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Abstract

Collusion under imperfect monitoring is explored when firms’ prices are pri-
vate information and their quantities are public information; an information
structure consistent with several recent price-fixing cartels such as those in ly-
sine and vitamins. For a class of symmetric duopoly games, it is shown that
symmetric equilibrium punishments cannot sustain any collusion. An asymmet-
ric punishment is characterized which does sustain collusion and it has the firm
with sales exceeding its quota compensating the firm with sales below its quota.
In practice, cartels have performed such transfers through sales among the cartel
members.
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... if I’m assured that I’m gonna get 67,000 tons [of lysine sales] by the year’s
end, we’re gonna sell it at the prices we agreed to and I frankly don’t care what
you sell it for. [Terrance Wilson of Archer Daniels Midland from the March 10,
1994 meeting of the lysine cartel.]

And that total for us for the year, calendar year is 68,000; 68,334. 68,334 and
our target was 67,000 plus alpha. Almost on target. [Mark Whitacre of Archer
Daniels Midland from the January 18, 1995 meeting of the lysine cartel.]1

1 Introduction

Many if not most price-fixing cartels involve firms selling to industrial buyers, with
the lysine cartel being a notable example. As price can be settled through private
negotiation, it is not typically observable. In such cases, compliance with the collusive
agreement is often based on firms’ sales. Indeed, cartels can go to great lengths to
ensure that sales are public information among the cartel members. In the citric acid
cartel, for example, firms hired an international accounting firm to independently
audit sales reports (Connor, 2001). The objective of this paper is to explore collusion
in an imperfect monitoring setting in which prices are private information and firms’
quantities are public information.

In spite of such a monitoring environment being applicable to many market set-
tings, there is relatively little work with such a structure even though, interestingly
enough, it was the one described by Stigler (1964) when he originally raised the is-
sue of imperfect monitoring. There are, of course, many papers using the classical
monitoring setting of Green and Porter (1984) in which firms’ quantities are private
information and the market price is publicly observed. In the context of repeated
auctions, Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004) assume
price is private information, while who won the auction is known. But the assumption
of one unit per period makes the model unsuitable for many markets and, pertinent
to the issue at hand, constrains the monitoring of collusion through sales (a point
we elaborate upon later). Tirole (1988) and Bagwell and Wolinsky (2002) allow for
multi-unit demand in the context of Bertrand price model. But assuming firm de-
mand is discontinuous is obviously an extreme assumption and, furthermore, plays
an important role in sustaining collusion. Our model is the first to consider collu-
sion when prices are private information and monitoring occurs with respect to sales,
while making standard and fairly general demand assumptions: demand is multi-unit
and expected firm demand is everywhere continuous.

Our first main finding is a surprising impossibility result. For a general class
of symmetric demand structures with inelastic market demand, no collusion can be
sustained by symmetric equilibria (in the sense of strongly symmetric perfect pub-
lic equilibria; see Section 3 for detailed definitions). By way of example, one such
demand structure is when the probability distribution of demand depends only on
the difference in firms’ prices, as is true with the discrete choice model. The rough

1These quotes are from the video transcript of “The International Lysine Cartel at Work,
3/28/00” provided by the U.S. Department of Justice, Antitrust Division.
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intuition for our result is as follows. One would expect punishment to occur when
market shares are sufficiently skewed. Suppose, for example, punishment occurs when
market share of one of the firms exceeds 70%. A firm that considers charging a price
below the collusive price raises the probability that its market share exceeds 70% -
which makes punishment more likely - but lowers the probability that the other firm’s
market share exceeds 70% - which makes punishment less likely. What we show is
that for small price cuts, these two effects exactly offset each other which implies that
a firm’s continuation payoff is unaffected by its price. Therefore, an equilibrium price
for the infinite horizon game must be the same as that for the stage game. Though
shown for the extreme case of fixed market demand, robustness prevails when market
demand is stochastic and sensitive to firms’ prices. Specifically, if market demand is
very insensitive to firms’ prices then collusive prices are very close to non-collusive
prices.

The conclusion we draw from this result is not that firms cannot collude but
rather of the importance of treating apparent deviators differently from apparent
non-deviators. The second main result is showing that collusion can be sustained
with asymmetric punishments involving transfers in which the firm having sold too
much compensates the other firm. In fact, some price-fixing cartels, such as those
in citric acid (Arbault, 2002) and sodium gluconate (European Commission, 2002),
did indeed deploy asymmetric punishments through the use of inter-firm sales which
can act as transfers. The main message of this paper is that if we are to understand
the actual practices of some cartels, it is essential that we take account of imperfect
monitoring with respect to prices and the role of asymmetric punishments which
condition on sales.

2 Model

Consider an infinitely repeated duopoly game in which firms make simultaneous price
decisions. Cost functions are common and linear and, without loss of generality, cost
is zero. Demand is fixed at m units and discrete.2 We often refer to it as having
m customers (with unit demands). Though total demand is fixed, firm demand is
stochastic. Let

φ : {0, 1, . . . ,m} × <2 → [0, 1]

be the probability function on firm 1’s demand. φ (b; p1, p2) is the probability that
firm 1 sells b units given its price is p1 and its rival’s price is p2, where p1, p2 ∈ <.
As total demand is fixed at m units, φ (m− b; p1, p2) is the probability that firm 2’s
demand is b. One can either imagine that products are differentiated or that they
are homogeneous but buyer-specific shocks, which may be independent or correlated,
influence their demand in each period. We describe some examples below.

We make three assumptions on the probability distribution on firm demand.

A1 φ is continuously differentiable with respect to p1 and p2.

2See Section 4.2 for a generalization to when m is variable.
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A2 φ (b; p0, p00) = φ (m− b; p00, p0) ∀b ∈ {0, 1, . . . ,m} ,∀ (p0, p00) ∈ <2.
A3 ∂φ(b;p,p)

∂p1
+ ∂φ(b;p,p)

∂p2
= 0 ∀b ∈ {0, 1, . . . ,m} ,∀p ∈ <.

