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Abstract

This paper studies optimal nonlinear pricing for a monopolist when consumers’
preferences exhibit temptation and self-control as in Gul and Pesendorfer (2001a).
Consumers are subject to temptation inside the store but exercise self-control, and
those foreseeing large self-control costs do not enter the store. Consumers differ
in their preferences under temptation. When all consumers are tempted by more
expensive, higher quality choices, the optimal menu is a singleton, which saves
consumers from self-control and extracts consumers’ commitment surplus. When
some consumers are tempted by cheaper, lower quality choices, the optimal menu
may contain a continuum of choices.
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1 Introduction

Experimental studies often observe “preference reversals” whereby agents’ observed
actions appear to deviate systematically from stated intentions even when the exter-
nal environment is closely controlled (for surveys of this evidence, see Ainslie (1992)
and Frederick, Loewenstein, and O’Donoghue (2002)). In a series of papers, Gul and
Pesendorfer (2000, 2001a, 2001b; hereafter GP) introduce temptation preferences with
self-control, or self-control preferences for short, to rationalize these behavioral anoma-
lies within a time-consistent decision-theoretic framework.

If consumers exhibit preference reversals in market situations, a firm may take ad-
vantage of the reversals when it determines the selection of goods to sell and their
prices, perhaps by leading consumers into temptation or by lowering costs that con-
sumers incur from self-control. To address the issue, this paper studies the optimal
pricing problem for a monopolist that faces a population of heterogeneous consumers
with self-control preferences. As such, we build on the literature of nonlinear pric-
ing, and the work of GP, to study the supply-side of markets in which consumers’
preferences exhibit reversals caused by temptation and self-control.1

Our question has a relevance for the design and pricing of product-lines. For in-
stance, consider car dealerships. Some consumers know that once they enter the car
dealership and see (and test-drive) a variety of models, they may be tempted to pur-
chase more expensive, higher quality models than what they originally intended to
purchase. Some of these consumers wholly cave-in to temptation and purchase the
car they are tempted by; some others stick to their original intention but have to
exercise self-control in the process. There are also consumers who succumb to temp-
tation to some degree, but not completely, and choose a compromise between what
they are tempted by and their original intentions, perhaps by purchasing the model
they initially intended to purchase but adding a few optional features. If a consumer
anticipates large self-control costs, he may even decide not to go to the dealership at
all. Furthermore, there may be consumers who are tempted in the other direction. For
example, once these consumers enter the store, they may become overly frugal, feel
guilty about spending so much on a car, and end up either not purchasing any car at
all or purchasing a less expensive, lower quality car.

1There are several papers that consider GP’s self-control preferences to address different ques-
tions. Krusell, Kuruşcu, and Smith (2000) consider a competitive neoclassical growth model with GP
preferences to study the problem of taxation. Krusell, Kuruşcu, and Smith (2002) analyze a general-
equilibrium asset pricing model where consumers are tempted to save in the short run. DeJong and
Ripoll (2003) analyze whether GP preferences in an asset pricing model can explain the behavior of
stock prices. Ameriks, Caplin, Leahy, and Tyler (2003) use survey data to test for GP self-control
preferences within a two-period allocation model.
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Given these preferences of consumers, how should the car dealership price its prod-
ucts? Should it only stock tempting cars and exploit the consumers’ preference rever-
sals? Should it only offer a small number of models to reduce consumers’ self-control
costs? The results that we derive in this paper can give some insight into these ques-
tions.

To study preferences with temptation and self-control, GP axiomatically derive a
class of preferences for which a subset of alternatives is strictly preferred to the entire
set. Whether the consumer chooses a tempting alternative or not depends on whether
he exercises self-control or succumbs to temptation. A consumer who exercises self-
control avoids the tempting alternative, but incurs a utility cost from self-control. A
consumer who succumbs to temptation chooses the tempting alternative. A consumer
who partially succumbs to temptation chooses a compromise between the tempting
alternative and his original intentions, and incurs self-control costs.

GP show that this type of preferences can be represented by a utility function W

that is defined over sets of alternatives and given by

W (A) ≡ max
x∈A

[
U(x) + V (x)

]−max
y∈A

V (y), (1)

where U and V are two (von Neumann–Morgenstern) utility functions defined over
alternatives, and A is the choice set faced by consumers. The interpretation is that
U represents the preferences of the “committed self” inside the consumer, while V

represents those of the “tempted self.” The alternative that the consumer actually
chooses is one that maximizes U + V and is considered as a compromise between the
preferred alternatives of the committed and the tempted selves. The disutility from
self-control is valued by the best forgone alternative, and therefore maxy∈A V (y)−V (x)
quantifies the “self-control cost” (measured in utility terms).

We study a monopolist’s optimal nonlinear price schedule when it faces a popula-
tion of heterogeneous consumers who have preferences of the type described above. We
consider the standard framework of Mussa and Rosen (1978) and Maskin and Riley
(1984), where the monopolist sells goods that are indexed by a single-dimensional qual-
ity (or quantity) level q ∈ R. The monopolist does not observe consumers’ preferences
directly, and therefore the monopolist can set prices only via indirect price discrimi-
nation schemes that rely on consumers’ self-selection. The monopolist’s problem is to
choose a set of goods Q ⊆ R to sell and a price function p : Q → R that specifies the
price p(q) for each quality level to maximize the expected profits.

Consumers differ in their temptation preferences and therefore in their self-control
costs. Consumers also differ in the “direction” of their preference reversals. Some
consumers are “tempted upwards” towards more expensive, higher quality choices, and
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others are “tempted downwards” towards less expensive, lower quality choices.2

For a consumer to buy a good from the monopolist, the menu (Q, p) has to satisfy
two conditions of individual rationality. One is a standard condition and states that
the consumer does not prefer to exit the store without buying the good. The other is
introduced by the consumers’ self-control costs and states that, for a consumer to buy
a good, he has to have an incentive to enter the store. This condition is distinct from
the first one since, even if the consumer prefers to buy a good once inside the store, if
he anticipates large self-control costs, he may prefer not to enter the store at all. We
refer to this condition as the ex-ante individual rationality condition, and it turns out
that this condition gives an upper bound on the quality-price pairs that the monopolist
includes in its menu.

One particularly simple result that we obtain states that, if all consumers have
preferences with upward temptation, then the optimal menu contains a single quality
level. The singleton menu saves consumers from temptation and self-control, and ex-
tracts the entire commitment surplus from each consumer. The intuition is that, when
all consumers have preferences with upward temptation, the monopolist can offer a
singleton menu that works as a perfect commitment device. Since all consumers are
tempted upwards and no higher quality good is offered, consumers do not incur any
self-control costs, and the monopolist extracts the entire commitment surplus.

On the other hand, if some consumers exhibit downward temptation, then the
monopolist might offer a continuum of choices and lead some consumers to incur self-
control costs. The idea is that, for those consumers who have downward temptation, the
singleton menu no longer works as a perfect commitment device since these consumers
prefer not purchasing any bundle to purchasing the bundle in the singleton menu. As a
result, the monopolist does not earn any profits from sales to these consumers. For the
monopolist to obtain profits from these consumers, it must lower the price of the bundle
in the singleton menu, which can then be improved upon by price discrimination. In
general, since the ex-ante individual rationality condition imposes an upper bound on
the quantity-price pairs in the menu, the optimal menu differs qualitatively from the
optimal menu for the standard problem (where consumers’ utility functions are given
simply by U + V ). We compare and contrast the optimal tariff under self-control
preferences with that obtained in the standard problem.

There are several papers that study pricing problems when consumers’ preference
reversals are caused by hyperbolic discounting (an instance of time-varying discount

2Ameriks, Caplin, Leahy, and Tyler (2003) test for the presence of GP self-control preferences
in survey data using a two-period allocation problem. They find heterogeneity in the way in which
respondents are tempted. Some respondents exhibit temptation towards over-consumption in the first
period, while a significant number of respondents exhibit temptation towards under-consumption.
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rate), which creates time-inconsistency because of a conflict between the different selves
of a consumer in different periods.3 Gilpatric (2001) examines the design of incentive
contracts when agents with hyperbolic discounting preferences exert unobservable ef-
fort. Della Vigna and Malmendier (2001) examine the optimal two-part price schedule
in markets for goods with delayed benefits (“investment goods”) or costs (“leisure
goods”) when consumers discount future payoffs hyperbolically.

There is also an empirical literature that tests for the presence of preference reversals
using pricing data. Della Vigna and Malmendier (2002) look for this evidence in health
club membership data and find that the data can be better explained with the behavior
of time-inconsistent consumers. Miravete (2003) tests for the presence of irrational
behavior in calling plan choices (where the popularity of flat rate plans has been viewed
as evidence of irrational choices). He finds the data to be consistent with a model of
learning and rational behavior. Wertenbroch (1998) finds evidence of lower price-
elasticity for vice goods (goods that have delayed negative effects; e.g., cigarettes),
which suggests that consumers ration the purchase of these goods to control their
impulse consumption.

Section 2 presents the basic model, including the characterization of self-control
preferences. Sections 3 and 4 examine the cases where (respectively) the firm faces only
upwardly-tempted consumers and where it faces only downwardly-tempted consumers.
Section 5 examines the general case where both types of consumers exist. Section 5
also includes results from some illustrative simulations.

2 The Model

We consider a store that sells a collection of goods. The goods that the store sells are
indexed by q ∈ R+, which may represent either quantity or quality. A bundle in the
menu is represented by a vector (q, t) ∈ R+ × R, which means that a consumer can
buy good q for price t. A menu is a non-empty subset M ⊆ R+ × R of bundles. Since
a consumer can always choose not to buy any good at all and consume (0, 0), it will
be convenient to denote by M0 = M ∪ {(0, 0)} all the consumption choices available
to consumers. The seller is assumed to be a monopolist, and we study its profit-
maximizing menu of bundles when consumers have Gul and Pesendorfer’s temptation
preferences with self-control.

3For a review of the literature on hyperbolic discounting, see, e.g., Laibson (1997) and O’Donoghue
and Rabin (1999).
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2.1 Consumers’ Problem

Consumers have complete information about the menu that the monopolist offers, and
have preferences over menus. Their preferences differ in the way in which they are
tempted and are parameterized by a number γ ∈ R+. We assume that γ is private
information and is distributed in the population according to a distribution function F .
The associated density function is denoted by f , and its support is given by Γ ≡ [a, b],
where b = +∞ is admissible.

Given a menu M , the utility of type γ is given by

WEA(M, γ) ≡ sup
(q,t)∈M0

[
U(q, t) + Vγ(q, t)

]− sup
(q,t)∈M0

Vγ(q, t), (2)

where U and Vγ are functions from R+ × R into R.
The two maximization problems in (2) are called the U +V (or U +Vγ) problem and

the V (or Vγ) problem, respectively. When these problems have maxima, we denote
by xγ and zγ bundles that solve the U + Vγ and Vγ problems, respectively. We also
refer to (2) as the ex-ante problem and to the U + V problem as the ex-post problem.
The maximum (or supremum) utility in the ex-post problem is denoted by WEP (M, γ).
Thus WEA(M,γ) = WEP (M, γ)− sup(q,t)∈M0

Vγ(q, t).
While sup is used in (2) to accommodate all menus, we will examine profit-maximizing

menus within the class of menus for which at least the U +V problem has a maximum.
The monopolist’s problem is defined formally in the next subsection.

