Lubik, Thomas; Schorfheide, Frank

Working Paper
A Bayesian look at new open economy

Working Paper, No. 521

Provided in Cooperation with:
Department of Economics, The Johns Hopkins University

Suggested Citation: Lubik, Thomas; Schorfheide, Frank (2005) : A Bayesian look at new open economy, Working Paper, No. 521, The Johns Hopkins University, Department of Economics, Baltimore, MD

This Version is available at:
http://hdl.handle.net/10419/71979

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
A Bayesian Look at New Open Economy Macroeconomics

Thomas Lubik
Frank Schorfheide

Johns Hopkins University
University of Pennsylvania

May 2005

Abstract

This paper develops a small-scale two country model following the New Open Economy Macroeconomics paradigm. Under autarky the model specializes to the familiar three equation New Keynesian dynamic stochastic general equilibrium (DSGE) model. We discuss two challenges to successful estimation of DSGE models: potential model misspecification and identification problems. We argue that prior distributions and Bayesian estimation techniques are useful to cope with these challenges. We apply these techniques to the two-country model and fit it to data from the U.S. and the Euro Area. We compare parameter estimates from closed and open economy specifications, study the sensitivity of parameter estimates to the choice of prior distribution, examine the propagation of monetary policy shocks, and assess the model’s ability to explain exchange rate movements.

Thomas Lubik: Department of Economics, Johns Hopkins University, Mergenthaler Hall, 3400 N. Charles Street, Baltimore, MD 21218; email: thomas.lubik@jhu.edu. Frank Schorfheide: Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia, PA 19104; email: schorf@ssc.upenn.edu. Part of this research was conducted while Schorfheide was visiting New York University, for whose hospitality he is grateful. We thank Mark Gertler, Michael Krause, Paolo Pesenti, Pau Rabanal, Ken Rogoff, Chris Sims, John Williams and seminar participants at Georgetown University, Johns Hopkins University, the NBER Macroeconomics Annual Conference, UC Davis, and the Federal Reserve Bank of San Francisco for useful comments and discussion. Thanks also to Frank Smets and Raf Wouters for making the Euro Area data set available. Sungbae An provided excellent research assistance. Schorfheide gratefully acknowledges financial support from the Alfred P. Sloan Foundation.
1 Introduction

We develop a small-scale two-country model and estimate it based on U.S. and Euro Area data to study the magnitude of nominal rigidities, the transmission of monetary policy shocks as well as demand and supply shocks, and the determinants of exchange rate fluctuations. The two economies are roughly of equal size and are each characterized by a unified monetary policy. While the trade-linkages between the two currency areas are small compared to the linkages between, say the U.S. and Canada, the U.S. dollar and the Euro are the two most important currencies to date and the conduct of monetary policy in these two currency areas is of interest to policy makers and academic researchers alike. Closed economy versions of our two-country model have been fitted to both U.S. and Euro Area data and provide a natural benchmark for our empirical analysis.

An important feature of our model is that the real side, that is, preferences and technologies, is fully symmetric, while the nominal side allows for asymmetries. Specifically, we let nominal rigidities in domestic and import sectors differ across countries, and distinguish between monetary policy rules at home and abroad. In the absence of trade in goods and financial assets the model reduces to the standard New Keynesian dynamic stochastic general equilibrium (DSGE) model that has been widely used to study monetary policy in closed economies, e.g. Woodford (2003). The main theoretical contribution is the extension of the small open economy framework in Monacelli (2005) to a large open economy setting. We introduce endogenous deviations from purchasing power parity (PPP) via price-setting importers that lead to imperfect pass-through.

Structural empirical modelling is subject to the following tension: small, stylized models can lead to misspecification, whereas large-scale models with many exogenous shocks, e.g. Smets and Wouters (2003), may introduce identification problems and computational difficulties. The Bayesian framework is rich enough to cope both with misspecification and identification problems. A section of this paper is devoted to these issues and provides an accessible introduction to the Bayesian estimation of DSGE models. We decided to work with a relatively small model that abstracts from capital accumulation. Nevertheless, due to the multi-country setting we estimate roughly as many structural parameters as Smets and Wouters (2003) and fit the model to the same number of time series.

In our empirical analysis we carefully document the sensitivity of posterior estimates to changes in model specification and prior distribution. We begin with a comparison of closed and open economy parameter estimates. If the long-run implications of the two-country model are taken seriously, and we impose common steady states for the U.S. and the Euro Area, we find some discrepancies between open and closed economy estimates, in particular with respect to the price stickiness and the monetary policy reaction function of the Euro Area. If the models are fitted to demeaned data most of the discrepancies vanish. Estimation of
the open economy model with diffuse priors alters the posterior distributions. Since we do not use direct observations on trade flows and import prices, the estimated price rigidities and import shares are very sensitive to the choice of prior.

An advantage of the Bayesian approach is that prior distributions can play an important role. Priors enable the researcher to include information that is available in addition to the estimation sample. This information helps to sharpen inference. Non-degenerate prior distributions can be used to incorporate non-conclusive evidence. The resulting posterior provides a coherent measure of parameter (and model) uncertainty that can inform academic debates and policy making.

Unfortunately, the model only has limited success in explaining exchange rate movements. We introduce a non-structural PPP-shock that is designed to capture the deviations of the model from the data. The PPP shock generates most of the fluctuations in the nominal depreciation rate as the model implied real exchange rate is not sufficiently volatile. Attempts to reduce the role of the PPP shock by restricting its magnitude resulted in substantially inferior fit.

The structure of the paper is as follows. We begin by discussing the progress made so far in developing empirical models based on the New Open Economy Macroeconomics (NOEM) paradigm set forth by Obstfeld and Rogoff (1995). We focus our discussion on structural estimation methods and in particular on a Bayesian approach. Section 3 contains the theoretical model. Section 4 introduces and discusses the Bayesian estimation approach with a specific focus on misspecification and identification issues. Section 5 describes construction of the two-country data set and explains the choice of priors based on an extensive pre-sample analysis. The empirical results are summarized in Section 6. The final section concludes and offers directions for future research.

2 In Search of an Empirical NOEM Model

The development of theoretical models in the NOEM mold has changed the nature of debate in international finance. While these models have proven to be quite successful at both a conceptual level and in terms of quantitative theory, progress has been slower in developing an empirically viable NOEM model.\footnote{Naturally, there have been various early attempts to take the NOEM framework to the data. Schmitt-Grohe (1998) matches impulse response functions from a structural VAR to theoretical impulse responses derived from a model of the Canadian economy to study the transmission of business cycles. Ghironi (2000) uses GMM to estimate various first-order conditions derived from a NOEM model. None of these earlier approaches assesses overall fit or estimates the model over the entire parameter space.} In recent years, however, the literature has made large strides towards that goal with the development and widespread use of Bayesian estimation techniques for DSGE models. In a seminal contribution, Leeper and Sims (1994)
estimated a DSGE model using full-information maximum-likelihood methods with the goal to obtain an empirical model that is usable for monetary policy analysis. Structural empirical modelling thereby became a viable alternative to non-structural and partial information methods.

Among others, Schorfheide (2000) pushed the research agenda further by developing useful Bayesian techniques to estimate and evaluate DSGE models in the presence of model misspecification. Applying these methods, Smets and Wouters (2003) estimated a fully-specified, optimization-based model of the Euro Area that successfully matched the time series facts. This work has stimulated a host of research in closed economy models. The open economy literature has not been far behind in utilizing Bayesian techniques. In what follows we discuss the progress that has been made in search of an empirical NOEM model.

Most estimated NOEM models to date are small open economy (SOE) models. The first paper to use maximum likelihood techniques was Bergin (2003). He estimates and tests an intertemporal SOE model with monetary shocks and nominal rigidities. His results offer mixed support for a benchmark model where prices are assumed to be sticky in the currency of the buyer. However, the benchmark model does a poor job explaining exchange rate movements. Similar contributions along this line are Dib (2003) and Ambler, Dib and Rebei (2004). While the former shows that a richly parameterized SOE model has forecasting properties that are comparable to those of a vector autoregression (VAR), the latter authors focus on structural parameter estimates to guide optimal monetary policy.

From a modelling point of view, many SOE models can be regarded as an extension of the closed economy New Keynesian framework as detailed in, for instance, Clarida, Gali, and Gertler (1999). This interpretation is supported by the contribution of Gali and Monacelli (2005) who develop a small open economy NOEM that mimics the reduced-form structure of the New Keynesian paradigm model. This similarity facilitated the use of already established Bayesian techniques in a closed economy context.

Consequently, Lubik and Schorfheide (2003) estimate a simplified version of the Gali and Monacelli (2005) model to assess whether central banks respond to exchange rate movements. The NOEM framework simply serves as a data-generating process to provide identification restrictions for the estimation of the monetary policy rule. The likelihood function of the DSGE model implicitly corrects for the endogeneity of the regressors in the monetary policy rule. Earlier work on monetary policy in the open economy by Clarida, Gali, and Gertler (1998) has used generalized methods of moments (GMM) estimation with a large and varied set of instruments in order to deal with endogeneity. While potentially robust to misspecification, this approach suffers from subtle identification problems that can often lead to implausible estimates. Full-information based methods, on the other hand, use the optimal set of instruments embedded in the model’s cross-equation restrictions and make identification problems transparent.

\footnote{Other early contributions to the literature on Bayesian estimation of DSGE models are Dejong, Ingram, and Whiteman (2000), Fernandez-Villaverde and Rubio-Ramirez (2004), Landon-Lane (1998), and Otrok (2001).}
Lubik and Schorfheide (2003) find that among the central banks of Australia, New Zealand, the United Kingdom, and Canada, only the latter one consistently responds to exchange rate movements. This conclusion is robust to changes in the sample period, to the type of inflation targeting (forward vs. current-looking) and to the type of international relative price variable targeted. Subsequent empirical studies of SOE models include Adolfson, Laseen, Linde, and Villani (2004), Del Negro (2003), Justiniano and Preston (2004), and Leigh and Lubik (2005).

In contrast to the development of the empirical NOEM literature, the extensive theoretical body of work on open economy DSGE models is largely based on two-country settings. We believe that this paper is one of the first attempts to estimate a two-country model with Bayesian methods. Using a maximum likelihood framework, Bergin (2004) is the closest precursor to our paper in terms of scope and purpose. Bergin develops a two-country model that combines features of international real business cycle models with the NOEM. Specifically, he allows for capital accumulation and investment dynamics to provide richer internal dynamics. Additionally, he assumes that firms can engage in local currency pricing which allows for deviations from the law of one price, and that international asset markets are incomplete. Since the linearized version of the model would imply non-stationarity due to foreign asset accumulation, he introduces portfolio adjustment costs which render the dynamics stationary. Bergin applies the model to the U.S. and the G-6 countries and uses data on output, interest rates, inflation, exchange rates, and the current account. He imposes complete symmetry on the model and estimates it on output, inflation and interest rate differentials. He finds that the model has a similar fit as a VAR, and that it produces in-sample exchange rate forecasts that are slightly better than a random walk model.

Several institutions have developed large-scale multi-country models with the goal to assist monetary policy analysis. Examples include the SIGMA model of the Federal Reserve Board of Governors (see Erceg, Guerrieri, and Gust, 2005) and the Global Economic Model (GEM) of the International Monetary Fund (see Laxton and Pesenti, 2003). However, size creates computational challenges and up to now these models have only been calibrated to conduct simulation experiments, and not yet formally estimated.

Empirical researchers often face difficult choices when attempting to take DSGE models to the data. Even more so than in a closed-economy context, there is an embarrassment of riches in terms of open economy model elements that are designed to capture different aspects of international linkages. Of particular interest are the degree of international risk sharing, the structure of import and export markets, the pricing decisions by producers, and the degree of exchange rate pass-through to domestic prices. Additionally, an overriding

3 An excellent survey of that literature can be found in Lane (2001).
concern in open economy macro is the ability to explain the behavior of nominal and real exchange rates, their persistence, comovement with aggregate variables, and their driving forces.

Our approach in this paper is deliberately parsimonious in order to focus on robustness and identification instead of fit. We introduce imperfect pass-through via a conceptually straightforward, yet elegant, import price mark-up mechanism. This allows us to gauge the contribution of deviations from the law of one price in explaining exchange rate dynamics. We do not utilize the richer multi-sector structure as in Adolfson, Laseen, Linde, and Villani (2004). Bergin (2003, 2004) has demonstrated empirically that local currency pricing, i.e. price-setting in the currency of the consumer, is an important component for explaining exchange rate movements. We assume producer currency pricing for tractability.

Although there is only weak empirical support for perfect international risk sharing, we impose complete international asset markets. This is in line with most of the theoretical NOEM literature, and is likely to have second order implications only.\(^5\) In order to capture the persistence in the data we introduce habit formation in consumption as in Justiniano and Preston (2004). These authors additionally model inflation indexation in the pricing decision of the firms, but find only weak support for this assumptions. We also abstract from modelling investment dynamics as in Bergin (2003).