A1 is standard and A2 imposes symmetry. A3 is the key restriction though
is satisfied in many models. A3 implies that if we start at equal prices then the
distribution of demand remains unchanged if firms make small identical price changes.
It holds, for example, when φ depends only on the price difference, p1 − p2. Suppose
∃ξ : {0, 1, . . . ,m} × <→ [0, 1] such that

φ (b; p1, p2) = ξ (b;∆)∀b ∈ {0, 1, . . . ,m} ,∀ (p1, p2) ∈ <2,
where ∆ ≡ p1 − p2. Then

∂φ (b; p, p)

∂p1
+

∂φ (b; p, p)

∂p2
=

∂ξ (b; 0)

∂∆
− ∂ξ (b; 0)

∂∆
= 0,

so that A3 holds.
An example from the literature that conforms to this specification is the following

m-buyer generalization of Cabral and Riordan (1994). Let the probability that firm
1 sells to a particular buyer equal F (p2 − p1) where F : < → [0, 1] is continuously
differentiable and non-decreasing and F 0 is symmetric around zero. Assume also that
buyers’ decisions as to whom to buy from are iid. That implies that a firm’s demand
is binomially distributed,

φ (b; p1, p2) =
m!

b! (m− b)!
F (p2 − p1)

b (1− F (p2 − p1))
m−b ,

and thus depends only on the price difference. A discrete choice model in which
consumer indirect utility is linear in price will also work. In that case, the utility to
consumer j from buying the product of firm i is U j

i − pi so that firm 1’s product is
bought iff:

U j
1 − p1 > U j

2 − p2 ⇔ U j
1 − U j

2 > p1 − p2.

More generally, note that we can represent φ (b; p1, p2) by bφ ¡b; f b (p1, p2)¢ : {0, 1, . . . ,m}×
<→ [0, 1] , where f b (·) is allowed to vary with b. It follows that A3 holds when

∂f b (p, p)

∂p1
+

∂f b (p, p)

∂p2
= 0 ∀b,

and, furthermore, for any smooth transformation g
¡
f b (·)¢ or f b (g (p1) , g (p2)). For

example, start with f b (p1, p2) = p1 − p2 and use the transformation: g (p) = ln (p).
We then have f b (p1, p2) = ln (p1) − ln (p2) = ln (p1/p2). Performing another trans-
formation using g (p) = exp f b gives us f b (p1, p2) = p1/p2. Thus, if the probability
distribution depends only on the ratio of prices then it satisfies A3.

Note that our assumptions thus far do not require that demand be decreasing
in price. In our stochastic formulation of demand, the natural way in which to
encompass that property is to assume that a lower price implies a first-order stochastic
dominance shift in a firm’s probability distribution over its demand. A4 will only be
needed for some results.
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A4
Pk

b=0
∂φ(b;p1,p2)

∂p1
> 0 ∀k ∈ {0, 1, . . . ,m− 1} .

There is an infinite horizon and each firm’s payoff is the expected present value
of its profit stream where the common discount factor is δ ∈ (0, 1) . The information
structure is one of imperfect monitoring as firms’ price decisions are private informa-
tion. This conforms to the industrial buyer case in which price is negotiated between
a seller and a buyer and thus is not publicly posted.3 Given that it is common knowl-
edge that market demand is fixed and each firm observes its demand then realized
quantities are common knowledge. It is sufficient to think of a public history at the
start of period t, denoted ht−1, to be a sequence of quantities sold by firm 1. Denote
by Ht−1 the set of all possible histories ht−1. A firm’s (public) strategy is then an
infinite sequence of price functions,

©
ρti (·)

ª∞
t=1

, where ρti : H
t−1 → <. We restrict

attention to perfect public equilibria so that firms do not condition their prices on
their own past prices, just on the realized quantities.4 One final assumption is that
first-order conditions are sufficient for defining an equilibrium.

The imperfect monitoring structure we consider obviously differs from the classical
formulation of Green and Porter (1984) in which firms’ quantities are private infor-
mation and the market price is publicly observed. Assuming firms’ prices are private
information and monitoring is based on sales appears to conform better with many
price-fixing cases. There is a limited amount of work which considers monitoring with
respect to sales when prices are private information. Blume and Heidhues (2003) and
Skrzypacz and Hopenhayn (2004) consider collusion in repeated single-unit auctions.
The limitation to one unit per period is restrictive and, as a result, their models are
not applicable to many markets. Tirole (1988) and Bagwell and Wolinsky (2002)
consider the Bertrand price model with uncertain aggregate demand in which firms’
prices and quantities are private information.5 The standard Bertrand assumption of
infinite elasticity of firm demand is clearly an extreme (though common) assumption,
especially as even arbitrarily small deviations lead to a discontinuous change in the
distribution of the monitoring variable. Our model is then unique in the imperfect
monitoring literature in allowing for the following compelling features: price is pri-
vate information, monitoring occurs with respect to sales, multi-unit demand, and
expected firm demand is everywhere continuous. Though we do assume total market
demand is fixed, robustness is established with respect to that assumption. All of
these features - including highly inelastic market demand - fit well with many markets
including lysine and vitamins.

There is one assumption that warrants discussion before moving on. Though
buyers are discrete, we restrict a firm to charging the same price to all buyers. When
it comes to deviating from a collusive arrangement, a firm may want to undercut its
competitor’s price on only a subset of consumers so as to make detection less likely.
(Of course, to a limited extent, it can do that by not undercutting its competitor’s
price as much.) The first point to make is that our impossibility result (Theorem 1)

3Though list prices may be posted, they are often unrelated to transaction prices.
4For equilibria in pure strategies focusing on public strategies is without loss of generality.
5 In our setting, firms’ quantities can be private or public information. Since total demand is fixed,

a firm’s knowledge of its own quantity reveals the quantity of its rival.
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is robust to this generalization because it shows that even if a deviator is constrained
to charging the same price for all consumers, collusion is unsustainable. Where this
restriction may be a concern is with regard to the result that collusion is sustainable
with asymmetric punishments. Though we conjecture the sustainability of collusion
is robust to non-uniform pricing, we do not have a proof at this time so let us instead
offer a motivation for the assumption of uniform pricing. In most price-fixing cartels,
collusion is among high-level managers rather than sales representatives (that is, those
who actually deal with customers). In that it might be difficult or even suspicious for
those managers to communicate different prices to different sales people (or different
prices to the same sales person), colluding managers may feel constrained to charging
a common price to all buyers.

3 An Impossibility Result

With single-unit demand per period (m = 1), symmetric equilibria6 are trivially inef-
fective at supporting collusion if the players only observe sales and not actual prices.7

The reason is prosaic: regardless of firms’ prices, the customer buys from one of the
sellers and this means that continuation play has to treat symmetrically the “winner”
and the “loser.” After either outcome we would have to end up in a punishment or
non-punishment regime and hence there can be no symmetric punishment for secret
price cutting.

However, with more than one customer per period, one might expect to be able
to sustain collusion even with symmetric punishments. Considering the case of two
customers, two natural outcomes emerge: the sellers split the market or one of the
sellers serves the whole market. If the collusive scheme recommends that they set a
common high price, then a market split would seem less likely if one of the players
deviates by charging a lower price. If so, then a punishment can be conditioned on
market shares being skewed. This intuition is confirmed if we model the market as
a continuum of independent customers as, by the law of large numbers, demand is
then non-stochastic which means deviations can be detected precisely. However, as
we show in this section, that intuition is not correct in a large class of markets. If
there are a finite number of customers then no symmetric equilibrium can achieve
prices above the competitive level.