Functions U and Vγ are interpreted as the utility functions of the two different
“selves” inside consumer γ. Function U represents the preferences of the committed
self, while Vγ represents those of the tempted self. The alternative that the consumer
chooses in the store is xγ , which is a bundle that maximizes U + Vγ and considered
as a compromise between the preferred alternatives of the committed and the tempted
selves. The alternatives that maximize Vγ are the most tempting alternatives. The
difference supz∈M0

Vγ(z) − Vγ(xγ) measures the consumer’s disutility from exercising
self-control and is referred to as the self-control cost. Thus, the consumer’s utility is
equal to the utility in terms of U evaluated at the bundle that he chooses in the store
(i.e., U(xγ)) minus the self-control cost.

We assume that U and Vγ are continuous, strictly increasing in q, strictly decreasing
in t, quasi-concave, and satisfy U(0, 0) = Vγ(0, 0) = 0. We also assume that Vγ(q, ·) is
unbounded for any q, which is trivially satisfied if Vγ is quasi-linear in t. Furthermore,
we assume that the process {Vγ}γ∈R+ , viewed as a function of (q, t, γ), is continuous.

Given two functions Vγ and V̂γ , we write V̂γ % Vγ if, at any point (q, t) ∈ R+ × R,
the indifference curve of V̂γ is at least as steep as that of Vγ when we measure the first
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(respectively, second) argument on the horizontal (respectively, vertical) axis. Formally,
V̂γ % Vγ if and only if, for all (q, t), (q′, t′) ∈ R+ × R such that q′ > q,

Vγ(q′, t′) ≥ Vγ(q, t) implies V̂γ(q′, t′) ≥ V̂γ(q, t), and

Vγ(q′, t′) > Vγ(q, t) implies V̂γ(q′, t′) > V̂γ(q, t).

If V̂γ % Vγ and Vγ % V̂γ , then the two functions are ordinally equivalent in the sense
that they induce the same indifference map. This is denoted as V̂γ ∼ Vγ .

We also write V̂γ Â Vγ if the indifference curve of V̂γ is strictly steeper than that of
Vγ at any point (q, t) ∈ R+ ×R. Formally, V̂γ Â Vγ if and only if, for all (q, t), (q′, t′) ∈
R+ × R such that q′ > q,

Vγ(q′, t′) ≥ Vγ(q, t) implies V̂γ(q′, t′) > V̂γ(q, t).

We assume the following on U and Vγ .

A1. For all γ, γ′ ∈ R+, if γ′ ≥ γ, then Vγ′ Â Vγ .

A2. There exists a type γ∗ ∈ R+ such that

U + Vγ % Vγ if γ ≤ γ∗,

Vγ % U + Vγ if γ ≥ γ∗.

A3. For any pair γ, γ′ ∈ R+ and any pair of bundles x, x′ ∈ R+ × R, there exists
another bundle y ∈ R+×R such that U(x)+Vγ(x) = U(y)+Vγ(y) and U(x′)+Vγ′(x′) =
U(y) + Vγ′(y).

A1 is a standard single-crossing property and says that the indifference curves of
Vγ are steeper (strictly) for higher types. Given a menu, this assumption implies that
the most preferred quantity level is (weakly) larger for higher types.

A2 says that there exists a critical type γ∗ such that any consumer γ < γ∗ behaves
as a lower type in the Vγ problem than in the U + Vγ problem, while any consumer
γ > γ∗ behaves as a higher type in Vγ than in U + Vγ . In other words, for consumers
γ < γ∗, the tempted self has lower marginal willingness to pay for additional quality
than the committed self, while for consumers γ > γ∗, the tempted self has higher
marginal willingness to pay than the committed self. This implies that, given a menu,
consumers γ < γ∗ are tempted by less expensive, lower quality bundles, while consumers
γ > γ∗ are tempted by more expensive, higher quality ones. Consumer γ∗ does not
have temptation problems since his tempted self agrees with his committed self.
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We say that consumers γ < γ∗ have downward temptation preferences, while con-
sumers γ > γ∗ have upward temptation preferences.

A3 says that an indifference curve of U +Vγ crosses an indifference curve of U +Vγ′

somewhere.
A2 implies that, for γ = γ∗, U + Vγ and Vγ are ordinally equivalent. This implies

the following.

Lemma 1. Vγ∗ is ordinally equivalent to U ; i.e., Vγ∗ ∼ U .

Proof. Take two bundles x, x′ ∈ R+ × R such that Vγ∗(x) = Vγ∗(x′). Since Vγ∗ is
ordinally equivalent to U + Vγ∗ , it follows that U(x) + Vγ∗(x) = U(x′) + Vγ∗(x′), which
implies U(x) = U(x′).

Now, take two bundles such that Vγ∗(q, t) > Vγ∗(q′, t′). Since Vγ∗(q, ·) is continuous
and unbounded, there exists α > 0 such that Vγ∗(q, t+α) = Vγ∗(q′, t′). By the previous
paragraph, we obtain U(q, t + α) = U(q′, t′), which implies U(q, t) > U(q′, t′). Q.E.D.

We sometimes consider the case in which U and Vγ are quasi-linear in the price
paid; i.e., there exist functions u : R+ → R and v : R+ × Γ → R such that, for all
(q, t) ∈ R+ × R and all γ ∈ Γ,

U(q, t) = u(q)− t, (3)

Vγ(q, t) = v(q, γ)− t, (4)

and v(·, γ∗) = u(·). A particular example of quasi-linear utility functions satisfying all
of our assumptions is

U(q, t) = q − t, (5)

Vγ(q, t) = γq − t, (6)

where γ > 0 and γ∗ = 1.
Before we close this section, we return to general preferences and prove the following

basic fact.

Proposition 1. For any menu M and any type γ ∈ Γ, if the ex-post problem has
a maximizer xγ, then

WEA(M, γ) ≤ U(xγ) ≤ sup
x∈M0

U(x), (7)

WEA(M, γ∗) = max
x∈M0

U(x) if γ = γ∗. (8)

8



Proof. Fix γ ∈ Γ, and let xγ be a bundle that solves the U + Vγ problem. Then

WEA(M,γ) = U(xγ) + Vγ(xγ)− sup
x∈M0

Vγ(x)

≤ U(xγ) ≤ sup
x∈M0

U(x). (9)

To prove the second part of the lemma, note that, by Lemma 1, U + Vγ∗ ∼ Vγ∗ ∼ U .
This implies Vγ∗(xγ∗) = maxx∈M0 Vγ∗(x) and U(xγ∗) = maxx∈M0 U(x). Thus, for γ∗,
both inequalities in (9) hold with equality. Q.E.D.

The first inequality in (7) means that self-control is costly. The second inequality
means that the bundle chosen by the consumer does not necessarily maximize his
commitment utility. Equation (8) means that, for type γ∗, the commitment utility is
maximized.

2.2 Monopolist’s Problem

Let C : R+ → R+ be the per-consumer cost function; i.e., C(q) is the cost of offering
good q to a consumer. We assume that C is strictly increasing, convex, and satisfies
C(0) = 0.

An assignment function for a given menu M is a function x(·) = (q(·), t(·)) : Γ → M0

that assigns a bundle in the menu, or (0, 0), to each γ ∈ Γ. Here x(γ) denotes the bundle
that the monopolist plans to sell to type γ. We will use x(γ) and xγ interchangeably.
We allow for x(γ) = (0, 0), which means that the monopolist does not plan to sell any
good to type γ.

Given a menu, consumers may prefer not to enter the store if they expect large
self-control costs. Consumers γ prefer to enter the store only if WEA(M, γ) ≥ 0, in
which case we say that the menu M satisfies ex-ante IR for type γ. In what follows,
we let E ⊆ Γ denote the set of types that choose to enter the store.4 Since consumers
γ /∈ E do not enter the store, the assignment function has to be such that x(γ) = (0, 0)
for all γ /∈ E.

The monopolist’s problem is to choose a menu M , an assignment function x(·) =
(q(·), t(·)) : Γ → M0, and a subset E ⊆ Γ that maximize

∫
[t(γ)− C(q(γ))] dF (γ)

4But some of the types in E may choose (0, 0) in the store.
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subject to that, for all γ ∈ E,

WEA(M,γ) ≥ 0, (ex-ante IR)

U(x(γ)) + Vγ(x(γ)) ≥ 0, (ex-post IR)

U(x(γ)) + Vγ(x(γ)) ≥ U(y) + Vγ(y) for all y ∈ M, (ex-post IC)

and, for all γ /∈ E,

WEA(M,γ) ≤ 0,

x(γ) = (0, 0).

If a list (M, x, E) satisfies all the constraints of this problem, we say that (M,x, E) is
a feasible schedule.5 If (M,x, E) solves the monopolist’s problem, then we say that
(M, x, E) is an optimal schedule and M is an optimal menu. We only consider the
problem for which the monopolist can earn strictly positive profits.

The ex-post IR and IC conditions together imply that, for each type that enters
the store, x(γ) is a solution to the ex-post problem (hence the ex-post problem has a
maximum). On the other hand, for all types that do not enter the store, x(γ) is (0, 0)
and is not required to be a solution to the ex-post problem.

The ex-post IR and IC conditions are independent of consumers’ V problem (their
second maximization problem). The V problem affects the monopolist’s problem only
because it affects the consumers’ ex-ante utility levels and whether they enter the
store (i.e., whether ex-ante IR is satisfied for them). If the consumers’ entry decisions
are ignored and all consumers are assumed to enter the store, then the monopolist’s
problem reduces to the standard problem of Mussa and Rosen with utility functions
U + Vγ .6

Accordingly, we denote by the standard problem the monopolist’s profit maximiza-
tion problem subject to the constraint that all types satisfy ex-post IR and ex-post
IC. An optimal menu in the standard problem satisfies the following properties: it
consists of a continuum of bundles, leaves no surplus for the lowest type (i.e., ex-post
IR holds with equality for type a), and generates no distortion at the highest type (the
indifference curve of U +Vγ for type b is tangent to a vertically translated cost curve).7

Since ex-ante IR distinguishes our problem from the standard one, we begin by
5Consumers for whom WEA(M, γ) = 0 are indifferent about the entry decision. Our formulation

of the problem assumes that these consumers’ entry decisions can be resolved in the way that the
monopolist prefers.

6We would also ignore consumers’ entry decisions if consumers incurred self-control costs regardless
of whether they enter the store or not.

7See, for example, Fudenberg and Tirole (1992, Chapter 7).
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characterizing this condition.
The first property to be proved states that, under any tariff, all consumers for whom

ex-ante IR is satisfied receive non-negative U surplus.

Lemma 2. For any menu M , any type γ ∈ Γ for whom M satisfies ex-ante IR,
and any bundle x ∈ M that solves the U + Vγ problem, we have U(x) ≥ 0.

