in hill-climbing as it adopts a new alternative when doing so yields higher cur-
rent performance than the previously selected action (Chang and Harrington, 2000).
Or the optimization framework may be entirely discarded as preferences and beliefs
are replaced with behavioral rules cast as primitives. For example, in information
processing models, an agent receives data and is endowed with a rule that converts

7This needn’t be the case for, in actual organizations, agents can be software such as expert
systems or automated bidding rules at auctions.
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it into a lower-dimensional message sent to the next agent in line (Carley, 1992; Barr
and Saraceno, 2002).

Within this bounded rationality framework, models often provide a parameter
by which one can “tune” the cognitive skills of an agent. When rules adapt to
experience, a key parameter is how much experience an agent has as well as the
size of memory (Carley, 1992). In the context of information dissemination, the
likelihood that an agent observes an innovation reflects a level of skill (DeCanio and
Watkins, 1998). For hill-climbing algorithms, agents may only evaluate alternatives
imperfectly - less skilled agents may have noisier evaluations (Chang and Harrington,
1997) - or are constrained in the set of alternatives - more skilled agents are able to
consider options in a wider neighborhood around their current practices (Kollman et
al., 2000). A novel and promising approach is to assume that an agent has a “model”
of how actions map into performance but where the model is of lower dimensionality
than reality (Gavetti and Levinthal, 2000).

2.2 Organizations

Let us now turn to the issue of what transforms a collection of agents into an or-
ganization. Our discussion is organized along three questions. Who comprises an
organization? How are agents connected to produce organizational output? And,
how are agents motivated?

An organization is comprised of multiple agents and indeed one common question
in the literature is how the number of agents influences organizational performance.
But more than pure numbers is relevant, especially when agents are heterogeneous.
There is an architecture to organizations, which we will elaborate upon momentarily,
which raises questions of how agents are distributed across various units and how
agents are matched to tasks. Given the often significant role to agent heterogeneity
in computational agent-based models, it is surprising that there is little research
exploring how agents with different skills are distributed across the different levels of
an organization. This is an area begging for work.

Organizational structure is another one of those terms that has defied a common
definition. A broad but useful one refers to it as “those aspects of the pattern of
behavior in an organization that are relatively stable and that change only slowly”
(March and Simon, 1958, p. 170). Under the rubric of organizational structure,
we will place three dimensions. First, there is the allocation of information. This
refers to how information moves between the environment and the organization -
which agents receive data from the environment - and how it moves within the or-
ganization - who reports to whom. This may have a fairly stable component to it,
as might be described by the rules of communication laid out in an organizational
chart. Such well-defined flows are a common feature of information processing mod-
els (Miller, 2001). However, just as people create dirt paths in a park by veering
from the sidewalk, information can flow outside of mandated channels. There is then
an endogenous feature to how information is distributed.8 For example, Chang and

8This type of model is more fully explored in Vriend (2005).
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Harrington (2000) allow an upper level manager to observe a new practice and then
decide whether to communicate it to lower level agents.

A second element to organizational structure is the allocation of authority - who
makes the decisions - associated with which are two critical facets: modularity and
decentralization. An organization may have to perform many sub-tasks in solving a
problem and a key structural issue is how these sub-tasks are combined into distinct
modules which are then re-integrated to produce an organizational solution. The
degree to which a problem can be efficaciously modularized depends on the nature of
the task (what is referred to as decomposability, which we discuss later). Two classic
structures that represent alternative modular forms are theM-form - where all of the
sub-tasks associated with a particular product line are combined - and the U-form
- where all similar sub-tasks are combined (for example, the marketing divisions for
all product lines are in the same module). With this allocation of tasks, there is still
the issue of which agents ultimately make the decisions. In the context of a hierarchy
- which describes most organizations - to what degree is authority centralized in
higher levels? Is authority matched with who has the best information? Here we are
referring to formal authority which, as noted by Aghion and Tirole (1997), may differ
from real authority. If an agent with decision-making authority relies heavily on the
information provided by other agents then the real authority (or power) may lie with
those providing the information. The allocation of information and real authority are
thus intertwined.

A third element of structure is the least well-defined: organizational norms and
culture. Though there are probably as many definitions of culture as scholars who
have sought to define it, we’ll put forth the one of Sathe (1985): “Culture is a set
of shared assumptions regarding how the world works (beliefs) and what ideals are
desirable (values).” Agent behavior is somehow influenced by an organization’s past
and this past is embodied in what is called norms or culture. Of particular interest
is modelling the associated feedback dynamic - norms, being determined by past
behavior, influence current behavior which then serves to define future norms. This
is a driving force in March (1991).

The final element to organizations to be covered is agent motivation. Agents
may be modelled as having preferences - for example, they desire income and dislike
exerting effort - but how that translates into behavior depends on an organization’s
incentive scheme for rewarding and punishing.9 The compensation scheme for corpo-
rate managers may drive them to seek higher organizational profit, while the scheme
for division managers may be tied to division profit (so as to induce high effort) which
can then create a conflict of interests. Conflict may also arise when an organization
uses promotion or bonuses based on relative performance to encourage effort.10 An
important element to any conception of an organization is the degree of such conflicts
and how it varies within and across levels. By contrast, models of distributed prob-

9Many computational agent-based models of organizations are not explicit about the form of the
incentive scheme but, if one makes standard assumptions about agents’ preferences, there is often
an obvious implicit specification.
10Though these forces haven’t been modelled in the agent-based literature, there has been some

computational work elsewhere (Harrington, 1998, 1999).
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lem solving in AI assume agents have a coherence of goals. More realistic models
of organizations recognize that conflict of interest is an endemic feature of actual
organizations.

An organization has an output - say, a set of practices - and delivers some measure
of performance. Performance may be measured by profit (or some analogous criterion)
or may involve specifying a particular target (for example, the global optimum) and
then measuring performance by the frequency with which an organization reaches
it or, if eventually it’ll always reach it, the average time it takes to do so. While
most organizations are designed with a particular objective in mind (the objective
of the entrepreneur), it doesn’t follow that organizational behavior is consistent with
that or any other objective. An organization’s members may have different goals
than those of the entrepreneur. Fortunately, an agent-based model needn’t answer
the dicey question of “what is an organization’s utility function” as it is sufficient
to instantiate agents and let organizational behavior emerge from the interaction of
agents amongst themselves and with the environment. By building an organization
from the ground-up, we can avoid taking an anthropomorphic view to complex entities
such as organizations.

2.3 Environments

An organization resides in an environment and is faced with a problem (or task)
and constraints to be faced in trying to solve it. The problem may be choosing a
political platform, if it is a political party, or producing and selling a product, if it is
a firm. Problems vary in terms of their difficulty. A problem may be more difficult
because it requires more information. It may be more difficult because there are
interactions between various choice variables which makes it less likely that one can
search, dimension by dimension, for a multi-dimensional solution. Relatedly, it may
be more difficult because directed search is infeasible or ineffective. Knowing where to
go from one’s current position to achieve higher performance can greatly ease search.
Such directed search may be infeasible because there is no metric on the solution
space; there is no notion of two solutions being close. Even if there is a metric, the
relationship between performance and actions may not be well-behaved in that the
components of the gradient may quickly change sign and admit many optima. This
means that hill-climbing algorithms can get stuck on lousy local optima and it isn’t
clear where to look for better ones.11

Related to the issue of difficulty is the extent to which a problem is decomposable.
A problem is said to be decomposable if there exists a way in which to partition it
into sub-problems such that the concatenation of the solutions to the sub-problems is
a solution to the original problem. Such problems are easier and quicker to solve as it
means solving a collection of simpler (lower dimensional) problems in parallel. Fur-
thermore, how a problem decomposes suggests a “natural” organizational structure,
an issue explored in Ethiraj and Levinthal (2002).

11Page (1996) provides a rigorous investigation into what it means for a problem to be more
difficult from the perspective of search algorithms.
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An organization’s problem may also have a dynamic component to it. In solving a
single task in real time, the best solution may evolve with changes in the environment.
A less stable environment makes the problem more difficult as the organization is
pursuing a moving target. Or an organization may face a series of problems. Is the
same problem being faced repeatedly or are the problems distinct and, if so, how are
they related? As long as the problems retain some similarity, the solution to one will
provide clues for another, thereby creating opportunities to learn.

A more distinctive feature of an organization’s environment is the presence of
other entities that are also solving problems; there may be a pool of organizations
coevolving. Other organizations may influence an organization’s current performance
- consider a setting in which they compete (Barr and Saraceno, 2003) - or influence
future performance when they can learn from each other (Miller, 2001) or exchange
personnel (Axtell, 1999). There may be other adapting agents such as consumers -
Chang and Harrington (2003) allow consumers to search at the same time that firms
are adapting their practices - or lobbyists (if the organizations are governments). In
providing an endogenous source of change in an organization’s environment, coevo-
lution can provide rich and non-trivial dynamics.

2.4 Implementation of an Agent-Based Model of an Organization

Having identified many of the components that go into an agent-based model of
an organization, how does one implement it computationally? As space constraints
prevent a comprehensive answer, let us focus on two broad and essential elements
to implementation: agent processes and super-agent processes. In a computational
model, an agent is instantiated as a mapping from inputs into outputs. Input in-
cludes information from outside the organization (from customers, input suppliers,
competitors, etc.) and information from inside the organization (subordinates, peers,
superiors); it takes the form of processed information, new ideas, actions. The ensu-
ing output may be a concrete action or a message to other agents. The important
point is that many of the elements of an organization - communication network, hier-
archy, incentive schemes, and the like - are embedded in an agent’s mapping. When
one writes a code that specifies that agent i observes some data and makes a rec-
ommendation to agent h who, after also receiving a recommendation from agent j,
chooses between these alternatives, one is making assumptions about the allocation
of information (i and j receive information from the environment while h does not)
and the allocation of authority (h has authority while i and j do not). The particular
form of this mapping similarly depends on organizational features such as the form
of compensation and norms (peer pressure, standard operating practices, etc.) as
well as agent-specific traits including preferences, beliefs, and cognitive skills. This
mapping may evolve over time due to learning but also because the identity of an
agent changes as a result of personnel turnover. In sum, an organization is implicit in
the modelling of agents’ mappings. What emerges from the interaction among agents
and the environment is organizational behavior.

Lying on top of these agent processes are super-agent processes which systemat-
ically influence an organization but are not embodied in agents’ mappings. Super-
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agent processes are commonly used to endogenize organizational structure. This
may mean using a genetic algorithm defined over a population of organizations which
creates new organizational designs and weeds out poorly performing ones (Miller,
2001).12 Or one might model the adaptation of organizational design through a hill-
climbing algorithm (Ethiraj and Levinthal, 2002) or simulated annealing (Carley and
Svoboda, 1996). These super-agent processes provide a black box mechanism to sub-
stitute for modelling the agents who actually make these decisions. For example, a
CEO typically decides on organizational structure, creditors decide whether to force
an organization to exit, and entrepreneurs decide whether to create a new organi-
zation. As modelling all agents is often too daunting a task, super-agent processes
represent a parsimonious way in which to encompass these other forces.

2.5 How Does Agent-Based Computational Economics Differ from
Neoclassical Economics?

The objective of this section is to summarize the essential differences between agent-
based computational economics (or ACE) and neoclassical economics (or NCE). In
so doing, we will argue why economists ought to be interested in ACE.

The first essential difference is that agent behavior is characterized by adaptive
search in ACE, which departs from the assumption in NCE that agent behavior is
optimal (for some preferences and beliefs). In short, NCE describes “what is best,”
while ACE describes “what is better.” With ACE, learning is based more on experi-
ence than understanding, more on retrospection rather than foresight. Furthermore,
imperfections to agent behavior are modelled very differently. With NCE, imperfec-
tions are due to incomplete information. Consistent with the bounded rationality
approach, cognitive limitations are central to ACE which means that what infor-
mation is possessed may not be fully processed. This distinction between optimal
behavior and adaptive search has a considerable impact on the logic of the model
and the ensuing insight that is produced. This will come out in Section 3 when we
examine a particular class of ACE models.

The next two distinctive elements of ACE emanate from the methods used in
solving the model. Results are proven with NCE, while they are numerically derived
for a particular parameter specification with ACE. Computational implementation
has implications for both modelling and analysis.

The second essential difference is the way in which agents’ environments are mod-
elled. The forte of expert NCE modelers is constructing a well-behaved environment
in the sense of, for example, having a unique optimum or equilibrium and allowing
comparative statics to be signed. In other words, building a plausible model that
can be mentally solved. With ACE, there are much fewer constraints of this sort

12The role of selection is particularly interesting because part of what makes a collection of agents
an ”organization” is that it is a unit of selection. Corporations are created and fail; governments
are put in power and overthrown. By comparision, general societies are more amorphous and thus
less natural a unit of selection. Indeed, conquerers can be assimilated in which case which society
has really prevailed? While the same might be said of firms - consider hostile takeovers - it is not as
compelling.
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since the model is solved numerically. This allows for complex environments which
are richer with more descriptive realism. Without as many modelling constraints,
a researcher is more apt to be able to make the primitive assumptions thought to
be most appropriate and let the environment be what it will be. Complexity is not
shunned but rather embraced when it is a property of the environment that actual
agents and organizations face. In short, ACE allows for richer environments than
does the NCE approach and, furthermore, makes complexity a trait of the environ-
ment whose role is to be explored. Indeed, research reveals that qualitative results
can vary significantly with environmental complexity.

The third essential difference is in the mode of analysis. Dynamic models in the
NCE tradition typically focus on the long-run, whether a steady-state or a stationary
distribution. Behavior is characterized when all has settled - the environment has
calmed down (in actuality or in expectation) and the system has converged to some
form of equilibrium. A primary virtue of the ACE approach is that, by running
simulations, it can describe medium-run dynamics. By medium-run dynamics we
mean that some learning and adaptation has taken place but the system is not close to
stabilizing. Not only are medium-run dynamics important if one wants to understand
the transitional impact of various policies but, if convergence to equilibrium is slow
(or if there is convergence at all), it may be the time scale of greatest relevance.

These three identifying traits of ACE - adaptive search with cognitive constraints,
complex environments, and medium-run dynamics - are quite complementary in that
a complex environment makes optimal behavior more problematic an assumption
and, furthermore, it is more appropriate to describe the system using medium-run
dynamics rather than a long-run equilibrium.

In light of these unique features, economists should be interested in ACE because
it offers a new set of modelling and analytical tools which, in many instances, are
quite complementary to that of NCE. First, a computational agent-based approach
can be used when the environment is inherently complex and poorly behaved (mul-
tiple optima, non-quasi-concave, coevolution among agents, etc.) so that analytical
methods are likely to fail and the assumption of game-theoretic equilibrium is par-
ticularly problematic as a characterization of behavior. Rather than making heroic
assumptions on behavior and the environment in order to ensure the model can be
mentally solved, one can use ACE methods. Second, ACE can characterize medium-
run dynamics, a long neglected element of NCE in spite of its importance. Third,
ACE methods can be used to explore not just traditional NCE issues - such as the
role of organizational structure - but also previously ignored issues such as the role of
environmental complexity and the cognitive limitations of organizational members.
Complexity may differ across economic settings because of the production process
and the extent of complementarities among an organization’s activities. For exam-
ple, greater connectedness among agents due to innovations in information technology
may mean a better global optimum but also a more complex environment in terms
of more local optima. Cognitive limitations may differ across organizations because
of education, training, and how effectively an organization “selects” smarter people.
Also, the extent to which cognitive skills matter will vary across positions within an
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organization; such skills are less important for tasks that can be routinized and more
important for those that are continually subject to novelty. These new tools and
issues are capable of providing new insight into organizations, as we’ll show in this
chapter.