In exploring collusion in a symmetric setting, it is common (and one might suppose
natural) to first consider equilibria that take full advantage of this symmetry. For a
particular strategy profile, let

vti (·) : {0, 1, . . . ,m}t−1 → <
denote the continuation payoff starting at t as a function of the public history (recall
that we use as the history the sequence of quantities sold by firm 1). A set of
symmetric histories consists of the initial null history and ifm is even also of histories

6 In the sense of strongly symmetric equilibria, as we define below.
7This was first noted in Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004) who

explore collusion in repeated auctions. Their work will be discussed later.
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in which each firm had demand ofm/2 in every period. A symmetric Nash equilibrium
is a Nash equilibrium in which the strategy profile calls for identical prices when the
history is symmetric. This implies that continuation payoffs are identical after such
histories.

A more restrictive but commonly imposed property is that of strong symmetry.8

A strongly symmetric Nash equilibrium is a Nash equilibrium in which strategies are
symmetric for all histories. That implies the continuation payoffs are also symmetric
after all histories:

vt1
¡
ht−1

¢
= vt2

¡
ht−1

¢ ∀ht−1 ∈ Ht−1, ∀t.

Let this common continuation payoff be denoted vt (·) .
Our first main finding is an impossibility result. Under strong symmetry collusion

is not sustainable regardless of the discount factor.

Theorem 1 Assuming A1-A3, the set of strongly symmetric Nash equilibrium out-
comes for the infinite horizon game coincides with the set of symmetric Nash equilib-
rium outcomes for the stage game.

Proof. Consider a strongly symmetric Nash equilibrium which, given the current
history, calls on both firms to charge prices (p∗, p∗) and gives both firms a continuation
payoff of v (b) ≡ vt+1

¡
ht−1, b

¢
if the current period demand for firm 1 is b. Firm 1’s

expected payoff from pricing at pt1 is then

mX
b=0

φ
¡
b; pt1, p

∗¢ £pt1b+ δv (b)
¤
.

By A1, a necessary condition for p∗ to be an equilibrium price is:

mX
b=0

µ
∂φ (b; p∗, p∗)

∂pt1

¶
[p∗b+ δv (b)] +

mX
b=0

φ (b; p∗, p∗) b = 0, (1)

which we will rearrange to

mX
b=0

µ
∂φ (b; p∗, p∗)

∂pt1

¶
p∗b+

mX
b=0

φ (b; p∗, p∗) b+
mX
b=0

µ
∂φ (b; p∗, p∗)

∂pt1

¶
δv (b) = 0. (2)

Our method of proof is to show that the third term is zero for if that is the case then
p∗ must satisfy

mX
b=0

µ
∂φ (b; p∗, p∗)

∂pt1

¶
p∗b+

mX
b=0

φ (b; p∗, p∗) b = 0 (3)

8This is assumed, for example, in Abreu (1986).

7



which is the condition defining a symmetric Nash equilibrium for the stage game.9

We then want to show that
mX
b=0

µ
∂φ (b; p, p)

∂p1

¶
v (b) = 0, (4)

where we’ve dropped some extraneous notation.
Note that an implication of A2 is:

∂φ (b; p, p)

∂p2
=

∂φ (m− b; p, p)

∂p1
. (5)

It follows from A3 that
∂φ (b; p, p)

∂p2
= −∂φ (b; p, p)

∂p1
. (6)

Substituting (6) into (5) yields ∀b
∂φ (b; p, p)

∂p1
+

∂φ (m− b; p, p)

∂p1
= 0. (7)

If m is even, it implies
∂φ(m2 ;p,p)

∂p1
= 0. Condition (7) is the core of the proof and states

that a small price cut increases the probability of a high market share, b
¡
> m

2

¢
, by

the same amount that it decreases the probability of a low market share, m− b.
From the preceding steps, when m is even, (4) can be presented using (7) as

m
2
−1X

b=0

µ
∂φ (b; p, p)

∂p1

¶
[v (b)− v (m− b)] +

∂φ
¡
m
2 ; p, p

¢
∂p1| {z }
0

v
³m
2

´
= 0.

Analogously, one can derive when m is odd,

m−1
2X

b=0

µ
∂φ (b; p, p)

∂p1

¶
[v (b)− v (m− b)] = 0.

A sufficient condition for our claim is therefore v (b) = v (m− b) for all histories,
which is natural to expect in a strongly symmetric equilibrium (and, in addition, it
always holds when m = 2). But that condition on the continuation payoffs is not
necessary. Consider the first-order condition for firm 2,

mX
b=0

µ
∂φ (m− b; p∗, p∗)

∂pt2

¶
[p∗b+ δv (m− b)] +

mX
b=0

φ (m− b; p∗, p∗) b = 0, (8)

9Let us remind the reader that we are assuming the first-order condition is both necessary and
sufficient for equilibrium. If it is not sufficient then Theorem 1 as stated may not be true. Though
the first-order conditions for the stage game and the infinitely repeated game still coincide, the
second-order conditions need not. What is true, however, is that the set of strongly symmetric Nash
equilibrium prices for the infinitely repeated game is a subset of the set of solutions to the first-order
condition for the stage game.
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and subtract (8) from (1) to obtain:

mX
b=0

µ
∂φ (b; p, p)

∂p1
− ∂φ (m− b; p, p)

∂p2

¶
pb

+δ
mX
b=0

∙µ
∂φ (b; p, p)

∂p1

¶
v (b)−

µ
∂φ (m− b; p, p)

∂p2

¶
v (m− b)

¸
+
Pm

b=0 [φ (b; p, p)− φ (m− b; p, p)] b = 0

The first summation is zero by (5) and the third summation is zero by A2 and that
the probabilities add up to 1. Using (5) in the second summation, we derive:

mX
b=0

∂φ (b; p, p)

∂p1
[v (b)− v (m− b)] = 0

This can be used to complete the proof; for example, if m is odd, using again (7) it
can be re-written as:

m−1
2X

b=0

∂φ (b; p, p)

∂p1
[v (b)− v (m− b)] = 0.

which establishes the claim.
In thinking about punishment for perceived non-compliance in this setting, one

would expect it to occur when market shares are sufficiently skewed; either firm 1’s
sales are too high or too low. The former is consistent with firm 1 having undercut the
collusive price and the latter with firm 2 having done so. Strong symmetry implies
that the punishment entails identical behavior in the form of a price war. In such a
situation, Theorem 1 shows that no collusion can be sustained.10