Proof. Let M be a menu, γ ∈ Γ be a type for whom M satisfies ex-ante IR, and
x ∈ M be a bundle that solves the U + Vγ problem. Then Vγ(x) ≤ supz∈M0

Vγ(z).
Thus ex-ante IR for γ implies

0 ≤ U(x) + Vγ(x)− sup
z∈M0

Vγ(z) ≤ U(x). Q.E.D.

In words, the proof of Lemma 2 goes as follows. The ex-ante utility is given by the
utility in terms of U minus self-control costs. Since self-control costs are non-negative,
it follows that a necessary condition for the ex-ante utility to be non-negative is that
the utility in terms of U is non-negative as well.

On the other hand, for consumers for whom ex-ante IR is violated, x(γ) = 0 and
hence U(x(γ)) = 0. Thus, we obtain the following corollary.

Corollary 1. Let (M, x,E) be a feasible schedule. Then U(x(γ)) ≥ 0 for all γ ∈ Γ.

This implies that the monopolist cannot sell bundles x such that U(x) < 0. Thus,
for the monopolist to be able to earn positive profits, it has to be the case that there
exists a bundle (q, t) such that U(q, t) ≥ 0 and t > C(q), and this is assumed in what
follows. Formally, define a set B by

B = {(q, t) ∈ R+ × R : U(q, t) ≥ 0 and t− C(q) ≥ 0}, (10)

which is illustrated in Figure 1. Then we assume

A4. The set B has a non-empty interior.

We also assume

A5. There exists a quantity level Q > 0 such that U(Q,C(Q)) = 0.

This means that the curve of U = 0 and the cost curve intersect somewhere (other than
at the origin), and implies that B is bounded. The point of intersection, (Q,C(Q)),
gives an upper bound to the bundles that the monopolist may want to offer.

The following lemma is a converse of Lemma 2 and Corollary 1, and states that if
all bundles in a menu leave non-negative U surplus, then the menu necessarily satisfies
ex-ante IR for all types.
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Figure 1: Set B and a most profitable bundle x∗

Lemma 3. If a menu M satisfies U(x) ≥ 0 for all x ∈ M , then the menu satisfies
ex-ante IR for all types.

Proof. Let M be a menu such that U(x) ≥ 0 for all x ∈ M . To show that M

satisfies ex-ante IR for all types, choose any γ ∈ Γ. Then for any bundle x ∈ M0,

WEA(M,γ) ≥ U(x) + Vγ(x)− sup
z∈M0

Vγ(z). (11)

Now, choose any ε > 0. Then there exists a bundle x ∈ M0 such that Vγ(x) >

supz∈M0
Vγ(z)− ε. Substituting this x into (11) gives

WEA(M,γ) > U(x)− ε

≥ −ε.

Since ε > 0 is arbitrary, we obtain WEA(M,γ) ≥ 0. Q.E.D.

To obtain the intuition, let zγ be a bundle that solves the Vγ problem; i.e., a most
tempting bundle in the menu for consumer γ. Then, when the consumer enters the
store, one option for him is to succumb to the temptation and choose zγ , in which case
his ex-ante utility is given by U(zγ). By ex-post IC, the bundle that he actually chooses
in the store gives him at least this level of ex-ante utility. Therefore, if all bundles in
the menu give non-negative utilities in terms of U , then the ex-ante IR is satisfied.

Corollary 1 says that all the bundles that are chosen by consumers in the store
give non-negative U surplus, while Lemma 3 says that if all bundles in the menu give
non-negative surplus, then all consumers have an incentive to enter the store. These
results together imply that if a feasible schedule (M,x, E) is not “decorated,” in that
the menu does not contain any bundle that is not consumed by any consumer, then
ex-ante IR is satisfied for all types. Formally,

12



Definition. A feasible schedule (M, x,E) is undecorated if

M = {x(γ) : γ ∈ Γ}.

That is, M does not contain any bundle y such that y 6= x(γ) for all γ ∈ Γ. Then
Corollary 1 and Lemma 3 imply the following.

Corollary 2. Let (M, x,E) be a feasible schedule that is undecorated. Then U(x) ≥
0 for all x ∈ M , and M satisfies ex-ante IR for all types.

For the study of optimal menus, focusing on undecorated menus is without loss
of generality. The reason is that, for any optimal menu that is decorated, removing
the bundles that are not consumed by any types generates an optimal menu that is
undecorated. This is because the removal of the unconsumed bundles can only make the
menu less tempting and decrease the consumers’ self-control costs. Thus, the removal
of unconsumed bundles can only increase the ex-ante utilities of consumers and make
the ex-ante IR easier to satisfy.

Formally, we can prove the following.

Proposition 2. If there exists an optimal schedule, then there exists an optimal
schedule (M,x, E) such that

1. M = {x(γ) : γ ∈ Γ} (i.e., the schedule is not decorated),

2. U(y) ≥ 0 for all y ∈ M (i.e., all bundles in the menu generate non-negative U

surplus),

3. E = Γ (i.e., all types enter the store),

4. t−C(q) ≥ 0 for all (q, t) ∈ M (i.e., all bundles in the menu generate non-negative
profits).

Proof. Let (M̂, x̂, Ê) be an optimal schedule. Define a menu M by

M = {x̂(γ) : γ ∈ Γ} ∩B,

where B is defined by (10). By A5, M is bounded. Let M̄ be the closure of M . Then,
for each type γ /∈ Ê, there exists a bundle, which we denote by x(γ), that solves the
U + Vγ problem for the menu M̄ . Lemma 2 implies that, for all γ ∈ Ê, U(x̂(γ)) ≥ 0,
but it is possible that x̂(γ) /∈ B for some γ ∈ Ê. For all γ ∈ Ê such that x̂(γ) /∈ B, let
x(γ) be a bundle that solves the U + Vγ problem for the menu M̄ . On the other hand,
for all γ ∈ Ê such that x̂(γ) ∈ B, let x(γ) = x̂(γ); for these types, x̂(γ) is in M and
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remains a solution to the U + Vγ problem for M̄ . Then let

M∗ = {x(γ) : γ ∈ Γ},

and consider a schedule (M∗, x, Γ). Since M∗ ⊆ B, Lemma 3 implies that the ex-ante
IR condition is satisfied for all types. By the construction of x(·), the ex-post IC and
IR conditions are also satisfied for all types. Hence (M∗, x, Γ) is feasible. The schedule
is optimal since for all types such that x(γ) 6= x̂(γ), x̂(γ) generates non-positive profits
while x(γ) generates non-negative profits. Q.E.D.

Given this result, we introduce the following definition.

Definition. An optimal schedule (M, x,E) is regular if it satisfies 1–4 in Proposi-
tion 2.

3 Upward Temptation

We begin our derivation of optimal menus with the case where all consumers exhibit
upward temptation; i.e., γ ≥ γ∗ for all consumers, or a ≥ γ∗.

We denote by x∗ a most profitable bundle in B (see Figure 1). This bundle is
identified as a point where the indifference curve of U through (0, 0) and a translated
cost curve (i.e., an isoprofit curve) are tangent. Formally, x∗ = (q∗, t∗) is a pair that
solves

max
(q,t)∈R+×R

t− C(q) s.t. U(q, t) ≥ 0. (12)

By Corollary 1, x∗ is a most profitable bundle that the monopolist can sell to consumers.
When U is quasi-linear, q∗ is a solution to

max
q∈R+

u(q)− C(q). (13)

We refer to q∗ as a socially optimal quantity since it maximizes social surplus when the
committed utility U is used for consumers.

The following proposition characterizes optimal menus when all consumers have
preferences with upward temptation.

Proposition 3. Assume that a ≥ γ∗.8 Then an optimal menu is M = {x∗} where
8The proposition also holds when the number of types is finite.
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x∗ is a solution of (12).9 Conversely, if a feasible schedule (M,x, E) is optimal, then,
for some x∗ that solves (12), x(γ) = x∗ for all γ > a.

Proof. To prove the first statement, suppose that the monopolist offers {x∗} such
that x∗ solves (12). By Corollary 1, x∗ is a most profitable bundle that the monopolist
can sell to consumers. Since x∗ ∈ B, Lemma 3 implies that all consumers have an
incentive to enter the store. It remains to show that all consumers do choose x∗, rather
than (0, 0), in the U +V problem. This follows from the fact that, by Lemma 1, U +Vγ

is at least as “steep” as U ; i.e., U +Vγ % U for all γ ∈ Γ. Since x∗ is at least as good as
(0, 0) for the U utility, it follows that x∗ is also at least as good as (0, 0) for the U +Vγ

utility.
To prove the second statement in the proposition, note that the first statement

implies that, for a schedule (M, x,E) to be optimal, x(γ) has to be a solution of (12)
for almost all γ ∈ Γ. Furthermore, ex-post IC implies that, if x(γ) solves (12) for
some γ > γ∗, x(γ′) = x(γ) for all γ′ > γ. This implies that x(γ) = x(γ′) for all
γ, γ′ > a. Q.E.D.

The intuition behind the first statement in the proposition is as follows. Since all
consumers have preferences with upward temptation, all consumers are tempted by
more expensive, higher quality bundles. However, only one bundle, x∗, is offered. Thus
all consumers are tempted by the same bundle they consume, which makes their self-
control costs equal to zero and allows the monopolist to price the bundle to extract
the entire ex-ante surplus. Ex post, however, each consumer γ > γ∗ receives a surplus
equal to U + Vγ = Vγ , but this surplus cannot be extracted by the monopolist since
the ex-ante IR condition is binding.10

4 Downward Temptation

We now consider the case in which all consumers have preferences with downward
temptation; i.e., γ ≤ γ∗ for all consumers, or b ≤ γ∗. The following proposition shows
that, in this case, ex-ante IR is implied by ex-post IR for all types.

Proposition 4. For all γ ≤ γ∗ and all menus M , if the U + Vγ problem has a
maximum and WEP (M, γ) ≥ 0, then WEA(M, γ) ≥ 0.11

9The result can be generalized to the case when the (ex-ante) reservation utility level for each type
is given by

¯
W ∈ R+. In this case an optimal menu consists of (q∗, t∗) such that U(q∗, t∗) =

¯
W .

10The finding that the firm provides a contract that works as a perfect commitment device also
appears in Della Vigna and Malmendier (2001) (Proposition 7(i)), who analyze optimal two-part tariffs
when consumers discount future payoffs hyperbolically.

11This proposition itself does not require b ≤ γ∗.
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Proof. Let γ ≤ γ∗ and M be such that U + Vγ problem has a maximum and
WEP (M, γ) ≥ 0. Let xγ be a bundle that solves the U + Vγ problem, and let t′ ∈ R
be such that bundle (0, t′) is indifferent to xγ for the U + Vγ utility. Since xγ gives a
non-negative ex-post utility, t′ ≤ 0. Since Vγ - U + Vγ , it follows that (0, t′) is at least
as good as any bundle in the menu for the Vγ utility; i.e., Vγ(0, t′) ≥ supz∈M0

Vγ(z).
Thus

WEA(M, γ) = U(0, t′) + Vγ(0, t′)− sup
z∈M0

Vγ(z)

≥ U(0, t′) ≥ 0. Q.E.D.