3 A Small-Scale Two-Country Model

We develop a two-country model of the U.S. (‘Home’) and the Euro Area (‘Foreign’) in the mold of the New Open Economy Macroeconomics. We allow for endogenous deviations from purchasing power parity in the short-run, but not in the long-run. Specifically, the same good can have different prices depending on where it is sold even after adjusting for exchange rate movements. Producers set prices monopolistically for the domestic as well as the world market in their own currency. Imported goods, however, are subject to price discrimination as monopolistic importers charge a mark-up to consumers at the border.\(^6\) We assume symmetric preferences and technologies, but allow for differences in price-setting, policies and disturbances affecting each economy. Under the assumption of complete international asset markets the model has a manageable reduced form, but can allow for potentially rich exchange rate behavior. In terms of notation, we denote goods produced and activities associated with them in the Home (Foreign) country by \(H\) (\(F\)), while the location of economic activities is indexed by a ‘\(^*\)’ for the Foreign country, and no index for the

\(^5\)See the discussion of the implications of market completeness in Corsetti and Pesenti (2001). Under incomplete asset markets, devices such as portfolio adjustment costs have to be introduced to render the model stationary. Schmitt-Grohe and Uribe (2003) show that the differences to the complete market benchmark are quantitatively negligible.

\(^6\)Our framework extends Monacelli (2005) to a large open economy setting. This form of endogenous pass-through has also been studied by Justiniano and Preston (2004) and Leigh and Lubik (2005).
Home country. For instance, \(c_H \) (\(c_F \)) is the consumption of the home- (foreign-) produced good in the Home (Foreign) country.

3.1 Domestic Households

The domestic economy is populated by a continuum of households whose preferences are described by an intertemporal utility function\(^7\):

\[
E_0 \left[\sum_{t=0}^{\infty} \beta^t \left(\frac{(C_t/A_W,t)^{1-\tau}}{1-\tau} - N_t \right) \right],
\]

where \(C_t = C_t - h\gamma C_{t-1} \) is effective consumption under habit formation and \(N_t \) is labor input. We assume that habits are internalized by the household. \(0 \leq h \leq 1 \) is the habit persistence parameter, \(\gamma \) is the steady state growth rate of \(A_{W,t} \), \(\tau > 0 \) is the coefficient of relative risk aversion. \(0 < \beta < 1 \) is the discount factor. \(A_{W,t} \) is a non-stationary world-wide technology shock, where we define \(z_t = A_{W,t}/A_{W,t-1} \). The presence of the term \(A_{W,t} \) in 1 implies that households derive utility from effective consumption relative to the level of technology and guarantees that the model has a balanced growth path along which hours worked are stationary even if \(\tau \neq 1 \).

\(C_t \) is an aggregate consumption index:

\[
C_t = \left[(1 - \alpha) \left(C_H^{\frac{1}{\eta}} + \alpha \frac{1}{\eta} C_F^{\frac{1}{\eta}} \right) \right]^\frac{-\eta}{1-\eta},
\]

where \(0 \leq \alpha < 1 \) is the import share and \(\eta > 0 \) is the intratemporal substitution elasticity between home and foreign consumption goods. Households allocate aggregate expenditure based on the demand functions:

\[
C_{H,t} = (1 - \alpha) \left(\frac{P_{H,t}}{P_t} \right)^{-\eta} C_t \quad \text{and} \quad C_{F,t} = \alpha \left(\frac{P_{F,t}}{P_t} \right)^{-\eta} C_t.
\]

\(P_{H,t}, P_{F,t} \) are domestic and foreign goods price indices, and

\[
P_t = \left[(1 - \alpha) P_{H,t}^{1-\eta} + \alpha P_{F,t}^{1-\eta} \right]^\frac{1}{1-\eta},
\]

and is the consumption-based price index (CPI).\(^8\)

In the aggregate, households face the budget constraint:

\[
P_{H,t} C_{H,t} + P_{F,t} C_{F,t} + E_t [Q_{t,t+1} D_{t+1}] \leq W_t N_t + D_t - T_t,
\]

\(^7\)We ignore household-specific indices for notational convenience.

\(^8\) Each domestic- and foreign-produced goods aggregate is composed of differentiated individual products with demand functions:

\[
C_{H,t}(i) = \left(\frac{P_{H,t}(i)}{P_{H,t}} \right)^{-\omega} C_{H,t} \quad \text{and} \quad C_{F,t}(i) = \left(\frac{P_{F,t}(i)}{P_{F,t}} \right)^{-\omega} C_{F,t}
\]

and associated price indexes. We abstract from this level of disaggregation since it is immaterial to our aggregate model specification.
where W_t is the nominal wage for labor services provided to firms. $Q_{t,t+1}$ is the stochastic discount factor used for evaluating consumption streams and D_t represents payments from a portfolio of assets, so that $E_t[Q_{t,t+1}D_{t+1}]$ corresponds to the price of portfolio purchases at time t. Under the assumption of complete asset markets, both domestically and internationally, this portfolio comprises a complete set of state-contingent claims. T_t are lump-sum taxes imposed by the government to finance its purchases.

Households maximize the intertemporal utility function subject to a sequence of budget constraints for all t. The labor-leisure choice is governed by the intratemporal optimality condition $\lambda^{-1}_t = W_t/P_t$, where λ_t is the marginal utility of income. Intertemporal consumption choice is given by:

$$A_{W,t} \lambda_t P_t = C_t - h\gamma E_t \left[\frac{A_{W,t} C_t^{-\gamma}}{A_{W,t+1} C_{t+1}^{-\gamma}} \right],$$

while optimal portfolio choice implies:

$$Q_{t,t+1} = \beta \frac{\lambda_{t+1}}{\lambda_t} \frac{P_t}{P_{t+1}}.$$

This equation can be used to construct the return on nominal government bonds, i.e. the nominal interest rate:

$$R_t^{-1} = \beta E_t \left[\frac{\lambda_{t+1}}{\lambda_t} \frac{P_t}{P_{t+1}} \right],$$

which we take to be the monetary authority’s instrument.

3.2 Domestic Producers

Domestic differentiated goods are produced by a continuum of monopolistically competitive producers which are subject to Calvo-type price setting. Each period a fraction $1 - \theta_H$ of domestic firms set prices optimally, while θ_H firms adjust prices according to the steady state inflation rate π, which is common to the home and the foreign economy. Each firm $j \in [0,1]$ maximizes discounted intertemporal profits subject to a downward-sloping demand curve. Demand for a firm’s product derives both from domestic sources $C_{H,t}$ and government expenditure $G_{H,t}$, as well as from abroad $C_{H,t}^*$. Firms have access to a linear production technology that uses labor as its only input:

$$Y_{H,t}(j) = A_{H,t} A_{H,t} N_t(j),$$

where $A_{H,t}$ is a stationary and country-specific technology shock.

Those firms that are able to re-optimize their price in period T maximize

$$E_T \left[\sum_{t=1}^{\infty} \theta_H^{-T} Q_{T,t} Y_{H,t}(j) \left[P_{H,t}(j) \pi^{t-T} - P_{H,t} M C_{H,t} \right] \right],$$

\footnote{We assume that the government shares the preferences of the consumers so that its demand has the same functional form. Moreover, we also assume for simplicity that firms do not engage in local currency pricing. An extension of the model in this regard would be a promising research direction.}
with respect to $P_{H,T}(j)$ subject to the demand function:

$$Y_{H,t}(j) = \left(\frac{P_{H,t}(j)}{P_{H,t}} \right)^{-\omega} (C_{H,t} + G_{H,t} + C_{H,t}),$$

(10)

where $MC_{H,t} = W_{t}/P_{H,t}$ is common to all producers due to perfectly competitive labor markets. Firms evaluate revenue streams by the households’ stochastic discount factor $Q_{T,t}$. θ_{H}^{T-t} is the probability that the specific firm will not be allowed to adjust its price between periods T and t. The solution to the domestic firm’s optimization problem implies that prices are set as a (time-varying) mark-up over marginal cost. This results in the familiar Phillips-curve relationship between domestic inflation and marginal cost after aggregation over individual firms and imposing ex-post homogeneity.

3.3 Domestic Importers

Following Monacelli (2005) we assume that endogenous deviations from PPP in the short run arise due to the existence of monopolistically competitive importers. Domestic consumers are required to purchase foreign-produced goods from importers that exert market power. Importers purchase foreign goods at world-market prices $P_{F,T}(j)$ (which are set by their respective producers in their own currency), so that the law of one price holds at the border. Importers sell these goods to domestic consumers and charge a mark-up over their cost, which creates a wedge between domestic and import prices of foreign goods when measured in the same currency. We can define the law of one price (l.o.p.) gap as:

$$\psi_{F,t} = \frac{e_{t}P_{F,t}^{*}}{P_{F,t}} - \frac{e_{t}P_{F,t}^{*}}{P_{F,t}};$$

(11)

If PPP holds, then $\psi_{F,t} = 1$. Therefore, pass-through from exchange rate movements to the domestic currency prices of imports is imperfect as importers adjust their pricing behavior to extract optimal revenue from consumers.

Similarly to domestic producers, importers operate under Calvo-style price-setting, with $1 - \theta_{F}$ importers setting prices optimally each period. Importers maximize the discounted stream of expected profits:

$$ET \left[\sum_{t=T}^{\infty} \theta_{F}^{1-t} Q_{T,t}C_{F,t}(j) \left(P_{F,T}(j) \pi^{t-T} - e_{t}P_{F,t}^{*}(j) \right) \right];$$

(12)

subject to the demand function:

$$C_{F,t}(j) = \left(\frac{P_{F,t}(j)}{P_{F,t}} \right)^{-\omega} C_{F,t},$$

(13)

where we assume that domestic government purchases cannot fall on foreign-produced goods. Note also that the marginal cost of purchasing imports is the l.o.p. gap for the specific good. Consequently, importers set domestic currency prices of foreign goods as a (time-varying) mark-up over $\psi_{F,t}$. These endogenous deviations from PPP then result in a Phillips-curve relationship between import-price inflation and the l.o.p. gap.
3.4 The Foreign Economy

We assume that home and foreign economies are symmetric in terms of preferences and technology, but they can differ in price-setting and monetary policy. The equations describing the foreign economy are therefore the same as for Home, with ‘starred’ variables and parameters properly substituted. We can define the real exchange rate as:

\[s_t = \frac{e_t P_t^*}{P_t}. \]

(14)

Symmetry implies that the foreign real exchange rate \(s_t = s_t^{-1} \). On the other hand, the terms of trade differ between the two countries by the l.o.p. gaps. The domestic terms of trade, that is, the price of exports in terms of imports measured in domestic currency are

\[q_t = \frac{P_{H,t}}{P_{F,t}}, \]

(15)

while the foreign terms of trade are:

\[q_t^* = \frac{P_{F,t}^*}{P_{H,t}^*}. \]

(16)

Using the definition of the real exchange rates we can derive the expression:

\[\frac{\psi_{F,t}}{q_t} = \frac{\psi_{H,t}^*}{q_t^*}. \]

(17)

Home and foreign terms of trade coincide (inversely) only when pass-through is perfect.

3.5 Risk-sharing, Market Clearing and Equilibrium

Complete international asset markets imply perfect risk-sharing between households in the two countries. In equilibrium, stochastic discount factors in the two countries have to be equalized, which leads to the following condition:

\[\beta \frac{\lambda_t + 1}{\lambda_t} \frac{P_t}{P_t + 1} = Q_{t,t+1} = \beta \frac{\lambda_t^* + 1}{\lambda_t} \frac{P_t^*}{P_t^* + 1} \frac{e_t}{e_t + 1}. \]

(18)

Goods market clearing requires that:

\[Y_{H,t} = C_{H,t} + G_t + C_{H,t} \] and \[Y_{F,t} = C_{F,t} + G_t^* + C_{F,t}. \]

(19)

Moreover, we assume that both countries are of equal size and that initial asset positions are zero. This implies balanced trade in value terms in the steady state and no net asset accumulation by any country.
3.6 Linearization

We proceed by (log-) linearizing the model equations around the balanced growth path. Our model imposes common steady state real interest rates, inflation rates, growth rates, and technologies. Since the model contains a non-stationary component in form of world-wide productivity growth, we de-trend the affected variables by their specific growth components beforehand. In our empirical analysis, we exploit the properties of the model as a variant of the New Keynesian monetary policy model that has attracted a lot of recent interest due its interpretability and tractability. In what follows we therefore briefly discuss the key structural equations. All variables are in log-deviations from the steady state, where $\bar{x}_t = \log{x}_t - \log{\bar{x}}$.