This result hinges on the fact that when firm 1 sets a price marginally below the
collusive price, it reduces the likelihood of having a low demand (say, b0 < m/2) and,
at the same time, raises the probability of having a high demand (say, m− b0). The
proof shows that the ensuing reduction in the probability of b0 is exactly equal to
the rise in the probability of m − b0 so that the probability of b0 or m − b0 remains
constant for a marginal change in price - see condition (7). This is true for all b0.
Now suppose v (b0) = v (m− b0)∀b0 so that the continuation payoffs depend only on
the distribution of market share. It follows that the probability distribution over
the continuation payoff is then unaffected by firm 1’s price. Hence, if p∗ is to be
an equilibrium price, it must maximize expected current profit since, at the margin,
price has no effect on the expected continuation payoff. This implies the equilibrium
price must be the same as that for a Nash equilibrium for the stage game. Though
strongly symmetric equilibrium does not necessarily imply v (b) = v (m− b) , it does

10As the proof of Theorem 1 only used the symmetry of the continuation payoffs and not their
level, results would not change if we allowed for "money burning" activities that arbitrarily lowered
v (·) .
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imply this argument holds on average since (when m is odd):

m−1
2X

b=0

∂φ (b; p, p)

∂p1
v (b) =

m−1
2X

b=0

∂φ (m− b; p, p)

∂p1
v (m− b) ,

and thus the marginal effect of price on the expected continuation payoff is zero.
A similar impossibility result can be obtained in environments such as are modeled

in Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004).11 These papers
consider tacit collusion in auctions, where the bidders submit bids and the auctioneer
chooses the best bid, announcing the winner but not the bids. One can think about
those auctions as having one customer per period that performs closed-door price
negotiations with the two potential sellers. In such a model, strongly symmetric
equilibria also cannot support any collusion. The reason is more prosaic than in our
model; at any point of the game, there are only two possible outcomes: firm 1 sells or
firm 2 sells. That makes it impossible to detect a deviation if firms follow the same
pricing strategy. In our model, however, asymmetric market shares can be used to
detect deviations; it is just that the tests are too weak for small deviations. We will
elaborate on this point later.

It is also interesting to ask why symmetric equilibria can be used to sustain
collusion in Green and Porter (1984) but not in our model. As we show in the next
section, it is not per se the difference in strategic variables (quantity versus price). It
is instead the quality of information contained in the market signals. In Green and
Porter (1984) a deviation has a first-order effect on the probability of punishment.
In our model, due to A1 and A3, a deviation to a lower price has no first-order effect
on the probability of going to a punishment. That intuition becomes clearer in the
next section as we present an example which violates A1 and A3.

4 Robustness of the Impossibility Result

Here we explore the robustness of this impossibility result. In Section 4.1, departures
from assumptions A1-A3 are considered, while market demand is allowed to respond
to firms’ prices in Section 4.2.

4.1 Non-Differentiability of Firm Demand

The proof of Theorem 1 is based on the property that the probability of a particular
distribution of market shares is locally independent of a firm’s price when firms
charge a common price. Thus, skewness in market share is not made more likely
when a firm undercuts the collusive price. One might imagine it is essential that φ is
continuously differentiable at p1 = p2 so that small price changes have small effects
on the probability distribution over sales. That, however, proves not to be the case.12

11 In Blume and Heidhues (2003) and Skrzypacz and Hopenhayn (2004), the bidders have private
shocks that affect the efficient allocation of the object. This feature is not shared by our model, but
it does not affect the result.
12We thank Phil Reny for conjecturing that differentiability is unnecessary.
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Here, we present a simple model which assumes φ is discontinuous at the point where
firms’ have identical prices and show that collusion through symmetric punishments
still need not be sustainable; we also show when it is sustainable.

Consider the following modest modification of a discrete version of the standard
Bertrand price game with homogeneous goods. (By discrete, we mean that we are
retaining our assumption of m units.) Assume that when p1 6= p2, all buyers go to
the firm with the lower price for sure. When p1 = p2, the probability distribution on
firm demand is symmetric and let q ∈ (0, 1) denote the probability that both firms
have positive demand; that is, b ∈ {1, . . . ,m− 1}.

This model is related to that in Tirole (1988) and Bagwell and Wolinsky (2002) in
their specification of discontinuous expected residual demand when firms’ prices are
identical. Tirole (1988) assumes prices and quantities are private information. With
homogeneous goods, market demand is stochastic and takes two possible states: it
is positive (and non-increasing in price) or it is zero for all prices. The inference
problem is that if a firm has zero sales, it isn’t sure whether market demand is low
(that is, zero) or market demand is positive and its rival cheated. Collusion is shown
to be sustainable if the discount factor is sufficiently high. Whereas Tirole (1988) and
Bagwell and Wolinsky (2002) allow market demand to be stochastic and firm demand
to be deterministic (conditional on market demand), here we fix market demand and
allow firm demand to be stochastic. This distinction proves unimportant as results
are qualitatively similar.

Consider a strongly symmetric strategy profile that has both firms price at the
collusive price p in period 1 and do so in period t as long as both firms’ sales have
always been positive: bτ ∈ {1, . . . ,m− 1} ∀τ < t. Otherwise, firms go to the static
Nash equilibrium price of zero forever. Denoting the (rescaled) collusive payoff to be
V , it is defined recursively by:

V = (1− δ) (m/2) p+ δqV.

From this we get:

V =

µ
1− δ

1− δq

¶
p (m/2)

The equilibrium condition is

V ≥ (1− δ)mp⇔
µ
1− δ

1− δq

¶
p (m/2) ≥ (1− δ)mp⇔ q ≥ 1

2δ
.

Thus, if q ≥ 1
2δ then any collusive price (up to the maximum price that consumers

are willing to pay) can be sustained by this strategy profile. If q < 1
2δ then only the

static Nash equilibrium price is sustainable: since the strategy profile contains the
worst equilibrium punishment.13 Hence, regardless of the discount factor, collusion
is not sustainable using symmetric punishments when q < 1

2 .

13 It can be verified that because the stage-game Nash equilibrium produces the minimax payoff
and that only totally skewed market shares are possible when there is a deviation, our condition is
both necessary and sufficient for collusion.
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The key issue here is whether firms can statistically detect deviations in the sense
that the distribution of market shares under deviation and no deviation are different.
Under the assumptions of Theorem 1, the likelihood of skewness in market share is
unaffected when a firm marginally undercuts the collusive price. Thus, no statistical
detection is possible. For the example of this section, this property doesn’t hold
as the probability of a maximally skewed market share is one when a firm deviates
and 1− q when it doesn’t. But that isn’t sufficient for collusion. Though statistical
detection follows from q > 0, collusion is sustainable only when q ≥ 1

2δ . The reason is
that the probability of a false positive (that is, going to a punishment even though no
firm deviated) is 1− q and if is too high then the continuation payoff from colluding
is too small which makes it hard to provide incentives. In order for collusion to
be sustainable, the statistical test must be sufficiently precise so that punishment is
sufficiently less likely when a firm colludes than when it cheats.

To see this more clearly, add some more structure by supposing that, when firms
charge equal prices, each buyer randomly chooses between the two firms and their
decisions are iid. It follows that

q = 1−
µ
1

2

¶m−1
.