A corollary to this proposition is that, when b ≤ γ∗, consumers’ entry decisions
can be ignored and the monopolist’s problem reduces to the standard problem. Hence,
when b ≤ γ∗, the standard analysis of nonlinear pricing can be used to characterize
optimal menus.

Corollary 3. If b ≤ γ∗, a menu is optimal if and only if it is an optimal menu for
the standard problem.

5 Mixed Case

This section studies the general case where some consumers have preferences with
downward temptation and others with upward temptation; i.e., a < γ∗ < b. We divide
our analysis into three sections. The first section presents properties that optimal
menus satisfy in general environments. Section 5.2 examines the case when there are
only two types. Finally, Section 5.3 returns to the continuum-type case and obtains
stronger characterizations with quasi-linear and differentiable preferences.

5.1 General Properties of Optimal Menus

This section presents properties that optimal menus satisfy in general environments.
The first property states that the ex-post IR condition binds for the lowest consumer
type.

Proposition 5. For any regular optimal schedule, U(x(a)) + Va(x(a)) = 0.

Proof. See Appendix A.1.

This means that consumer a is assigned by the monopolist a bundle that yields
zero ex-post surplus. Otherwise, if the bundle derives a positive ex-post surplus, the
monopolist can find a new tariff that satisfies ex-ante and ex-post participation of all
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types and yields higher profits. It should be noted that this proposition does not hold
when a > γ∗ since the optimal menu described in Proposition 3 gives a strictly positive
ex-post utility to type a.12

The next result to be proved states that, for any regular optimal schedule, the
bundle at the right end-point gives no surplus in terms of U provided that the following
assumption is satisfied. The assumption guarantees that, for any bundle x in the set
B (which is a bounded set by A5), there exists a type γ ∈ Γ whose indifference curve
at x is steeper than that of the cost curve.

A6. For all (q, t) ∈ B, there exist a type γ ∈ Γ and a bundle (q′, t′) À (q, t) such
that13

U(q′, t′) + Vγ(q′, t′) > U(q, t) + Vγ(q, t), and (14)

t′ − C(q′) > t− C(q). (15)

Given this additional assumption, the right end of the optimal tariff is on the U = 0
curve.

Proposition 6. For any regular optimal schedule, the right-end of the menu, de-
fined as

x̄ ≡ (sup
γ∈Γ

q(γ), sup
γ∈Γ

t(γ)), (16)

is finite (i.e., x̄ ∈ R2) and satisfies U(x̄) = 0.

Proof. See Appendix A.2.

While a complete proof is provided in the Appendix, Figure 2 illustrates its work-
ings. Suppose, by way of contradiction, that the optimal tariff ends before intersecting
the U(x) = 0 curve, as illustrated by x̄ in the figure, and translate the cost curve
vertically onto x̄ to identify all the bundles that are more profitable than x̄. Assume
that the highest type, b, is finite, and thus x̄ = x(b) (although the result also holds
when b = +∞). Then draw the indifference curve of type b through x̄. A6 implies that
type b’s indifference curve is steeper than the translated cost curve at x̄ (the isoprofit
curve) and therefore creates a lens-shaped area of bundles that are preferred by type b

and are more profitable. Suppose that we add to the menu any bundle, such as y in
the figure, in the interior of the lens-shape area and below the U(x) = 0 curve. Then a

12Proposition 5 also holds when a = γ∗, which follows from the second statement in Proposition 3.
13We use the following notation for vector inequalities: (q′, t′) À (q, t) if q′ > q and t′ > t; and,

(q′, t′) ≥ (q, t) if q′ ≥ q and t′ ≥ t.
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Figure 2: No U surplus at the top

positive mass of consumers, consumers close to type b, strictly prefer y to what they are
assigned in the initial menu. Since y lies above the isoprofit curve, it is more profitable
than what these consumers are initially assigned, and the modified menu generates
more profits.

A6, which is required for Proposition 6, restricts b to be large enough so that the
lens-shaped area discussed in the previous paragraph exists for every bundle in B. If
this assumption is not satisfied, then the optimal tariff may have U > 0 for type b,
while still being the case that b > γ∗.

We can also show that U(x(γ)) = 0 may hold only at the end-points of the menu
(see Proposition 9 in Appendix A.5). The idea is that, by ex-post IC, all other bundles
must leave positive U surplus.

We can also show that the tariff intersects the U = 0 curve to the right of x∗. For
the quasi-linear case, this means that the largest quantity that the firm sells, q̄, is not
smaller than the socially optimal quantity.

Proposition 7. Let (M,x, Γ) be a regular optimal schedule, and x̄ be defined by
(16). Then, for all bundles x ≥ x̄ such that U(x) ≥ 0, we have t − C(q) ≤ t̄ − C(q̄).
If U is quasi-linear, q̄ ≥ q∗ for some q∗ that solves (13). If u and C are differentiable,
then C ′(q̄) ≥ u′(q̄).

Proof. See Appendix A.3.

The proof is similar to that of Proposition 6. The idea is that if the tariff intersected
the U = 0 curve to the left of x∗, then the monopolist could increase its profits by adding
x∗ to the menu.
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Figure 3: Two-type case

5.2 Two-Type Case

This section departs from our basic setup and examines the case in which only two types
of consumers exist. Let these types be denoted by γL and γH where γL < γ∗ < γH , and
be distributed in proportions nL and nH , respectively. We also assume that preferences
are quasi-linear.

See Figure 3. We denote by x∗L the most profitable bundle (which we assume to be
unique) under the ex-post IR condition of the low type consumers. If this bundle is
offered to the low type consumers, then the set of bundles that can be offered to the
high type consumers is given by the lower envelope of the U = 0 curve and the high
type’s indifference curve through x∗L; i.e., the kinked curve that connects x∗LyAxU (and
bundles below the curve). It is useful to distinguish two cases.

Case 1. The first case is when the most profitable bundle along the kinked curve
x∗LyAxU is on the right side of A; e.g., suppose that it is x. In this case, the U = 0
curve is tangent with the isoprofit curve at x. (Note that the isoprofit curves in the
figure are not drawn for this case.) Then offering {x∗L, x} is optimal for the seller.
Indeed, increasing the quantity level offered to γL can only contract the set of bundles
that can be offered to γH . Decreasing the quantity level for γL, on the other hand, does
expand the set of bundles that can be offered to γH , but x remains the most profitable
bundle in the set.

Case 2. The other case to consider is when the most profitable bundle along x∗LyAxU

is on the left side of A; e.g., suppose that it is y. (The isoprofit curves in the figure
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are drawn for this case.) Offering {x∗L, y} is not necessarily optimal. Indeed, as in the
standard problem, decreasing the quantity level for γL enlarges the set of bundles that
can be offered to γH , which increases profits that can be extracted from γH . The most
profitable bundle that can be offered to γH moves up along the vertical segment yw.
At point w, the U ≥ 0 constraint comes into effect, from which point on, the bundle
offered to γH moves along the U = 0 curve. It is easy to see that it is not optimal to
offer to γH a bundle to the left of x∗. Thus the monopolist offers to γL some bundle
xL between y∗ and x∗L on the indifference curve of γL, and to γH some bundle on the
kinked curve x∗wy such that ex-post IC binds for γH (e.g., offering {xL, xH} in the
figure).

From the figure above, it can be seen that, if {xL, xH} is the optimal menu, then

qL ≥ qS
L and qH ≤ qS

H , (17)

where {qS
L, qS

H} denote the quantities in the optimal menu for the standard problem.
To see (17), first consider Case 1; thus suppose that {x∗L, x} in the figure is the

optimal menu. Let x∗H be the most profitable bundle on γH ’s indifference curve through
x∗L. Since γH > γ∗, we have q∗H ≥ q, where q∗H and q denote the quantity levels of x∗H
and x, respectively. Since qS

L ≤ q∗L and qS
H = q∗H , the desired result follows.

For Case 2, recall that by decreasing the quantity level for the low type consumer,
the monopolist can increase the surplus that can be extracted from the high type one.
As the bundle offered to γL moves from x∗L to y∗, the bundle offered to γH moves along
ywx∗. We obtain (17) since the marginal increase in profits that can be extracted from
γH is higher in the standard problem. The reason is that, in the standard problem, the
bundles that can be offered to γH are not bounded by the U = 0 curve. In our problem
with self-control, on the other hand, the profits from sales to the high type consumers
are bounded because of the ex-ante IR condition, and hence there is less incentive for
the monopolist to decrease the quantity level for the low type consumers.

The optimal menu for Case 2 can be characterized analytically. Since ex-post IR
binds for γL, we have u(qL) + vL(qL) = 2tL. Since ex-post IC binds for γH , we have
2tH = u(qH)+vH(qH)−vH(qL)+vL(qL). Then ex-ante IR (or non-negative U surplus)
can be written as

u(qH)− vH(qH) + vH(qL)− vL(qL) ≥ 0. (18)
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Therefore, the monopolist’s problem is to choose (qL, qH) that maximizes

nH

[
u(qH) + vH(qH)− vH(qL) + vL(qL)− 2C(qH)

]

+ nL

[
u(qL) + vL(qL)− 2C(qL)

]

subject to (18). Letting λ denote the Lagrange multiplier for (18), and assuming that
all functions are differentiable, we obtain the following first-order conditions:

nH

[
u′(qH) + v′H(qH)− 2C ′(qH)

]
+ λ

[
u′(qH)− v′H(qH)

]
= 0, (19)

nH

[
v′L(qL)− v′H(qL)

]
+ nL

[
u′(qL) + v′L(qL)− 2C ′(qL)

]

+ λ
[
v′H(qL)− v′L(qL)

]
= 0.

(20)

In the second term of (19), we have u′(qH) − v′H(qH) < 0 since γH > γ∗. Thus
the first term of the equation is non-negative, which implies qH ≤ qS

H (assuming that
the optimal menu is unique in either problem). Similarly, in the last term of (20), we
have v′H(qL)− v′L(qL) > 0, which implies that the reversed argument follows and yields
qL ≥ qS

L.

5.3 Quasi-Linear and Differentiable Preferences

Here we return to the case in which there is a continuum of types. In what follows, we
assume that the utility functions U and V are quasi-linear (see (3) and (4)) in order to
obtain stronger characterizations of the optimal tariffs. Additionally, we assume that
u and v are C2 and C3, respectively, and satisfy the following assumptions.

A7. v12(q, γ) > 0.

A8. v2(q, γ) > 0 if q > 0.

A9. v122(q, γ) ≤ 0 and v112(q, γ) ≥ 0.14

A10. f is log-concave; i.e., f ′(γ)/f(γ) is non-increasing in γ.

Functions f and C are C1 and C2, respectively, and C satisfies C ′ > 0 and C ′′ > 0.
We also assume that the maximum type in the support is finite; i.e., b < +∞.

The monopolist maximizes its profits, which are

∫ b

a

[
u(q(γ)) + v(q(γ), γ)−W (γ)− 2C(q(γ))

]
f(γ) dγ (21)

14See A8 in Fudenberg and Tirole (1992, page 263).
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subject to, for all γ ∈ [a, b],

W ′(γ) = v2(q(γ), γ), (22)

W (γ) ≥ v(q(γ), γ)− u(q(γ)), (23)

W (a) = 0, (24)

q(γ) ≥ 0, (25)

q is non-decreasing, (26)

where W (γ) is the ex-post utility of type γ (i.e., W (γ) = WEP (M, γ)) and (23) is the
ex-ante IR condition (by W = u + v − 2t). Since the values of q(·) at the points of
discontinuity are immaterial, we consider only q(·) that is continuous from the left.