A linear approximation to the solution of the domestic firms’ price-setting problems results in a Phillips-curve type relationship between domestic inflation and marginal cost:

$$\pi_{H,t} = \beta E_t \pi_{H,t+1} + \kappa_H \bar{m}_t,$$

where $\kappa_H = \frac{1-\theta_H}{\theta_H} (1 - \theta_H \beta)$. Using the condition for labor-leisure choice, the marginal cost term can be expressed as $\bar{m}_t = -\bar{\lambda}_t - \alpha \bar{q}_t - A_t$. $\bar{\lambda}_t$ is the marginal utility of income, which evolves according to:

$$\bar{\lambda}_t = \frac{\tau}{1-h^2} \bar{c}_t - \frac{h^\beta}{1-h^\beta} E_t [\tau \bar{C}_{t+1} + \bar{z}_{t+1}],$$

where the law of motion for the habit stock is:

$$(1-h) \bar{C}_t = \bar{c}_t - h \bar{c}_{t-1} + h \bar{z}_t.$$

For $h = 0$, the model reduces to standard consumption preferences. Recall that $\bar{z}_t = \Delta \bar{A}_{W,t}$. World-wide shocks do not affect marginal costs (only country-specific shocks do), but they change the intertemporal consumption trade-off as evidenced by habit dynamics and the Euler-equation:

$$-\bar{\lambda}_t = -E_t \bar{\lambda}_{t+1} - (\bar{R}_t - E_t \bar{\pi}_{t+1}) + E_t \bar{z}_{t+1}.$$

The price-setting problem of importers reduces to a Phillips-curve type relation between import price inflation and the l.o.p. gap:

$$\bar{\pi}_{F,t} = \beta E_t \bar{\pi}_{F,t+1} + \kappa_F \bar{\psi}_{F,t},$$

where $\kappa_F = \frac{1-\theta_F}{\theta_F} (1 - \theta_F \beta)$. CPI-inflation can be derived using the definition

$$\bar{\pi}_t = \alpha \bar{\pi}_{F,t} + (1 - \alpha) \bar{\pi}_{H,t}$$

and the terms of trades evolve according to

$$\bar{q}_t = \bar{q}_{t-1} + \bar{\pi}_{H,t} - \bar{\pi}_{F,t}.$$
Inflation dynamics therefore depends on domestic driving forces as well as international relative price movements and endogenous deviations from PPP in the form of imperfect pass-through. The real exchange rate behaves according to

$$\bar{s}_t = \psi_{F,t} - (1 - \alpha)\bar{q}_t - \alpha \bar{q}_t^*$$

(27)

and captures the distortions introduced by the l.o.p. gap as well as movements in each country’s own terms of trade. Using the definition of the real exchange rate also allows us to derive nominal exchange rate dynamics:

$$\Delta \bar{e}_t = \bar{\pi}_t - \bar{\pi}_t^* + \Delta \bar{s}_t.$$ (28)

The (linearized) asset pricing equation for nominal bonds implies that the interest rate differential is related to expected exchange rate depreciation, in other words, uncovered interest parity (UIP):

$$\bar{R}_t - \bar{R}_t^* = E_t \Delta \bar{e}_{t+1}.$$ (29)

Furthermore international risk-sharing implies a relationship between marginal utilities across countries adjusted for purchasing power:

$$\bar{\lambda}_t = \bar{\lambda}_t^* - s_t.$$ (30)

The goods market clearing condition:

$$\bar{y}_{H,t} = \bar{c}_t - \bar{g}_t - \frac{\alpha}{\tau} \bar{s}_t - \alpha (1 - \alpha) \eta (\bar{q}_t - \bar{q}_t^*)$$

(31)

shows how output is affected by demand and relative prices. Demand disturbances in the form of government expenditure shocks \bar{g}_t therefore affect output directly and not via changing marginal rates of substitution in consumption and leisure.

The model is closed by specifying monetary policy. We assume that central banks in both countries adjust the nominal interest in response to deviations of inflation, a measure of output, and exchange rate depreciation from their respective targets:

$$\bar{R}_t = \rho_R \bar{R}_{t-1} + (1 - \rho_R) [\psi_1 \bar{\pi}_t + \psi_2 (\Delta \bar{y}_t + \bar{z}_t) + \psi_3 \Delta \bar{e}_t] + \epsilon_{R,t}.$$ (32)

The monetary policy rule is of the standard Taylor-type with the exception that the central bank responds to deviations of output growth from the mean growth rate γ, instead of a measure of the output gap.

Once the equations describing the foreign economy are added, the log-linearized model consists of 21 equations in endogenous variables, and 5 equations describing the evolution of the exogenous autoregressive shocks:

$$\bar{z}_t = \rho_z \bar{z}_{t-1} + \epsilon_{z,t}, \quad \bar{A}_t = \rho_A \bar{A}_{t-1} + \epsilon_{A,t}, \quad \bar{A}_t^* = \rho_A^* \bar{A}_{t-1}^* + \epsilon_{A^*,t},$$

$$\bar{G}_t = \rho_G \bar{G}_{t-1} + \epsilon_{G,t}, \quad \bar{G}_t^* = \rho_G^* \bar{G}_{t-1}^* + \epsilon_{G^*,t}.$$ (33)
Moreover, there are innovations in each country’s monetary policy rule denoted by $\epsilon_{R,t}$ and $\epsilon_{R^*,t}$. Given these exogenous process the model is then solved using the methods described in Sims (2002). The closed economy version of the model is obtained by setting $\alpha = 0$ and combining Equations (20), (21), (22), (23), (25), (31), and (32).

4 Why a Bayesian Approach?

Our empirical analysis focuses on three broad questions, some of which are directly related to estimates of the structural parameters and others are related to the dynamic properties of the two-country model. First, we examine the magnitude of nominal rigidities, captured by the Calvo parameters. The rigidities in the import sectors, controlled by θ_F and θ_H, determine the degree of exchange rate pass-through and play an important role for the transmission of shocks across country borders. Second, we estimate monetary policy rules for the U.S. and the Euro Area and study the propagation of monetary policy shocks. Unanticipated changes in monetary policy appear as innovations in the interest rate feedback rule (32). The estimation of the policy coefficients and hence the identification of the monetary policy shocks is hindered by the joint endogeneity of the variables in the interest-rate feedback rule. Finally, we use the open economy model to determine the relative importance of the various nominal and real structural shocks for exchange rate fluctuations.

The Bayesian approach pursued in this paper has three main characteristics. First, unlike GMM estimation of monetary policy rules and first-order conditions, the Bayesian analysis is system-based and fits the solved DSGE model to a vector of aggregate time series. Second, the estimation is based on the likelihood function generated by the DSGE model rather than, for instance, the discrepancy between DSGE model impulse response functions and identified VAR impulse responses as in Rotemberg and Woodford (1997) and Christiano, Eichenbaum, and Evans (2005). Third, prior distributions can be used to incorporate additional information into the parameter estimation.

Any estimation method for DSGE models has to address the problem of potential model misspecification and lack of identification. DSGE models impose potentially invalid cross-coefficient restrictions on the time series representation of y_t, resulting often in poor out-of-sample fit relative to VARs. For instance, in order to keep our two-country model transparent and the estimation tractable, we assumed symmetric tastes across countries, a common trend in productivity, perfect risk sharing, uncovered interest rate parity, and abstracted from capital accumulation. While in a closed economy setting more elaborate models such as Smets and Wouters (2003) had some success in closing the gap between model and reality, misspecification remains a concern even for large-scale DSGE models as documented in Del Negro, Schorfheide, Smets, and Wouters (2004).
If different parameterizations of a DSGE model have distinct substantive implications but are observationally equivalent, then the model is not fully identified. Unlike in the context of linear simultaneous equations models or vector autoregressions there are no easily verifiable identification conditions for DSGE models available because the mapping from the structural parameters into the reduced form state space representation is highly nonlinear. The use of large-scale models that relax some of the unrealistic restrictions imposed by their smaller cousins potentially amplifies identification problems. Hence, it is important that a DSGE model estimation procedure generates coherent inference, even if some parameters are not identifiable, and is able to incorporate additional information from other data sets. After some preliminary remarks on the structure of linearized DSGE models the remainder of this section will focus on how Bayesian inference can be used to cope with misspecification and identification problems.

4.1 Preliminaries

The log-linearized DSGE model can be written as a rational expectations (LRE) system of the form

$$\Gamma_0(\theta)s_t = \Gamma_1(\theta)s_{t-1} + \Gamma_c(\theta)\epsilon_t + \Gamma_\eta(\theta)\eta_t. \quad (34)$$

Here, s_t denotes the vector of model variables such as y_t, π_t, \tilde{R}_t. The vector ϵ_t stacks the innovations of the exogenous processes and η_t is composed of rational expectations forecast errors.\footnote{For instance, one can define $\eta^c_t = \tilde{c}_t - E_{t-1}[\tilde{c}_t]$ and absorb $E_{t}[\tilde{c}_{t+1}]$ to represent the model developed in Section 3 in terms of (34).} The dynamics of the exogenous shock processes are absorbed in the definition of the Γ matrices and θ collects the structural parameters of the model. The solution to (34) can be expressed as

$$s_t = \Phi_1(\theta)s_{t-1} + \Phi_c(\theta)\epsilon_t. \quad (35)$$

A measurement equation then relates the model variables s_t to a vector of observables y_t:

$$y_t = A(\theta) + Bs_t. \quad (36)$$

In our application y_t is composed of output growth, inflation, and nominal interest rates for the U.S. and Euro Area, as well as the US$-Euro exchange rate. B does not depend on θ as it merely selects elements of s_t. $A(\theta)$ captures the mean of y_t, which is related to the underlying structural parameters.

In practice, if y_t is predicted based on its lagged values, then its forecast error covariance matrix is non-singular. Hence, any DSGE model that generates a rank-deficient covariance matrix for y_t is clearly at odds with the data. So far, our model has seven shocks and is indeed able to generate a forecast error covariance matrix that is full rank. The larger the dimension of y_t, the more shocks have to be introduced into the model. For instance, Smets and Wouters (2003) include investment, consumption, hours worked,
and wages in addition to output, inflation, and interest rates. As a consequence, they have to use a high-dimensional vector ϵ_t that includes shocks to the mark-up of the monopolistically competitive firms, to the shadow value of installed capital, and the disutility of labor.11 Other authors, referring to Sargent (1989) have added shocks not to the LRE system (34) but rather to the measurement equation (36), avoiding a structural interpretation of these additional sources of uncertainty. These additional error terms are often called measurement errors, a misnomer, as the shocks are designed to capture an obvious form of model misspecification.

Bayesian analysis provides a powerful framework for DSGE model estimation and inference that is attractive both at a conceptual level as well as from a practical perspective. Let $Y = \{y_t\}_{t=1}^T$. We will collect the DSGE model parameters in the vector θ. The likelihood function $L(\theta|Y)$ is combined with a prior density $p(\theta)$ to form a posterior density $p(\theta|Y)$:

$$p(\theta|Y) \propto L(\theta|Y)p(\theta),$$

(37)

where \propto denotes proportionality. Bayesian procedures tend to have many desirable statistical properties and allow for coherent inference and decision making under model and parameter uncertainty, as discussed in textbooks such as Robert (1994). We want to emphasize two different aspects of Bayesian inference, namely its properties under potential misspecification and lack of identification. In the subsequent discussion we will assume that the researcher has, in addition to Y, access to some data set X that is potentially informative with respect to θ. X might contain a pre-sample of y_t’s, other macroeconomic time series, or micro-level observations.

4.2 Misspecification

The presence of misspecification complicates econometric inference and decision making. In this paper we are mostly interested in the estimation of structural parameters such as the response of central banks to exchange rates or the substitution elasticity between home and foreign goods, and moving average representation of the time series y_t in terms of the structural shocks ϵ_t. DSGE model misspecification can take many forms including omitted non-linearities, misspecified structural relationships due to incorrect preferences or technologies, or misspecification due to omitted or wrongly-specified exogenous processes.

Once we acknowledge that our econometric model provides merely an approximation to the law of motion of the time series y_t then it seems reasonable to allow for the possibility that there does not exist one single parameter vector θ_0 that delivers, say, the ‘true’ substitution elasticity between home and foreign goods and the most precise impulse responses to a monetary policy shock. All formal and informal estimation

11In fact, Smets and Wouters (2003) used more shocks and variables to overcome some aspects of model misspecification.
procedures implicitly use a measure of discrepancy between the ‘true’ law of motion and the approximating model. Not surprisingly, under model misspecification, different measures of discrepancy tend to deliver different parameter estimates. Likelihood-based methods, for instance, search for values of θ under which the approximating model generates good time series forecasts.\footnote{Formally, likelihood-based estimators tend to converge to the $\tilde{\theta}$ that minimizes the Kullback-Leibler discrepancy between M_0 and M_θ, see for instance, White (1982).}

One interpretation of the calibration approach advocated by Kydland and Prescott (1982, 1996) is that there exists ample evidence on θ_0 both through the long-run properties of y_t and from other data sets, which we denoted by X. As mentioned above, X might contain micro-level observations on household and firm behavior. This evidence is translated into calibrated values of θ that are used to parameterize the DSGE model to address the questions of interest. In the absence of model misspecification and the presence of abundant out-of-sample evidence X, likelihood-based estimation methods should generate the same parameter values that calibrators choose, and vice versa, parameter values obtained from a calibration analysis should yield high likelihoods. The experience of two decades of calibration and one decade of estimation has been, unfortunately, that there is neither enough information in X to unambiguously pin down θ_0, nor that parameter values obtained from micro-level studies necessarily lead to large values of likelihood functions.

In a Bayesian framework, the likelihood function in (37) is re-weighted by the prior density $p(\theta)$ and the prior can bring to bear information X that is not contained in the sample Y. Unlike in a maximum likelihood approach that uses some of the extraneous information to fix elements of the parameter vector θ, the prior density allows to weigh information about different parameters according to its reliability. Strong micro econometric evidence about the frequency with which firms change their prices or information on the degree of exchange-rate pass-through can be captured in a tight prior distribution for the corresponding model parameters. Since priors are always subject to revision the shift from prior to posterior distribution can be an indicator of the tension between the micro-level and time series information. If the likelihood function peaks at a value that is at odds with the information in X, then the marginal data density, defined as

$$p(Y) = \int L(\theta|Y)p(\theta)d\theta$$

(38)

will be substantially lower than the marginal data density computed under an alternative, more diffuse prior. Marginal data densities can be used to compare different Bayes models, where a Bayes model consists of a likelihood function and a prior distribution. Illustrating how the marginal data density changes as the prior is modified can also highlight tensions between different sources of information.