Since then q → 1 as m → ∞, collusion can be sustained with iid buyers as long as
there are sufficiently many of them and δ > 1

2 . The probability of a false positive is¡
1
2

¢m−1
so the statistical test is very precise when there are many buyers. This reduces

the likelihood of wrongly triggering a punishment which enhances the collusive payoff.
On the other hand, with m = 2 collusion is not sustainable for any discount factor.14

4.2 Elastic Market Demand

Theorem 1 was proven under the extreme assumption that market demand is fixed
and insensitive to firms’ prices. Robustness is established by showing that very little
collusion can be sustained when market demand is very inelastic.

Assume there is an upper bound on market demand of M units. A stochastic
realization is comprised of total demand and an allocation of that demand, which
can be represented as an element of

Ω ≡ {(m, b) : m ∈ {0, 1, ...,M} , b ∈ {0, 1, ...,m}} ;
m is total sales and b is firm 1’s sales. Letting ξ : Ω × <2 → [0, 1] denote the
probability function on (m, b) given prices, the expected continuation payoff is

MX
m=0

mX
b=0

ξ (m, b|p1, p2)V (m, b) ,

14 In the Appendix we also present a modified version of the Hotelling model which makes similar
points to those made in this sub-section. It entails a smooth expected demand function but where
the probability distribution on firm demand has a point of non-differentiability (though is continuous
everywhere). Symmetric punishments are still not capable of sustaining collusion when the kink is
sufficiently small but collusion can be sustained when the kink is sufficiently large.
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where V : Ω → <. Defining ρ (m|p1, p2) as the marginal probability function on m
and φ (b|p1, p2,m) as the conditional probability function on b then

ξ (m, b|p1, p2) = ρ (m|p1, p2)φ (b|p1, p2,m) .
The expected continuation payoff can then be represented by

MX
m=0

ρ (m|p1, p2)
mX
b=0

φ (b|p1, p2,m)V (m, b) .

Assume ρ (·|p1, p2) is differentiable in (p1, p2) and is symmetric with respect to the
firms in that ∂ρ(m|p,p)

∂p1
= ∂ρ(m|p,p)

∂p2
∀p. Finally, assume φ (·|p1, p2,m) satisfies A1-A3,

∀m ∈ {1, ...,M} .
The maximization problem of firm 1 is:

max
p1

π1 (p1, p2) + δ
MX

m=0

Ã
ρ (m|p1, p2)

mX
b=0

(φ (b|p1, p2,m)V (m, b))

!
where

π1 (p1, p2) ≡
MX

m=0

ρ (m|p1, p2)
mX
b=0

φ (b|p1, p2,m) p1b.

The necessary first-order condition at a strongly symmetric Nash equilibrium is then

0 =
∂π1 (p, p)

∂p1
+ δ

MX
m=0

Ã
∂ρ (m|p, p)

∂p1

mX
b=0

φ (b|p, p,m)V (m, b)

!
(9)

+δ
MX

m=0

Ã
ρ (m|p, p)

mX
b=0

∂φ (b|p, p,m)
∂p1

V (m, b)

!
.

By the method used in the proof of Theorem 1, it follows that:

MX
m=0

Ã
ρ (m|p, p)

mX
b=0

∂φ (b|p, p,m)
∂p1

V (m, b)

!
= 0.

To elaborate on this point, note that this expression is equal to:

MX
m=0

Ã
ρ (m|p, p)

kX
b=0

∂φ (b|p, p,m)
∂p1

[V (m, b)− V (m,m− b)]

!
. (10)

(where k = m/2 for m even and (m− 1) /2 for m odd). Using the assumption that
∂ρ(m|p,p)

∂p1
= ∂ρ(m|p,p)

∂p2
, (10) can be shown to be zero by subtracting the first-order

conditions for the two firms (at equal prices).15 Thus, (9) becomes

∂π1 (p, p)

∂p1
+ δ

MX
m=0

Ã
∂ρ (m|p, p)

∂p1

mX
b=0

φ (b|p, p,m)V (m, b)

!
= 0. (11)

15An alternative to assuming ∂ρ(m|p,p)
∂p1

= ∂ρ(m|p,p)
∂p2

is to suppose V (m, b) = V (m,m− b) for every
history.
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We conclude that a necessary condition to sustain collusion is that the second term
in (11) is non-zero.

First note that if ∂ρ(m|p,p)
∂p1

= 0, so that the distribution on market demand is
independent of prices, (11) then becomes the condition for a stage game equilibrium.
Hence, collusion cannot be sustained as long as market demand is insensitive to
prices, regardless of whether or not it is stochastic. When ∂ρ(m|p,p)

∂p1
is close to zero

then the set of values of p that satisfy (11) are, generically, close to the set of stage
game symmetric equilibrium prices. We conclude that the collusive price is close to a
stage game equilibrium price when market demand is sufficiently insensitive to firms’
prices. In that sense, Theorem 1 is robust with respect to market demand being
variable and sensitive to firms’ prices.

An assumption of highly inelastic market demand is plausible for many of the
price-fixing cartels mentioned including those that arose in the markets for vita-
mins, lysine, and citric acid. These products are largely being purchased by other
firms as inputs; for example, vitamins and lysine are mixed with animal feed in the
food processing industry. As they make up a very small fraction of the unit cost of
these purchasers, their demand is likely to be insensitive for a wide range of prices.
Of course, the cartel members could set price high enough so as to induce a non-
negligible fall in market demand but the size of the price increase required to make
that happen may be of such magnitude as to create suspicions among buyers that the
input suppliers are colluding. As a result, the cartel would want to avoid such large
price increases.16 This may argue to the assumption that, over the relevant range of
prices, market demand is highly inelastic.

Finally, note that if we define

V (m) ≡
mX
b=0

φ (b|p, p,m)V (m, b) ,

then (11) can be rewritten as

∂π1 (p, p)

∂p1
+ δ

MX
m=0

∂ρ (m|p, p)
∂p1

V (m) = 0.

V (m) is the expected continuation payoff conditional on the total market size and
ignoring the division of market shares. This suggests that collusion may be support-
able by conditioning on the size of market demand, and not on the allocation of that
demand across firms. An exploration of that conjecture we leave to future work.
However, if V (m) is constant - so firms expect the same continuation payoff regard-
less of the realized total market size - then it follows from

PM
m=0

∂ρ(m|p,p)
∂p1

= 0 (which
holds as the probabilities always sum up to 1) that again no collusion is sustainable.

16For studies that model the effect of the prospect of detection on the cartel price path, see
Harrington (2004, 2005) and Harrington and Chen (2004).
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5 Collusion with Asymmetric Punishments

In this section, asymmetric punishments with side payments are characterized which
sustain collusion. We will need to suppose that firm demand is declining in its price
as specified by A4.