For comparison, the necessary condition characterizing the optimal tariff in the
standard problem (i.e., without the ex-ante IR constraint (23)) is:

u′(qS(γ)) + v1(qS(γ), γ)− v21(qS(γ), γ)
1− F (γ)

f(γ))
= 2C ′(qS(γ)). (27)

The superscript S denotes optimal variables for the standard problem.
As usual, we first characterize the solution to the “relaxed” problem, which is the

above problem ignoring the monotonicity condition in (26). The relaxed problem can
be formulated as an optimal control problem in which W is the state variable and q is
the control. The associated Hamiltonian is given by

H(W, q, µ, λ, γ) =
[
u(q) + v(q, γ)−W − 2C(q)

]
f(γ)

+ µv2(q, γ) + λ[u(q)− v(q, γ) + W ].

As in the standard case, the log-concavity assumption A10 on the type distribution f

guarantees that the quantity function q(·), characterized by the necessary conditions, is
non-decreasing; this fact will be proved for our problem as part of Proposition 8 below.

The ex-ante IR condition (23) places restrictions on the values that the state W (γ)
can take. As is well-known, when such state restrictions are present, a first-order
approach (using the necessary conditions for the optimal control problem given by
the Maximum Principle) may fail to isolate the optimal solution due to a constraint
qualification (see Seierstad and Sydsæter (1987, page 278, Note 4)). The constraint
qualification (CQ) associated with the inequality constraint u− v + W ≥ 0 states that
the derivative of the constraint with respect to q (i.e., u′ − v1) must not be equal to
zero at all types at which the constraint binds. This implies that the CQ is violated if
and only if U = 0 (or equivalently u− v + W = 0) for type γ∗. Hence, we consider two
families of feasible tariffs wherein the optimal tariff may lie: (1) those that violate the
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CQ, and (2) those that satisfy the CQ.

5.3.1 Case 1: Optimal Tariff Violating Constraint Qualification

For tariffs such that U = 0 for γ∗, ex-post and ex-ante IR conditions imply that all
types γ < γ∗ are excluded and all types γ > γ∗ consume bundles such that U = 0.
Hence, if an optimal tariff violates CQ, then the tariff takes the form described in
Proposition 3. Specifically, if an optimal tariff violates the constraint qualification,
then the tariff offers a bundle (q∗, t∗) such that u′(q∗) = C ′(q∗) and t∗ = u(q∗) to all
types γ > γ∗, and excludes all types γ < γ∗.

Moreover, since γ∗ < b, (27) implies

u′(qS(γ∗))− C ′(qS(γ∗)) =
1
2
v21(qS(γ∗), γ∗)

1− F (γ∗)
f(γ∗)

> 0,

and hence qS(γ∗) < q∗. In words, the monopolist sells more to type γ∗ than in the
standard problem.

5.3.2 Case 2: Optimal Tariff Satisfying Constraint Qualification

Let (q, W ) be a pair that solves the relaxed problem and satisfies CQ. Then it satisfies
the following necessary conditions: for all γ ∈ [a, b],

[
u′(q(γ)) + v1(q(γ), γ)− 2C ′(q(γ))

]
f(γ) + µ(γ)v21(q(γ), γ)

+ λ(γ)(u′(q(γ))− v1(q(γ), γ)) + δ(γ) = 0,
(28)

µ′(γ) = f(γ)− λ(γ), (29)

λ(γ) · (u(q(γ)− v(q(γ), γ) + W (γ)) = 0, λ(γ) ≥ 0, (30)

µ(b) = 0, (31)

q(γ)δ(γ) = 0, δ(γ) ≥ 0 (32)

The following proposition characterizes the solution to the relaxed problem.

Proposition 8. Let (q, W ) be a pair that solves the relaxed problem and satisfies
CQ. Then q is non-decreasing. Moreover, let

¯
γ ≡ max{γ ∈ [a, b] : W (γ) = 0} and

γ̄ ≡ sup{γ ∈ [a, b] : W (γ) > v(q(γ), γ)− u(q(γ))}.
(33)

Then
¯
γ < γ∗ < γ̄, and

1. if γ̄ < b, then q is constant over (γ̄, b];
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2. for all γ ∈ (
¯
γ, γ̄),

u′(q(γ)) + v1(q(γ), γ)− v12(q(γ), γ)
β(γ̄)− F (γ)

f(γ)
= 2C ′(q(γ)), (34)

where β(γ̄) ≡ F (γ̄)− µ(γ̄) ∈ [0, 1];

3. if
¯
γ > a, then q(γ) = W (γ) = 0 for all γ ∈ [a,

¯
γ] and

u′(0) + v1(0,
¯
γ)− v12(0,

¯
γ)

β(γ̄)− F (
¯
γ)

f(
¯
γ)

= 2C ′(0). (35)

Proof. See Appendix A.4.

The optimal tariff for this case resembles that derived by Besanko, Donnenfeld,
and White (1987) for nonlinear pricing with minimum quality standards. In order to
compare the optimal tariff obtained in our problem to that in the standard problem,
we evaluate (28) at γ̄ to obtain

[
u′(q(γ̄)) + v1(q(γ̄), γ̄)− 2C ′(q(γ̄))

]
f(γ̄) + µ(γ̄)v21(q(γ̄), γ̄)

+ λ(γ̄)(u′(q(γ̄))− v1(q(γ̄), γ̄)) = 0.

Since the second and third terms are non-positive, it follows that u′(q(γ̄))+v1(q(γ̄), γ̄) ≥
2C ′(q(γ̄)). By the definition of β(γ̄) (given in item 2 above) and the expression for the
multiplier µ(γ̄) given in (56) in the Appendix, we have

u′(q(γ̄)) + v1(q(γ̄), γ̄) ≥ 2C ′(q(γ̄)) =⇒ 2[C ′(q(γ̄))− u′(q(γ̄))]
v1(q(γ̄), γ)− u′(q(γ̄))

≤ 1

=⇒ β(γ̄) ≤ 1.

Hence, a comparison of (27) and (34) yields q(γ) ≥ qS(γ) for all γ ∈ (
¯
γ, γ̄): the

monopolist expands production to these types. A similar comparison yields that
¯
γ ≤

¯
γS : the monopolist expands the range of consumers served relative to the standard
case.

The intuition behind these two comparisons is the same as with two consumer types.
In the standard price discrimination problem, the monopolist deteriorates the quality
sold to the low type consumers, and excludes some of them, in order to increase the
surplus extracted from the high type ones. With self-control preferences, the ex-ante
IR condition effectively represents a bound on the feasibility of price discrimination
towards higher types. As a result, the monopolist has less incentives to deteriorate the
quality sold to lower types, or exclude them, than it does in the standard problem.
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In solving the relaxed problem, we have maintained the assumptions that underlie
Proposition 6 above, which ensure that the optimal tariff features U = 0 at the top. If,
instead, U > 0 at the top, so that γ̄ = b, then (34), which characterizes the optimal tariff
for our problem, becomes identical to the first-order condition (27) for the standard
problem. In that case, our tariff would coincide with the standard tariff, and features
of the standard tariff — such as no distortion at the top — would hold for our tariff
as well.15

5.3.3 Illustrative Simulations

In this section, we present simulation results from a parameterized example to illustrate
our findings in the previous sections. We use the example introduced in (5) and (6).
For this example, the critical type, γ∗, equals 1. We assume that γ is drawn uniformly
from [0, 6] (which satisfies A6), and take the cost function C(q) = 1

2q2.
In Figure 4, we simulate the optimal tariff with self-control preferences and the

optimal tariff for the standard problem and compare the properties of these two tar-
iffs. In the top graph, where we graph the optimal quantities, we see that the tariff
with self-control preferences serves a larger range of consumer types (i.e.,

¯
γ <

¯
γS , as

derived in the previous section). This can also be seen in the second graph of Figure 4,
which contains the payment functions t(·) for the standard and self-control tariffs. The
interpretation is that the standard optimal pricing problem lowers the quality offered
to lower types, and excludes some of them, in order to extract more surplus from the
high type consumers. The ex-ante IR condition, however, serves as a bound to the
profitability of this strategy, which lowers the incentives to cut back the quality served
to the lower type consumers or to exclude some of them.

The bottom graph of Figure 4 plots the tariffs as pairs of price and quality. The
tariff with self-control costs has larger quantity discounts than the standard tariff, which
means that increasing quality has a lower increase in price with self-control preferences.

In Figure 5, we simulate the consumption and the temptation choices for all the
consumers in our example tariff; that is, the choices solving the U + V and V prob-
lems, respectively. The temptation choice is illustrated with the crossed line and the
consumption choice with the solid line. The top graph shows how consumers with
γ < γ∗ = 1 are tempted towards lower quality goods; thus, for a given γ, the tempta-
tion choice is of lower quality than the consumption choice. Instead, for γ > γ∗, the
opposite follows. Notice that at the top, however, consumers are tempted by the same
bundle they consume; thus, for a sufficiently high γ, their temptation and consumption

15Outside the quasi-linear case, however, it may not be true that, if the optimal tariff in our problem
features U > 0 at the top, then this tariff coincides with the optimal tariff in the standard problem.
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choices are the same.
The bottom graph computes the self-control cost (i.e., the difference V (xγ)−V (zγ))

given the consumption and temptation choices in the example. Consumer γ∗ and con-
sumers above γ̄ incur no self-control costs. Since consumer γ∗ does not have preference
reversals, he incurs zero self-control costs. On the other hand, consumers above γ̄ are
tempted to buy higher quality goods; however, since there are none available, they
incur zero self-control costs.

6 Concluding Remarks

We have studied a monopolist’s supply decision when it faces consumers with temp-
tation and self-control preferences. We have analyzed the case where consumers are
heterogeneous in their temptation preferences and shown that, if all consumers have
preferences with upward temptation, the optimal menu consists of a single bundle, and
consumers do not incur any self-control costs. Instead, if some consumers have pref-
erences with downward temptation, then the optimal menu may contain a continuum
of bundles and consumers incur self-control costs. Generally, the optimal tariff differs
from the one for the standard nonlinear pricing problem.

A number of questions arise from this paper. For example, the role of advertising
can be interesting in our setting. If consumers become aware of the monopolist’s
offerings only via advertisements, then the seller may choose to advertise only a subset
of its products, to lead consumers to believe that self-control costs are small and lure
them inside the store.16 Indeed, the optimal advertising decision is to advertise only
one bundle (εq, εt), where εq and εt are both small and satisfy U(εq, εt) ≥ 0, so that
all consumers are willing, based upon the advertisement, to enter the store. Because
all consumers enter the store, the ex-ante IR condition is no longer an issue, and the
monopolist will be able to implement the optimal menu in the standard problem to its
customers.