The overall fit of a DSGE model can be assessed by comparison to a reference model. In this paper we simply compute marginal data densities for different versions of Bayesian VARs with Minnesota-type
priors and compare them to marginal data densities computed from the estimated two-country model. More elaborate methods are available but not pursued in this paper. For instance, in Del Negro, Schorfheide, Smets, and Wouters (2004) the assessment of fit is not based on a VAR with Minnesota prior. Instead the DSGE model itself is used to construct a prior distribution for the VAR coefficients. The procedure has the interpretation that the restrictions imposed by the DSGE model on the VAR representation of y_t are relaxed to the extent that the deviation from the restriction improves the marginal data density of the resulting specification. A comparison of DSGE model impulse responses and identified responses from the so-called DSGE-VAR can yield insights in the nature of the misspecification. A procedure that allows for a loss-function based comparison of multiple, potentially misspecified DSGE models has been developed in Schorfheide (2000).

The two most popular alternatives to likelihood-based inference are (i) parameter estimation based on the minimization of the discrepancy between impulse responses of DSGE models and identified vector autoregressions and (ii) single-equation GMM estimation. Impulse response function matching tries to cope with model misspecification by leaving most of the exogenous shocks unspecified. Its disadvantage is that it requires correctly identified and precisely estimated VAR impulse responses to, for instance, a monetary policy or a technology shock. Moreover, it does not provide an overall measure of time series fit of the DSGE model.

Single-equation approaches also address the problem of model misspecification by leaving parts of the DSGE model unspecified. Consider the price-setting equation (20) for U.S. producers in our two-country model. The system-based Bayesian estimation approach treats inflation $\pi_{H,t}$ and marginal costs \tilde{mc}_t as latent variables. It uses the model restrictions stemming from the production function and the equilibrium prices together with the observations on CPI inflation, output growth, interest rates, and nominal exchange rates to infer inflation and marginal costs in the U.S. production sector. A single-equation GMM estimation of the price-setting equation would require time series observations for $\pi_{H,t}$ and \tilde{mc}_t. The use of direct observations on marginal costs is likely to deliver a more reliable estimate of κ_H, but the single-equation approach tends to mask identification problems and the model’s potential inability to predict the movements of these additional observations.

In the estimation of the monetary policy rule the likelihood function adjusts the endogenous regression equation (32) by the conditional expectation term $E[\epsilon_{R,t}|\pi_t, y_t, \tilde{y}_{t-1} + \tilde{z}_t, \Delta\tilde{c}_t]$. In a GMM approach, on the other hand, one would choose a set of instrumental variables, e.g., lagged endogenous variables, that are orthogonal to the current monetary policy shock ϵ_t. The likelihood-based approach exploits the cross-equation restrictions to construct the conditional expectation of the policy shock. This can lead to sharper inference if the model is well specified, or it might contaminate the parameter estimates if the conditional expectation is poorly specified.
Most importantly, single-equation estimates do not provide an overall measure of time series fit of the DSGE model. Hence, the reliability of, for instance, impulse response functions constructed based on parameter estimates that have been obtained with single-equation estimation methods is difficult to assess. Since the exogenous shocks that generate business cycles are typically left unspecified, it is not possible to disentangle the relative importance of the various shocks for the fluctuations of the endogenous variables. In the presence of rational expectations, the idea of single-equation estimation is often fundamentally flawed, since identification of the structural parameters can only be achieved if the remainder of the system is sufficiently restricted. We will elaborate this point in the following subsection.

4.3 Identification

Identification problems can arise due to a lack of informative observations, or more fundamentally, from a probability model that implies that different values of structural parameters lead to the same joint distribution for the observables \(Y \). We will provide a simple example for each case.

Suppose we are interested in estimating the degree of exchange rate pass-through, which in our two-country model is tied to the parameters \(\theta_F \) and \(\theta_H^* \). In the absence of nominal rigidities in the import sector pass-through is perfect. We would expect that the degree of pass-through is best measured through the dynamics of import prices. Non-structural studies of exchange rate pass-through often regress import prices on measures of exchange rate variation, e.g., Campa and Goldberg (2004). Smets and Wouters (2002) implicitly estimate the degree of nominal rigidity in the import sector of a small open economy model by matching DSGE model impulse responses to VAR impulse responses, whereby the response of import prices to an exchange rate shock plays an important role in determining the degree of pass-through. The estimation results presented subsequently are based on U.S. and Euro Area CPI inflation. While the degree of pass-through also affects the dynamics of CPI inflation, the choice not to use direct information on import prices will make it more difficult to identify the degree of pass-through.

Rational expectations models can generate delicate identification problems that are very difficult to detect in larger systems, since the mapping from the vector of structural parameters \(\theta \) into the state-space representation (35) and (36) that determines the joint probability distribution of \(Y \) is highly nonlinear and typically can only be evaluated numerically. Consider the following two models, in which \(y_t \) is the observed endogenous variable and \(u_t \) is an unobserved shock process. In model \(M_1 \), the \(u_t \)’s are serially correlated:

\[
M_1: \quad y_t = \frac{1}{\alpha} E_t[y_{t+1}] + u_t, \quad u_t = \rho u_{t-1} + \epsilon_t \sim iid(0, \sigma^2).
\]

In model \(M_2 \) the shocks are serially uncorrelated, but we introduce a backward-looking term \(\phi y_{t-1} \) on the right-hand-side as is often done in the New Keynesian Phillips Curve literature:

\[
M_2: \quad y_t = \frac{1}{\alpha} E_t[y_{t+1}] + \phi y_{t-1} + u_t, \quad u_t = \epsilon_t \sim iid(0, \sigma^2).
\]
Under \mathcal{M}_1 the equilibrium law of motion becomes

$$\mathcal{M}_1: \ y_t = \rho y_{t-1} + \frac{1}{1-\rho/\alpha} \epsilon_t,$$

whereas under the ‘backward looking’ specification

$$\mathcal{M}_2: \ y_t = \frac{1}{2}(\alpha - \sqrt{\alpha^2 - 4\phi \alpha}) y_{t-1} + \frac{2\alpha}{\alpha + \sqrt{\alpha^2 - 4\phi \alpha}} \epsilon_t.$$

(41)

(42)

Models \mathcal{M}_1 and \mathcal{M}_2 are observationally equivalent. The model with the ‘backward looking’ component is distinguishable from the purely ‘forward looking’ specification only under a strong a priori restriction on the exogenous component, namely $\rho = 0$. Although \mathcal{M}_1 and \mathcal{M}_2 will generate identical reduced form forecasts, the effect of changes in α on the law of motion of y_t is different in the two specifications. While Bayesian analysis does not alter the likelihood functions associated with models \mathcal{M}_1 and \mathcal{M}_2 it can bring to bear additional information X about the parameters that may help to discriminate between the two specifications.

For \mathcal{M}_1 it is easy to see that α and the standard deviation of ϵ_t are not separately identifiable. The likelihood function conditional on ρ is flat for values of α and σ such that $\sigma/(1-\rho/\alpha)$ is constant. More generally, suppose that the generic parameter vector θ of a probability model can be partitioned into $\theta = [\theta_1', \theta_2']'$ and the likelihood function is flat in the direction of θ_2: $\mathcal{L}(\theta|Y) = \mathcal{L}(\theta_1|Y)$. Straightforward manipulations with Bayes Theorem lead to

$$p(\theta|Y) = p(\theta_1|Y)p(\theta_2|\theta_1) \propto \mathcal{L}(\theta_1|Y)p(\theta_1, \theta_2)$$

(43)

First, a proper prior $p(\theta_1, \theta_2)$ can introduce curvature into the objective function that facilitates numerical maximization and the use of Markov Chain Monte Carlo methods to generate draws from the posterior distribution. Second, there is updating of the marginal distribution of θ_1, but not of the conditional distribution of $\theta_2|\theta_1$. Nevertheless, the posterior distribution is well defined as long as the joint prior distribution of θ integrates to one. Hence, a comparison of priors and posteriors can provide insights about the extent to which the data provide information about the parameters of interest.

Finally, consider the attempt to answer the question whether there is backward-looking behavior via GMM analysis. Let η_t be the rational expectations forecast error associated with y_t and write

$$y_t - \alpha y_{t-1} + \alpha \phi y_{t-2} = \eta_t - \alpha u_{t-1}.$$

(44)

The presence of u_{t-1} on the right-hand-side suggests that y_t has to be lagged by at least two periods to obtain valid instruments. It is straightforward to verify that under \mathcal{M}_1 $\hat{\alpha} \overset{p}{\to} \rho$ and under \mathcal{M}_2 $\hat{\alpha} \overset{p}{\to}$

13To ensure determinacy we assume $\alpha > 1$ in \mathcal{M}_1 and $|\alpha - \sqrt{\alpha^2 - 4\phi \alpha}| < 2$ and $|\alpha + \sqrt{\alpha^2 - 4\phi \alpha}| > 2$ in \mathcal{M}_2.

14This is well-known in Bayesian econometrics, see Poirier (1993) for a discussion, and has been exploited in Lubik and Schorfheide (2004) when estimating DSGE models with indeterminacies.
\[\frac{1}{2}(\alpha - \sqrt{\alpha^2 - 4\phi}) \], where \(\overset{p}{\to} \) denotes convergence in probability. Under both specifications \(\overset{p}{\to} 0 \).

Hence, the GMM estimates are inconsistent in this example.

The identification of rational expectation systems and DSGE models more generally is typically only possible under strong \textit{a priori} restrictions on the model and the exogenous driving processes. This point has been emphasized by Sims (1980), and in recent years in the context of indeterminacy by Lubik and Schorfheide (2004) and Beyer and Farmer (2004). Limited information approaches that try to avoid auxiliary assumptions are often subject to hidden identification problems as illustrated in the stylized example above. Hence, we advocate to use a system-based estimation approach that spells out all auxiliary assumptions, constructs a likelihood function, and combines the sample information \(Y \) with out-of-sample information \(X \) summarized in a prior distribution.

5 Data and Priors

We interpret our theoretical two-country model as representing the economies of the U.S. and the Euro Area. The two regions are roughly of the same size, have a similar per capita income, and unlike other groups of countries such as the OECD, the Euro Area can be viewed as a unified economic region. Even before European Monetary Union, monetary policy in Europe was guided by the Deutsche Bundesbank within a system of fixed exchange rates. Moreover, closed economy versions of New Keynesian DSGE models have been estimated for both the U.S. and the Euro Area and can serve as a benchmark for the analysis of the two-country model developed in this paper.

Our empirical analysis is based on output growth, inflation, and nominal interest rate series for the U.S. and the Euro Area, as well as data on nominal depreciation rates. Most of the U.S. data were extracted from the FRED 2 database maintained by the Federal Reserve Bank of St. Louis. The Euro Area time series stem from the database underlying the Area Wide Model of the European Central Bank. In addition, we construct a synthetic US$-Euro exchange rate series for the time period prior to the introduction of the Euro in 1999.\(^{15}\) Details on the construction of the data set are provided in Appendix A. The estimation results reported in Section 6 are based on a sample from 1983:I to 2002:IV.

5.1 A Preliminary Look at the Data

The top panel of Figure 1 plots the ratio of per capita GDP in the U.S. and the Euro Area. According to the DSGE model the technology processes in the two regions have a common stochastic trend. Since all

\(^{15}\) Over the sample period from 1983:I to 2002:IV the correlation between depreciation rates calculated from our synthetic US$-Euro exchange rate and the published US$-Ecu depreciation rates is greater than 0.99.
the other shocks in the model are stationary the output ratio should be stationary. While the series plotted in the first panel appears fairly persistent, its autocorrelation is 0.85 and a conventional Dickey-Fuller test rejects the null hypothesis of a unit root. Thus, the common trend assumption does not seem to be at odds with the data.

The nominal depreciation rate is depicted in the bottom panel of Figure 1. The depreciation rate is very volatile, in particular compared to quarter-to-quarter interest rate differentials \(\bar{R}_{t-1} - \bar{R}^*_t \) and quarter-to-quarter inflation differentials \(\bar{\pi}_t - \bar{\pi}^*_t \). Our model imposes uncovered interest rate parity, that is,

\[
E_{t-1}[\Delta \bar{\varepsilon}_t] = \bar{R}_{t-1} - \bar{R}^*_t.
\]

According to the data the interest rate differential, and hence the conditional mean of the nominal depreciation rate, shows very little time variation. Thus, in order to fit the exchange rate data, the DSGE model has to generate a mapping from the structural shocks into unanticipated movements of the depreciation rates that can explain the large fluctuations of \(\Delta \bar{\varepsilon}_t \).

We also impose the PPP relationship

\[
\Delta \bar{\varepsilon}_t = \Delta \bar{\pi}_t + (\bar{\pi}_t - \bar{\pi}^*_t).
\]

Figure 1 shows that the actual inflation differential is fairly smooth and that most of the nominal exchange rate fluctuations are aligned with movements of the real exchange rate. It is well known that the current generation of NOEM models has difficulties reproducing the observed volatility of the real exchange rate (see, for instance, Chari, Kehoe, and McGrattan, 2002). Therefore, we introduce a shock to the PPP equation:

\[
\Delta \bar{\varepsilon}_t = \Delta \bar{\pi}_t + (\bar{\pi}_t - \bar{\pi}^*_t) + \epsilon_{E,t}
\]

This shock essentially captures model misspecification. If the estimated variance of \(\epsilon_{E,t} \) is small, we can conclude that the model is able to explain most of the observed real exchange rate fluctuations.