Consider the following symmetric strategy profile which allows for side payments
between firms. Recall that bt is the number of units sold by firm 1 in period t. It is
assumed that k is a positive integer and m

2 < k ≤ m.

• If in the collusive state in period t then set pti = p∗ and

if bt ∈ {m− k,m− k + 1, . . . , k − 1, k} then remain in the collusive state in
period t+ 1

if bt > k then go to the type 1 punishment state in period t+ 1

if bt < m− k then go to the type 2 punishment state in period t+ 1.

• If in the type i punishment state in period t then firm i pays z to firm j(6= i)
and

if firm i pays z to firm j then switch to the collusive state in period t

if firm i does not pay z to firm j then play the static Nash equilibrium forever.

Note that unlike in symmetric equilibria, the type i punishment state does not call
for a price war, just for a transfer from firm i to firm j and immediate continuation
of the collusive state.

Letting V denote the (rescaled) collusive payoff, the payoff faced by firm 1 in the
collusive state is

(1− δ)

"
mX
b=0

p1bφ (b; p1, p
∗) +

m−k−1X
b=0

δzφ (b; p1, p
∗)−

mX
b=k+1

δzφ (b; p1, p
∗)

#
+ δV. (12)

Assuming the first-order condition is sufficient, p∗ is then defined by:

mX
b=0

∙
φ (b; p∗, p∗) + p∗

∂φ (b; p∗, p∗)
∂p1

¸
b+δz

"
m−k−1X
b=0

∂φ (b; p∗, p∗)
∂p1

−
mX

b=k+1

∂φ (b; p∗, p∗)
∂p1

#
= 0.

Re-arranging this expression,

p∗ =

⎛⎝Pm
b=0 φ (b; p

∗, p∗) b

−Pm
b=0

∂φ(b;p∗,p∗)
∂p1

b

⎞⎠+ δz

⎛⎝Pm−k−1
b=0

∂φ(b;p∗,p∗)
∂p1

−Pm
b=k+1

∂φ(b;p∗,p∗)
∂p1

−Pm
b=0

∂φ(b;p∗,p∗)
∂p1

b

⎞⎠ . (13)

Let us represent (13) as follows:

p∗ = ψ1 (p
∗) + δzψ2 (p

∗) .
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Denoting by bp a stage-game symmetric Nash equilibrium price, it follows from (3)
that: bp = ψ1 (bp) .

We next want to show that ψ2 (p) > 0 ∀p; that is,Pm−k−1
b=0

∂φ(b;p,p)
∂p1

−Pm
b=k+1

∂φ(b;p,p)
∂p1

−Pm
b=0

∂φ(b;p,p)
∂p1

b
> 0.

The denominator is positive if expected demand is decreasing in a firm’s price which
is indeed an implication of A4. This leaves having to prove that

m−k−1X
b=0

∂φ (b; p, p)

∂p1
−

mX
b=k+1

∂φ (b; p, p)

∂p1
> 0. (14)

By A2,
∂φ (b; p, p)

∂p1
=

∂φ (m− b; p, p)

∂p2

so that (14) is equivalent to:

m−k−1X
b=0

∙
∂φ (b; p, p)

∂p1
− ∂φ (b; p, p)

∂p2

¸
> 0. (15)

By A3,
∂φ (b; p, p)

∂p1
= −∂φ (b; p, p)

∂p2
,

so that (15) is equivalent to:

2
m−k−1X
b=0

∂φ (b; p, p)

∂p1
> 0,

which holds by A4.17

If ψ1 has multiple fixed points then let bp be the smallest one. It follows from the
preceding steps that:

ψ2 (p) > 0 ∀p⇒ ψ1 (p) + δzψ2 (p) > 0 ∀p ≤ bp.
As we’ve assumed that ψ1+δzψ2 has a fixed point, it must then exceed bp. This proves
that p∗ > bp.

By the definition of p∗ in (13), each firm finds it optimal to price at p∗ in the
collusive state given the other firm is anticipated to do so. The last step is to ensure
that it is optimal for firm i to pay z to firm j in punishment state i. This is true iff:

V − (1− δ) z ≥W, (16)

17By setting k = m− 1, A4 can be weakened to ∂φ(0;p1,p2)
∂p1

> 0.
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where W is the (rescaled) payoff from the punishment of infinite reversion to the
static Nash equilibrium. We can calculate V as it is defined recursively by:

V = (1− δ)

"
mX
b=0

p∗bφ (b; p∗, p∗) +
m−k−1X
b=0

δzφ (b; p∗, p∗)−
mX

b=k+1

δzφ (b; p∗, p∗)

#
+ δV,

which yields:

V =
mX
b=0

p∗bφ (b; p∗, p∗) = p∗
³m
2

´
.

The punishment payoff is
W = bp³m

2

´
.

Condition (16) takes hence the explicit form:

p∗
³m
2

´
− (1− δ) z ≥ bp³m

2

´
⇔ (p∗ − bp)³m

2

´
≥ (1− δ) z. (17)

Next note that that p∗ − bp is bounded above zero because ψ2 (p) is bounded above
zero. Therefore, (17) holds as δ → 1. Note that an arbitrarily high collusive price can
be achieved by raising z. Thus, even if there are other stage game Nash equilibria
(with prices necessarily higher than bp), there are equilibrium collusive prices which
are sure to exceed them.

Suppose we were to put additional structure on the problem:

A5 ∃bφ : {0, 1, . . . ,m}×<→ [0, 1] such that φ (b; p1, p2) = bφ (b; p1 − p2)∀b ∈ {0, 1, . . . ,m} ,
∀ (p1, p2) ∈ <2.

Since φ (b; p, p) is independent of p by A3 then ∂φ(b;p,p)
∂p1

is independent of p by A5.
It follows that (13) becomes

p∗ = bp+ δzθ,

where θ is a positive constant. p∗ and bp are then uniquely defined and p∗ > bp. The
condition for it to be optimal to pay z is:

p∗
³m
2

´
− (1− δ) z ≥ bp³m

2

´
⇔

(bp+ δzθ)
³m
2

´
− (1− δ) z ≥ bp³m

2

´
⇔

δzθ
³m
2

´
− (1− δ) z ≥ 0⇔ δ ≥ 2

2 + θm
.

Since θm > 0, we conclude this is a subgame perfect equilibrium when δ is sufficiently
close to one.

In sum, collusion can be sustained by a punishment strategy in which a firm with
above-normal sales compensates the other firm. This is, of course, an asymmetric
punishment and is sustainable as long as firms are sufficiently patient. In practice,
the transfer z can be implemented by having the firm with excess sales buy output
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from the other firm at an inflated price. Several recent price-fixing cartels engaged
in various forms of side payments including the citric acid cartel of 1991-95 (Connor,
2001), the graphite electrodes cartel of 1992-97 (Levenstein, Suslow, and Oswald,
2004), and the vitamins cartel, in particular vitamins A and E over 1989-99 (European
Commission, 2003).