Free your mind. [Morpheus to Neo from The Matrix.]

A challenge to a neoclassical economist in reading this chapter will be the un-
orthodox logic of these models. The optimization framework produces a certain logic
which can be quite distinct from that due to adaptive search. The canonical ACE en-
vironment is one in which an agent is searching on a landscape with multiple optima.
Changes - such as with respect to organizational structure - may actually result in
a lower global optimum but nevertheless enhance performance because search may
not always find the global optimum or medium-run dynamics may generally not be
near the global optimum. For example, a change which throws the organization into
the basin of attraction for a better optimum can enhance performance even though
it may be deleterious in the short-run. The logic of these models rests not just on
how the landscape is affected in terms of its highest point but on a broader range of
landscape properties which impact how search is conducted. With NCE, what mat-
ters are the set of optima or equilibria; with ACE, the entire landscape can matter
because at issue is how likely adaptive search can take an organization from one point
of the space to another. The path matters and not just the destination.

... a straight line may be the shortest distance between two points, but it is by no means

the most interesting. [The Doctor from “The Time Monster” episode of Doctor Who.]

3 Search and Learning

[T]he assumption that business behavior is ideally rational and prompt, and

also that in principle it is the same with all firms, works tolerably well only

within the precincts of tried experience and familiar motive. It breaks down as

soon as we leave those precincts and allow the business community under study

to be faced by — not simply new situations, which also occur as soon as external

factors unexpectedly intrude — but by new possibilities of business action which

are as yet untried and about which the most complete command of routine

teaches nothing. [Joseph A. Schumpeter, Business Cycles: A Theoretical,
Historical, and Statistical Analysis of the Capitalist Process (1939), p. 98]

In this section, we take the perspective that a primary task of an organization is
to constantly search for and adopt routines that improve (though do not necessarily
maximize) performance. This search-and-learn perspective of a firm, as an alter-
native to the neoclassical approach, is central to the evolutionary theory of the firm
where firms are “modeled as simply having, at any given time, certain capabilities
and decision rules [which are] modified as a result of both deliberate problem-solving
efforts and random events.” (Nelson and Winter, 1982, p. 4)13

13One of the earliest computational papers on organizational search is Levinthal and March (1981).
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As formulated by Schumpeter and Nelson and Winter, a firm is represented by a
single agent - an entrepreneur carrying out search and making performance-enhancing
adoption decisions for the entire enterprise. The agent-based approach to modelling
organizations takes this one step further. It recognizes that the bounded rational-
ity on the part of a single decision maker, faced with a large and complex routine
space, makes an organizational search strategy utilizing multiple agents compelling.
The main objective of this research program is understanding how a firm’s perfor-
mance is influenced by the way in which parallel search is carried out among multiple
agents.14 This typically takes the form of managers of various departments inde-
pendently searching for better routines. Furthermore, if we make the reasonable
assumption that there is no single individual who is instantaneously and costlessly
informed of all new knowledge in the organization, it then becomes crucial for effective
organizational decision-making that there be collocation of the uncovered informa-
tion and the right to act on that information. This collocation may occur at the top,
thereby requiring knowledge to be pulled up the hierarchy, or at lower-level units,
thereby requiring decision rights to be pushed down (Jensen and Meckling, 1995).

As Hayek (1945) stated so forcefully, the assumption of bounded rationality puts
an upper limit on the effectiveness with which the central authority can process and
act on the large set of information sent up by an organization’s lower levels. Pushing
against this limit are two beneficial roles that the centralized authority structure may
play in formal organizations. First, it can act as a conduit for knowledge transfer.
Depending on the circumstances surrounding the local units, a piece of information
uncovered by one may prove to be of value to other units. The global exploitation
of a local discovery realizes an immediate static gain - as a useful routine is shared -
but, as we will later explain, there may also be dynamic implications in that mutual
learning can influence what units adopt in the future. While an informal social
learning mechanism may be capable of facilitating these static and dynamic processes,
upper level management can have an important role to play in this regard. Second,
centralization can help disparate units to work together by providing coordination.
To the extent that an action taken by one unit may interact with the productivity
of various actions of other units, superior organizational performance may require
upper management to intervene and constrain the choices made by these units. Our
discussion will focus on how various organizational forms influence these aspects of
multi-unit search.

This section is organized as follows. Section 3.1 begins with a description of how
an organization’s search space is modelled. There are two general approaches: the
NK model (which is imported from biology) and the economic model (which is built
upon economic primitives). We then briefly discuss the cognitive requirements for
a search unit exploring such landscapes as well as their implications for multi-agent
search. The relevant literature is then divided into two broad classes. One class

14Burton and Obel (1980) is one of the pioneering efforts in using a computational model to
understand the effect of organizational form. The authors compare the M-form and U-form as a
function of the degree of decomposability in production technology; see Section 2.2 for definitions
of these structural forms. Their model anticipated many of the crucial elements of organizational
modeling considered in more recent papers reviewed in this chapter.
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has all of the units of an organization engaged in similar operations and striving to
solve similar (though perhaps not identical) problems. This is covered in Section
3.2. Examples include retail chains and multi-plant manufacturers. The second
class, which is reviewed in Section 3.3, has the organizational problem segmented
into distinct and dissimilar sub-problems which are distributed among the units who
separately engage in search. The typical U -form organization is an example. The
evolution of organizational designs is covered in Section 3.4. Finally, Section 3.5
distills some of the new insight and contrasts it with what a neoclassical economic
approach delivers.

3.1 Modelling Search

Two approaches have been taken in modelling the search space faced by an organiza-
tion. One approach is to assume the space of routines, over which an organization is
searching, is a highly structured space; typically, it is a subset of Euclidean space with
a metric that allows one to measure how “close” two routines are. Given this search
space, a mapping from it to the real line is constructed which assigns performance
to each routine. How this mapping is constructed varies significantly between the
NK model and the economic model. A second approach involves less structure as
its primitive is a probability distribution over the performance (say, profit) attached
to an idea. Examples utilizing this approach are March (1991) and Chang and Har-
rington (1997). As the dominant approach is the first one, we will focus exclusively
on it with the exception of discussing March (1991) in Section 5.2 due to its unique
analysis of the evolution of organizational norms.

Agent-based models of organizational search characterize an organization by a
fixed number of attributes. The search space for an organizational unit, frequently
called a landscape, is defined on Euclidean space in which each attribute of an orga-
nization is represented by a dimension of the space and a final dimension indicates
the performance of the organization. The organization’s attributes are indexed by
the set S ≡ {1, 2, ..., N}. For each attribute, there exists a fixed number of possible
options which we will refer to as “practices” and which Nelson and Winter (1982) call
“routines.” The practice of the organization in attribute j ∈ S takes values in a non-
empty set Zj ⊆ <, where < is the set of all real numbers. Letting A ≡ Z1×· · ·×ZN ,
a vector defined in A then completely describes the organization’s practices. There
is a metric d : A×A→ < which measures how “close” practices are to one another.
Finally, to each vector of practices, there corresponds a level of performance for the
organization as described by v : A→ <. The search spaces in the NK model and the
economic model, to be discussed below, are two special cases of this general model.

A key factor in the organization’s search process is the exact shape of the land-
scape. Figure 1 shows two possible search landscapes for an organization which has
two attributes with 15 possible practices for each. Figure 1(a) captures a smooth
landscape having a unique local (and thereby global) optimum, while 1(b) captures
a rugged landscape with many local optima. The shape of the landscape is typi-
cally determined by the way the organization’s various attributes interact with one
another. How the interaction pattern affects the extent of ruggedness is discussed
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below for both the NK model and the economic model.

NK Model Even though the NK model was initially conceived by Kauffman
(1993) for understanding biological systems, it has been extensively applied in many
other domains including computational organization theory. An organization is con-
ceptualized as a system of activities. It makes decisions concerning N activities where
each activity can take on two states, 0 or 1, so that, referring back to the general
model, A = {0, 1}N . A particular configuration of activity is then described by a
binary vector of length N . The distance between two such vectors, x ≡ (x1, ..., xN )
and y ≡ (y1, ..., yN), is captured by the Hamming distance:

d(x, y) =
NX
i=1

|xi − yi| ; (1)

that is, the number of dimensions for which the vectors differ. As part of the NK
model, the mapping v from the activity vector to the level of performance is a prim-
itive. v is set to depend on the performance contributions that these activities
make individually, where the contribution of each activity depends on the interac-
tions among a subset of activities. The degree of interdependence among activities is
captured by a parameterK which is the number of other activities that directly affect
the contribution of a given activity. In its original formulation, these K activities
are randomly selected from S for each activity.

To be more concrete, let vi(xi, x
1
i , ..., x

K
i ) denote the contribution of activity i

to the organization’s performance where its dependence on activity i, xi, and the
K activities to which it is coupled,

¡
x1i , ..., x

K
i

¢
, is made explicit. It is common to

assume that the value attached to vi is randomly drawn from [0, 1] according to a uni-
form distribution for each possible vector (xi, x

1
i , ..., x

K
i ). The overall organizational

performance is then

v(x) =

µ
1

N

¶ NX
i=1

vi(xi, x
1
i , ..., x

K
i ). (2)

Normalization by N enables performance comparisons when N is changed.
The interaction parameter, K, controls the difficulty of the search problem by

making the value contribution of an activity dependent upon K other activities.
When K = 0, the activities are completely independent so that changing the state
of one activity does not affect the performance contribution of the remaining N − 1
activities. The landscape is then single-peaked so the globally optimal vector of
activities is also the unique local optimum. That is, improving vi by changing xi
must raise the organization’s performance since the contribution of the other activities
is unaffected by xi. The other extreme is when K = N − 1 so that a change in the
state of an activity changes the performance contributions of all other activities.
This typically results in numerous local optima for v(·) due to the complementarity
among activities. That is, changing any one of a collection of activities could lower
v but simultaneously changing all activities could raise v. Kauffman (1993) shows
that the number of local optima increases in K.
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Rather than specify the coupled or interacting activities to be randomly selected,
many organizational models using the NK framework choose the interaction pat-
tern so as to explore how different architectures influence performance. For those
purposes, it is convenient to capture the interdependencies in an adjacency matrix
(Ghemawat and Levinthal, 2000). Figure 2 shows four such matrices for N = 6 in
which the degree of interdependence as well as the exact structure of the interdepen-
dence differ. If the performance contribution of the jth activity (row j) is affected
by the chosen activity in the ith activity (column i) then the element in the matrix
corresponding to row j and column i has an ‘x’. This is always true of the principal
diagonal as the contribution of an activity depends upon the practice chosen for that
activity. Figure 2(a) is an adjacency matrix for an organization in which K = 0 so
that the activities are completely independent. Figure 2(b) is when K = 5 and each
activity is influenced by every other activity in S. Figure 2(c) captures a special
case of K = 2, where the interdependencies are restricted to non-overlapping strict
subsets of S; the activities in {1, 2, 3} influence one another, while those in {4, 5, 6}
influence one another. Figure 2(d) is another case of K = 2, though there is no ob-
vious systematic structure in comparison to the other matrices. This is what would
be typical if the interactions were random.

Economic Model The essence of the NK model is to build a generic landscape
through a random construction process. In contrast, the economic model builds it
systematically from a set of economic primitives. By way of example, let us describe
the specification in Chang and Harrington (2000). Consider an organization — such
as a retail chain — that consists of a corporate headquarters (HQ) and M ≥ 2 units
(such as stores). In this section, we will focus on constructing the landscape for only
one of the stores and defer the discussion of the overall organizational search problem.
As in the NK model, there exist N activities to a store’s operation. For each activity
there are R possible practices so that A = {1, ..., R}N . A store is then characterized
by a vector of N operating practices (z1, ..., zN ) ∈ A, where zi ∈ {1, ..., R} is the
store’s practice for the ith dimension. These practices influence the appeal of the
store to consumers. The distance between any two vectors of practices, x and y, is
measured by Euclidean distance:

d(x, y) =

vuut NX
i=1

(xi − yi)2. (3)

Each consumer has an ideal vector of store practices which is an element of
{1, ..., R}N . The net surplus to a consumer of type w ≡ (w1, w2, ..., wN ) from buying
q units at a price of p from the unit is specified to beΓ−

vuut NX
i=1

(zi − wi)2
γ · qβ − pq.

It is assumed that β ∈ (0, 1), γ ≥ 1, and Γ−
qPN

i=1 (zi − wi)2 > 1. Having q take
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its utility-maximizing value, a consumer’s demand is

(β/p)
1

1−β

Γ−
vuut NX

i=1

(zi − wi)2


γ
1−β

.

The set of consumers in a market is represented by a cdf F defined on the space
of consumer types, {1, ..., R}N , and is allowed to vary across markets so that the
environment a store faces varies across stores. In Chang and Harrington (2000),
additional structure is placed upon F as a consumer’s type is assumed to lie in
{(1, ..., 1), ..., (R, ..., R)} so that it can be represented by a scalar. This captures the
idea that a consumer’s preferences over the various dimensions are correlated so that,
for example, a consumer who prefers value 3 for dimension 1 is likely to prefer value
3 for the other dimensions. The set of consumers in the market is represented by a
triangular density function defined on {1, ..., R}.15

Using the derived demand for a consumer and specifying the optimal price of c/β,
a store’s profit is:

v(z) ≡
·µ
c

β

¶
− c
¸µ

β2

c

¶ 1
1−β Z Γ−

vuut NX
i=1

(zi − wi)2


γ
1−β

dF (w) (4)

The crucial property here is that a store’s profit is decreasing in the distance between
its practices and those desired by its customers. For a given store, the profit function
defined above then represents its performance landscape over which it searches for
better combinations of practices. As in the NK model, an important property of
the landscape structure is its ruggedness. Here, the number of local optima can be
shown to increase in γ, the consumers’ sensitivity to store practices, as well as the
degree of preference complementarity (Chang and Harrington, 2004). Unlike the
NK model, for which the level of complexity is directly specified by the interaction
parameter K, the economic model allows the complexity in a decision problem to
result from more fundamental economic primitives.

Modelling Search by a Single Agent The potential for multi-agent search to
outperform single-agent search on a per-agent basis derives from its capacity to over-
come the bounded rationality of individual agents through sharing and coordination
in the search process. Two forms of bounded rationality stand out in these models:
a lack of information about the search space (landscape), and a constraint on the
considered set of alternatives to the status quo.

If a unit has full information about the mapping from practices to performance
then search is irrelevant as the organization can simply identify and adopt the practice
vector that corresponds to the global peak. Almost all agent-based models instead

15Chang and Harrington (2004) relax the assumption of a perfect correlation in a consumer’s
preferences over dimensions and examine how the degree of preference complementarity affects the
relationship between an organization’s structure and its performance.
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take the view that agents are largely uninformed and assume the other extreme -
nothing is known about the shape of the landscape - so that agents must resort to
blind search using some form of hill-climbing algorithm. The myopic but adaptive
search on the landscape entails considering a practice vector that is different in several
dimensions from the organization’s current one - the change may involve as few as
one and as many as all dimensions.