5.2 Presample Analysis and Prior Distributions

While, in principle, priors can be gleaned from personal introspection to reflect strongly held beliefs about the validity of economic theories, in practice most priors are chosen based on some observations, denoted by \(X \) in Section 4, that are available in addition to the estimation sample \(Y \). We will subsequently motivate the choice of most of our priors based on a pre-sample of observations from 1970:I to 1982:IV. The prior distributions for the price stickiness parameters are loosely chosen based on micro-econometric studies of price setting behavior. The marginal prior distributions for the parameters of the NOEM model are summarized in Tables 1 and 4. We assume all parameters to be \textit{a priori} independent.
For both the US and the Euro Area we are fitting AR(1) models to inflation rates, import shares, and ex post real interest rates. The estimated means are used to guide the choice of prior means for the steady state real interest r, the import share parameter α, and steady state inflation rates π, and π^*. We also estimate a common stochastic trend model for U.S. and Euro Area output data:

$$\Delta \tilde{y}_t = \gamma + \Delta \tilde{A}_t + z_t, \quad \Delta \tilde{y}_t^* = \gamma + \Delta \tilde{A}_t^* + z_t,$$

where

$$\tilde{A}_t = \rho_A \tilde{A}_{t-1} + u_{A,t}, \quad \tilde{A}_t^* = \rho_{A^*} \tilde{A}_{t-1}^* + u_{A^*,t}, \quad \tilde{z}_t = \rho_z \tilde{z}_{t-1} + u_{z,t},$$

The estimate of γ is used to set the prior mean for γ in the analysis of the DSGE model. We use the estimates of ρ_z and $\sigma(u_{z,t})$ to inform the choice of prior means for the non-stationary technology process in the DSGE model. The processes \tilde{A}_t and \tilde{A}_t^* are not directly comparable to the country specific technology processes in the DSGE model. Nevertheless, we use the estimates to guide the choice of prior for the remaining exogenous processes in the DSGE model. In order to obtain a prior for the standard deviation of the monetary policy shock we estimate the following regression by OLS (for the U.S. and the Euro Area):

$$R_t = \beta_0 + \beta_1 R_{t-1} + \beta_2 \pi_{t-1} + \beta_2 \Delta Y_{t-1} + u_{R,t}.$$

The benchmark prior for σ_E, the standard deviation of the PPP shock, is based on the unconditional standard deviation of the nominal depreciation rate during the pre-sample period. We vary this prior in our empirical analysis to assess how the fit of the model changes as a function of prior beliefs about the misspecification of the exchange rate equations.

The priors for the price stickiness parameters θ are chosen based on evidence on the average frequency of price changes. Following Bils and Klenow (2004) an average 26% of U.S. sectoral prices are changed every 3.3 months which translates into a Calvo-adjustment parameter of $\theta_H = 0.5$. Stickiness of import prices is set at the same level. For Euro-area data we use information reported by Angeloni et al. (2004) to set the prior mean at 0.75. The prior mean for the intratemporal substitution elasticity η is set at 1 with a large standard deviation to account for uncertainty about its location. The priors for the coefficients in the monetary policy rule are loosely centered around values typically associated with the Taylor rule. We allow for the possibility of a small policy response to exchange rate movements in both countries following Lubik and Schorfheide (2003). As a final point, it is well known that linear rational expectations models can have multiple equilibria. While this may be an issue of independent interest (see Lubik and Schorfheide, 2004), we do not pursue this direction in this paper. The prior distribution for the model is therefore truncated at the boundary of the determinacy region.

6 Empirical Analysis

The empirical analysis has three parts. We begin by estimating the two-country model developed in Section 3 under a benchmark prior distribution. We then document the sensitivity of the parameter estimates to changes in the prior distribution. The second part studies the dynamics of the estimated NOEM model through impulse response functions. We assess the estimates of the transmission of monetary policy shocks under the benchmark prior and a perfect pass-through version of the model. Finally we are examining the estimated exchange rate dynamics and the relative importance of the various structural shocks for exchange rate fluctuations.

6.1 Estimation

Markov Chain Monte Carlo Methods described in Appendix B are used to generate draws from the posterior distribution of the model parameters. Based on these draws we compute the summary statistics (posterior means and 90% probability intervals) reported in Tables 2 to 7. The results in Sections 6.2 and 6.3 are obtained by converting the parameter draws into impulse response functions and variance decompositions. The estimated steady state inflation rates reported subsequently, denoted by \(\pi^{(A)} \) are annualized. We also report a \(r^{(A)} \) which is related to \(\bar{\pi} \) according to \(\bar{\pi} = 1/(1 + r^{(A)}/400) \). Moreover, \(\gamma \) is the quarter-to-quarter percentage growth rate of \(A_{W,t} \).

6.1.1 Closed versus Open Economy Estimates

We begin our empirical analysis with a comparison of parameter estimates obtained from a closed and the open economy specification. If agents do not value goods produced abroad (\(\alpha = 0 \)) and the exchange of financial assets across country borders is prohibited, our model reduces to the familiar New Keynesian closed economy (CE) DSGE model. Although Bayesian estimates for the CE version have been reported elsewhere in the literature, we re-estimate CE models based on our particular model specification and data set.\(^{16}\) The results obtained under the benchmark prior distribution (Table 1) are summarized in Table 2. For convenience, we also reproduce prior means and probability intervals.

\(^{16}\)There are typically subtle differences in model specification that makes a direct comparison of estimates difficult. For instance, Rabanal and Rubio-Ramirez (2003, 2005) use a stationary version of the New Keynesian benchmark model and work with output data that are deviations from a quadratic trend. Lubik and Schorfheide (2004) use HP-filtered output and transform the exogenous technology and government spending processes into a pure shift of the Euler equation and a pure shift of the price setting equations with correlated innovations. Schorfheide (2005) uses output growth data and non-transformed structural shocks.
The closed economy U.S. estimates are by and large similar to the Euro Area estimates. This finding is consistent with the results obtained by Rabanal and Rubio-Ramirez (2003, 2005) and Smets and Wouters (2004). There is a substantial overlap of the confidence sets for τ, h, ρ_z, γ, $\pi^{(A)}$, and σ_z, supporting the symmetry assumptions built into the two-country model. Only the estimates of $r^{(A)}$ differ. In our model $r^{(A)} + 4\gamma$ determines the steady state real interest rate. According to the closed economy estimates the real interest rate in the Euro Area was more than 100 basis points higher than in the U.S. over the sample period. The Calvo parameters θ_H and θ^*_F are about 0.65, implying an average duration between price optimizations of 3 quarters. The 90% probability intervals range from about 0.5 to 0.85. These numbers are comparable to estimates reported elsewhere in the literature: Rabanal and Rubio-Ramirez (2003, 2005) obtain 0.77 for the U.S. (sample period 1960-2001) and 0.82 for the Euro Area (sample period 1970-2003). Gali and Rabanal (2004) estimate θ_H to be 0.53 in a slightly larger model (sample period 1948-2002) and Schorfheide (2005) reports 0.55 (sample period 1960-1997). On the demand side, habit formation seems to play an important role in both the U.S. and the Euro Area. The estimates of h are 0.40 and 0.48, respectively. The policy rule estimates imply fairly strong responses to inflation and output growth movements by both the U.S. Federal Reserve as well as the European monetary authority.

The open economy estimates are by and large similar to the closed economy estimates, with a few exceptions. The posterior mean of the nominal rigidity in the Euro Area production section rises from 0.64 to 0.76, a value that is not unreasonable given the estimates reported elsewhere and the probability intervals from the CE estimation. The posterior mean of the risk aversion parameter τ increases from 2.8 and 3.0, respectively, to about 3.8. While the policy rule coefficients for the U.S. are not affected by the inclusion of the Euro Area data, $\hat{\psi}_1^1$ drops from 1.80 to 1.37 and $\hat{\psi}_2^2$ increases from 0.49 to 1.27. There are two potential sources for this discrepancy: first, the two-country model imposes common steady states for the U.S. and the Euro Area, which implies that the estimated fluctuations around the steady states have potentially changed. Notice that $\hat{r}^{(A)}$ is 0.86 in the open economy specification, but rises to 1.68 if the closed economy model is fitted to Euro Area data. Second, the likelihood function associated with the two-country model might generate a different correction for the endogeneity of the regressors included in the policy rule equation (see Section 4). We will investigate this issue below, by estimating the models with detrended data. We included the depreciation rate as an argument into the policy rule but found that the corresponding coefficient estimates for the U.S. and the Euro Area are nearly zero. This finding complements the empirical results reported in Lubik and Schorfheide (2003), who find no evidence of exchange rate responses for a variety of small open economies.

The prior distribution for the import share parameter α and the nominal rigidity in the U.S. import sector θ_F are essentially not updated, indicating that the likelihood function is not informative with respect to these parameters. The estimated substitution elasticity between home and foreign goods, η, is 0.4, a number
that is substantially lower than the values that are typically used in calibration studies. This finding is robust to all specifications we investigated. It suggests that home and foreign output are not very responsive to movements in terms of trade differentials, which in turn are related to the l.o.p. gaps. Consequently, imperfect pass-through does not seem to play an important role in driving output.

Finally, our estimated standard deviation of the PPP shock is large, suggesting that the model is unable to generate the real exchange rate fluctuations that we observe in the data. Since the importance of shocks cannot directly be assessed from the magnitude of the associated standard deviation due to normalization issues, we decompose the variance of exchange rate fluctuations in Section 6.3.

6.1.2 Estimation based on Demeaned Data

So far we imposed all the long-run restrictions implied by our open economy model, in particular, a common technology growth rate γ, a common steady state inflation rate $\pi(A)$, and a common steady state real interest rate $r(A) + 4\gamma$. Many of the key equations in an open economy model, such as uncovered interest rate parity or purchasing power parity have to hold in levels and not just in terms of deviations from steady state. Persistent deviations from these steady state relationships in the data are typically absorbed in the estimated exogenous shock processes and might lead to a contamination of the parameter estimates. In order to assess the affect of the imposed long-run restrictions on the parameter estimation, we re-estimate the open and closed economy specifications based on demeaned data. The results for some of the key parameters are reported in Table 3. For most of the parameter estimates the effect of demeaning the data is small. Not surprisingly, those open economy parameter estimates that do shift, are now more similar to their closed economy counterparts, examples are $\hat{\mu}_F$, $\hat{\mu}_F^*$, and $\hat{\mu}_F^*$.

6.1.3 Estimation under Alternative Priors

In order to assess the sensitivity of our parameter estimates to the choice of prior distribution, we re-estimate the open economy model under several alternative prior distributions. The modifications of the prior distribution are presented in Table 4 and the corresponding posteriors for key parameters are summarized in Table 5. Since our previous analysis indicated that the monetary authorities in the U.S. and the Euro Area do not respond to exchange rate movements we impose $\psi_3 = \psi_3^* = 0$ and also re-estimate the model under the (modified) benchmark prior.

First, we consider a perfect pass-through version of our model, that is, $\theta_F = \theta_H^* = 0$. It turns out that the model without nominal rigidities in the import section roughly leads to similar parameter estimates as the benchmark model. Without data on import prices it is very difficult to measure the degree of price
stickiness in the import sector. We will revisit this point when we examine the impulse response dynamics of the estimated models.

Diffuse Prior I replaces the Beta-priors for the Calvo parameters by uniform distributions. Moreover, we make the priors for the autocorrelations of the exogenous processes less informative by changing them to uniform distributions as well. Diffuse Prior II relaxes some of the restrictions that we placed on the preference parameters. We find the benchmark posteriors to be sensitive to changes in the prior distribution. For instance, the posterior mean of α rises from 0.16 to 0.39 (Diffuse Prior I) and 0.74 (Diffuse Prior II), respectively. Since we are not using direct observations on the magnitude of bilateral trade between the U.S. and the Euro Area, the estimate of α, in particular under Diffuse Prior II becomes counterfactually large, while the intratemporal substitution elasticity η declines considerably to compensate for the change in α. The estimate of η is not anchored by direct observation of sectoral prices and quantities.

If we relax the priors on the Calvo parameters, $\hat{\theta}_F$ is essentially 1 and $\hat{\theta}_H$ drops from 0.71 to 0.17. Information on price stickiness in the U.S. and in the Euro Area is obtained from the CPI inflation series. According to the model, CPI inflation is a function of inflation in the domestic production sector and the import sector. However, without sample information on import prices, it is difficult to disentangle the sources of stickiness. The estimates suggest that under Diffuse Prior I almost all the stickiness in the Euro Area consumer prices is attributed to import price rigidity.

It is interesting to note that the posteriors of the policy rule coefficients are also affected by the choice of priors for the non-policy parameters, in particular for the Euro Area. As discussed in Section 4, the estimation of policy rules involves a regression with endogenous regressors. The DSGE model is used to construct a conditional expectation of the monetary policy shock given the current values of the endogenous regressors (inflation and output growth). This conditional expectation is used to correct for the endogeneity. Changes in the prior distribution seem to generate different correction terms and hence lead to different parameter estimates.

Overall, we conclude that the prior distribution plays an important role in the system-based estimation for DSGE models. For instance, in the case of the import share coefficient α and the nominal rigidity parameters θ_F and θ_H, the prior can be used incorporate additional information, that is not contained in the estimation sample Y. This information down-weighs the likelihood function in a region of the parameter space that is implausible in the light of data on the magnitude of bilateral trade and avoids a contamination of other parameter estimates.