6 Concluding Remarks

A common perception of collusive schemes is built around the idea of price wars:
the cartel members are recommended to set high prices and if deviation is detected
(actual or perceived through a noisy signal) then the firms punish each other by
setting low prices. The actual practice of many well-documented price-fixing cartels
tells a very different story. It is quite common to employ more complicated schemes
involving history-dependent transfers among members. Our analysis suggests that
imperfect monitoring in those markets may be the key reason why they did so. For a
natural class of multi-unit demand functions, symmetric price wars are incapable of
sustaining any collusion regardless of how patient firms are. It may then be necessary
for cartels to deploy punishments that discriminate between the firms that sold too
much and those that sold too little.

There are still many puzzles associated with the observed behavior of cartels. The
asymmetric punishment scheme we characterized had transfers that were independent
of how much a firm’s sales exceeded its quota. However, in practice, transfers seem
to depend on the difference between sales and the quota. Obviously, we could amend
the scheme to allow the transfer to depend on this difference and collusion would still
be sustainable, but the question is why firms choose to have the transfer depend on
it. On one level, it seems natural to tailor the punishment to the crime but that is
not a feature which naturally emerges. This suggests that the usual class of models
is missing some crucial elements. Identifying what they are and how to encompass
them is an important item on the research agenda for cartels.

7 Appendix

In Theorem 1 we have shown that, under assumptions A1-A3, collusion is not sus-
tainable with strongly symmetric exchangeable equilibria. Section 4.1 provided an
example with a Bertrand flavor in which discontinuity of firm demand is able to pro-
duce collusion in some cases. Here we provide two additional examples that shed
more light on the robustness of our impossibility result. In particular, we consider a
model with a smooth expected demand and a demand distribution φ that is contin-
uous but has a kink when firms charge identical prices. These examples show that
the kink has to be sufficiently high for collusion to be possible. The first example
derives a demand distribution from a model of consumer choice. The second example
is more general but starts with the distribution on demand as given.
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7.1 Example A1

Consider the Hotelling line model defined on [0, 1] with firm 1 located at 0 and firm
2 at 1. In each period, two customers arrive so m = 2. Denoting the location of
customer i ∈ {1, 2} by εi and assuming transportation costs are 1, customer i buys
from firm 1 iff

εi ≤ 1
2
(1− (p1 − p2)) .

With probability α, the two customers’ locations are independently and uniformly
distributed over [0, 1] . Call that event A. With probability (1− α) , one customer’s
location is uniformly distributed over

£
0, 12

¤
and the other’s is uniformly distributed

over
£
1
2 , 1
¤
. Call that event B.18

Defining ∆ ≡ p1− p2, the probability of splitting the market can be shown to be:

φ (1;∆) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2α
¡
1−∆2¢+ (1− α) (1 +∆) if p1 < p2

1− 1
2α if p1 = p2

1
2α
¡
1−∆2¢+ (1− α) (1−∆) if p1 > p2

in which case the derivative is

φ0 (1;∆) =
½
1− α− α∆ if p1 < p2
−1 + α− α∆ if p1 > p2

(18)

φ0
¡
1; 0+

¢
= −1 + α

φ0
¡
1; 0−

¢
= 1− α

Given the lack of differentiability at ∆ = 0, A1 and A3 (using one-sided derivatives)
are not satisfied.

The probability of firm 1 obtaining two customers is

φ (2;∆) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
4α (1−∆)2 + (1− α) (−∆) if p1 < p2

1
4α if p1 = p2

1
4α (1−∆)2 if p1 > p2

18Under event B, one can show that the customer located in
£
0, 1

2

¤
buys from firm 1 with probability

one when p1 ≤ p2 and probability 1− (p1 − p2) when p1 > p2 (assuming 1− (p1 − p2) ≥ 0). We offer
the following motivation for this structure. Suppose, ex ante, the customer knows she prefers firm
1’s product but doesn’t know by how much. If p1 ≤ p2 then assume she buys firm 1’s product for
sure since it dominates the product of firm 2 in price-product trait space. However, if p1 > p2 then
she must evaluate how much better firm 1’s product is. If we think of this evaluative process as being
stochastic (either in reality or from the perspective of the firms), this two-stage decision process can
generate this probabilistic demand structure. An analogous rationale applies to the customer located
in
£
1
2
, 1
¤
and firm 2.
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with derivative

φ0 (2;∆) =
½ −12α (1−∆)− (1− α) if p1 < p2
−12α (1−∆) if p1 > p2

φ0
¡
2; 0+

¢
= −1

2
α

φ0
¡
2; 0−

¢
=

1

2
α− 1

For the stage game, a firm’s problem is

max
p1

p1D1 (p1, p2)

where D1 (p1, p2) = φ (1; p1 − p2)+2φ (2; p1 − p2) is firm 1 expected demand. It turns
out that the demand simplifies to:

D1 (p1, p2) = 1−∆
It is interesting to notice that despite φ (.) having a kink at ∆ = 0, the expected
demand is differentiable.

Letting bp denote a symmetric Nash equilibrium price, it is defined by the first-
order condition: bp∂D1 (bp, bp)

∂p1
+D1 (bp, bp) = 0

The unique symmetric static Nash equilibrium is then bp = 1 with expected profits
equal to 1.19

Now consider the following strongly symmetric exchangeable strategy profile.
Firms start in the collusive phase and, in the collusive phase, both price at p∗. If
they split the market, they remain in the collusive phase which means they price at
p∗ next period. If they do not split the market then with probability γ they switch to
the static Nash equilibrium forever (that is, pricing at 1 thereafter) and with proba-
bility (1− γ) remain in the collusive phase. As φ (1; 0) = 1− 1

2α, the value (rescaled
by 1− δ) from this scheme is defined recursively by

V = (1− δ) p∗ + δ

µµ
1− 1

2
αγ

¶
V +

1

2
αγ

¶
, (19)

where recall the per period payoff to the static Nash equilibrium is 1. Solving for the
collusive value,

V =
2 (1− δ) p∗ + δαγ

2− 2δ + δαγ
. (20)

The problem faced by a firm in the collusive phase is:

max
p1
(1− δ) p1D1 (p1, p2) + δ [(1− (1− φ (1;∆)) γ)V + (1− φ (1;∆)) γ] ,

19The second-order condition clearly holds.
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or equivalently

max
p1
(1− δ) p1D1 (p1, p2) + δγφ (1;∆) (V − 1) + δV − δγ (V − 1) .

p∗ is an equilibrium if:20

(1− δ) (−p∗ + 1)− (1− α) δγ (V − 1) ≤ 0

(1− δ) (−p∗ + 1) + (1− α) δγ (V − 1) ≥ 0

or

1− (1− α)

µ
δ

1− δ

¶
γ (V − 1) ≤ p∗ ≤ 1 + (1− α)

µ
δ

1− δ

¶
γ (V − 1) .