This forces us to confront the second form of bounded rationality. To what
extent is the organization capable of considering different changes? Is it capable
of contemplating a major change in its operation which involves changing practices
in all dimensions? Or, is it constrained to considering only minor modifications?
The ruggedness of the landscape - which is determined by K in the NK model and
partially determined by γ in the economic model - turns out to affect the efficacy of
search. When the landscape is smooth and single-peaked, constraining the breadth
of change that an organization considers has no impact on the optimum eventually
attained - as any hill-climbing algorithm will find the global optimum - though it will
influence the speed of convergence and thus intermediate-run performance. This
form of bounded rationality does make a difference, however, when the landscape is
rugged. While an organization capable of carrying out transformations involving all
dimensions will still eventually attain the global optimum,16 an organization which is
only capable of considering changes involving a small subset of the dimensions may
become trapped on an inferior local optimum.

Central to the search-and-learn perspective of organizational theory is this dy-
namic interaction between a boundedly rational search unit and the structure of its
search space, which serves to restrict the set of search paths and outcomes that the
unit is capable of achieving. The organization as a multi-agent search mechanism
can overcome such restrictions through the sharing of their discoveries and internal
coordination.17

3.2 Organizational Search with Units Solving Similar Problems

Examples of organizations in which various units are solving similar problems in-
clude retail chains, multi-plant manufacturers, and manufacturers producing a line
of related products. Such a situation is modelled by endowing each unit with a
performance landscape over which it searches. All of the landscapes are defined over
the same space of activities and similarity between units’ problems is reflected in the
similarity of the landscape, that is, how activities map into performance. Given
that units are searching over similar landscapes, the possibility of knowledge trans-
fer among units is significant. The main organizational issue here is how inter-unit

16It should be noted, however, that it may take a very long time for the organization to find such
a global optimum by chance when N is relatively large.
17Both Levinthal (1997) and Rivkin (2000) consider the impact of this interaction on the Darwinian

selection process in a population of firms climbing an NK landscape. Levinthal (1997) examines
how successful firms with tightly coupled systems (high K) find adaptation difficult in the face of
environmental change, while Rivkin (2000) allows imitation among firms and focuses on how tight
coupling protects a successful firm from potential imitators. It should be noted that both papers
are restricted to single-agent models of an organization.
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learning can be promoted through an appropriate organizational structure.

Kollman, Miller, and Page (2000) Recognizing the possibility of multiple searches
as the central benefit from decentralization, Kollman, Miller, and Page (2000), here-
after KMP, consider four factors affecting the magnitude of this benefit: 1) difficulty
of the problem; 2) sophistication in search; 3) heterogeneity among unit preferences;
and 4) organizational size. Extending the NK model into the multi-unit organiza-
tional setting, KMP endow each unit with an NK search space which is common for
all units (including the central authority).18 Search involves myopic hill-climbing on
a fixed landscape. The objective is to investigate the efficacy of a multi-unit organi-
zation in searching for solutions in parallel by exploiting units’ search capacities and
combining the revealed information to the benefit of the entire organization.

Four types of organizational forms (or search rules) are considered: 1) full cen-
tralization in which search is carried out solely by the central authority and the best
policy found is mandated for all units — hence, this is equivalent to single agent search;
2) full decentralization in which each unit searches independently and makes its own
adoption decision (so that there is no inter-unit spillovers of knowledge); 3) partial
decentralization with “best adoption” which means that each unit searches on its
own but, after a fixed number of search periods, the central authority mandates the
best policy discovered; and 4) partial decentralization with “incremental adoption”
which means that each unit searches on its own for a given length of time and then
the central authority forces the units to change policies incrementally (attribute by
attribute) toward the best known current policy so that, ultimately, all units have the
same policy.19 The potential trade-off between centralization and decentralization is
that the former may draw from a better distribution while the latter has multiple
units searching. Under each of these organizational rules, KMP examines the impact
on the organization’s performance of the four previously mentioned factors.

A focus of their analysis is to understand the relationship between the complexity
of the environment - measured by K in the NK formulation - and the cognitive
constraints of the organization’s units which are represented by the maximum number
of dimensions, denoted z, along which a new idea can depart from the status quo
policy. To begin, the benefits from decentralization are always positive under the
best adoption rule when the units are as capable as the central authority. There is
also an interaction between problem difficulty and the benefits of decentralized search
because the greatest advantage occurs with a moderate level of difficulty. Even a
single unit can do very well when problems are simple, so having more units searching
in this case is of little value. When problems are very hard, each unit tends to get
stuck on a local optimum of similar value (as the peaks become more numerous with

18The central authority in this setting is just another unit carrying out the search for the organi-
zation, though it may have superior search capability.
19In this case, the target policy — that is, the “best-to-date” policy — could change along the

adoption process, since the organization-wide switching of unit policies takes place one attribute at a
time. This is to be contrasted to the “best adoption” rule under which all units immediately adopt
the best policy in its entirety, while discarding everything that they have found individually through
local search.
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more similar values as K increases) so once again organizational structure doesn’t
matter. It is when the problem is of moderate difficulty that the additional search
under decentralization makes a substantive difference.

In comparing the two partial decentralization rules, KMP find that the incremen-
tal adoption rule always outperforms the best adoption rule. This is due to the fact
that the units are allowed to keep in place what has worked for them, while simulta-
neously allowed to try what has worked elsewhere in the organization. This blending
of diverse local solutions proves superior to the alternative of requiring all but one
unit to discard the knowledge they accumulated. This comparative advantage of
incremental adoption is found to be non-monotonic in the difficulty of the problem.
When K is low, the probability of any one unit finding the global optimum is rela-
tively high and, therefore, the advantage of incremental adoption is minimal. And,
when K is high, there are many local optima which tend to be uncorrelated so that
blending them together has little value and, like any random change, generally proves
deleterious. In other words, the activities identified as worthwhile by one unit (that
is, are at or close to a local optimum) are unlikely to be of much value to another
unit that is targeting a different optimum because these different optima could be
vastly distant from one another. Once again, it is for moderately difficult problems
that incremental adoption does significantly better than best adoption. Finding the
global optimum is then not easy, and information associated with one local optimum
is still of value to units that are at another local optimum as it may allow them to
move to yet better local optima.

Chang and Harrington (2000) The focus of this work is to explore the relation-
ship between organizational structure — specifically, the degree of centralization — and
firm performance. The case of a single chain with multiple local stores is analyzed in
Chang and Harrington (2000). The model is then extended in Chang and Harrington
(2003) to allow for competing chains and searching consumers, thereby enabling an
investigation of the coevolutionary dynamics among organizations, units within an
organization, and consumers in heterogeneous markets.

Chang and Harrington (2000) consider a retail chain consisting of M stores, each
with a performance (profit) landscape defined by equation (4). The heterogeneity
in the markets that the stores serve is captured by differences in the distributions of
consumer types. Organizational profit is the simple sum of its stores’ profits. While
stores’ landscapes may be similar, they are independent in that a choice made by
one store does not affect the profit earned by another store. However, as explained
below, inter-unit learning creates a dynamic and endogenous linkage among stores’
search paths and profits.

Search over the profit landscape takes place through an iteration of myopic one-
step hill-climbing, where a new idea is represented as a point in store practice space.
In each period, each store possesses a vector of current practices and generates one
idea where an idea is created by randomly selecting a dimension from {1, ..., N} and
assigning to it a randomly selected element from {1, ..., R}. If it is adopted then the
store’s practice in the specified dimension is changed to the new value.

22



Two organizational forms are considered in this setting. In the decentralized
organization, a store manager evaluates his own idea and the ideas adopted by other
stores in the current period. A store manager sequentially evaluates these ideas and
adopts an idea if it raises store profit. Hence, each store manager searches over
his store’s landscape and has the authority to implement any useful ideas. This is
equivalent to KMP’s full decentralization, except that inter-unit learning is voluntary.
In a centralized organization, a store manager once again generates an idea and
considers whether, if adopted, it would raise store profit. If so, the idea is passed to
HQ. If not, the idea is discarded. With this set of ideas, HQ sequentially evaluates
them in a myopic manner, mandating a practice throughout the chain if doing so
raises chain profit, and otherwise discarding the idea. Thus, uniformity of practices
is a feature of centralization in this model. HQ then searches over its landscape
which is based on chain profit, and it alone has the authority to implement ideas.

Measuring performance by average chain profit, the main insight of this study is
that centralization can outperform decentralization. This occurs when markets are
sufficiently similar, the horizon is sufficiently short, and consumer preferences are
sufficiently sensitive to store practices relative to price. Given that markets are
heterogeneous, the benefit of decentralization is clear — it allows each store manager
to tailor practices to its market. So, how can a centralized structure generate higher
profit? It turns out there is an implicit cost to decentralization. By adjusting
practices to one’s own consumers in a decentralized chain, stores’ practices tend to
drift apart. As a result, a new practice adopted by one store is increasingly unlikely
to be compatible with the current practices of other stores. In essence, stores come
to target distinct consumers (by targeting distinct local optima) and what works for
one type of consumer doesn’t tend to work for another type of consumer in light of
preference complementarities. Inter-store learning is then less under decentralization
and this is detrimental to the rate of improvement in store practices. The virtue of
a centralized structure is that it enhances inter-store learning by keeping stores close
in store practice space so that they are targeting similar consumers. With these
two countervailing effects, a centralized structure outperforms as long as markets are
not too different. The value to enhanced inter-unit learning is greatest when stores
are farther from local optima and for this reason centralization does particularly
well in the short-run. In the long-run, decentralization is typically superior because
the uniformity of practices under centralization prevents the global optimum being
achieved since the global optimum has different practices in different markets. Finally,
centralization also outperforms when consumers are sufficiently sensitive to store
practices (γ is high). This result is related to the property that the ruggedness of
the landscape increases in γ. As the number of local optima rises, stores in different
markets (and thereby different landscapes) are more likely to share some common
local optima. This enhances opportunities for inter-store learning and the analysis
shows that this is best exploited by a centralized organization.20

A changing environment is encompassed by allowing the population of consumer

20The robustness of these results with respect to the shape of the landscape is explored in Chang
and Harrington (2004).
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types to shift probabilistically. Measuring performance by steady-state chain profit,
centralization is more likely to outperform when market fluctuations are sufficiently
large. Recall the earlier result in the static environment that centralization is favored
in the short run because stores are farther away from local optima, in which case
inter-store learning is especially valuable. As increased fluctuations in market envi-
ronments shake the landscapes more vigorously, they act to push stores further away
from local optima. Thus, a constantly fluctuating environment requires the firm to
perpetually learn at a high rate, which then sets the stage for the short-term supe-
riority of centralization to become a long-term advantage. Quite contrary to the
received wisdom that volatility in markets require greater decentralization, Chang
and Harrington (2000) find it is the centralized organization that is more effective in
responding to change.

Chang and Harrington (2003) A more challenging issue is to consider how
market structure interacts with organizational structure to influence the dynamic
performance of chains. Does increased competition make centralization more or less
desirable? To address this issue, Chang and Harrington (2003) modify the previous
model by allowing for competition and consumer search. There are L chains and M
markets with each chain having a store in each market. Within each market, there is
a fixed population of consumers that engage in search by moving among stores. At
any point in time, a consumer in a given market (served by L stores) has a favorite
store and buys from it with probability 1 − Q. With probability Q the consumer
experiments by randomly selecting another store and buying from it. If the resulting
surplus for the consumer is higher than what the consumer received most recently
from the favorite store then this new store becomes the consumer’s favorite store. If
not, then the consumer’s favorite store remains unchanged and, in the next period,
the process is repeated. Q regulates the extent of experimentation. If Q = 0 then
there is no competition as consumers are permanently loyal, while Q = L−1

L implies
no loyalty. The organizational structures are as before. A store evaluates the profit
attached to adopting a new idea using its current base of consumers - those that are
currently buying from it. In a centralized organization, HQ evaluates ideas using a
measure of profit based on the current sets of consumers at its stores.

A key result is that centralization is more attractive when there is a larger number
of competing chains and may even outperform in the long-run. The basis for this
finding is an implicit increasing returns mechanism when competing organizations are
coevolving with consumers. To understand this result, recall that centralization does
particularly well in the short-run. Thus, early on a centralized chain is developing
better practices and thereby attracting more customers than a decentralized chain. In
the one-chain model, decentralization would eventually outperform, but that needn’t
be true when consumers are searching. This early advantage from centralization
establishes a customer base which tends to include the most prevalent consumer
types in the market, and it is this customer base which is used to evaluate the
profitability of new ideas. A centralized organization then tends to adopt practices
well-suited for the prevalent consumer types, which results in their retention and the
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attraction of more of those types and which makes the chain even more inclined to
adopt ideas suiting their preferences, and so forth. In this way, an early advantage
of centralization - coming from enhanced inter-store learning - is fed into a feedback
loop to maintain an advantage in the long run. As a result, a decentralized chain
may not be able to catch up because it is adopting ideas for a less prevalent niche
of consumers. In other words, the rate at which a chain climbs a landscape (by
coming up with better practices for its current customers) influences the shape of its
future landscape (by affecting the set of loyal customers). A centralized chain climbs
its landscape faster and this results in its future landscape being more attractive.
Coevolutionary dynamics among firms and consumers produce a powerful increasing
returns mechanism.21

3.3 Organizational Search with Units Solving Different Problems

The previous section is applicable when the organization is divided into units solving
similar problems such as selling a particular product line to consumers (retail chains)
or producing a particular product line (multi-plant manufacturers). Such organiza-
tions are examples of the M -form, but let us now consider the U -form organization.
The organization’s various activities are allocated among functional departments such
as Accounting, Finance, Sales, Purchasing, Production, and so on. A new practice
adopted in Sales is unlikely to be applicable to the operation carried out in Finance
— they are engaged in entirely different types of operations and thereby solving quite
distinct problems. However, it will have an impact on the effectiveness of the overall
operation of Finance when the value of certain financial practices depends on sales
practices; that is, there is a complementarity between them. These organizational is-
sues can be modelled by specifying the firm as a system of N activities in the context
of the NK model but with the feature that these N activities are allocated to various
departments for specialized search occurring in parallel. For instance, half of the
activities may be put under the control of department A while the remaining activ-
ities may be under the control of department B, with each department attempting
to find the optimal configuration of decisions over the activities it controls according
to some evaluation criterion. As the departments are then searching over distinct
non-overlapping set of activities, there is no prospect for inter-unit learning. Rather,
the issue is how to structure the organization so that the gains of parallel search can
be had while balancing it with the need to coordinate search in light of how these
activities interact.

Rivkin and Siggelkow (2003) A long line of scholars studying complex orga-
nizations have observed that there are many interdependencies among elements of
design such as allocation of decisions, incentives, and information flows. Rivkin
and Siggelkow (2003) offer as one source of such interdependencies two conflicting

21As an example of how analytical and computational methods are complementary, this issue
is explored analytically in Harrington and Chang (2005) as they consider a highly stripped-down
version of Chang and Harrington (2003).
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needs of a multi-unit organization that are central to the search-and-learn perspec-
tive. First, to be successful, an organization must search broadly for good actions
(exploration). Second, it must also stabilize around good actions once discovered
(exploitation). An effective organization balances search and stability. The authors
focus on three prominent elements of organizational design in exploring how they
interact to influence this delicate balance: 1) a central authority that may choose to
review the proposals sent up from subordinates; 2) an incentive system that influences
the degree to which managers act parochially for the good of their departments or for
the good of the overall firm; and 3) the decomposition of an organization’s decisions
into distinct departments. Their focus is on how these design elements interact with
one another to determine organizational performance through the balancing of search
and stability and how that relationship depends on the interdependent structure of
activities as dictated by the problem and on the limits on the cognitive ability of
managers.