In addition to the results reported in Table 5 we carried out a number of additional robustness checks. The disturbance $\epsilon_{E,t}$ captures exogenous deviations from PPP that cannot be explained via the perfect pass-through mechanism. More generally, it captures model misspecification. We estimated the model
subject to the restriction that \(\sigma_E = 0 \) and under a number of prior distributions that shrink the estimate of \(\sigma_E \) toward zero. Whenever we restricted the variance of the PPP shock, the likelihood fit of the model deteriorated substantially, and the estimated standard deviation of at least one of the structural shocks increased dramatically to capture the nominal exchange rate fluctuations observed in the data.

In order to improve the fit his two-country model, Bergin (2004) introduces a serially correlated shock to the UIP equation which increases the variability of the expected exchange rate depreciation \(E_{t-1}[\Delta \overline{e}_t] \). This reduces the volatility of the unexpected component \(\Delta \overline{e}_t - E_{t-1}[\Delta \overline{e}_t] \) that has to be explained by the structural shocks of the model. In Bergin’s setup, the UIP shock is correlated with the other structural shocks. We estimated a specification with an \(iid \) UIP shock and found that such a shock is unable to explain the observed exchange rate fluctuations. The fit of the UIP shock specification was very poor compared to the version of the model with PPP shock.

Finally, in the conference draft of this paper we reported estimation results for a model in which the central banks react to deviations of output from the stochastic trend \(A_{W,t} \), instead of deviations of output growth rates from the steady state growth rate. Moreover, we did not impose a common steady state inflation rate. The parameter estimates of the output gap version of the model were very sensitive to the underlying potential output series that was implicitly constructed through the latent exogenous processes. For instance, the estimated Calvo parameter for the U.S. production sector, \(\hat{\theta}_H \), dropped from 0.78 in the closed-economy specification to 0.46 in the open-economy version. The posterior mean of the U.S. policy rule coefficient \(\psi_2 \) decreased from 0.56 to 0.01 by switching from a closed to an open economy setting.

6.1.4 Model Fit

Table 6 reports log marginal data densities for the various specifications that we have estimated. The fit of the benchmark specification is improved by imposing that the central banks do not respond to exchange rate movements. The assumption of perfect pass-through leads to a slight deterioration of fit, and so does the Diffuse Prior I. It is important to note that the marginal data density penalizes the likelihood fit by a measure of model complexity. Making a prior distribution more diffuse is equivalent to the removal of restrictions on parameters and increases the model complexity (approximately measured by the log determinant of the posterior covariance matrix of the parameters). For Diffuse Prior II the improvement in model fit dominates the penalty for increased model complexity and the marginal data density improves by 24 points on a log scale. This indicates that the benchmark prior restricts the parameter estimates from moving into an area of the parameter space that yields a higher likelihood. If one is willing to interpret the benchmark prior as driven by empirical evidence not contained in the estimation sample \(Y \), then there seems to be a tension here. Trying to keep the estimates close to values that are consistent with this additional information, e.g., a small import share \(\alpha \), leads to a deterioration of model fit.
We also report marginal data densities for reduced form vector autoregressions with 4 lags, estimated under various Minnesota-type prior distributions. Details on the VAR estimation are relegated to Appendix C. The hyperparameter τ controls the tightness of the prior distribution. The larger τ the more the parameter estimates are tilted towards the prior mean. The marginal data density of the VAR is quite sensitive to the choice of hyperparameter. For $\tau = 3$ the fit of the Bayesian VAR and the DSGE model are roughly at par, whereas for $\tau = 5$ the VAR clearly dominates all specifications of the DSGE model. While the two-country model seems to suffer from misspecified cross-coefficient restrictions, not every VAR dominates the DSGE model. Hence, careful attention has to be paid to model fit if the DSGE model is supposed to be evaluated based on VAR estimates. The loss-function based evaluation framework of Schorfheide (2000) and the DSGE model prior approach of Del Negro and Schorfheide (2004) enable more refined comparisons between DSGE models and a VAR that account for model fit.

6.2 Impulse Response Analysis

We can develop some understanding of the inherent dynamics and the relative importance of different shocks by computing impulse response functions. The responses of endogenous variables of interest to one-standard deviations structural shocks are reported in Figure 2. We first discuss overall results for the benchmark model. We then focus on the effects of monetary policy shocks and the importance of imperfect pass-through.

The effects of monetary policy shocks are as expected (first and second row of the panel). Inflation and output decline in response to contractionary domestic policy. The inflation response in the U.S. is stronger than in the Euro Area on account of a higher policy coefficient. Interest rate shocks sharply appreciate the currency as depicted in the last column, but the effect quickly dissipates within a few periods. A monetary contraction in the U.S. leads to a rise in European output and inflation to which the monetary authority responds endogenously with an interest rate hike. The transmission of European monetary shocks to the U.S. is weaker and estimated with less precision. The main transmission mechanism of shocks between countries in this model are relative price movements that are implied by and are consistent with perfect risk sharing. This has an expenditure switching effect away from domestic goods toward foreign output.

U.S. technology shocks are expansionary at home, lower prices and the interest rate, thereby depreciating the Dollar. European technology shocks have similar effects on Euro Area variables. Transmission of productivity disturbances, however, is negative, lowering output. This can be explained by the assumption of perfect risk-sharing which leads to production shifting to the country with the highest productivity. In contrast, government expenditure shocks have supply effects via relative price changes. The effects of government purchases are broadly similar in both economies. Output expands, inflation declines, the
currency appreciates. Transmission from the U.S. to the Euro Area is positive, while transmission in the other direction is negative.

In a perfectly symmetric model, world-wide productivity shocks would not have any effects on relative prices. In our framework, however, (see the seventh row of the panel) they imply a Dollar depreciation. Since the Euro interest rate barely responds, the positive differential in favor of the U.S. requires an expected depreciation. Together with the inflation differential in favor of the U.S. this pattern explains the behavior of the exchange rate. Different degrees of price stickiness therefore play a role determining the direction of exchange rate responses.

We look at this issue in more detail by considering impulse responses to expansionary U.S. monetary policy shocks in isolation. Figure 3 reports results for the benchmark prior and for the case of perfect pass-through. The responses are remarkably similar. The exception is the behavior of import inflation. Under imperfect pass-through adjustment is smooth and gradual, driven by the l.o.p. gap, and ultimately differential terms of trade movements. Under perfect pass-through import inflation essentially reflects the nominal exchange rate.

This is not to say that this particular mechanism of introducing deviations from PPP is conceptually flawed or important. But it highlights the difficulties of explaining disaggregated behavior with aggregate data alone. This outcome is likely to be changed when sectoral inflation rates, more specifically, import price inflation data are used since this would allow to explain their behavior directly.

6.3 What Determines Exchange Rate Dynamics?

Our estimation methodology allows us to decompose exchange rate volatility into individual components explained by the disturbances in the model. The model is driven by seven structural shocks (monetary policy, technology, and government purchases) to which we add an additional disturbance in form of an error term appended to the equation defining the nominal depreciation rate. The disturbance is not strictly structural since it is not contained in the model’s primitives. It captures deviations from PPP not already explained endogenously through imperfect pass-through. However, this interpretation is problematic since it is not tied to behavior by the agents in the model.

Nevertheless, it is often instructive to add disturbances of this type as they provide a measure to what extent the data are explained by specific features of the model. In a purely econometric sense, introducing these shocks allows a better fit of individual equations since they do not appear anywhere else in the model and do not have to obey any cross-equation restrictions. Without these shocks, the estimation procedure attempts to fit the model’s unobservables base on a tightly restricted equation such as the definition of the depreciation rate, which may result in implausible estimates.
We report variance decompositions for the depreciation rate in Table 7. Notice that the prior distribution on θ induces a prior distribution for the variance decomposition of the exchange rate fluctuations. We consider two priors: the benchmark prior with the exchange rate coefficient set to zero; and a prior that imposes full pass-through. Under both priors the PPP-shock explains about 80% of exchange rate fluctuations, while monetary policy shocks make the biggest model-based contribution. It turns out that the data are very informative with respect to the variance decompositions and the posteriors obtained under these priors look very similar.

In our benchmark estimation, PPP-shocks explain 93% of the variability of the depreciation rate. This result had already been hinted at by the estimated variance of the PPP-shock which is an order of magnitude larger than those of other disturbances. The second largest component is the Euro Area monetary policy shock, followed by the U.S. policy shock. By and large, the contribution of real shocks is almost negligible. The same conclusion emerges from the estimation under perfect pass-through, which attributes a slightly larger percentage of exchange rate movements to the PPP-shock.

Overall, these results do not lend support to the notion that exchange rate dynamics are largely driven by real shocks, at least as far the endogenous components are concerned. Our benchmark model can thus explain roughly 10% of the movements in the depreciation rate. This result is not immediately comparable to other contributions in the literature mainly because of different methodologies applied. Calibration studies typically only study one shock at a time and attempt to match a small set of statistics with large degrees of freedom in setting parameters.

Methodologically comparable results can be found in Bergin (2004). He reports that monetary policy shocks contribute between 50% and 70% to exchange rate movements at longer horizons. His approach differs from ours in various ways, however. Bergin introduces UIP shocks that are correlated with the structural shocks in the model. He shows that different orthogonalization schemes change the variance decompositions considerably. It is therefore not a priori clear whether the influence attributed to monetary policy shocks is the artefact of an orthogonalization scheme. Using long-run identification restrictions in a VAR framework Ahmed, Ickes, Wang, and Yoo (1993) do not find support for a role of monetary policy shocks in exchange rate dynamics. On the other hand, in a VAR study using similar identification Clarida and Gali (1994) show that monetary shocks, demand shocks in their interpretation, are a main driving force behind output movements over short horizons. This suggests that the lack of explanatory power derives from the disconnect between output movements and relative prices that is also evident in our model.17

The variance decompositions are not robust, however, to seemingly minor changes in the model specification. In the conference draft of this paper we reported results from a specification that used the level

17This exchange rate disconnect puzzle has been emphasized by Rogoff (1996) as the main challenge for open economy macro models.
of output relative to technology $A_{w,t}$ as the target variable in the policy rule. This specification attributed 20% of exchange rate movements to the structural shocks. Estimates with diffuse priors showed that the endogenous component to exchange rate movements can even be increased to beyond 20% when more endogenous persistence is allowed via, for instance, habit formation. Moreover, monetary policy shocks did not have any significant influence at all, as the exchange rate was largely driven by Euro Area technology and government shocks. A possible explanation for this finding is that these real shocks in fact mostly operate through the monetary policy rules by creating movements in the model implied output gap that affect the exchange rates.

The conclusion we derive from this analysis is that NOEM models are still very far away from offering a satisfactory explanation for exchange rate dynamics. Our finding of an explanatory power of 10% is not out of line with results from other studies. Since the failure of the model in this respects is likely due to several factors this will be an active research area for years to come.

7 Conclusion

This paper has developed and estimated a two-country NOEM model using a Bayesian approach. We provide estimates for various prior distributions and document the extent to which inference is robust and sensitive to the choice of priors. The model can be extended to an incomplete market setting which could be used to additionally study current account dynamics. Although construction of a bilateral current account data set is not straightforward, the same procedure that we used in constructing the exchange rate series could be employed. Adding another data series requires the introduction of another disturbance. A likely candidate is a shock to the UIP relationship. Our benchmark estimates reject that specification in favor of a PPP-shock, but the former may contain information that helps explain current account dynamics as in Bergin (2004). Real exchange rate dynamics in our model exclusively depend on movements in relative prices of traded goods. However, movements in non-traded goods prices are an important component of real exchange rates (see Betts and Kehoe, 2004). The model can be extended to include a non-traded sector that is also subject to nominal rigidities. It is our presumption that this would help improve the overall fit of the model and help explain exchange rate movements endogenously.

It is also plausible to assume that the host of puzzles in international finance cannot satisfactorily be explained by models with fully-rational agents. Attempts to integrate deviations from this benchmark have been made by Duarte and Stockman (2001) and, albeit in a less structural framework, by Gourinchas and Tornell (2004). While we used a log-linear approximation of our two-country model, nonlinearities might play an important role in the understanding of exchange rate fluctuations. Fernandez-Villaverde and Rubio-
Ramirez (2002) have made significant progress toward algorithms that enable the likelihood-based estimation of DSGE models solved with nonlinear methods.

A final challenge for researchers is how to communicate the fruits of their labor to a wider public, in particular policymakers. We argue that a Bayesian approach is supremely useful for this. Researchers can report to what extent information comes from the likelihood function, and to what extent it derives from the prior. This leaves it up to the policymaker to decide what value to place on the information conveyed. Finally, implementation has become much easier and more transparent due to available software. We provide GAUSS programs, and the analysis in this paper can be conducted with the user-friendly DYNARE package.