In ongoing work, we are considering what happens if the monopolist can open
multiple stores and separate different consumer types into different locations. Since
self-control costs are lower in stores with smaller menus, the monopolist may want
to divide the set of bundles that it sells into multiple stores. But characterizing the
monopolist’s optimal decision is a non-trivial problem. Another interesting extension
is to examine how optimal pricing would be affected by the presence of rival firms, in
the manner of the competitive price discrimination literature, surveyed in Stole (2002).

16In the present paper, we assume that consumers are completely aware of the monopolist’s offerings
before they enter the store.
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A Appendix

A.1 Proof of Proposition 5

Let (M,x, Γ) be a regular optimal schedule. Since the tariff may have “holes,” which
would make it difficult to handle, we first fill the holes in a way that will be convenient
for the proof.

Let w(x, γ) be defined by

w(x, γ) = U(x) + Vγ(x),

which is the ex-post utility level of consumer type γ when he consumes bundle x. For
all q ∈ R+ and all γ ∈ [a, b], let T (q, γ) ∈ R be the unique number t such that

w(q, t, γ) = WEP (M, γ) ≡ w(x(γ), γ).

That is, t = T (q, γ) is the unique amount such that bundle (q, t) is indifferent to x(γ)
for type γ. There exists such a t since U and Vγ are continuous and unbounded in t,
and t is unique since U and Vγ are strictly increasing in t.

Lemma 4. Function T is continuous.

Proof. Let (q, γ) ∈ R+ × [a, b], t = T (q, γ), and δ > 0. Then for a small number
ε > 0,

w(q, t− δ, γ) + 2ε < WEP (M, γ) < w(q, t + δ, γ)− 2ε.

Since w and WEP (M, ·) are continuous, if we take (q′, γ′) that is sufficiently close to
(q, γ), we have

w(q′, t− δ, γ′) < w(q, t− δ, γ) + ε < WEP (M, γ)− ε < WEP (M, γ′)

< WEP (M,γ) + ε < w(q, t + δ, γ)− ε < w(q′, t + δ, γ′).

Thus T (q′, γ′) ∈ (t− δ, t + δ). Q.E.D.

We define a function γ̂ : [q(a), q(b)] → [a, b] as follows. For a given q ∈ [q(a), q(b)],
if q = q(γ) for some γ ∈ [a, b], then we choose such a γ arbitrarily and let γ̂(q) = γ.
On the other hand, if q is such that q 6= q(γ) for all γ ∈ [a, b], then, since q(·) is
non-decreasing, there exists a unique type γ ∈ (a, b) such that

q(γ′) < q < q(γ′′) for all γ′ < γ and all γ′′ > γ.

We then set γ̂(q) = γ.
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The definition implies that, for all q ∈ [q(a), q(b)],

q(γ′) ≤ q ≤ q(γ′′) for all γ′ < γ̂(q) and all γ′′ > γ̂(q). (36)

Lemma 5. Function γ̂ is non-decreasing.

Proof. If q′ > q and γ̂(q′) < γ̂(q), then we can pick γ′′ ∈ (γ̂(q′), γ̂(q)). By (36),
q(γ′′) ≤ q and q′ ≤ q(γ′′), which is impossible. Q.E.D.

Let t̂ : [q(a), q(b)] → R be a function defined by

t̂(q) = T (q, γ̂(q)).

Lemma 6. Function t̂ is continuous.

Proof. Consider a sequence {qk}∞k=1 such that qk → q as k → ∞. Without loss of
generality, assume that qk ≤ qk+1 for all k. Since γ̂ is non-decreasing, γ̂(qk) converges to
some γ. Since γ̂(qk) ≤ γ̂(q) for all k, we have γ̂(qk) ≤ γ ≤ γ̂(q). Since T is continuous,
t̂(qk) = T (qk, γ̂(qk)) converges to T (q, γ). We would like to show that T (q, γ) = t̂(q).
If γ = γ̂(q), we are done since T (q, γ̂(q)) = t̂(q) by definition. Thus suppose γ < γ̂(q).

We first show that q(γ′) = q for all γ′ ∈ (γ, γ̂(q)). Indeed, by (36), q(γ′) ≤
q. Suppose, by way of contradiction, that q(γ′) < q for some γ′ ∈ (γ, γ̂(q)). Since
γ̂(q(γ′)) = γ′, the monotonicity of γ̂ implies that γ̂(qk) ≥ γ′ for a sufficiently large k

(since then q(γ′) ≤ qk ≤ q). But since γ̂(qk) ≤ γ < γ′, we obtain a contradiction.
The previous paragraph implies that (M, x,Γ) assigns (q, t̂(q)) to all types γ′ ∈

(γ, γ̂(q)). This implies that, for all these types γ′, T (q, γ′) = t̂(q). Since T is continuous,
T (q, γ) = t̂(q). Q.E.D.

We now show that the ex-post IC of x(·) is preserved in the enlarged set of bundles
{(q, t̂(q)) : q(a) ≤ q ≤ q(b)}; i.e., there exists no bundle (q, t̂(q)) that type γ strictly
prefers to x(γ) = (q(γ), t̂(q(γ))).

Lemma 7. For all γ ∈ [a, b] and all q ∈ [q(a), q(b)],

w(x(γ), γ) ≥ w(q, t̂(q), γ). (37)

Proof. Let γ ∈ [a, b] and q ∈ [q(a), q(b)]. If q = q(γ′) for some γ′, then (37) follows
from the ex-post IC of (M, x,Γ). Thus assume that q 6= q(γ′) for all γ′.

If γ̂(q) = γ, then t̂(q) = T (q, γ), so (37) holds with equality. Thus, we assume,
without loss of generality, that γ̂(q) > γ; the case when γ̂(q) < γ can be proved
similarly. Consider any sequence {γk}∞k=1 such that γk ≤ γk+1 < γ̂(q) for all k and
γk → γ̂(q). Since x(·) is non-decreasing, x(γk) converges to some point x′ = (q′, t′).
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Since w is continuous, the ex-post IC of x(·) implies

w(x′, γ̂(q)) = w(x(γ̂(q)), γ̂(q)).

That is, x′ is on γ̂(q)’s indifference curve that passes through x(γ̂(q)). Let (qc, tc) be
the point where γ̂(q)’s indifference curve on x(γ̂(q)) crosses γ’s indifference curve on
x(γ). Since γ does not prefer x(γk) to x(γ), it follows that q′ ≥ qc. Since γk < γ̂(q),
(36) implies q′ ≤ q. Therefore q ≥ qc, which implies that γ does not prefer (q, t̂(q)) to
x(γ); i.e., (37) holds. Q.E.D.

Now, suppose, by way of contradiction, that WEP (M,a) > 0. The argument that
follows can be divided into several steps.

Step 1 (Preliminaries). We first consider the case when

w(q, t̂(q), a) = w(q′, t̂(q′), a) for all q, q′ ∈ [q(a), q(b)].

That is, all bundles in the enlarged menu lie on a single indifference curve of type a.
Then by ex-post IC, q(γ) = q(b) for all γ > a, and hence the menu contains at most
two quantities. Let

γ′ ∈ argmax
γ∈{a,b}

[t(γ)− C(q(γ))] .

Then for a sufficiently small δ > 0, a singleton menu {(q(γ′), t(γ′) + δ)} satisfies both
conditions of IR and generates more profits than (M,x, Γ), in contradiction with the
optimality of (M,x, Γ).

Thus we assume, in what follows, that there exists k ∈ (q(a), q(b)) such that

w(q(a), t(a), a) > w(k, t̂(k), a) > 0. (38)

Since w and t̂ are continuous, we can choose k > q(a) sufficiently small to ensure that

w(q, t̂(q), a) > 0 for all q ∈ [q(a), k]. (39)

Let π : [q(a), q(b)] → R be a function defined by

π(q) = t̂(q)− C(q),

which denotes the profit level of bundle (q, t̂(q)). Since this function is continuous,
there exists a quantity level qm ∈ [q(a), k] that maximizes π over [q(a), k]. By (39),
there exists a small number ε > 0 such that

w(qm, t̂(qm) + ε, a) > 0. (40)
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Step 2 (Construction of a tariff). We now construct a tariff that generates more
profits than (M, x,Γ). We basically consider the upper envelope of t̂ and the isoprofit
curve that passes through (qm, t̂(qm)+ε). Formally, let τ : [q(a), q(b)] → R be a function
defined by

τ(q) = max{t̂(q), C(q) + π(qm) + ε}. (41)

Note that τ is continuous. It is possible that a part of the upper envelope generates
negative U utility, in which case we remove the part. Formally, let

D = {q ∈ [q(a), q(b)] : U(q, τ(q)) ≥ 0}.

Note that D contains qm and is compact by A5. Then the menu that we consider is
given by

M ′ = {(q, τ(q)) : q ∈ D}.

Let x′ : [a, b] → M ′ ∪ {(0, 0)} be an assignment function for M ′ such that, for all
γ ∈ [a, b],

x′(γ) ∈ argmax
x∈M ′

w(x, γ) (42)

and, if x(γ) belongs to M ′ and solves (42), then x′(γ) = x(γ).
Step 3 (IR and IC). We observe that (M ′, x′,Γ) is a feasible schedule. The ex-

post IC condition follows from (42). The ex-ante IR condition is satisfied for all types
because of the definition of D. The ex-post IR condition is also satisfied for all types
since (40) implies that type a can obtain a positive ex-post utility from M ′.

Step 4. We observe that in terms of the ex-post utilities, all types are weakly worse
off in M ′ than M . Indeed, Lemma 7 and (41) imply that, for all γ ∈ [a, b],

WEP (M, γ) ≥ w(q′(γ), t̂(q′(γ)), γ) ≥ w(q′(γ), τ(q′(γ)), γ) = WEP (M ′, γ).

Step 5. We prove that (M ′, x′, Γ) is at least as profitable as (M,x, Γ). We actually
prove that each type generates weakly more profits in (M ′, x′, Γ) than in (M, x,Γ); i.e.,

τ(q′(γ))− C(q′(γ)) ≥ π(q(γ)) for all γ. (43)

To prove this, we first consider types γ such that

π(q(γ)) ≥ π(qm) + ε.

Then, by (41), τ(q(γ)) = t̂(q(γ)). This implies that x(γ) is available in M ′. Then,
by Step 4 and the tie-breaking rule for x′, we have x′(γ) = x(γ), and (43) holds with
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equality.
We now consider types γ such that

π(q(γ)) < π(qm) + ε. (44)

Then by (41),

τ(q(γ)) = C(q(γ)) + π(qm) + ε > t̂(q(γ)).

Using (41) again, we obtain

τ(q′(γ))− C(q′(γ)) ≥ π(qm) + ε > π(q(γ)). (45)

Step 6 (Final). We prove that (M ′, x′, Γ) generates strictly more profits than
(M, x,Γ). By (45), it suffices to show that there exists a positive measure of types
that satisfy (44). First, note that (44) holds for type a by the definition of qm. Fur-
thermore, the first inequality in (38) implies T (k, a) < t̂(k) and hence γ̂(k) > a. By
T (k, γ̂(k)) = t̂(k) and Lemma 7, we have

w(k, t̂(k), γ̂(k)) ≥ w(q, t̂(q), γ̂(k)) for all q ∈ [q(a), q(b)].