Their simulation considers a hierarchy with a CEO and two subordinate managers,
A and B. The firm engages in multi-agent search which takes place on performance
landscapes generated by the NK model. An organization has N = 6 decision
attributes and part of its design is how they are allocated among the two managers.
Manager A has responsibility for a subset SA of these attributes and manager B for the
complementary subset SB. In each period, each subordinate manager reconsiders the
actions assigned to its attributes by comparing the current configuration to some fixed
number α of alternatives, so that α reflects the cognitive capacity of a subordinate
manager. These α alternatives are ranked by a manager on the basis of an evaluation
criterion which is a weighted average of the performance of his department and of
the other department.

Initially, it is supposed that SA = {1, 2, 3} and SB = {4, 5, 6}. Denoting by δ ∈
[0, 1] the degree to which Manager A cares about the other department’s performance,
the evaluation criterion for Managers A and B, respectively, are

vA =
v1 + v2 + v3 + δ(v4 + v5 + v6)

6
, vB =

δ (v1 + v2 + v3) + v4 + v5 + v6
6

,

where recall that vi is the contribution of the ith activity to total organization per-
formance. If δ = 0, a manager only cares about his own department, while if δ = 1
he cares about firm profit. δ then controls the degree to which managers’ incentives
are aligned with those of the organization.

Finally, the form of vertical hierarchy and the ability of the CEO affect the or-
ganizational search process. From the status quo and the α alternatives, a manager
sends up the best P proposals to the CEO where “best” is according to the man-
ager’s preferences. There are two types of CEO’s: rubberstamping (decentralization)
and active (centralization). The first type always approves all proposals sent up by
both managers so that, effectively, an organization with a rubberstamping CEO is
decentralized since the real authority lies with the department managers. The active
CEO, on the other hand, selects β proposals from all combinations of the submitted
proposals and implements the one that generates the highest firm profit (so δ = 1 for
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the active CEO). Thus, β captures the cognitive capacity of the CEO. Since an active
CEO has the final authority, we will refer to this as the centralized organization.

In sum, there are five different factors that affect the organizational search process
and, consequently, performance: the grouping of activities into departments, the
amount of information sent up to senior management (P ), the allocation of authority
(centralization/active CEO vs. decentralization/rubberstamping CEO), the extent
to which managers care about firm as opposed to department performance (δ), and
the cognitive abilities of the department managers (α) and the CEO (β).

There is found to be a significant interaction between the allocation of authority
and the complexity of the environment (as measured by K). When the complex-
ity is low (K = 0), the benefit of centralization is non-existent since the lack of
interdependencies means there is no need for coordination while, at the same time,
there is a cost due to slower adaptation. In such a case, short-run performance is
lower under centralization. When complexity is moderate, centralizing authority in
the CEO is shown to enhance performance as the interdependence among activities
makes coordination critical. But then for highly complex environments (high K),
it is better to push authority back down to the managers. Centralization suffers
from the problem that an active CEO is always moving the organization to points
of higher firm profit and, when K is high, there are many bad local optima. As
a result, the organization is typically getting stuck at a point of low performance.
In essence, centralization results in excessive stability. In contrast, a decentralized
organization - by giving authority to department managers who care more about
their own department’s profit - may periodically result in organizational performance
deteriorating which, when it causes movement into a basin of attraction for a better
optimum, can enhance long-run performance. This weakness to centralization can
not be mitigated by increasing the skill of the CEO (as measured by β), but only
by increasing the information flow, P . In sum, centralization is undesirable when
interactions are pervasive and the CEO gets little information from below.

The skills and incentives of the subordinate managers have some subtle and sur-
prising effects. In a complex environment, highly skilled managers can be harmful in
a decentralized organization. By considering alternatives that are far away from their
current position, a highly skilled manager may undermine the improvement efforts of
other managers. The organization can suffer from excessive instability as it dances
around the landscape without making much progress. Centralizing authority in the
CEO provides useful coordination. An active CEO and skilled department managers
are then complements, not substitutes. Managerial incentives that are more closely
aligned with the interests of the firm are complementary to centralization as well.
When managers are parochial (low δ), many of their suggestions are turned down in
a centralized organization because the CEO uses a different criterion in evaluating
them. Hence, the organization doesn’t make much progress. This is contrary to the
usual argument which is that, if managers have the right incentives, why does one
need an active CEO? Here, the problem is that departmental managers have partial
information and control and one needs the coordination that centralization delivers.

The above results are obtained for landscapes created using the usual random
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interaction NK model. Rivkin and Siggelkow (2003) also considers the interde-
pendence between decomposition and the allocation of authority. With decompos-
able interactions - as represented by the block-diagonal adjacency matrix in Fig-
ure 2(c) - centralizing authority is irrelevant since department managers are solv-
ing independent problems. There is no need for coordination. Superior perfor-
mance can, however, come from the combination of imperfect decomposition - there
is some interdependence across departments - and an active, well-informed CEO.
For instance, given a block-diagonal matrix (Figure 2(c)), performance is higher
when an active CEO is combined with (SA, SB) = ({1, 2, 6}, {3, 4, 5}) than with
(SA, SB) = ({1, 2, 3}, {4, 5, 6}). At work is the balancing of search and stability.
Some overlap expands the range of search as each manager proposes options that
change the landscape faced by another department. This may serve to move the or-
ganization to a different basin and, in some cases, result in it homing in on a superior
local optimum.

Siggelkow and Levinthal (2003) Using a model similar to the preceding one,
Siggelkow and Levinthal (2003) examine the division of task and specialized search
under three different organizational forms: centralization, decentralization, and rein-
tegration. In the centralized firm, decisions are made only at the level of the firm
as a whole, whereas a decentralized organization is disaggregated into a number of
departments in which decisions are made independently. A reintegrated organiza-
tion initially has a decentralized structure and then switches to centralization after
a fixed number of periods (typically, 25 periods). A key variable is the degree and
pattern of interactions among various activities as specified by an adjacency ma-
trix. The decision problem for the organization is decomposable if the activities
can be grouped so that all interactions are contained within each group and thus
there are no cross-group interdependencies. The block-diagonal adjacency matrix
in Figure 2(c) is a decomposable system. On the other hand, the decision problem
is non-decomposable if there is no way to group the activities so as to eliminate all
cross-group interdependencies; see, for example, the matrix in Figure 2(d).

The simulation entails creating 10,000 landscapes using the NK model with
N = 6. The three organizational forms are compared in terms of their performance
(averaged over the 10,000 landscapes) under conditions of both non-decomposability
and decomposability of the decision problems. Firms carry out myopic local search
and they only consider changing one activity at a time. The centralized firm eval-
uates an idea on the basis of firm profit: v = v1+v2+v3+v4+v5+v6

6 . The decentralized
firm is assumed to have two departments, A and B, with department A controlling
activities {1, 2, 3} and department B controlling {4, 5, 6}. In each period, each de-
partment comes up with an idea which it then evaluates on the basis of the profit
contribution of those activities that are under its exclusive control. This means
that the evaluation criteria used by departments A and B are vA = v1+v2+v3

3 and
vB = v4+v5+v6

3 , respectively. In evaluating an idea, a department takes the other
department’s current choices as given.

In a decomposable environment with a block-diagonal interaction structure (Fig-
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ure 2(c)), they find that the decentralized firm outperforms the centralized firm in
the short-run. This result is directly due to the asymmetric number of draws that
are allowed under these two forms: the decentralized firm gets two draws per period
(one for each department), while the centralized firm gets only one. As there is
no interaction between the activities of the two departments, there is no mitigating
benefit from centralization. The average levels of performance under these two forms
do converge in the long run, however. The reintegrated firm’s performance is nearly
identical to that of the decentralized firm.

The results are quite different when the organization searches in a non-decomposable
environment. Assuming a random interaction structure with K = 2, the advantage
of having more draws under decentralization is offset by the coordination benefit
attained under centralization due to the presence of cross-departmental interdepen-
dencies. More interesting is the performance of the reintegrated firm. Prior to
reintegration, the performance is, of course, the same as that of a decentralized firm.
After the departments are integrated, performance not only improves but it eventu-
ally outperforms the centralized firm. The problem with the organization when it is
centralized is that it is apt to get stuck early on at an inferior local optimum, similar
to the active CEO structure in Rivkin and Siggelkow (2003). This is less likely with
the reintegrated firm as it is initially decentralized. Once centralization occurs, it is
more likely to be in the basin of a better optimum which it can take advantage of
now that coordination can occur. The lesson is that superior performance may be
had by a temporal blending of different organizational forms.

Those simulations assume the organization starts its search from a random point
on the landscape. An alternative exercise is to suppose there is an environmental
shock after the firms have achieved some steady-state. Siggelkow and Levinthal
(2003) position a firm at Hamming distance d from the global optimum - implying
that the firms were at the global optimum ex ante and then were thrown off it by
a shock of magnitude d. In this setting, the question is how effectively a firm
can climb back to the global optimum. Centralization outperforms reintegration
for sufficiently low values of d, while reintegration outperforms centralization for
sufficiently high values of d. The appropriate organizational form then depends on
the size of the shock. The intuition is that a centralized firm has a relatively high
probability of getting locked onto nearby local optima which makes it less suitable
for large shocks but quite desirable for small shocks since the firm is likely to start in
the basin of attraction for a good optimum (recall that the firm started at the global
optimum). By comparison, reintegration initially pursues a decentralized form and
thus can better handle large shocks. The general lesson is that an organization should
be centralized at a steady-state but should temporarily decentralize when there is a
large change in its environment.

The preceding results suggest that there may be merit to grouping activities
so that there is some cross-departmental interdependence even when the decision
problem is decomposable. Suppose the interaction structure is characterized by the
adjacency matrix in Figure 2(c). An obvious grouping of activities would be to have
department A in charge of {1, 2, 3} and department B in charge of {4, 5, 6}, thereby
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eliminating any interaction between the activities controlled by these two managers.
However, such a structure underperforms one which is eventually of that form but
during the early periods has A controlling {1, 4, 5} and B controlling {2, 3, 6}. Quite
interestingly, the temporarily scrambled firm is superior to the “ideally” decomposed
firm because cross-departmental interdependence avoids excessive stability.

3.4 Evolving an Organizational Structure

Thus far the focus has been on comparing the performance of different elements of
organizational design. This begs the question of whether upper level management
of an organization, which is endowed with a sub-optimal design, can effectively alter
design elements so as to achieve a superior structure. What makes this a non-trivial
problem is the presence of interdependence among component tasks, which is rep-
resentative of any complex system, be it social, biological, or technological. The
significance of this problem is well illustrated by Herbert Simon in the context of
organizations:

The basic idea is that the several components in any complex system will

perform particular subfunctions that contribute to the overall function. ... To

design such a complex structure, one powerful technique is to discover viable

ways of decomposing it into semi-independent components corresponding to its

many functional parts. The design of each component can then be carried

out with some degree of independence of the design of others... There is no

reason to expect that the decomposition of the complete design into functional

components will be unique.... Much of classical organization theory in fact was

concerned precisely with this issue of alternative decompositions of a collection

of interrelated tasks. [Herbert A. Simon, The Sciences of the Artificial ( 1996),

p. 128]

In a decomposable system such as the one in Figure 2(c), the obvious division
of tasks would entail assigning activities {1, 2, 3} to one department and {4, 5, 6} to
another. As there is no interdependence between the sets of activities of these two
departments, the optimal solution they arrive at independently will form the optimal
solution for the entire organization. Alternatively, systems may have inherent “near
decomposability” where they can be decomposed into a collection of subsystems with
the property that the components within a subsystem interact more strongly than
the components belonging to different subsystems, but with a certain degree of in-
terdependence remaining between the subsystems. In such situations, the problem
solvers facing computational constraints will be motivated to decompose the problem
into subproblems in order to benefit from parallel processing, while recognizing that
the problem may not be decomposable.

Ethiraj and Levinthal (2002) Define an organization’s “true architecture” to be
a description giving the correct number of the organization’s modules and a correct
assignment of functions to the respective modules as dictated by the characteristics of
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the problem. Ethiraj and Levinthal (2002) set out to identify the relationship between
two key design elements - decomposability and hierarchy - and an organization’s
ability to discover its true architecture.

They consider the following four structural types: 1) hierarchical and nearly de-
composable; 2) non-hierarchical and nearly decomposable; 3) hierarchical and non-
decomposable; and 4) non-hierarchical and non-decomposable. Figure 3 presents the
adjacency matrices of the systems that belong to each one of these categories when
N = 9 and there are three non-overlapping modules labelled a, b, and c. Figure
3(a) is nearly decomposable and hierarchical as b1 in module b is influenced by a3
in module a and c1 in module c is affected by b3 in module b but module c does
not influence modules b or a and module b does not influence module a. Hence,
the inter-module interdependencies are unidirectional. Figure 3(b) is nearly decom-
posable and non-hierarchical in that modules a and b are mutually interdependent
(through b1 and a3), while modules b and c are mutually interdependent (through c1
and b3). Figure 3(c) is a non-decomposable but hierarchical system as there is a tight
coupling between modules in that all components of modules b (c) are influenced by
all components of module a (b) and are unidirectional. Finally, a non-decomposable
and non-hierarchical system is captured in Figure 3(d), where all modules are tightly
and mutually coupled with one another. For each of these four structures, search
for the true architecture occurs through three operations: splitting, combining, and
re-allocation. Splitting of modules involves breaking up existing departments into
two or more new departments. Combining is the opposite of splitting in that it in-
volves integrating two or more departments. Re-allocation is when the organization
reassigns functions from one unit to another.

Suppose the module designer observes the presence or absence of interactions
among attributes within the module as the result of a change in an attribute. All
attributes for which their contribution to performance is unaffected by this change
are identified as not belonging to the module that includes the original attribute. All
such attributes are either transferred to a randomly chosen different module (if they
constitute less than half the total number of attributes in the current module) or are
split into a new module (otherwise). If the change of the given attribute does not
affect any other attributes within the module, then the attribute is viewed as not
belonging to that module. In this case it is transferred to another randomly chosen
module. In each period, the module designers also consider combining each module
with another module by randomly selecting two modules and evaluating the impact
of attribute changes in both modules. The modules are combined if changes in each
module affect the other and remain separate otherwise.

Each module engages in one-step offline search based on local module perfor-
mance. This occurs in parallel. When considering a population of systems in order
to explore recombination of systems or substitution of modules, they select two sys-
tems at random and then select two functionally equivalent modules at random for
recombination. The lower performing module is replaced with the higher perform-
ing module. Finally, in the multi-systems analysis, the selection mechanism used is
the roulette wheel algorithm, where the probability that a system is selected equals
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its performance level divided by the sum of the performance of all systems in the
population at that time.

Consider a system with N attributes for which the true architecture has M mod-
ules with each module having an equal number of attributes. The initial design of the
system is random and thus is likely to have the wrong number of modules, modules
with the wrong attributes, and modules with different numbers of attributes. The
performance measure is the number of periods its takes for the system to converge
to the true architecture.