References

A Data Set

Most of the U.S. data were extracted from the FRED 2 database maintained by the Federal Reserve Bank of St. Louis: http://research.stlouisfed.org/fred2/. The Euro Area data stem from the database underlying the Area Wide Model (AWM) of the European Central Bank, which is described in detail in Fagan, Henry, and Mestre (2001). Exchange Rate data are obtained from the International Financial Statistics (IFS) database maintained by the IMF: http://ifs.apdi.net/imf/.
• U.S. Output Growth (quarter-to-quarter, percent): is based on the real GDP series \textit{GDPC96-FRED2}. We construct a measure of U.S. working age population (age 16-64) from the series \textit{PAN17-DRI} and \textit{PAN19-DRI} provided by DRI-Global Insight \url{http://www.globalinsight.com/}. The observations from 1990-1999 are updated using intercensal estimates, and the observations from 2000 onwards are updated based on postcensal estimates \url{http://www.census.gov/popest/}. Annual data are converted to quarterly frequency using a quadratic interpolation. Per capita output growth is defined as $100 \times \left[\ln \left(\frac{GDP_t}{POP_t} \right) - \ln \left(\frac{GDP_{t-1}}{POP_{t-1}} \right) \right]$.

• U.S. Inflation (quarter-to-quarter, annualized, percent): is based on the Consumer Price Index for All Urban Consumers \textit{CPIAUCSL-Fred2}. The monthly series is converted into quarterly frequency by arithmetic averaging. Inflation is defined as $400 \times \ln \left(\frac{CPI_t}{CPI_{t-1}} \right)$.

• U.S. Nominal Interest Rate (annualized, percent): is the effective Federal Funds Rate \textit{FEDFUNDS-Fred2}. The monthly series is converted into quarterly frequency by arithmetic averaging.

• Euro Area Output Growth (quarter-to-quarter, percent): is based on the real output series \textit{YER-AWM}. A measure of the Euro Area working age population (15-64) is obtained from the AMECO database \url{http://europa.eu.int}. The Euro Area series is extended backwards using growth rates calculated from the Euro Area (incl. West Germany) series. Annual population data are converted to quarterly frequency using a quadratic interpolation. Per capita output growth is defined as $100 \times \left[\ln \left(\frac{YER_t}{POP_t} \right) - \ln \left(\frac{YER_{t-1}}{POP_{t-1}} \right) \right]$.

• Euro Area Inflation (quarter-to-quarter, annualized, percent): is based on the Harmonized Index of Consumer Prices \textit{HICP-AWM} and defined as $400 \times \ln \left(\frac{HICP_t}{HICP_{t-1}} \right)$.

• Euro Area Nominal Interest Rate (annualized, percent): is defined as the short term nominal rate \textit{STN-AWM}.

• Exchange Rate Depreciation (quarter-to-quarter, percent): Starting in 1999 we use the official US Dollar-Euro exchange rate obtained from the IFS database. Prior to 1999, we construct a synthetic bilateral exchange rate series. We extract US Dollar-National Currency Unit exchange rates $E_{i,t}$ for the Euro Area countries from the IFS database and define

$$E_t = \prod_{i=1}^{n} (f_i E_{i,t})^{w_i}.$$

The weights w_i correspond to the real GDP weights underlying the construction of the AWM database.\footnote{These weights are: BE=0.036; DE=0.283; ES=0.111; FR=0.201; IE=0.015; IT=0.195; LU=0.003; NL=0.060; AT=0.030; PT=0.024; FI=0.017; GR=0.025.} The f_i’s are the fixed conversion rates between the National Currency Units and the Euro. Taking
logs and differences yields
\[\Delta \ln E_t = \sum_{i=1}^{n} w_i \Delta \ln E_{i,t}. \]

Thus, prior to 1999 the depreciation rate of the synthetic US-$Euro exchange rate is the output-weighted average of the depreciation rates of the national currencies. The depreciation rate is multiplied by 100 to convert it into percentages.

- The import shares that are used to specify a prior for \(\alpha \) are defined as \(IMP/(GDP - EXP + IM) \). We are using \texttt{EXPGSC96-FRED2} and \texttt{IMPGSC96-FRED2} for the U.S. and \texttt{XTR-AWM} and \texttt{XTR-AWM} for the Euro Area to measure real exports and imports, respectively.

\section{B \ Practical Implementation}

The results reported in this paper have been computed using GAUSS 6.0. The GAUSS programs and the data set are available from the authors at \texttt{http://www.econ.upenn.edu/~schorf}. The empirical analysis can also be implemented using the MATLAB-based DYNARE package that is available at \texttt{http://www.cepremap.cnrs.fr/dynare/}.

1. The matrices \(\Gamma_0(\theta), \Gamma_1(\theta), \Gamma_\gamma(\theta), \) and \(\Gamma_\gamma(\theta) \) in Equation (34) can be derived from the linearized equations presented in Section 3.6. The solution algorithm described in Sims (2002) is used to compute the state transition equation (35).

2. Combine (35) with the measurement equation (36) to form a state space model for the observables \(y_t \).

The matrix \(A(\theta) \) in (36) is composed of
\[A(\theta) = [\gamma, \pi^{(A)}, r^{(A)} + \pi^{(A)} + 4\gamma, \gamma, \pi^{(A)}, r^{(A)} + \pi^{(A)} + 4\gamma, 0]^\prime \]

where \(y_t \) stacks U.S. output growth, U.S. inflation, the U.S. nominal interest rate, Euro Area output growth, Euro Area inflation, the Euro Area nominal interest rate, and the depreciation rate. The matrix \(B \) selects and scales the relevant model variables to construct \(y_t \). The growth adjusted steady state real rate is related to the discount factor \(\beta \) through \(\beta = 1/(1 + r^{(A)}/400) \).

3. The likelihood function \(L(\theta|Y) \) is evaluated with the Kalman Filter. To make the DSGE model estimation comparable to the VAR estimation, which conditions on the first 4 observations to initialize lags, we run the Kalman Filter from 1983:I to 2002:IV, but calculate the likelihood only based on the observations from 1984:I to 2002:IV. Since \(\ln p(Y|Y_0) = \ln p(Y, Y_0) - \ln p(Y_0) \) this adjustment of the Kalman filter yields a conditional likelihood function for the DSGE model.
4. A numerical-optimization procedure is used to maximize

\[p(\theta|Y) \propto \mathcal{L}(\theta|Y)p(\theta) \]

and find the posterior mode. The inverse Hessian is calculated at the posterior mode.

5. 500,000 draws from \(p(\theta|Y) \) are generated with a random-walk Metropolis Algorithm. The scaled inverse Hessian serves as a covariance matrix for the Gaussian proposal distribution used in the Metropolis-Hastings algorithm. The first 50,000 draws are discarded. The parameter draws \(\theta \) are converted into impulse response functions and variance decompositions to generate the results reported in Section 6. Posterior moments are obtained by Monte-Carlo averaging. The marginal data densities for the two regions are approximated with Geweke’s (1999) modified harmonic-mean estimator. Further details of these computations are discussed in Schorfheide (2000).

C Marginal Data Density of VAR

We use a modified version of the “Minnesota Prior,” see Doan, Litterman, and Sims (1984), that is implemented based on dummy observations. In the main text we report results based on a VAR(4) with 7 endogenous variables. Subsequently, we present the choice of dummy observations in the context of a bivariate VAR(2):

\[
\begin{bmatrix}
 y_{1,t} \\
 y_{2,t}
\end{bmatrix} =
\begin{bmatrix}
 \alpha_1 \\
 \alpha_2
\end{bmatrix} +
\begin{bmatrix}
 \beta_{11} & \beta_{12} \\
 \beta_{21} & \beta_{22}
\end{bmatrix}
\begin{bmatrix}
 y_{1,t-1} \\
 y_{2,t-1}
\end{bmatrix} +
\begin{bmatrix}
 \gamma_{11} & \gamma_{12} \\
 \gamma_{21} & \gamma_{22}
\end{bmatrix}
\begin{bmatrix}
 y_{1,t-2} \\
 y_{2,t-2}
\end{bmatrix} +
\begin{bmatrix}
 u_{1,t} \\
 u_{2,t}
\end{bmatrix}.
\]

Define \(y_t = [y_{1,t}, y_{2,t}]' \), \(x_t = [1, y_{t-1}, y_{t-2}]' \), and \(u_t = [u_{1,t}, u_{2,t}]' \) and

\[
\Phi' =
\begin{bmatrix}
 \alpha_1 & \beta_{11} & \gamma_{11} & \gamma_{12} \\
 \alpha_2 & \beta_{21} & \gamma_{21} & \gamma_{22}
\end{bmatrix}.
\]

The VAR can be rewritten as \(y'_t = x'_t \Phi + u'_t \), \(t = 1, \ldots, T \), and \(u_t \sim iidN(0, \Sigma_u) \). The dummy observations that generate the prior can be classified as follows (the generalization to larger VAR systems is straightforward):

- Dummy observations for the \(\beta \) coefficients, reflecting the belief that \(\beta_{11} \) and \(\beta_{22} \) are equal to \(\iota \) and \(\beta_{12} \) and \(\beta_{21} \) are equal to zero on average:

\[
\begin{bmatrix}
 \iota \tau s_1 & 0 \\
 0 & \iota \tau s_2
\end{bmatrix} =
\begin{bmatrix}
 0 & \tau s_1 & 0 & 0 \\
 0 & 0 & \tau s_2 & 0
\end{bmatrix} \Phi + u'
\]
• Dummy observations for the γ coefficients, reflecting the belief that the γ’s are zero on average:

\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & \tau s_1 2^d & 0 \\
0 & 0 & 0 & \tau s_2 2^d
\end{bmatrix}
\Phi + u'
\]

• Co-persistence prior dummy observations, reflecting the belief that when data on all y’s are stable at their initial levels, they will tend to persist at that level:

\[
\begin{bmatrix}
\lambda \bar{y}_1 & \lambda \bar{y}_2 \\
\lambda \bar{y}_1 & \lambda \bar{y}_2
\end{bmatrix}
= \begin{bmatrix}
\lambda & \lambda \bar{y}_1 & \lambda \bar{y}_1 & \lambda \bar{y}_1 \\
\lambda \bar{y}_2 & \lambda \bar{y}_2 & \lambda \bar{y}_2 & \lambda \bar{y}_2
\end{bmatrix}
\Phi + u'
\]

• Own-persistence prior dummy observations, reflecting the belief that when y_i has been stable at its initial level, it will tend to persist at that level, regardless of the value of other variables:

\[
\begin{bmatrix}
\mu \bar{y}_1 & 0 \\
0 & \mu \bar{y}_2
\end{bmatrix}
= \begin{bmatrix}
0 & \mu \bar{y}_1 & 0 & \mu \bar{y}_1 \\
0 & 0 & \mu \bar{y}_2 & 0 & \mu \bar{y}_2
\end{bmatrix}
\Phi + u'
\]

• Dummy observations for the covariance matrix:

\[
\begin{bmatrix}
s_1 & 0 \\
0 & s_2
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\Phi + u'
\]

The \(\bar{y}_i \)’s and \(s_i \)’s are calculated as means and standard deviations of the values of \(y_t \) that are used to initialize the lags of the VAR. The parameters \(\tau, d, \lambda, \) and \(\mu \) are hyperparameters that control the weight on different characteristics of the prior distribution. We set \(d = 0.5, \lambda = 5, \mu = 2, \) and vary \(\tau, \) which controls the overall tightness of the prior. The typical Minnesota Prior shrinks the VAR parameter estimates toward univariate random walks, which can be achieved by setting \(\iota = 1. \) However, since we are using growth rates as dependent variables (interest rates being an exception), we set \(\iota = 0. \)

Write the system in matrix notation \(Y = X\Phi + U, \) where \(Y, \) \(X, \) and \(U \) have rows \(y'_t, \) \(x'_t, \) and \(u'_t, \) respectively. We condition on the observations that are used to initialize the lags of the VAR. The \(T^* \) dummy observations are collected into the matrices \(Y^* \) and \(X^* \). The likelihood function \(p(Y^*|\Phi, \Sigma_u) \) for the dummy observations combined with the improper prior distribution \(p(\Phi, \Sigma_u) \propto |\Sigma_u|^{-(n+1)/2} \) induces a proper prior distribution for the VAR parameters. The marginal data density of the VAR can be written as

\[
p(Y|Y^*) = \frac{\int p(Y, Y^*|\Phi, \Sigma_u) d\Phi d\Sigma_u}{\int p(Y^*|\Phi, \Sigma_u) d\Phi d\Sigma_u}, \tag{45}
\]

where \(p(Y, Y^*|\Phi, \Sigma_u) \) is the joint likelihood function for actual and dummy observations. The integrals on the right-hand-side of Equation (45) can be obtained by replacing \(\bar{Y}, \bar{X}, \) and \(\bar{T} \) in the subsequent formula by \([Y', Y^*]', \) \([X', X^*]', \) \(T + T^* \) and \(Y^*, \) \(X^*, \) \(T^* \) respectively:

\[
\int p(\bar{Y}|\Phi, \Sigma_u) d\Phi d\Sigma_u = \pi^{-\frac{T-k}{2}} |\bar{X}' \bar{X}|^{-\frac{n}{2}} |S|^{-\frac{T-k}{2} \pi \frac{n(n-1)}{4}} \prod_{i=1}^n \Gamma((\bar{T} - k + 1 - i)/2), \tag{46}
\]
where n is the dimension of y_t, k is the dimension of x_t, and

$$
\hat{\Phi} = (\bar{X}'\bar{X})^{-1}\bar{X}'\bar{Y}, \quad S = (\bar{Y} - \bar{X}\hat{\Phi})'(\bar{Y} - \bar{X}\hat{\Phi}).
$$