Then by single-crossing and Lemma 7, it follows that, for all types γ ∈ (a, γ̂(k)),
q(γ) ≤ k. Hence, by the definition of qm, all these types satisfy (44). Q.E.D.

A.2 Proof of Proposition 6

Let (M, x,Γ) be a regular optimal schedule. By regularity, x(γ) ∈ B for all γ ∈ Γ, which
implies that x̄ ∈ B and hence x̄ is finite. Since the assignment function x is monotonic,
it follows that x̄ = x(b); if b = +∞, then x̄ = limγ→+∞ x(γ). Since U(x(γ)) ≥ 0 for all
γ, we have U(x̄) ≥ 0. We assume, by way of contradiction, that U(x̄) > 0.

By A6, there exist a type γ′ ∈ Γ and a bundle x′ = (q′, t′) À x̄ such that

U(x′) + Vγ′(x′) > U(x̄) + Vγ′(x̄), (46)

t′ − C(q′) > t̄− C(q̄). (47)

Since U(x̄) > 0, we can choose x′ close to x̄ so that U(x′) ≥ 0.
We prove that the monopolist can increase profits by adding x′ to its menu and

offering M ′ = M ∪ {x′}. The associated assignment function to consider is x̂ defined
by: x̂(γ) = x′ if consumer γ strictly prefers x′ to x(γ) in terms of U + V utility, and
x̂(γ) = x(γ) otherwise.

We first show that (M ′, x̂,Γ) is a feasible schedule. Ex-ante IR remains to hold for
all types since the added bundle satisfies U(x′) ≥ 0. Ex-post IC is also satisfied since
x′ is assigned to consumer γ only if the consumer prefers x′ to x(γ). Ex-post IR is also
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satisfied for all types since the addition of x′ does not make any consumer worse off in
terms of U + V utility.

We now show that, for all types γ that prefer x′ to x(γ), x′ generates more profits
than x(γ). Indeed, for these types, we have

U(x′) + Vγ(x′) > U(x(γ)) + Vγ(x(γ))

≥ U(x(γ̂)) + Vγ(x(γ̂)) for all γ̂ ∈ Γ.

Taking the limit of γ̂ → b, we obtain

U(x′) + Vγ(x′) > U(x(γ)) + Vγ(x(γ)) ≥ U(x̄) + Vγ(x̄). (48)

Now, consider the vertical translation of the cost curve that passes through x̄. Then,
(47) implies that x′ is strictly above this curve, and (48) implies that the curve crosses
γ’s indifference curve at x̄ from above. Then the second inequality in (48) and x(γ) ≤ x̄

imply that x(γ) lies below the translation of the cost curve, which implies that x(γ)
generates strictly less profits than x′.

Finally, we show that a strictly positive measure of types γ prefer x′ to x(γ). To
do so, we distinguish two cases.

Case 1: b < +∞. Then x̄ = x(b). By single-crossing, (46) also holds for type b,
which can be written as

WEP (M, b) < U(x′) + Vb(x′).

By a standard argument, WEP (M, ·) is continuous in γ. Since Vγ(x′) is also continuous
in γ, there exists ε > 0 such that for all γ > b− ε, WEP (M, γ) < U(x′) + Vγ(x′). Thus
all these types choose x′ in M ∪ {x′}.

Case 2: b = +∞. By (46), there exists ε > 0 such that

U(x′) + Vγ′(x′) > U(q̄, t̄− ε) + Vγ′(q̄, t̄− ε).

By single-crossing, the same inequality also holds for all γ ≥ γ′. Since x̄ is the limit
of x(γ), there exists γ′′ ≥ γ′ such that, for all γ ≥ γ′′, ‖x(γ)− x̄‖ < ε. Then all types
γ ≥ γ′′ prefer x′ to x(γ); indeed, by γ ≥ γ′′ ≥ γ′ and single-crossing,

U(x′) + Vγ(x′) > U(q̄, t̄− ε) + Vγ(q̄, t̄− ε)

≥ U(q̄, t(γ)) + Vγ(q̄, t(γ))

≥ U(x(γ)) + Vγ′′(x(γ)),

where the second inequality uses ‖x(γ) − x̄‖ < ε and the last inequality uses q̄ ≥
q(γ). Q.E.D.
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A.3 Proof of Proposition 7

Suppose, by way of contradiction, that there exists a bundle x′ ≥ x̄ such that U(x′) ≥ 0
and t′−C(q′) > t̄−C(q̄). We claim that the monopolist can earn more profits by offering
M ′ = M ∪ {x′}. The argument is identical to that in the proof of Proposition 6; just
note that (46) holds for all γ′ > γ∗ since x̄ and x′ are on the curve of U = 0. Q.E.D.

A.4 Proof of Proposition 8

For
¯
γ defined as in (33), since W is non-decreasing, W (γ) = 0 for all γ ∈ [a,

¯
γ]. Thus, if

¯
γ > a, then for all γ ∈ [a,

¯
γ], v2(q(γ), γ) = q(γ) = 0 and hence the ex-ante IR condition

(23) holds with equality. By CQ,
¯
γ < γ∗.

We partition [a, b] into two sets on the basis of whether the ex-ante IR condition
(23) binds or not:

Γ+ = {γ ∈ [a, b] : W (γ) > v(q(γ), γ)− u(q(γ))},
Γ0 = {γ ∈ [a, b] : W (γ) = v(q(γ), γ)− u(q(γ))}.

Claim 1. For all γ ∈ Γ0 such that γ >
¯
γ, q(γ) > 0.

Proof. Indeed, if q(γ) = 0, then

W (γ) = v(0, γ)− u(0) = 0,

which implies γ ≤
¯
γ, a contradiction. Q.E.D.

Claim 2. γ̄ ≥ γ∗.

Proof. By CQ, γ∗ ∈ Γ+, implying γ̄ = supΓ+ ≥ γ∗. Q.E.D.

Claim 3. If γ̄ < b, then q is constant over Ī ≡ [γ̄, b] ∩ Γ0. (Note that (γ̄, b] ⊆ Γ0

but γ̄ may not be in Γ0.)

Proof. Let γ1, γ2 ∈ Ī be such that γ2 > γ1. By (22),

W (γ2)−W (γ1) =
∫ γ2

γ1

v2(q(γ), γ) dγ. (49)

Since ex-ante IR holds with equality at γ1 and γ2, the left-hand side of (49) is equal to

v(q(γ2), γ2)− u(q(γ2))−
[
v(q(γ1), γ1)− u(q(γ1))

]

=
∫ γ2

γ∗
v2(q(γ2), γ) dγ −

∫ γ1

γ∗
v2(q(γ1), γ) dγ

=
∫ γ2

γ∗

∫ q(γ2)

q(γ1)
v12(q, γ) dq dγ +

∫ γ2

γ1

v2(q(γ1), γ) dγ.
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Thus (49) reduces to

∫ γ2

γ∗

∫ q(γ2)

q(γ1)
v12(q, γ) dq dγ =

∫ γ2

γ1

∫ q(γ)

q(γ1)
v12(q, γ) dq dγ,

which is equivalent to

∫ γ1

γ∗

∫ q(γ2)

q(γ1)
v12(q, γ) dq dγ +

∫ γ2

γ1

∫ q(γ2)

q(γ)
v12(q, γ) dq dγ = 0. (50)

This equation holds for any γ1, γ2 ∈ Ī such that γ1 < γ2.
To prove that q is constant over Ī, suppose, by way of contradiction, that there

exist γ3, γ4 ∈ Ī such that γ3 < γ4 and q(γ3) 6= q(γ4).
We first consider the case when q(γ3) < q(γ4). Let q′ = sup{q(γ) : γ3 ≤ γ ≤ γ4}.

Then there exists γ′ ∈ [γ3, γ4] such that q(γ′) ≥ q(γ4) and

∫ γ4

γ3

∫ q′

q(γ′)
v12(q, γ) dq dγ <

∫ γ3

γ∗

∫ q(γ4)

q(γ3)
v12(q, γ) dq dγ, (51)

since the right-hand side is positive17 and the left-hand side can be set arbitrarily close
to zero. By applying (50) to γ1 = γ3 and γ2 = γ′, we obtain

0 =
∫ γ3

γ∗

∫ q(γ′)

q(γ3)
v12(q, γ) dq dγ +

∫ γ′

γ3

∫ q(γ′)

q(γ)
v12(q, γ) dq dγ

≥
∫ γ3

γ∗

∫ q(γ4)

q(γ3)
v12(q, γ) dq dγ −

∫ γ4

γ3

∫ q′

q(γ′)
v12(q, γ) dq dγ > 0,

(52)

which is a contradiction.
If q(γ3) > q(γ4), a symmetric argument applies. Specifically, we set q′ = inf{q(γ) :

γ3 ≤ γ ≤ γ4}. Then there exists γ′ ∈ [γ3, γ4] such that q(γ′) ≤ q(γ4) and (51) holds
with the reverse inequality. We then obtain (52) with reverse inequalities. Q.E.D.

Let q̄ = q(b).

Claim 4. γ̄ > γ∗.

Proof. Suppose, by way of contradiction, that γ̄ = γ∗. For all γ > γ̄, the ex-ante
IR condition (23) holds with equality and q(γ) = q̄. Thus

W (γ∗) = v(q̄, γ∗)− u(q̄) = 0, (53)

where the last equality follows from v( · , γ∗) = u(·). On the other hand, since γ∗ ∈ Γ+

17We have γ3 > γ∗ since γ3 ∈ Ī ⊆ Γ0 and γ∗ ∈ Γ+.
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(by CQ), we have

W (γ∗) > v(q(γ∗), γ∗)− u(q(γ∗)) = 0,

which is a contradiction with (53). Q.E.D.

Claim 5. If γ̄ < b, then µ(γ̄) < 0.

Proof. Since ex-ante IR binds for all γ > γ̄,

v(q̄, γ̄)− u(q̄) = W (γ̄) ≥ v(q(γ̄), γ̄)− u(q(γ̄)). (54)

This inequality, together with γ̄ > γ∗, implies

q(γ̄) ≤ q̄. (55)

(28) and (29) imply that for all γ > γ̄,

2[u′(q̄)− C ′(q̄)]f(γ) + µ(γ)v12(q̄, γ)− µ′(γ)[u′(q̄)− v1(q̄, γ)] = 0.

This differential equation can be solved using (31) and the fact the sum of the last two
terms is the derivative of −µ(γ)(u′(q̄)− v1(q̄, γ)). We then obtain

µ(γ̄) =
2(1− F (γ̄))

[
u′(q̄)− C ′(q̄)

]

v1(q̄, γ̄)− u′(q̄)
. (56)

Noting that q(γ̄) 6= q̄ is possible, the argument that yields (60) yields

[
u′(q(γ̄)) + v1(q(γ̄), γ̄)− 2C ′(q(γ̄))

]
f(γ̄) + µ(γ̄)v12(q(γ̄), γ̄) = 0. (57)

We now suppose, by way of contradiction, that µ(γ̄) ≥ 0. Then (57) implies

u′(q(γ̄)) + v1(q(γ̄), γ̄) ≤ 2C ′(q(γ̄)). (58)

On the other hand, (56) implies that u′(q̄) ≥ C ′(q̄). Since γ̄ > γ∗, it follows that

u′(q̄) + v1(q̄, γ̄) > 2C ′(q̄). (59)

(59) and (58) imply q̄ < q̂, in contradiction with (55). Q.E.D.