The simulation exercise is based on 100 experiments, where each experiment in-
volves a randomly selected landscape and initial design and entails each of the four
archetypes being run. The simulations show that an organization always discovers
the true structure when the system is hierarchical, even when it is non-decomposable.
But when it is non-hierarchical, an organization never manages to reach a stable state.
The violation of both principles - hierarchy and decomposability - is seriously detri-
mental to discovering the right structure. These results suggest that the search
rule for discovering the true system structure is robust when there is a strong in-
teraction within modules and there is a hierarchical precedence structure underlying
between-module interactions.

3.5 What Do We Learn from a Computational Agent-Based Ap-
proach?

The primary issue explored in agent-based models of organizational search and learn-
ing is the role of organizational structure and, more specifically, how a centralizing
authority can influence performance by coordinating certain activities. In this sec-
tion, we want to review what we’ve learned about when an organization should be
centralized, highlight the role played by the unique features of ACE models identified
in Section 2, contrast this insight with what a NCE analysis would produce, and
make the case for ACE.

One important insight is that decentralization can be advantageous even when
complementarities suggest that coordination is valuable. Consider an organization in
which there are interdependencies across units. If each unit evaluates a new practice
based upon what it generates in terms of unit performance, then decentralized search
can lead to lower organizational performance due to externalities across units. A NCE
analysis would suggest that centralization is beneficial because it internalizes these
externalities by evaluating the impact of a new practice in terms of organizational
profit. In contrast, Rivkin and Siggelkow (2003) show using an ACE model that
centralization can perform worse because it results in excessive coordination. Once a
centralized organization is in the basin of attraction of a particular local optimum, it
steadily marches towards it and, as a result, it never learns whether there are other
more attractive optima. Under decentralization, individual units - each of which is
engaging in hill-climbing using the unit’s performance - can inadvertently result in
organizational performance declining. Though detrimental in the short-run, it may
serve to throw the organization into the basin of a different and potentially better
optimum. Put differently, the high level of coordination achieved under centralization
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leads to excessive stability. Though stability is desirable once a good optimum is
reached, it can be harmful while learning because it closes off alternatives. In the
context of adaptive search - as opposed to optimal selection of organizational practices
- coordination can be excessive. Second best arguments are rampant within ACE
models and this is one example - the limitations of adaptive search may mean that
fully internalizing externalities across agents can be detrimental, an intuition quite
contrary to what would emerge from an NCE analysis.

A second important insight is that centrally mandated uniform practices can be
valuable even when units face heterogeneous environments. Consider an organization
in which there are no interdependencies across units. Each unit is in a different envi-
ronment and organizational performance is the simple sum of the units’ performances.
An NCE analysis would suggest that decentralization is preferable as it allows prac-
tices to be tailored to the environment. However, Chang and Harrington (2000) show
that a decentralized organization creates dynamic externalities related to knowledge
transfer which impact adaptive search. Since units are solving similar problems, what
one learns and adopts may prove useful to other units. Under decentralization, units
fail to internalize the following externality: when a unit adopts a new practice that
moves them away from other units, those other units can expect to learn less from it.
A centralized organization serves a coordinating function by keeping units’ practices
close to one another, and this enhances knowledge transfer. Note that this result is
produced by medium-run dynamics. In the long run the organization will typically
achieve its global optimum and, since the global optimum is lower when constrained
to uniform practices, decentralization outperforms in the long-run.

A unique feature of ACE models mentioned in Section 2 is the complexity of the
environment, and this indeed played a central role in the preceding analysis. Com-
plexity is measured by the ruggedness of the landscape. A more rugged landscape
means more optima, in which case it becomes easier to get stuck on poor optima.
Chang and Harrington (2000) show that a more complex environment makes knowl-
edge transfer more important as it is more difficult for a unit, learning on its own,
to succeed. This implies that more complexity means centralization is more likely
to be preferred. In Kollman, Miller, and Page (2000), organizational form matters
only when environments are moderately complex. In Rivkin and Siggelkow (2003),
the potential advantage to the enhanced coordination from centralization increases
with complexity (which is associated with more interdependencies) but the chances
of getting stuck at a bad optimum also increases with complexity. When the environ-
ment is moderately complex, the first effect dominates so that centralization performs
better but, when the environment is very complex, the second effect dominates so
decentralization outperforms.

The above discussion reveals that ACE delivers different insight than would an
NCE analysis. Furthermore, in reviewing NCE research on organizations, the forces
at work are quite distinct. In one class of NCE models, organizational structure
affects the incentives of lower-level agents to produce useful information for higher
levels. In Aghion and Tirole (1997), decentralization promotes lower-level agents’
incentives to invest in acquiring information - as their decision is less likely to be
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overruled (and there is little value to investing in information if the information
doesn’t make a difference) - but at the cost of them pursuing their own interests
which are distinct from the interests of the organization. In Dessein (2002), the
problem is that lower-level agents may distort the information that they pass along
to higher levels. A second class of models focuses on how organizational structure
influences monitoring, wages, and the incentives for agents to work hard. In Qian
(1994), a more hierarchical organization (which means more levels and each manager
has fewer agents to monitor below him) enhances monitoring and lower wages but is
less productive. Maskin, Qian, and Xu (2000) compare theM -form and U -form with
respect to their productivity in monitoring when pay is based on relative performance.
The emphasis, the forces, and the insight of these organizational models are then
quite different from ACE organizational models. While ultimately these alternative
approaches may compete, thus far their analyses are complementary.

4 Information Processing

Economists have also often failed to relate administrative coordination to

the theory of the firm. For example, far more economies result from the careful

coordination of flow through the processes of production and distribution than

from increasing the size of producing or distributing units in terms of capital

facilities or number of workers. Any theory of the firm that defines the enterprise

merely as a factory or even a number of factories, and therefore fails to take

into account the role of administrative coordination, is far removed from reality.

[Alfred Chandler, The Visible Hand: The Managerial Revolution in American

Business (1977), p. 490]

As reviewed in the previous section, search and learning models of organizations
have agents receive new ideas, evaluate them, and then decide what to do — whether
to discard them, pass them along to a superior, or implement them (depending on
the allocation of authority). An implicit assumption is that the evaluation process
is costless and instantaneous. This is a striking departure from reality. It can take
resources, time, and expertise to evaluate new information and then make a decision.
This section considers the costs of processing information. An organization takes
input from the environment (“data”) and performs operations on it prior to making
a decision. Information processing is costly because, for example, it requires hiring
agents and it imposes delay in reaching a decision under the constraint of avoiding
information overload. Though all models of organization involve information process-
ing to some degree, we have reserved this terminology for those models where the cost
of processing is explicitly modelled and is a primary force determining organizational
performance.

The organization is faced with a task which, if it were to be handled by a single
agent, would translate into long delays and inaccuracies due to processing and mem-
ory constraints. A more efficacious structure involves distributed problem-solving -
multiple agents solving sub-problems and then putting these sub-solutions together
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to produce a solution for the original problem. We’ll address the following questions:
What is the best size and structure of an organization? What is the best way in
which to allocate sub-problems, organize information flows, and more broadly con-
nect agents so as to lead to fast and accurate solutions? Should the organization
be “flat” so that many agents are handling data? Should it be decentralized like
a team or centralized like a hierarchy? How many levels should the hierarchy have
and should communication channels cut across levels so high-level personnel connect
with many levels? In addressing these questions, research has considered two sets of
factors: first, the characteristics of agents with respect to their cognitive skills and
accumulated knowledge; and second, the characteristics of the environment in terms
of its complexity, stability, and decomposability.

We begin in Section 4.1 with the canonical model of an information processing
organization and an exploration of its generic properties - properties that hold for
most networks, not just optimal ones. The impact of organizational structure on
performance when agents have the capacity to learn is investigated in Section 4.2,
while organizational design endogenously evolves in the models reviewed in Section
4.3. We conclude with a critical discussion in Section 4.4.

4.1 Generic Properties of Information Processing Networks

Radner (1993) describes the canonical information processing problem faced by an
organization.22 The organization is a network of agents (or information processors
or nodes) which are endowed with a fixed ability to process incoming data and a
limited capacity for doing so. For example, data might be a series of integers, the
processor has the ability to multiply them together, and its capacity limits it to
handling seven numbers. The architecture defines how information is distributed and
tasks are assigned. In this canonical model, information enters the lowest level where
it is processed and sent through the network for further processing. Once processing
is completed, an output (that is, an organizational decision) emerges. The basic line
of inquiry investigates the relationship between size and structure of the network and
performance, which is measured by the speed with which a problem is solved. More
nodes in the network (or more agents in the organization) provide more processing
power - which may be particularly critical when agents have limited capacity - but at
the potential cost of more delay as information has to traverse a longer path. Under
certain conditions, it is shown that the most efficient network is a particular type of
hierarchy.

Miller (2001) This canonical problem is explored in Miller (2001) with an eye to
learning generic properties of networks. He considers randomly generated networks
with the hope of identifying “order for free” without the expense of optimality. The
organization faces a series of associative (and thereby decomposable) problems. The
organization receives data in the form of a series of integers and the task is to generate

22Also see Van Zandt (1999) and, for early work on modelling an organization as a network, Dow
(1990).
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their sum. Each agent has the ability to sum two numbers. With this class of
problems, and given the assumptions placed on agents, accuracy is assured and the
performance of an organization is measured by the delay in generating a solution. As
the associative nature of the problem means that the sequence with which it is solved
is irrelevant, such problems are ripe for distributed problem solving.

An organization is a network of nodes with each node being a processor and
representing an agent. Figure 4 shows all of the possible (non-redundant) networks
associated with five bits of information, (a, b, c, d, e) , where each bit is handled by
exactly one agent. For example, a single-agent organization has all five bits coming
into that agent who must progressively sum them by adding a to b, then adding the
solution to c, and so forth, until the solution is derived after four operations and four
periods. In comparison, there is a three-agent network (denoted #12) in which one
agent sums three bits, another sums two bits, and a third sums the sub-solutions.
The first two agents are referred to as child agents to the last one, who is the parent
agent. Note that this network takes fewer periods to derive a solution but at the cost
of more agents.

Faced with a sequence of problems, an agent is not allowed to work on the next
problem until its output is retrieved by the next agent in the network. An agent can
be in one of three states: i) inactive; ii) active and unfinished; and iii) active and
finished, in which case it can, if called upon, convey its solution to its parent agent.
An agent must decide on what problem to work, whether any sub-solutions from
child agents can be incorporated, and whether more processing is required on the
current problem. When an inactive agent is activated, it either tries to draw a child
agent’s solution or data from the queue. An agent remains active until processing is
completed and the sub-solution is taken by the parent agent.

For the purpose of identifying generic properties, Miller considers random net-
works constructed as follows. A number of nodes is randomly chosen from between
1 and 50. The organization is iteratively constructed starting with a single node to
which a child is added. One of those nodes is randomly selected and a child is added
to it. This continues until the network has the specified number of nodes. Finally,
all terminal nodes are connected to the data queue and an interior node is connected
with probability 1/2.

To explore the significance of synchronization of agents in distributively solving
a problem, Miller (2001) compares the performance of networks where nodes are
randomly activated with one in which there is “ordered firing” so that child nodes
are activated before parent nodes. Some interesting properties arise when exploring
how performance is related to organizational size, as measured by the number of
nodes. When firing is synchronized, performance mildly increases with size while,
with random firing, performance appears to be maximized at an intermediate number
of nodes. This suggests that, to sustain larger organizations, synchronization among
agents is critical. Also noteworthy is that the variation in performance across random
networks is greater for small organizations. The possible explanation is that they are
more susceptible to bad design causing bottlenecks, which creates delay as agents
wait for sub-solutions from other agents. In contrast, the denser web of connections
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when there are more nodes allows information to flow more freely, which serves to
make the particular architecture less important.

4.2 Organizations with Adaptive/Learning Agents

Now consider an organization that faces what Carley (1992) calls a quasi-repetitive
task. In each period a problem arises as an iid selection from a finite set, which pro-
vides two types of opportunities for the organization to learn. First, if the cardinality
of the set of problems is not large relative to the number of periods, the organization
is likely to face a problem repeatedly so they can learn from past mistakes. Second,
the problems may be related, in which case the solution to one problem provides
information pertinent to solving other problems. The challenge is to learn the latent
function generating the problems. For an organization to take advantage of these
opportunities, agents must be endowed with a capacity to learn. Exploring how
the ability to learn influences the relationship between organizational structure and
performance is a central issue.

Carley (1992) Suppose an organization faces a sequence of binary classification
problems. For example, suppose that a new project arrives each period and the
organization has to decide whether it is profitable or unprofitable. It receives infor-
mation on the project that takes the form of an element of {0, 1}N . There is a true
(fixed and deterministic) latent mapping from {0, 1}N into {profitable,unprofitable}
which assigns the status of profitable when a majority of the bits take the value 1.
Each drawn problem assigns equal probability to a bit being a 0 or 1. Based on the
information, the organization must decide whether or not to conclude it is profitable.

In contrast to the rich set of organizational structures allowed by Miller (2001),
here just two organizational forms are considered, hierarchy and team. A hierarchy
comprises three levels where the lowest level has nine agents (referred to as analysts)
who receive the data. The data consisting of N bits are partitioned into nine sub-
vectors with each analyst receiving one of them. In response to observing an element
from {0, 1}N/9, an analyst puts forth a recommendation, either profitable or unprof-
itable, to an agent (manager) at the next level. There are three managers and each
receives recommendations from three analysts. At the top is a single agent (CEO)
who receives recommendations from the three managers and makes a final evaluation
regarding profitability of the project. A team is also comprised of nine analysts but
has just one level. Each analyst makes a recommendation in response to their input,
and the organizational decision is based on majority rule. Though the number of
decision makers varies between the two organizational forms, the number of agents
receiving information about the problem is the same.

Agents engage in experiential learning about the latent mapping between {0, 1}N
and {profitable,unprofitable}. After the organization makes its decision, all agents
observe the true state of the project. Each agent keeps track of how information
relates to the true state. For example, an analyst keeps a running tab of how many
times a project was profitable for each observed input from {0, 1}N/9. Similarly,
managers and the CEO keep track of how many times a project was profitable for
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each observed element from {profitable,unprofitable}3. The specified behavioral rule
is that an agent reports profitable (unprofitable) in response to his information when
the fraction of times that the true state was profitable (unprofitable) for that given
information exceeds 50%. When it is exactly 50%, the agent randomizes.

The task varies in terms of complexity and decomposability. Complexity is mea-
sured by the length of the data vector. More data means more problems, with less
opportunity to see a particular problem repetitively, and also a bigger set of possible
mappings to sort among. A problem is referred to as decomposable consensual when
all analysts are given the same sub-problem.23 For example, the task 110110110 is
decomposable consensual to three analysts. Since the more frequent bit value for each
analyst is also the more frequent bit value for all N bits, in principle an individual
analyst can come to correctly identify a project’s true state based only on his own
N/9 bits of data. By contrast, a non-decomposable task is when the accuracy of
an individual’s prediction is dependent upon information possessed by others. For
example, the task 111010000 is nondecomposable to three analysts as one analyst
receives 111, a second receives 010, and the third receives 000. This information is
insufficient to determine whether 1 is in the majority and thus that the project is
profitable.