The highest price p∗ that can be supported is then

p∗ = 1 + (1− α)

µ
δ

1− δ

¶
γ (V − 1) (21)

Substituting (21) into (20),

V = (1− δ)

µ
1 + (1− α)

µ
δ

1− δ

¶
γ (V − 1)

¶
+ δ

µµ
1− 1

2
αγ

¶
V +

1

2
αγ

¶
, (22)

and the solution with respect to V is:½
1 if δ + δγ − 3

2αδγ − 1 6= 0
R if δ + δγ − 3

2αδγ − 1 = 0
By selecting γ so that

δ + δγ − 3
2
αδγ − 1 = 0, (23)

any value for V can be achieved as firms can induce any value for p∗.
As (23) is equivalent to

γ

µ
1− 3

2
α

¶
=
1− δ

δ
,

a necessary condition is α < 2
3 . Given α < 2

3 and in light of γ ∈ (0, 1], it is also
necessary that

δ ≥ 1

2− 3
2α

.

To sum up, if

α <
2

3
and δ ≥ 1

2− 3
2α

20The second-order condition is satisfied as the stage profits are concave and φ00 (1,∆) = −α < 0.
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then ∃γ ∈ (0, 1] such that (23) holds which implies that any price (up to the maximum
price that consumers are willing to pay) can be sustained by a strongly symmetric
exchangeable subgame perfect equilibrium.

With Theorem 1, a slight undercutting of the collusive price did not alter the
probability distribution over the continuation payoff which meant that firms would
set price to maximize current expected profit. This property does not hold here,
however. Using (18), note that if firm 1 prices slightly below the collusive price, the
marginal effect on the probability of splitting the market is 1− α so that there is a
first-order decrease in the probability of that event. This means there is a first-order
increase in the probability of the extreme event of one firm selling to both buyers and
thus an increase in the probability of the low punishment payoff. This allows firms
to support collusion as long as α is sufficiently small - so the marginal effect of price
undercutting on the probability of an extreme sales event is sufficiently large - and
firms are sufficiently patient.

7.2 Example A2

The surprising feature of the previous example is that some detectability of a devia-
tion (α < 1) is insufficient to sustain collusion and this is regardless of the discount
factor, even though, with δ close to 1, the benefits to deviation are very small com-
pared to the threat of the loss of continuation payoffs. This contrasts with standard
imperfect monitoring settings in which even a small probability of detection is often
enough to provide the necessary incentives when the punishment is severe enough.
The reason that mechanism does not work here is that the size of the punishment is
endogenous and, in particular, depends on the probability of a false-positive punish-
ment (that is, when no firm deviated).

Example A1 has then established that a small kink in φ may not be enough to
sustain prices above stage game Nash equilibrium prices. To show that this example
is not special, we explore more generally the relationship between the size of the
kink and the scope of collusion. Our main finding is that a necessary condition for
collusion is that the kink is sufficiently large.

Assume two units: m = 2. Denote the expected demand for firm 1 by D (∆) , and
the probability of not splitting the market by ρ (∆) = 1− φ (1;∆) . Assume D (∆) is
differentiable and ρ (∆) is continuous and symmetric, but has a possible kink at 0.
By symmetry, D (0) = 1.

We will provide a bound on the collusive payoffs which is uniform for all δ in a
strongly symmetric exchangeable equilibrium. As m = 2, this implies V (0) = V (2)
after all histories. Let V0 denote the worst possible equilibrium payoff, which has to
be between the minimax payoff and the static Nash equilibrium payoff.

Using the methods of Abreu, Pearce, and Stacchetti (1986), we can show that the
highest collusive payoff is achievable by a strategy that starts with recommending a
price vector (p, p) and: i) if the realized sales is b = 1 then the strategy restarts; and
ii) if the realized sales is b ∈ {0, 2} then with probability γ the firms go to the worst
possible punishment and with probability (1− γ) the strategy restarts.

If the price is p and the value is V in that equilibrium then:
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V = (1− δ)π (p, p) + δ [(1− ρ (0) γ)V + ρ (0) γV0] ,

where π (p, p) is the expected profit of firm 1 at equal prices (in case there are no
costs, it is simply p). That implies:

V − V0 = (1− δ)
π (p, p)− V0
1− δ + δρ (0) γ

. (24)

The necessary incentive compatibility constraint (ICC) that keeps a firm from un-
dercutting its price is:

(1− δ)

µ
∂π (p, p)

∂p1

¶
+ δ (V − V0)

¡−ρ0 ¡0−¢ γ¢ ≥ 0
where ρ0 (0−) is the left derivative of ρ (∆) at ∆ = 0. For differentiable distribution
of market allocations, ρ0 (0) = 0 and hence it is never possible to sustain any p for
which ∂π(p,p)

∂p1
< 0 - as established in Theorem 1 (note that the above formulation

allows non-linear costs as well).
Now suppose ρ (∆) is not differentiable; that is, ρ0 (0−) < 0. The local ICC can

be re-written using (24) :

π (p, p)

∂p1
+ δγ

π (p, p)− V0
1− δ + δργ

¡−ρ0 ¡0−¢¢ ≥ 0.
As δγ π(p,p)−V0

1−δ+δργ is increasing in δ, we get the following uniform upper bound:

−
∂π(p,p)
∂p1

π (p, p)− V0
≤ −ρ

0 (0−)
ρ (0)

. (25)

The RHS is independent of p, so this expression gives an easy way of finding an upper

bound on collusive prices as a function of fundamentals. In particular, if −ρ0(0−)
ρ(0) is

close to 0 then ∂π(p,p)
∂p1

has to be close to zero. Assuming the profits are well-behaved,
it implies that (p, p) has to be close to static best responses (that is, static Nash
equilibrium prices), which in turn implies a very limited degree of collusion.

To relate this general example to Example A1, note that π (p, p) = p and ∂π(p,p)
∂p1

=

D0 (0) p+D (0) = 1− p. Using those properties, condition (25) becomes:

p− 1
p− V0

≤ −ρ
0 (0−)
ρ (0)

.

In that the minimax payoff is 0 (as firms can always set a price of 0), we get a bound
on the highest collusive price:

p ≤ 1

1 + ρ0(0−)
ρ(0)

,
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which converges to static Nash equilibrium prices as ρ0 (0−) → 0. Finally, if we use
as a punishment only infinite reversion to static Nash equilibrium then V0 = 1 and
the condition becomes:

1 ≤ −ρ
0 (0−)
ρ (0)

which corresponds to our result in Example A1 that α has to be large enough to
sustain any collusion.21
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