Claim 6. µ(γ) ≤ 0 for all γ < γ̄ that is sufficiently close to γ̄.

Proof. This follows immediately from Claim 5 if γ̄ < b since µ is continuous. Thus
assume γ̄ = b. Since µ(b) = 0 and µ′(b) = f(b) − λ(b), it suffices to prove λ(b) = 0.
Since this follows from (30) if b ∈ Γ+, assume b ∈ Γ0. Claim 1 implies q(b) > 0. Since
q is continuous from the left, q(γ) > 0 for all γ close to b. Furthermore, since b = γ̄,
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it follows that for all ε > 0, there exists γ ∈ (b − ε, b) such that γ ∈ Γ+. Therefore,
taking the limit of (28) from the left at b yields

[
u′(q(b)) + v1(q(b), b)− 2C ′(q(b))

]
f(b) + µ(b)v12(q(b), b) = 0. (60)

On the other hand, evaluating (28) at b yields

[
u′(q(b)) + v1(q(b), b)− 2C ′(q(b))

]
f(b) + µ(b)v12(q(b), b)

+ λ(b)
[
u′(q(b))− v1(q(b), b)

]
= 0.

Since b > γ∗, these equations imply λ(b) = 0. Q.E.D.

By Claim 6, there exists ε > 0 such that µ(γ) ≤ 0 for all γ ∈ [γ̄ − ε, γ̄]. In what
follows, let γ̃ ∈ [γ̄− ε, γ̄] be such that γ̃ ∈ Γ+. Let Ĩ be the maximal interval such that
γ̃ ∈ Ĩ and Ĩ ⊆ Γ+.

Claim 7. q is non-decreasing over Ĩ.

Proof. Define a function β : [a, b] → R by

β(γ) = F (γ)− µ(γ).

Since β′(γ) = λ(γ), it follows that over the interval Ĩ, β(γ) is constant and equal to
β(γ̃). Since µ(γ̃) ≤ 0, β(γ̃) ≥ 0. Since β is non-decreasing, β(γ̃) ≤ β(b) = 1. (28)
implies that for all γ ∈ Ĩ,

u′(q(γ)) + v1(q(γ), γ)− v12(q(γ), γ)
β(γ̃)− F (γ)

f(γ)
+

δ(γ)
f(γ)

= 2C ′(q(γ)). (61)

Define a function Π: R+ × [a, b] → R by

Π(q, γ) = u(q) + v(q, γ)− v2(q, γ)
β(γ̃)− F (γ)

f(γ)
− 2C(q).

Then for all γ ∈ Ĩ, q(γ) satisfies Πq(q(γ), γ) ≤ 0 and q(γ)Πq(q(γ), γ) = 0. Given the
way in which γ̃ is chosen, it follows that for all γ ∈ Ĩ, β(γ̃)−F (γ) = −µ(γ) ≥ 0. Since
we assume C ′′ > 0 and v112 ≥ 0, we obtain

Πqq = u′′(q, γ) + v11(q, γ)− v112(q, γ)
β(γ̃)− F (γ)

f(γ)
− 2C ′′(q) < 0, (62)

which implies that q(γ) is determined uniquely. Thus a sufficient condition for q to be
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non-decreasing is Πqγ ≥ 0. The cross derivative is given by

Πqγ = −v12(q, γ)
∂

(
β(γ̃)−F (γ)

f(γ)

)

∂γ
− v122(q, γ)

β(γ̃)− F (γ)
f(γ)

.

Since we assume v122 ≤ 0, a sufficient condition for Πqγ ≥ 0 is that (β(γ̃)−F (γ))/f(γ)
is non-increasing. This condition is satisfied since β(γ̃) ∈ [0, 1] and we assume that f

is log-concave (Bagnoli and Bergstrom, 1989). Q.E.D.

Define a function h : R+ × [a, b] → R by

h(q, γ) = W (γ)− v(q, γ) + u(q).

Claim 8. h(q(γ), γ) is non-increasing in γ over Ĩ ∩ [γ∗, b].

Proof. Let γ, γ′ ∈ Ĩ be such that γ∗ ≤ γ′ < γ. Since γ′ ≥ γ∗ and q is non-decreasing
over Ĩ,

h(q(γ′), γ′) = W (γ′)− v(q(γ′), γ′) + u(q(γ′))

≥ W (γ′)− v(q(γ), γ′) + u(q(γ)). (63)

Moreover, v12 ≥ 0 implies that for all θ ∈ (γ′, γ), v2(q(θ), θ) − v2(q(γ), θ) ≤ 0. This
implies that the first two terms in (63) do not increase if we replace γ′ by γ; i.e.,

W (γ′)− v(q(γ), γ′) + u(q(γ)) ≥ W (γ)− v(q(γ), γ) + u(q(γ))

= h(q(γ), γ).

This and (63) prove the desired monotonicity. Q.E.D.

Let
˜
γ = inf Ĩ and

˜
q = inf{q(γ) : γ ∈ Ĩ}.

Claim 9.
˜
γ < γ∗.

Proof. Suppose, by way of contradiction, that
˜
γ ≥ γ∗. First, note that, for all γ ∈ Ĩ,

ex-ante IR holds with strict inequality and hence h(q(γ), γ) > 0. Since h(q(·), ·) is non-
increasing, we obtain h(

˜
q,

˜
γ) > 0; i.e., W (

˜
γ) > v(

˜
q,

˜
γ) − u(

˜
q). On the other hand, the

definition of
˜
γ implies that, within any neighborhood of

˜
γ, there exists γ <

˜
γ such that

γ ∈ Γ0. Since q is continuous from the left, it follows that W (
˜
γ) = v(q(

˜
γ),

˜
γ)−u(q(

˜
γ)).

Thus

v(q(
˜
γ),

˜
γ)− u(q(

˜
γ)) > v(

˜
q,

˜
γ)− u(

˜
q).
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This, together with our assumption that
˜
γ ≥ γ∗, implies

q(
˜
γ) >

˜
q. (64)

Since (61) holds for all γ ∈ Ĩ,

u′(
˜
q) + v1(

˜
q,

˜
γ)− v12(

˜
q,

˜
γ)

β(γ̃)− F (
˜
γ)

f(
˜
γ)

≤ 2C ′(
˜
q). (65)

(64) implies q(
˜
γ) > 0, and evaluating (28) at

˜
γ yields

u′(q(
˜
γ)) + v1(q(

˜
γ),

˜
γ)− v12(q(

˜
γ),

˜
γ)

β(γ̃)− F (
˜
γ)

f(
˜
γ)

+
λ(

˜
γ)

[
u′(q(

˜
γ))− v1(q(

˜
γ),

˜
γ)

]

f(
˜
γ)

= 2C ′(q(
˜
γ)).

(66)

Since
˜
γ ≥ γ∗, λ(

˜
γ)

[
u′(q(

˜
γ))− v1(q(

˜
γ),

˜
γ)

] ≤ 0. Therefore (66) and (65), together with
(62), imply q(

˜
γ) ≤

˜
q, which is a contradiction with (64). Q.E.D.

Remark 1. Recall that Claims 7–9 are proved for any γ̃ < γ̄ that is close to γ̄ (so
that µ(γ̃) ≤ 0) and such that γ̃ ∈ Γ+. Thus Claim 9 implies that Ĩ and

˜
γ are the same

for all these γ̃. This implies that sup Ĩ = γ̄. Moreover, q is non-decreasing over Ĩ ∪ Ī

by Claim 7, (55), and Claim 3.

Claim 10.
˜
γ =

¯
γ.

Proof. First,
˜
γ <

¯
γ is not possible since ex-ante IR should be binding over [a,

¯
γ]

and should not be at γ >
˜
γ close to

˜
γ. On the other hand, if

¯
γ <

˜
γ, then the

definition of
˜
γ implies that there exists γ ∈ (

¯
γ,

˜
γ) such that γ ∈ Γ0. But then, 0 ≤

W (γ) = v(q(γ), γ)− u(q(γ)) ≤ 0, which implies W (γ) = 0 and is a contradiction with
γ >

¯
γ. Q.E.D.

Hence, the conclusions of Proposition 8 are proved as follows:
For the monotonicity of q, if Ĩ ∪ Ī = [a, b], then the last statement in Remark 1

completes the proof. If
¯
γ > a, then it suffices to note that q(γ) = 0 for all γ ∈ [a,

¯
γ].

The only other case to be considered is when
¯
γ = a and a ∈ Γ0. In this case, 0 =

W (a) = v(q(a), a)− u(q(a)) ≤ 0 and hence q(a) = 0 and the monotonicity follows.
Statement 1 is proved in Claim 3.
Statement 2 follows from (61) and the fact q(γ) > 0 for all γ >

¯
γ. Indeed, if

q(γ) = 0 for some γ >
¯
γ, then the monotonicity of q implies that q(γ′) = W (γ′) = 0

for all γ′ ∈ [a, γ], in contradiction with the definition of
¯
γ.

Finally, to see (35), by taking the limit of (61) as γ →
¯
γ from the right and noting
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that q(γ) > 0 for all γ >
¯
γ, we obtain

u′(
˜
q) + v1(

˜
q,

¯
γ)− v12(

˜
q,

¯
γ)

β(γ̄)− F (
¯
γ)

f(
¯
γ)

= 2C ′(
˜
q). (67)

On the other hand, evaluating (28) at
¯
γ yields

u′(0) + v1(0,
¯
γ)− v12(0,

¯
γ)

β(γ̄)− F (
¯
γ)

f(
¯
γ)

+
λ(

¯
γ)

[
u′(0)− v1(0,

¯
γ)

]

f(
¯
γ)

+
δ(

¯
γ)

f(
¯
γ)

= 2C ′(0).
(68)

Since the fourth and fifth terms of (68) are non-negative, (68) and (67) yield
˜
q = 0 and

(35) follows. Q.E.D.

A.5 Proposition 9

Proposition 9. Assume A1–A4. Let (M, x, E) be an optimal schedule and x̄ be
defined by (16). Then, if there exists γ ∈ Γ such that 0 < q(γ) < q̄ and U(x(γ)) = 0,
then γ = γ∗, x̄ is finite,

{x(γ) : γ ∈ Γ} = {(0, 0), x(γ∗), x̄}, (69)

and x̄ solves (12).

Proof. To show γ = γ∗, note that all γ < γ∗ prefer (0, 0) to x(γ), and all γ > γ∗

prefer x(γ̂) to x(γ) for γ̂ sufficiently close (or equal) to b. Thus γ = γ∗ is the only
possibility. The ex-post IC of γ∗ then implies that U = 0 is satisfied for all types,
which in turn implies that all γ < γ∗ consume (0, 0), U(x̄) = 0, x̄ is finite, and all
γ > γ∗ consume x̄. This implies (69). Furthermore, since profits from γ∗ are negligible
and (M, x,E) is assumed to be optimal, x̄ has to be a solution of (12). Q.E.D.
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