One of the unique and interesting features of this model is personnel turnover.
According to a Poisson process, an agent may be replaced with a new agent.24 An-
alysts can be replaced with someone who has no experience (“novice”), someone
who has experience with 500 sub-problems generated by the same stochastic process
(“good fit”), and someone who has experience with 500 sub-problems in an organi-
zation with a slightly different problem-generating process (“poor fit”). Managers
can also be replaced, although their replacements are restricted to be novices. Given
that agents are learning, replacing experienced agents with possibly less experienced
ones obviously deteriorates performance. Less clear is what type of organizational
structure better handles such disruptions.

In contrast to Miller (2001), the organization is not necessarily given enough data
to correctly solve the problem. Thus, performance is measured by the accuracy of
solutions. The average percentage of correct assessments in the final 200 of 2500
periods measures long-run performance, while the average number of periods it takes
to reach 60% accuracy serves as a measure of the speed of learning. As there are only
two true states and the organization is endowed with no experience, it is initially
guessing and so starts with 50% accuracy.

For either organizational type, performance is greater with a less complex task
and when the task is decomposable. Teams learn significantly faster than hierarchies
(though an important exception is noted below). A key force at work here is informa-
tion loss. Analysts convert information defined on a space with 2N/9 elements into a

23The modifier ”consensual” is added because this task is more restrictive than the standard
definition of decomposability (see Section 2). A problem can be decomposable but not involve
identical sub-problems.
24Here, turnover is exogenous though in other models it is endogenous. An agent may decide to

leave, as in Axtell (1999), and managers may decide whether to hire someone, as in Glance, Hogg,
and Huberman (1997).
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signal from a two-element space. In the hierarchy, managers take information defined
on an eight-element space (the three possible recommendations from those at the next
lower level) to a two-element space. On these grounds, one expects teams to perform
better because there is less information loss; it occurs twice for a hierarchy but only
once for a team. However, when turnover is sufficiently high, hierarchies perform
better for both decomposable and nondecomposable tasks. It is unclear whether this
is due to hierarchies being less sensitive to the recommendation of a single rogue
analyst or to their managers having more experience.

Barr and Saraceno (2002) A similar exercise to that of Carley (1992) is per-
formed in Barr and Saraceno (2002) though a distinctive feature of their approach is
to model the organization as an artificial neural network (ANN). The organization’s
task is to identify the latent relationship between information that lies in {0, 1}10 and
the true state that lies in {0, 1, . . . , 1023} (as the latent function converts 10 binary
digits to its equivalent number in base 10). The organization is an ANN with three
layers (see Figure 5). The input layer is comprised of ten input nodes, each of which
receives one of the ten bits of data. The next (hidden) layer is made up of n nodes -
which can be interpreted as the lowest level in the organization with each node being
an agent. Each of these agents takes a weighted sum of the data from the input layer
and transforms it into an output. These n outputs then go to the top level where
they are weighted and summed to produce the organization’s output. This output is
a prediction of the true state.

On a broad level, learning is equivalent to that in Carley (1992) though the
specifics differ both because of the type of function being learned and the use of an
ANN. The state of the organization is represented by the weights that each node in
the low level uses to produce output for the high level and the weights that the high
level uses to produce organizational output. Initially, these weights are randomly
selected. After receiving data, the organization produces an output, denoted by, and
then agents observe the realization of the latent function, y. Each agent calculates
the gradient of the mean squared error, (1/2) (y − by)2 , with respect to their weights
and incrementally adjusts them in the direction that reduces mean squared error,
taking other agents’ weights as fixed.

While Carley (1992) fixes organizational size and varies structure, here structure
is fixed at the two-level hierarchy and the role of size, as measured by the number
of low-level agents, is explored. Interestingly, a bigger organization is not necessarily
better. The reason lies in two types of prediction error. Approximation error is
associated with the limited capacity of an ANN to represent a latent function. By
expanding the space of approximating functions, more agents reduce approximation
error. Of course, better fit also depends on the efficiency with which the coefficients
(weights) of the ANN are estimated. The authors refer to this as estimation error
and it measures how badly the ANN performs relative to maximal performance for
a given size. The trade-off is that a larger organization reduces approximation error
but, with more agents and thus more weights to be estimated, estimation error can
rise. Clearly, with enough data, a bigger organization means better predictions; but,

39



as in the real world, the simulations have only a limited number of problems from
which to learn. Small firms are interpreted as having a simpler class of functions -
they don’t need many problems to get low estimation error - while large firms have
a richer class of functions - they are slow to learn but may ultimately have a more
sophisticated solution.

An organization is faced with a set of feasible problems, each of which is a random
draw from {0, 1}10 . The complexity of the environment is measured by the size of
that feasible set, which numbers at most ten. Stability is measured by the probability
that an element of the feasible set is replaced with a fresh draw from {0, 1}10 . This
random event occurs each period.25 Performance depends on the accuracy of an
organization’s solution and, more specifically, equals the inverse of the squared error
less the cost of the network. Network cost is composed of a cost per agent plus the
cost of delay, which is linear in the number of operations performed on data. Larger
firms experience greater network costs but may have less error.

Optimal firm size is typically found to be an interior solution, reflecting the trade-
off from a bigger organization: less approximation error, more estimation error, and
a higher network cost. The most interesting results concern the interaction between
stability and complexity. When complexity is high, the optimal number of agents is
lower when the environment is less stable. With the set of problems to be learned
changing at a faster rate, agents have to adapt their weights more frequently, and
this is done less effectively when there are more weights to adjust. When instead
complexity is low, optimal firm size is higher in unstable environments than in a
near-stable environment. With low complexity, there are only two problems to be
learned and this doesn’t require many agents. As stability falls, the set of examples
is changing at a faster rate and having more agents allows the organization to adapt
faster. More broadly, these results seem to suggest a rising marginal cost to the
number of agents. With only a few problems to be learned, the organization is
initially small so that reduced stability is best handled by adding agents. However,
if there are a lot of problems, then the organization is already large and adding
agents in response to less stability means having to adjust far too many weights. It is
preferable to reduce the number of agents, thereby trading off lower estimation error
for higher approximation error.

Barr and Saraceno (2005) In an ensuing paper, the authors make a modelling
advance that is innovative from both a computational and economic perspective.
They allow two ANNs - each representing a firm - to coevolve in a competitive
market situation. The situation is the classic symmetric Cournot game in which
two firms make simultaneous quantity choices. The demand function is linear and
its two parameters follow an iid stochastic process. The task before a firm is to
learn its optimal quantity where the data it receives pertain to the unknown demand
parameters. Learning is modelled as in Barr and Saraceno (2002). A firm chooses a
quantity then learns ex post what would have been the profit-maximizing quantity.

25Unfortunately, the model is designed so that a less complex environment implies a more stable
one, which means any comparative statics with respect to complexity confounds these two effects.
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Learning occurs in the face of an exogenously stochastic demand function and an
endogenously stochastic quantity for the other firm.

In comparison with Barr and Saraceno (2002), the environment is stable and
there is no network cost so performance equals profit. Given the absence of network
costs, the only reason not to have more agents is greater estimation error. The
coevolving system always converges to Nash equilibrium; that is, each firm’s quantity
converges to that which maximizes its profit. As this occurs for each realization
of the demand parameters, firms are learning how the signals map into the true
state of demand. Further analysis shows that average profit is initially increasing
in a firm’s own network size but, due to estimation error, is eventually decreasing.
More interesting is that a firm’s performance is initially increasing in the other firm’s
network size. We conjecture the reason is that a smaller rival learns slower, which
means it takes longer for its quantity to settle down. This would translate into a
more volatile environment for a firm and serve to lower its profit. Interestingly, it
may be in the best interests of a firm that its competitor be sophisticated.

4.3 Adaptation and Evolution of Organizational Structure

In performing comparative statics to explore the impact of organizational size and
structure on performance, a critical question is begged: To what extent can an orga-
nization find and adopt better structures? When dealing with complex entities such
as an organization’s architecture, it isn’t sufficient to characterize optimal structure
and presume an organization somehow finds it. Actual organizations are endowed
with a structure and find large-scale change difficult. It is then worthwhile to know
whether incremental changes can lead to superior designs. In addition, models of
the previous section consider a very limited set of structures. By instead specifying
a large class of organizations and a flexible dynamic for moving among them, new
structures can emerge that are truly novel. To address these issues, we review Carley
and Svoboda (1996), where simulated annealing searches for better organizations.
We also return to discussing Miller (2001), who utilizes the forces of selection and
adaptation through a genetic algorithm (GA). The driving question is, how effectively
can an organization evolve to efficacious structures and what do those structures look
like?

Carley and Svoboda (1996) With some minor modifications, Carley and Svo-
boda (1996) adapt the organizational model of adaptive agents of Carley (1992) by
appending an organizational design dynamic to it. Thus, structure is adapting at the
same time that agents are learning. A key feature of this type of model is the class of
organizations over which search occurs. An organizational structure is defined by the
number of agents, which agents receive data, and how agents are connected. The set
of feasible organizations is limited to those with at most three levels (where each level
can only report to the next higher level), at most fifteen agents on each level, and
at most nine pieces of information on a task. In the event that the highest level has
more than one agent, those agents use majority rule to determine the organization’s
choice with an equality of votes being broken through randomization.
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Upon this space of organizations, a dynamic is applied which constructs a new
feasible organization through four operations: i) firing (the elimination of agents);
ii) hiring (the addition of agents); iii) re-tasking (a link to the data queue is redi-
rected from one agent to another); and iv) reassigning (a link between two agents
is changed so that an agent reports to a new agent). Faced with a new design, the
process by which it is adopted is modelled using simulated annealing. First, an of-
fline experiment is performed whereby the organization’s performance (as measured
by the accuracy of the organization’s decisions) is projected out for 100 tasks under
this new design. If this performance exceeds the performance of the existing design
then the new design is adopted. If performance is lower - and here lies a singular
feature of simulated annealing - it is adopted with positive probability where this
probability decreases with the existing design’s performance during the preceding
500 periods (where there is one task each period) and also exogenously declines every
200 tasks.26 The minimum time between new design adoptions is 100 periods. The
initial organizational structure is randomly selected and there is a training period of
500 periods before the design dynamic is turned on.

As a theoretical benchmark, the optimal design is to have a one level organiza-
tion with nine agents, each receiving one of the nine bits of info, and making their
decision by majority rule. Simulated annealing never finds it. Compared to random
organizations, the organizations that emerge after 20,000 periods have noticeably
more agents on average, a lower span of control (the average number of links to a
higher level agent), and fewer links to the data queue though none of these differences
are statistically significant.27 Though the results of the analysis are ambiguous, the
approach represents a pioneering step in modelling the evolution of organizational
structure.

Miller (2001) Finally, let us return to Miller (2001) whose work on randomly
generated organizations was reviewed earlier. Recall that the task is associative
and thereby decomposable. As all solutions are accurate, the performance criterion
is speed. Using a genetic algorithm (GA), a population of fifty randomly created
organizations coevolve.28 In each generation, there is a sequence of problems that each
of the fifty organizations solves. Two organizations are then randomly selected and
replaced with two copies of the one with greater speed. This operation is performed
fifty times with replacement. These organizations are then randomly paired to engage
in two genetic operations - crossover and mutation. For crossover, a node (other than
one that is attached to the data queue) is randomly selected from each organization
and the subtree beginning with each node (that is, the node and all of its children)
are exchanged. Each organization also has a chance of mutating, which means a

26The purpose of this feature is to try to keep the organization from getting stuck on bad local
optima. By accepting performance-deteriorating designs, the organization might get kicked into the
basin of attraction for a better local optimum.
27They actually run two experiments and the results referred to here are for the case of “dual

learning.”
28Also see Bruderer and Singh (1996) for an early use of a GA in organization theory. For more

detailed discussions of GA learning, see Brenner (2005) and Duffy (2005).
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change in links. A single run has fifty generations and the output for analysis is the
best organization after fifty generations. Results are based on an average over fifty
runs. Miller (2001) considers the four possible cases associated with random versus
ordered firing and single versus multiple problems.

To begin, is a GA outperforming random search? For comparison purposes, ran-
dom search means starting with a set of randomly generated organizations (com-
parable in number to what the GA handles over its fifty generations) and choosing
the best performer. GA is also identifying a best performer but uses crossover and
mutation as well. For the case of ordered firing and a single problem, the GA impres-
sively reduces speed by 25% compared to random search. For the other three cases,
the reduction is considerably more modest at 2%. Still, the GA is creating better
structures.

Whether the organization is trying to solve a single problem or a sequence of
problems, results show that synchronizing the activation of agents sustains larger
organizations with more levels. For a single problem, a GA produces, on average, an
organization with 34 agents and eight levels under ordered firing while organizations
are quite small under random firing with only three agents and less than two levels.
Adding agents allows more processing to be done but at the cost that information
has to travel through more levels. This can create delay, which makes ordered firing
critical in keeping it under control. The superior performance of larger organizations
is even stronger with multiple problems (and ordered firing) as the average size of
48 is pushing the upper bound of 50 agents. The range of size is 43 to 50 for the
50 runs (with a standard deviation of 1.9) which further suggests that to be a top
performer requires being big. In contrast, for the case of a single problem, the range
is vastly greater; it runs from 7 to 50 with a standard deviation of 14.2. When an
organization has a light workload, a wide range of structures can perform well; when
pushed harder, it becomes crucial to be larger so problems can be effectively handled
without much delay.

In conclusion, a challenge for analysis is developing informative summary statistics
for emergent structures. Miller (2001) goes to considerable lengths by also reporting
mean path length, highest level attached to the queue, and maximum number of
nodes at a level. Still, it’s hard to see from these measures what the architecture looks
like. One suspects it wouldn’t “look like” a typical corporation. Having meaningful
summary statistics for designs is essential for drawing insight and comparing results
across studies. Indeed, two studies could produce organizations with a comparable
number of nodes and levels but result in quite different structures. This is a challenge
for future work.

4.4 Summary

Contrary to the models of search and learning in Section 3, the models explored in
this section focus on organizational size as a critical factor in connection with an
organization as an information processing network. Generally, more agents available
to process information acts to improve predictions and produce better decisions. The
analysis of Carley and Svoboda (1996) and Miller (2001) both find that their adaptive
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design dynamics produce organizations with more agents. This advantage to size is
more acute when the task is more complex, as the organization needs the additional
processing power that comes from more agents. But bigger is not universally better.
This is obvious when one assumes there is a cost to more nodes in a network, but
as shown in Barr and Saraceno (2002, 2005), more agents to “train” may slow down
an organization’s rate of learning. While the long-run efficiency of a network is
increasing with the number of agents, smaller organizations can outperform in the
intermediate run. This advantage from fewer agents is particularly relevant for a less
stable environment where perpetual training occurs.

A second but more tentative piece of insight is that while bigger is typically better,
organizational structure and coordination among agents may be more critical for
bigger organizations. Miller (2001) finds that, when lower-level agents are activated
prior to higher-level agents, the best performing organizations are vastly larger than
when activation is random. Synchronization is then critical for taking advantage of
larger size. This relationship between size and structure requires further examination.

In conclusion, research on information processing is trying to develop a “produc-
tion function” for organizational decision-making, a difficult and challenging problem.
Though significant progress has not yet occurred, the modelling approaches have been
rich, novel, and provocative.

5 Effort, Norms, and Endogenous Hierarchies

While the vast majority of computational agent-based models of organizations focuses
on search and information processing, there are many other organizational issues
tackled. Here, we provide some of the best of this other work and in doing so touch
on issues of effort and shirking, norms, and endogenizing organizational structure.

5.1 Effort and the Commons Problem in Organizations29

[H]ardly a competent workman can be found in a large establishment ... who

does not devote a considerable part of his time to studying just how slow he can

work and still convince his employer that he is going at a good pace. [Frederick

W. Taylor, The Principles of Scientific Management (1919), p. 21]

The models of organization considered thus far have assumed that the efforts
required of agents — be it associated with production, innovation, or information pro-
cessing — are achieved costlessly. Of course, effort is, in practice, costly and, more
importantly, poses the organizational challenge of inducing agents to work hard. Or-
ganizations suffer from the “tragedy of commons” (Hardin, 1968) whereby agents
shirk from a collective perspective. The essential problem here arises from the pos-
sibility that an agent may have to share the returns to his costly effort with other
agents in the organization. While all agents would be better off if all were to ex-
ert effort, shirking with the intention to free-ride may turn out to be the dominant
29The issues addressed in this section are closely related to the concerns of Janssen and Ostrom

(2005).
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strategy for each individual agent. As an individual’s share of the returns to his/her
effort is likely to depend on the number of other agents in the firm, the incentive to
shirk tends to be affected by firm size. This intuition plays an important role in the
ensuing analysis.

Axtell (1999) Consider a population of (non-competing) firms with workers being
able to partially control their exposure to the intra-firm commons problem by switch-
ing firms or even starting their own firm. As the mobility of the workers implies
that the size of the existing firm can change, it has implications for the extent to
which workers will free-ride. A central focus of Axtell (1999) is on the dynamics of
a population of firms whose number and size are endogenous.

A firm having M ≥ 2 workers engages in production through the joint efforts
of its members. Let ei ∈ [0, 1] denote worker i’s level of effort and E ≡

PM
i=1 ei

be the total effort of the firm. The firm’s value, V (E), takes the following form:
V (E) = aE + bEβ with a, b > 0 and β > 1. Assume an egalitarian sharing rule
so that each worker receives exactly V (E)/M . Denote by Ui(ei, E−i;M) the utility
of worker i in a firm of M workers, where he supplies ei and everyone else supplies
E−i(≡ E − ei). Workers are assumed to have Cobb-Douglas preferences for income
and leisure such that

Ui(ei, E−i;M) =
µ
V (ei +E−i)

M

¶θi

(1− ei)1−θi , (5)

where θi is worker i’s relative weight for income over leisure (which equals 1 − ei).
Preferences are heterogeneous in the population as θi is an independent draw from a
uniform distribution on [0, 1].

To characterize the population of firms, let J(t) be the number of firms operating
at t and M j(t) denote the size of firm j ∈ {1, ..., J(t)}. eji (t) and E

j(t) represent,
respectively, the effort exerted by worker i in firm j and the total effort level of firm
j. The initial configuration for the computational experiment assumes a population
of N workers and N single-worker firms.

In any given period, a fixed number of workers are randomly selected to alter
their behavior. Workers are myopic optimizers in that, in period t, each chooses
effort to maximize period t utility under the assumption that the period t total effort
of the other members equals what it was in the previous period, which is denoted
Ej−i(t− 1) for firm j, and the number of its workers is the same as previously, which
is M j(t− 1). In this case, i was a member of firm j in t− 1. If he remains at firm j,
then worker i’s optimal effort level, beji (t), is

beji (t) = argmaxe Ui(e,E
j
−i(t− 1);M j(t− 1)). (6)

This gives expected utility from remaining at firm j.
Alternatively, worker i can join another firm or start up a new firm (which will,

at least initially, consist only of himself). As regards the former option, worker i is
(randomly) endowed with a network of νi other workers and can consider joining the
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firms to which they were members at t− 1. The baseline simulation assumes νi = 2
∀i. For each of these alternatives, the worker computes the maximal utility level
using the procedure described in (6). Out of the (at most) νi + 2 firm-options, a
worker chooses the one yielding the highest expected utility.

Simulations show that the stochastic process by which firms are created, expand,
and contract never settles down. Furthermore, there is considerable intertemporal
fluctuations in the number of firms, average firm size (as measured by the number of
workers), and average effort. Though average firm size is only four, firms can grow
to be much larger. The basic forces are that, as firm size grows, increasing returns to
total effort enhances marginal productivity - thereby making it more attractive for
a worker to join the firm and thus leads to growth - but the free-riding problem is
exacerbated with more employees - which serves to contract firm size. Firms expand
when they offer a high value per worker as it induces workers to join. Now recall that
a worker’s optimal effort is based on the previous period’s firm size and effort. Thus,
a firm that currently has a high value per worker will experience a high inflow of
new workers and, furthermore, this will continue to result in a high value per worker
because each of those workers base their effort on a smaller sized firm so there is
less free-riding than is appropriate for a firm of that size. This serves to attract yet
more workers to join and, as long as the flow of workers into the firm remains high,
increasing returns in total effort stays ahead of the intensifying free-riding problem. In
this manner, a firm can experience sharp growth but it is also why it cannot maintain
large size because once the flow of new workers subsides (which is sure to occur since
there is a finite population of workers) then free-riding becomes the dominant force;
value per worker declines and this leads to a rapid exodus of workers. Firms grow
but then, like the bursting of a Ponzi scheme, eventually collapse. The model is
parsimonious as a rich set of dynamics is generated by three factors: increasing
returns, free-riding, and worker mobility.

Though focusing on a different set of issues, the work of Axtell (1999) has a
predecessor in Glance, Hogg, and Huberman (1997). The latter authors model two
organizational dilemmas: the lack of accountability in large organizations with the
free-riding that ensues, as is in Axtell (1999), and the risk associated with training
workers who are mobile. An organization realizes the benefits from training employees
only if they remain with the organization but, once trained, a worker may leave to join
another organization. Towards encompassing this latter issue, Glance et al (1997)
enrich the flat organizations of Axtell (1999) by assuming each firm has a manager
whose role is to decide whether to train workers and whether to add workers. A worker
can join a firm only upon invitation by its manager. Both of these distinctions result
in modelled firms closer to real firms than those in Axtell (1999).

In an early model of the commons problem in a team production setting, Alchian
and Demsetz (1972) proposed a top-down organizational solution to free-riding. The
firm is hierarchical with salaried workers and a capitalist who is motivated to monitor
worker effort by virtue of being the residual claimant of firm profit. In contrast,
Glance et al. (1997) and Axtell (1999) take a bottom-up approach to the issue by
assuming that the workers themselves can independently control their exposure to the
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commons problem by moving from one firm to another and that they also share in the
firm’s profit. Augmenting these models with the mechanism of Alchian and Demsetz
(1972) would move these models in a useful and realistic direction. In particular,
firm size is greatly limited in these models because of the intensity of the free-riding
problem. Allowing multiple layers with each layer monitoring the one below them
could allow for larger firms and perhaps even persistently large firms, which is a
feature of the data (see, for example, Mueller, 1986) but not a property of the model.

5.2 Organizational Norms

At one point during his investigations, [consultant] Sym-Smith asked [Sears

managers] how controversy was handled at the upper level of Sears. He was

told that there was no controversy. Senior Searsmen were trained from their

corporate infancy to participate in a veritable cult of contrived harmony and

consensus. [Donald R. Katz, The Big Store: Inside the Crisis and Revolution at

Sears (1987), p. 28.]

As discussed earlier in the context of organizational search and learning, the
long-run performance of an organization depends crucially on the way it balances
exploration with exploitation. There are two issues central to this trade-off. First,
exploitation at the organizational level relies upon diversity at the agent-level; there
must be someone who knows something special in order for the rest of the organiza-
tion to learn something new and possibly useful. When agents engage in independent
innovation, diversity is naturally generated, thereby providing the raw material for
exploitation by the organization. However, the very process of global exploitation re-
duces the degree of diversity - replacing ideas with what are considered to be superior
ones - so that eventually improvements in organizational performance disappear.

The second issue is how the global exploitation of local knowledge gets carried out
in the organization. We’ve considered exploitation being done under centralization
(for example, the top-down mandate of a superior practice) as well as decentralization
(for example, agents share information and individually decide on whether to adopt
an idea). March (1991) considers a particular form of decentralized learning in
which the agents learn from organizational norms - “accepted wisdom” as to the
proper way in which to do things - but where the norms themselves evolve as they
are shaped by the behavior of the more successful agents within the organization.
The coevolutionary dynamics between organizational norms and agent behavior drive
performance by influencing the extent of diversity in the population and, therefore,
the delicate balance between exploration and exploitation.

March (1991) Consider an organization facing an external reality that takes values
from {−1, 1} onm dimensions. The external reality is known only to the modeler and
is assumed to be fixed for the initial set of analyses. The organization has n agents
who in each period hold beliefs about the external reality. Agents’ beliefs on each
dimension lie in {−1, 0, 1} as does the organizational norm (or code). These beliefs
coevolve and only indirectly connect to external reality. In any period, if the code
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is 0 for a particular dimension, then agents do not modify their beliefs about that
dimension. It is as if the code has nothing to prescribe for that dimension. If instead
the code is −1 or 1 and differs from an agent’s belief, then the belief of that agent
switches with probability p1 to what the code dictates. It is natural to interpret p1 as
a measure of socialization since it controls the degree to which an agent is influenced
by organizational norms. As agents learn from the code, the code itself evolves to
conform to the beliefs of those agents whose beliefs are closer to external reality than
that of the code. To be specific, if the code differs from the majority view of those
agents whose beliefs (over all dimensions) are closer to reality, then the code remains
unchanged with probability (1 − p2)k where k is the difference between the number
of agents whose beliefs differ from the code and the number with the same belief. p2
then controls how effectively the code responds to the beliefs of the “best” agents.

The performance of the organization is measured by two levels of knowledge: the
accuracy of the organizational code (which is the proportion of the organizational
code that matches reality) and the average accuracy of the organization’s members
(which is the average proportion of individual beliefs that match reality). As agents
and the code influence each other, they converge over time. An equilibrium is reached
when the organizational code and the individuals share common beliefs over all m
dimensions. At that point, no further learning is possible though these beliefs need
not match up with external reality.

Given the mutual learning dynamics between an organization’s members and its
norms, slower socialization (that is, a lower value for p1) enhances the equilibrium
level of knowledge. Furthermore, there is an interesting interaction between social-
ization and the adaptivity of the organizational code (as measured by p2). When
socialization is slow, an increase in code adaptivity raises the average level of knowl-
edge; when socialization is fast, a more adaptive code reduces knowledge. The
equilibrium knowledge level is maximized when norms respond quickly and the pop-
ulation is comprised of slow-adjusting agents. The key to understanding these results
is to recognize from where the raw material for learning is coming. In that agents
and the organizational code learn from each other to the extent that their beliefs
differ, what drives mutual learning is sustained diversity in beliefs. Rapid social-
ization causes agents’ beliefs to converge to the organizational code before the code
has been able to match the beliefs of the agents whose beliefs are most accurate. In
contrast, slow socialization coupled with a rapidly learning code maintains a sufficient
amount of diversity in the population during the code’s adaptation. This augments
the spreading of correct beliefs throughout the organization, with these correct beliefs
ultimately becoming embedded in the code.

Just as diversity of beliefs is conducive to knowledge accumulation, so is hetero-
geneity in learning rates among agents. For the same average rate of learning, a mix
of fast and slow learners leads to more aggregate knowledge than a homogeneous
group. The slow learners provide the raw material that the organization needs to
adapt in the long run, while the fast learners take advantage of the code capitalizing
on this diversity; they perform the exploitation function. Providing a dilemma for
organizations, the individual performance of slow learners is worse than that of fast
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learners, as reflected in the inaccuracy of their beliefs, which means that fast learning
can be good for the agent but bad for the organization.

A similar set of forces comes into play when personnel turnover and environmental
turbulence are introduced. Suppose that, in each period, an agent is replaced with
probability p3 by a new agent with a fresh set of beliefs. When socialization is slow,
an increase in p3 decreases the average level of knowledge as these new agents replace
accurate beliefs with randomly selected ones. However, when socialization is rapid,
long-run knowledge is maximized with a moderate rate of personnel turnover as it
serves to introduce diverse beliefs and thus to prevent premature fixation on homo-
geneous (but incorrect) beliefs. The impact of environmental turbulence is examined
by stochastically shifting external reality. If the rate of environmental change is
such that the population reaches an equilibrium before effectively responding to the
turbulence, organizational performance tends to degrade as the homogeneous popu-
lation lacks the raw material to respond to a changing reality. Once again, personnel
turnover can enhance knowledge by injecting new beliefs into the organization.

In evaluating this model, it clearly lacks the richness of structure of the previous
models reviewed. Learning is occurring in an unstructured a space, thus the model
does not deliver the type of insight obtained when there is the additional structure of
a landscape. Also, the focus on beliefs without an explicit specification of how they
map into performance omits an essential step in the norm-formation process. All these
weaknesses aside, the paper makes a singular contribution in providing a plausible
and parsimonious feedback mechanism for the determination of organizational norms.

5.3 Growing an Organization

If you don’t zero in on bureaucracy every so often, you will naturally build

in layers. You never set out to add bureaucracy. You just get it. [David Glass,

CEO of Wal-Mart, quoted in Sam Walton with John Huey, Sam Walton: Made

in America (1992), p. 232.]

Thus far, the primary approach to studying organizational structure has been
to exogenously specify various structures — in terms of the communication network
and the allocation of information and decision-making — and to compare their perfor-
mance. While these models are bottom-up to the extent that organizational behavior
is the product of the interactions of individual agents’ acting according to their deci-
sion rules, they are top-down in terms of organizational structure, as it is pre-specified
by the modeler. Though organizational structure is endogenized in such work as Car-
ley and Svoboda (1996), DeCanio, Dibble, and Amir-Atefi (2000), Miller (2001), and
Ethiraj and Levinthal (2002), this is done by specifying a super-agent process as
reflected in, for example, applying a genetic algorithm on a population of organiza-
tions. It fails to produce organizational structure from the bottom-up by having it
be the product of the decisions of individual agents within the organization. This
all-important task - using the bottom-up approach of agent-based models to generate
the structure of an organization - is initially attempted in Epstein (2003). Though,
as we’ll later argue, the model has features running counter to real organizations, it is
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a novel and thought-provoking initial salvo on this challenging fundamental problem.

Epstein (2003) In this model, individual agents in the organization endogenously
generate internal hierarchy in response to their environment. The environment
for the organization is represented by a flow of “opportunities” that are met by the
available pool of labor (agents). The central organizational problem is how to allocate
the fixed pool of labor within the organization so as to most effectively respond to
these opportunities.

The type of task faced by the organization is visually summarized in Figure 6.
There is a fixed number N of sites (where N = 8 in Figure 6), each of which may
receive a profit opportunity. One might imagine a site corresponds to a geographic or
product market and an opportunity is demand to be met. The baseline organization
consists of a fixed number of workers and level-1 managers. Each worker is assigned
to a market site and the organization earns profit when a worker is at a site when it
receives an opportunity. Using Epstein’s colorful terminology, a worker “intercepts”
an opportunity if present when one arrives and a “penetration” occurs when an
opportunity arrives without a worker there to intercept it. In Figure 6, the firm has
five workers who are positioned at sites 1, 3, 4, 7, and 8 and there are four level-1
managers, each being in charge of two adjacent sites. Opportunities are coming into
sites 1, 2, 4, 5, 6, and 7 with the workers at sites 1, 4, and 7 positioned to intercept.
The opportunities coming into sites 2, 5, and 6, on the other hand, are wasted and
represent penetrations. Finally, the workers at sites 3 and 8 are idle for lack of
opportunities. Penetrations and idle workers are monitored by level-1 managers.
For instance, the level-1 manager in charge of sites 1 and 2 recognizes the need for
a worker to meet the opportunity at site 2. Concurrently, the level-1 manager in
charge of sites 3 and 4 recognizes that the worker at site 3 is underutilized. Clearly,
an appropriate move for the organization is to shift the worker from site 3 to site 2.

The organizational problem in this model is to efficiently allocate its workforce.
However, workers cannot, by themselves, move among sites but may be reallocated
by upper management. Epstein considers two approaches to solve the allocation
problem, though only the hierarchy approach will concern us here.30 This approach
has managers creating higher level managers to solve the allocation problem. In the
example above, a level-1 manager would “activate” a level-2 manager who would be
in control of the four sites (two sites each from the two subordinate managers) and
thus have the capacity to move workers among those sites. For instance, the level-1
manager controlling sites 1 and 2 can activate a level-2 manager who has control over
sites 1 through 4 and who can thus observe and respond to the excess demand at site
2 and the excess supply at site 3. Being in charge of sites 1 through 4, he has the
authority to shift the worker in site 3 to site 2 and balance the demand and supply
of the workers for the sites that are under his control.

A manager’s decision rule for activating an upper level manager is defined by three

30Indeed, the primary objective of the paper is to characterize the optimal solution - hierarchy or
a trade mechanism - and how it depends on the organization’s objective. Our interest is more in
terms of it as a modelling approach to endogenizing hierarchies.
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parameters: two penetration threshold values, denoted Tmin and Tmax, and a finite
memory of length m. Given the number of penetrations recorded in their memory, a
level-k manager computes the average number of penetrations per period, P, over the
2k market sites he controls. If P ≥ Tmax then, with some upward inertia, a manager
of level k+1 is created. If P < Tmin then, with some downward inertia, the manager
cedes authority to managers at level k − 1. This inertia captures the reluctance of a
manager to relinquish control. There is no change in the current hierarchical structure
when Tmin ≤ P < Tmax. The threshold values can vary across levels, though they are
specified to be the same within a managerial level. Given a pattern of opportunities
arriving at these sites over time, the baseline organization can endogenously grow its
hierarchy to as many as log2N levels.

Suppose the flow of opportunities is continual and concentrated on a set of sites
for which there are, initially, no workers. The hierarchy mechanism creates additional
managerial layers to handle this misallocation as long as the penetration thresholds
and the upward inertia parameter are set sufficiently low. The emergent hierarchy,
even after the workers have been properly allocated to effectively intercept all incom-
ing opportunities, tends to remain in place when the downward inertia of the top
managerial level is sufficiently high. When downward inertia is instead low at all
management layers, then the generated hierarchy quickly dissolves after successfully
reallocating labor. The flexibility with which the organization restructures itself in-
ternally - both to effectively reallocate labor and then to dismantle itself when no
longer needed - depends on the inertia embedded in agents’ decision rules as well as
the thresholds for inducing a change in structure.

As a theory of organizational structure, Epstein (2003) offers a rich and novel
approach to organizations but it has a critical feature which runs counter to our
understanding of real organizations.31 In this model, managerial layers emerge from
below, as managers create levels above them to coordinate the behavior of what were
originally independent divisions. To begin, in most organizations (such as corpo-
rations and governments), there is always a manager at the top who, at least in
principle, can reallocate resources as desired. More importantly, managers only have
authority over reorganizing what lies beneath them in the hierarchy so that, as a
result, new managerial layers are created from above. A commonly purported moti-
vation for adding middle level managers is that upper managers perceive themselves
as overburdened and thus distribute tasks and authority to newly created managerial
levels. In Epstein’s model, organizational structure is created in a direction running
counter to reality.

In spite of this weakness, Epstein (2003) is a provocative study. Epstein lays
down an important issue for future research - to model the internal organizational
pressures that create a need for a new organizational structure and the process by
which change is realized. This would represent the acme of agent-based models of
organizations; it closes the circle in that an organization can re-invent itself through
the decisions of the organization’s members.

31In fairness, Epstein (2003) states that the model is not intended to represent any existing orga-
nization.
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6 Critique of the Past and Directions for the Future

You don’t want to learn a science in its early stages. ... You have to think

about ... your mind as a resource to conserve, and if you fill it up with infantile

garbage it might cost you something later. There might be right theories that

you will be unable to understand five years later because you have so many

misconceptions. You have to form the habit of not wanting to have been right

for very long. If I still believe something after five years, I doubt it. [Marvin

Minsky quoted in Stewart Brand, The Media Lab: Inventing the Future at M.I.T.

(1987), pp. 103-104]

Recent research in the computational agent-based literature has provided a new
and fresh perspective to exploring organizations. There is real promise that theory
can produce precise results while encompassing the rich institutional features of cor-
porations, governments, political parties, and other organizations. But if we are to
effectively traverse the learning curve associated with this new modelling approach,
we must maintain a healthy level of skepticism. Research builds its own momentum
as assumptions initially considered problematic are routinized, arbitrary modelling
conveniences become entrenched and leave unexplored the sensitivity of results to
them, and standards for acceptable work form when methods are rudimentary. As
March (1991) discovered, stability during an intense learning phrase can be quite
deleterious. We are at such a point and it is wise that we be on guard against ac-
quiring bad habits. Towards this end, we’ll make three methodological points in this
section and conclude with a few suggested directions for research.

The first point is that, while there is always a disconnect between our models and
what they are intended to represent, this can be a more serious issue with computa-
tional agent-based models. This concern does not come from modelling simplicity -
indeed, the models are quite rich compared to their predecessors - but rather that in-
sufficient attention may be given to relating a model to reality. Many of the modelling
components - artificial neural networks, simulated annealing, genetic algorithms, and
the like - were originally developed for very different purposes and some work has
used them without adequately explaining how these theoretical constructs map into
real-world entities and processes. For example, what is the correspondence between
the components of an artificial neural network and the components of a firm? Is it
appropriate to interpret a node as a person? If not, what additional structure would
make a node a reasonable representation of a person? What is the correspondence
between a genetic algorithm and the process of imitation and innovation conducted
within and between organizations? Is crossover a descriptively accurate model of
some organizational process? Before “off-the-shelf” modules are deployed in mod-
elling organizations, the researcher should map it to what is being modelled. Doing
so will not only lead to more confidence in the model but is likely to suggest useful
modifications.

One of the reasons that neoclassical economists resist bounded rationality is that
there are so many ways to model it, and often which is selected is arbitrary. This is
a legitimate concern, although it should not deter one from engaging in such work.
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Indeed, the equilibrium assumption - an agent “understands” the world around him
in the sense of, for example, knowing the behavioral rules used by other agents -
is as ad hoc as most assumptions of boundedly rational agents in that, in most
instances, it is not based on empirical evidence and often no credible story can be
told to make the assumption convincing. (The appeal of the equilibrium assumption
is not its empirical validity but rather its power in generating precise results and its
accordance with the faith of many neoclassical economists in equilibrating processes.)
This leads to our second point. Given there are many ways in which to model bounded
rationality, a feature to the broad research program should be assessing the robustness
of insight to the particular way bounded rationality is instantiated in agents and
how the tasks facing agents are represented. In finding a solution, does it make a
difference whether an organization is modelled as an artificial neural network or as
a collection of myopic hill-climbing agents? Do results depend on the organization
solving a decomposable problem or a binary classification problem or minimizing a
distance function? Does it make a difference whether organizational structure evolves
as represented by simulated annealing or a genetic algorithm? Rather than consider
one particular task, it may be more useful to allow for a variety of tasks, exploring
how the optimal organizational structure depends on the task and identifying those
structures that perform reasonably well for an assortment of tasks.

The third point to make about this literature is that results can be inadequately
explained. This is partly due to models being too complex and researchers forgetting
that parsimony is a virtue, not a weakness emanating from a lack of computing power.
Indeed, the poignancy of Einstein’s well-known apothegm - “Everything should be
as simple as possible, but not simpler.” - is nowhere greater than with agent-based
computational modelling.32 As the power of computing allows us to solve models of
increasing complexity, there is a natural tendency to complicate. This is a mistake.
Even with Moore’s Law sailing at full mast, computing constraints continue to make
our models gross simplifications of what we are trying to understand. The deliverable
of formal models remains what it has always been - insight. A model that is so
complex that its implications elude explanation is a model that has not altered our
understanding.33

Complexity aside, a more disturbing feature of this work is the sometimes per-
ceived lack of necessity to carefully explain results. An attractive feature of a math-
ematical proof is that it provides a paper trail that can be used to explain results.
Though computational results are also the product of logical operations, there is a
tendency to think that if the model cannot be solved analytically then there is lit-
tle point to trying to carefully sort out how output is produced. Anyone who has
worked with computational models knows that results can be the product of arbi-
trary assumptions of convenience or coding errors, which makes it all the more critical

32Indeed, some work in the computational agent-based literature seems to be guided by the axiom:
“Make it simple enough to be computable and complex enough to be incomprehensible.”
33It is in this light that we decry “emergent phenomena” when it is meant to refer to results

unanticipatable by virtue of a model’s complexity. If one could not, upon proper reflection, anticipate
the possibility of some results then it is hard to see how one can ex post explain them and, if one
cannot explain them, in what sense do we understand more.
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that they be adequately explained. Though computational work may not leave an
analogous paper trail, it can offer a way in which to “test” an explanation. If one con-
jectures that a result is due to a particular force, then it may be possible to “turn off”
that force. If the result persists then one’s conjecture is wrong; if the result goes away
then the “evidence” is consistent with that explanation. Furthermore, explanation is
not only essential to gaining insight but also to assessing robustness. Convincingly
arguing that the forces driving the results are not peculiar to those examples is the
way in which to develop confidence that the insight uncovered is broadly applicable.
The bottom line is that researchers must apply the same standards for explaining
results that are used in the assumption-proof-theorem tradition.34

Given research on organizations using a computational agent-based approach is in
its incipiency, there are multitudes of research directions. Rather than propose spe-
cific lines, which would only serve to scratch the surface and deplete what minuscule
scholarly wealth the authors possess, let us instead provide three general directions
for research.

One direction is to take bounded rationality another step further. While agents
are modelled as being limited in their decision-making capacity, they are often as-
sumed to have an unrealistic amount of information, either before or after acting. A
common assumption in rugged landscape models is that an agent observes ex ante
the true performance associated with an idea and, based on that information, decides
whether or not to adopt it. In some cases, this can be plausibly motivated by imag-
ining that the idea is temporarily implemented with (noiseless) performance being
observed. Learning is then occurring offline. If, however, there is noise, then learning
will have to occur in real time - an organization may need to continue the experiment
for a non-trivial length of time in order to get a sufficiently informative signal. Before
even experimenting with an idea, it will want to make an assessment of its potential
but then the agent must have a “model” so as to make such a judgment. That is a
feature lacking in most agent-based models (Gavetti and Levinthal, 2000, being an
exception). Depending on how one models the evolution of an agent’s model of the
landscape, biased and not just noisy evaluations could emerge.

An analogously strong assumption is made in many information-processing mod-
els, which is that agents learn ex post what was the true state; an organization receives
data, makes a choice, observes the outcome, and is able to infer from the outcome
what would have been the right choice. In practice, the true state is rarely observed
and, while performance may be observed, it provides noisy information regarding
what would have been the best decision. In addition, when there are more than a
few members, organizational performance is a highly uninformative signal of what
an agent outside of the upper-most levels should have done. Agents need to know
about their “local” performance rather than the global performance of the organiza-
tion. Models have to come to grips with how an organization measures an individual
agent’s contribution to total performance.

A second direction is to bring in more structure. Thus far, models have been

34This comment was distinctly improved by a stimulating dinner conversation between one of the
authors and Patrick Rey in Siena, Italy.
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too generic. The results generated by models of search and learning are extensions
or applications of insight regarding search on rugged landscapes. If we’re to move
beyond that, we need to impose more structure so that a variable is not some faceless
dimension but concretely corresponds to an actual practice. This would allow one to
explore not only how many dimensions should be centralized but also which dimen-
sions should be centralized. What determines whether, say, marketing is controlled
by the corporate office or a product manager? What determines which dimensions
a store manager controls rather than assistant managers? An important step is to
further pursue the approach of building a landscape from economic primitives by
modelling specific functions - pricing, product selection, training practices, market-
ing, inventory policy, etc. Such an approach could open up an entirely new set of
questions and make these models more powerful both in explaining organizational
behavior and serving a normative role for organizations.

More structure is also needed in information processing models where, thus far,
agents are excessively simple-minded and too heavily “programmed,” even by the
standards of the computational agent-based literature. Endowing them with prefer-
ences and giving them choices - such as how much effort to exert and what information
to pass onto the next node in the network - is vital for the distance between models
and reality to lessen.

At present, organization theory is partitioned into the neoclassical economics ap-
proach and the agent-based computational approach and “ne’er the twain shall meet.”
It is obvious that these two research lines should not be moving independently. Each
has its virtues - computational work provides a rich modelling of organizational struc-
ture and how agents interact while neoclassical work is sophisticated in its modelling
of incentives - and a superior theory of organizations is to be had if the two can be
integrated. This challenge is the third direction.
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Figure 1:  Search Landscapes



(a) Independence (K = 0)
1 2 3 4 5 6

1 x
2 x
3 x
4 x
5 x
6 x

(b) Full Interaction (K = 5)
1 2 3 4 5 6

1 x x x x x x
2 x x x x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x
6 x x x x x x

(c) Block-Diagonal (K = 2)
1 2 3 4 5 6

1 x x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x

(d) Random Interaction (K = 2)
1 2 3 4 5 6

1 x x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x

Figure 2: Adjacency Matrix (N = 6)



(a)
Hierarchical and

Nearly Decomposable

a1 a2 a3 b1 b2 b3 c1 c2 c3
a1 x x x
a2 x x x
a3 x x x
b1 x x x x
b2 x x x
b3 x x x
c1 x x x x
c2 x x x
c3 x x x

(b)
Non-Hierarchical and
Nearly Decomposable

a1 a2 a3 b1 b2 b3 c1 c2 c3
a1 x x x
a2 x x x
a3 x x x x
b1 x x x x
b2 x x x
b3 x x x x
c1 x x x x
c2 x x x
c3 x x x

(c)
Hierarchical and
Non-Decomposable

a1 a2 a3 b1 b2 b3 c1 c2 c3
a1 x x x
a2 x x x
a3 x x x
b1 x x x x x x
b2 x x x x x x
b3 x x x x x x
c1 x x x x x x
c2 x x x x x x
c3 x x x x x x

(d)
Non-Hierarchical and
Non-Decomposable

a1 a2 a3 b1 b2 b3 c1 c2 c3
a1 x x x x
a2 x x x x x
a3 x x x x x x
b1 x x x x x x x
b2 x x x x x x x
b3 x x x x x x x
c1 x x x x x x
c2 x x x x x
c3 x x x x

Figure 3: Adjacency Matrix (N = 9)



 
 
 

Figure 4:  Networks with 5 Bits of Information 

(1) (2) (3) 

(4) (5) (6) 

(7) (8) (9) 

(10) (11) (12) 



 
Figure 5:  Artificial Neural Network 
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Figure 6:  Epstein’s Essential Problem 
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