The specification of the dummy observations and the computation of the marginal data densities is implemented with MATLAB programs written by Chris Sims.
Table 1: Prior Distribution (Benchmark), Part 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Density</th>
<th>Para (1)</th>
<th>Para (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_H</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.50</td>
<td>0.15</td>
</tr>
<tr>
<td>θ_F</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.50</td>
<td>0.15</td>
</tr>
<tr>
<td>θ^*_H</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.75</td>
<td>0.15</td>
</tr>
<tr>
<td>θ^*_F</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.75</td>
<td>0.15</td>
</tr>
<tr>
<td>τ</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>2.00</td>
<td>0.50</td>
</tr>
<tr>
<td>h</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.30</td>
<td>0.10</td>
</tr>
<tr>
<td>α</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>η</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>ψ_1</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>1.50</td>
<td>0.25</td>
</tr>
<tr>
<td>ψ_2</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>ψ_3</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>ψ^*_1</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>1.50</td>
<td>0.25</td>
</tr>
<tr>
<td>ψ^*_2</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>ψ^*_3</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>ρ_A</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.80</td>
<td>0.10</td>
</tr>
<tr>
<td>ρ_R</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>ρ_G</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.80</td>
<td>0.10</td>
</tr>
<tr>
<td>ρ^*_A</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.60</td>
<td>0.20</td>
</tr>
<tr>
<td>ρ^*_R</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>ρ^*_G</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.80</td>
<td>0.10</td>
</tr>
<tr>
<td>ρ_Z</td>
<td>$[0, 1)$</td>
<td>Beta</td>
<td>0.66</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution, where $p_{\mathcal{IG}}(\sigma|\nu, s) \propto \sigma^{-\nu-1}e^{-\nu s^2/2\sigma^2}$. The effective prior is truncated at the boundary of the determinacy region.
Table 1: Prior Distribution (Benchmark), Part 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Density</th>
<th>Para (1)</th>
<th>Para (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r^{(A)}$</td>
<td>IR$^+$</td>
<td>Gamma</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>γ</td>
<td>IR</td>
<td>Normal</td>
<td>0.40</td>
<td>0.20</td>
</tr>
<tr>
<td>$\pi^{(A)}$</td>
<td>IR$^+$</td>
<td>Gamma</td>
<td>7.00</td>
<td>2.00</td>
</tr>
<tr>
<td>σ_A</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_G</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_R</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>0.40</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_{A^*}</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>0.40</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_{G^*}</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_{R^*}</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>0.20</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_Z</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>0.50</td>
<td>4.00</td>
</tr>
<tr>
<td>σ_E</td>
<td>IR$^+$</td>
<td>InvGamma</td>
<td>3.50</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Notes: The prior is truncated at the boundary of the determinacy region. Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution, where $p_{IG}(\sigma|\nu, s) \propto \sigma^{-\nu-1}e^{-\nu s^2/2\sigma^2}$.
Table 2: Open and Closed Economy Estimates, Part 1

<table>
<thead>
<tr>
<th></th>
<th>Prior</th>
<th>U.S. - Euro Area</th>
<th>U.S.</th>
<th>Euro Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>90% Interval</td>
<td>Mean</td>
<td>90% Interval</td>
</tr>
<tr>
<td>θ_H</td>
<td>0.50</td>
<td>[0.25, 0.75]</td>
<td>0.66</td>
<td>[0.53, 0.80]</td>
</tr>
<tr>
<td>θ_F</td>
<td>0.50</td>
<td>[0.25, 0.74]</td>
<td>0.56</td>
<td>[0.28, 0.86]</td>
</tr>
<tr>
<td>ϕ_H</td>
<td>0.75</td>
<td>[0.53, 0.98]</td>
<td>0.86</td>
<td>[0.73, 1.00]</td>
</tr>
<tr>
<td>ϕ_F</td>
<td>0.75</td>
<td>[0.53, 0.98]</td>
<td>0.76</td>
<td>[0.67, 0.85]</td>
</tr>
<tr>
<td>τ</td>
<td>3.76</td>
<td>[2.81, 4.69]</td>
<td>2.77</td>
<td>[1.91, 3.61]</td>
</tr>
<tr>
<td>h</td>
<td>0.41</td>
<td>[0.15, 0.67]</td>
<td>0.40</td>
<td>[0.19, 0.62]</td>
</tr>
<tr>
<td>α</td>
<td>0.12</td>
<td>[0.04, 0.20]</td>
<td>0.13</td>
<td>[0.04, 0.23]</td>
</tr>
<tr>
<td>η</td>
<td>1.50</td>
<td>[1.09, 1.89]</td>
<td>1.41</td>
<td>[1.03, 1.75]</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.50</td>
<td>[0.12, 0.87]</td>
<td>0.66</td>
<td>[0.38, 0.96]</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.10</td>
<td>[0.02, 0.17]</td>
<td>0.03</td>
<td>[0.01, 0.05]</td>
</tr>
<tr>
<td>ψ_3</td>
<td>1.50</td>
<td>[1.09, 1.89]</td>
<td>1.37</td>
<td>[1.08, 1.65]</td>
</tr>
<tr>
<td>ρ_A</td>
<td>0.80</td>
<td>[0.65, 0.96]</td>
<td>0.83</td>
<td>[0.75, 0.92]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.50</td>
<td>[0.18, 0.84]</td>
<td>0.76</td>
<td>[0.70, 0.81]</td>
</tr>
<tr>
<td>ρ_G</td>
<td>0.80</td>
<td>[0.65, 0.96]</td>
<td>0.90</td>
<td>[0.83, 0.97]</td>
</tr>
<tr>
<td>ρ_A^*</td>
<td>0.60</td>
<td>[0.29, 0.93]</td>
<td>0.85</td>
<td>[0.77, 0.94]</td>
</tr>
<tr>
<td>ρ_R^*</td>
<td>0.50</td>
<td>[0.18, 0.83]</td>
<td>0.84</td>
<td>[0.80, 0.88]</td>
</tr>
<tr>
<td>ρ_G^*</td>
<td>0.80</td>
<td>[0.65, 0.96]</td>
<td>0.94</td>
<td>[0.91, 0.97]</td>
</tr>
<tr>
<td>ρ_Z</td>
<td>0.66</td>
<td>[0.42, 0.91]</td>
<td>0.60</td>
<td>[0.40, 0.82]</td>
</tr>
</tbody>
</table>

[Note: Prior and posterior distributions for various parameters are shown, with means and 90% intervals for each parameter across U.S. and Euro Area.]
Table 2: Open and Closed Economy Estimates, Part 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>U.S. - Euro Area</th>
<th>U.S.</th>
<th>Euro Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>90% Interval</td>
<td>Mean</td>
<td>90% Interval</td>
</tr>
<tr>
<td>(r^{(A)})</td>
<td>0.50</td>
<td>[0.00, 1.15]</td>
<td>0.86</td>
<td>[0.29, 1.40]</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.40</td>
<td>[0.07, 0.73]</td>
<td>0.39</td>
<td>[0.23, 0.55]</td>
</tr>
<tr>
<td>(\pi^{(A)})</td>
<td>7.00</td>
<td>[3.72, 10.11]</td>
<td>3.16</td>
<td>[2.50, 3.83]</td>
</tr>
<tr>
<td>(\sigma_A)</td>
<td>1.26</td>
<td>[0.53, 1.99]</td>
<td>1.66</td>
<td>[0.89, 2.44]</td>
</tr>
<tr>
<td>(\sigma_G)</td>
<td>1.26</td>
<td>[0.53, 1.98]</td>
<td>0.50</td>
<td>[0.41, 0.58]</td>
</tr>
<tr>
<td>(\sigma_R)</td>
<td>0.50</td>
<td>[0.21, 0.79]</td>
<td>0.18</td>
<td>[0.15, 0.21]</td>
</tr>
<tr>
<td>(\sigma_{A^*})</td>
<td>0.50</td>
<td>[0.21, 0.79]</td>
<td>2.61</td>
<td>[1.18, 4.16]</td>
</tr>
<tr>
<td>(\sigma_{G^*})</td>
<td>1.25</td>
<td>[0.52, 1.97]</td>
<td>0.62</td>
<td>[0.50, 0.73]</td>
</tr>
<tr>
<td>(\sigma_{R^*})</td>
<td>0.25</td>
<td>[0.11, 0.40]</td>
<td>0.18</td>
<td>[0.14, 0.21]</td>
</tr>
<tr>
<td>(\sigma_Z)</td>
<td>0.63</td>
<td>[0.27, 0.99]</td>
<td>0.35</td>
<td>[0.23, 0.47]</td>
</tr>
<tr>
<td>(\sigma_E)</td>
<td>4.39</td>
<td>[1.82, 6.90]</td>
<td>4.48</td>
<td>[3.88, 5.07]</td>
</tr>
</tbody>
</table>
Table 3: Open and Closed Economy Estimates – Demeaned Data, Part 1

<table>
<thead>
<tr>
<th>Posterior Distributions</th>
<th>Prior</th>
<th>U.S. - Euro Area</th>
<th>U.S.</th>
<th>Euro Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean 90% Interval</td>
<td>Mean 90% Interval</td>
<td>Mean 90% Interval</td>
<td>Mean 90% Interval</td>
</tr>
<tr>
<td>θ_H</td>
<td>0.50 [0.25, 0.75]</td>
<td>0.62 [0.49, 0.77]</td>
<td>0.63 [0.51, 0.76]</td>
<td></td>
</tr>
<tr>
<td>θ_F</td>
<td>0.50 [0.25, 0.74]</td>
<td>0.45 [0.17, 0.72]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_H</td>
<td>0.75 [0.53, 0.98]</td>
<td>0.90 [0.82, 1.00]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_F</td>
<td>0.75 [0.53, 0.98]</td>
<td>0.61 [0.43, 0.81]</td>
<td>0.60 [0.44, 0.82]</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>2.00 [1.19, 2.79]</td>
<td>3.91 [3.00, 4.82]</td>
<td>2.81 [1.97, 3.61]</td>
<td>3.01 [2.11, 3.90]</td>
</tr>
<tr>
<td>h</td>
<td>0.30 [0.14, 0.46]</td>
<td>0.46 [0.23, 0.70]</td>
<td>0.40 [0.19, 0.59]</td>
<td>0.47 [0.25, 0.68]</td>
</tr>
<tr>
<td>α</td>
<td>0.12 [0.04, 0.20]</td>
<td>0.19 [0.08, 0.29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>1.00 [0.23, 1.73]</td>
<td>0.30 [0.05, 0.55]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_1</td>
<td>1.50 [1.09, 1.89]</td>
<td>1.54 [1.15, 1.91]</td>
<td>1.52 [1.12, 1.90]</td>
<td></td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.50 [0.12, 0.87]</td>
<td>0.63 [0.37, 0.90]</td>
<td>0.64 [0.36, 0.89]</td>
<td></td>
</tr>
<tr>
<td>ψ_3</td>
<td>0.10 [0.02, 0.17]</td>
<td>0.03 [0.01, 0.05]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_1^*</td>
<td>1.50 [1.09, 1.89]</td>
<td>1.51 [1.17, 1.84]</td>
<td>1.82 [1.47, 2.17]</td>
<td></td>
</tr>
<tr>
<td>ψ_2^*</td>
<td>0.50 [0.13, 0.88]</td>
<td>0.74 [0.35, 1.10]</td>
<td>0.43 [0.17, 0.69]</td>
<td></td>
</tr>
<tr>
<td>ψ_3^*</td>
<td>0.10 [0.02, 0.17]</td>
<td>0.02 [0.00, 0.04]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Alternative Prior Distributions

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Density</th>
<th>Para (1)</th>
<th>Para (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect Pass-through</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_F</td>
<td>$[0,1)$</td>
<td>Fixed</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>θ_H^*</td>
<td>$[0,1)$</td>
<td>Fixed</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Diffuse Prior I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_H</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>θ_F</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>θ_H^*</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>θ_F^*</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_A</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_R</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_G</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_A^*</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_R^*</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ρ_G^*</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Diffuse Prior II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>h</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>α</td>
<td>$[0,1)$</td>
<td>Uniform</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>η</td>
<td>\mathbb{R}^+</td>
<td>Gamma</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Perfect Pass-through</th>
<th>Diffuse Prior I</th>
<th>Diffuse Prior II</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_H</td>
<td>0.66 [0.52, 0.83]</td>
<td>0.60 [0.43, 0.77]</td>
<td>0.43 [0.22, 0.68]</td>
</tr>
<tr>
<td>θ_F</td>
<td>0.50 [0.21, 0.78]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.09 [0.00, 0.20]</td>
</tr>
<tr>
<td>θ_H^*</td>
<td>0.86 [0.73, 1.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.99 [0.99, 1.00]</td>
</tr>
<tr>
<td>θ_F^*</td>
<td>0.74 [0.60, 0.85]</td>
<td>0.77 [0.68, 0.86]</td>
<td>0.17 [0.00, 0.41]</td>
</tr>
<tr>
<td>τ</td>
<td>3.61 [2.72, 4.49]</td>
<td>3.84 [2.82, 4.79]</td>
<td>3.53 [2.57, 4.52]</td>
</tr>
<tr>
<td>h</td>
<td>0.41 [0.14, 0.66]</td>
<td>0.47 [0.23, 0.71]</td>
<td>0.63 [0.44, 0.82]</td>
</tr>
<tr>
<td>α</td>
<td>0.14 [0.05, 0.24]</td>
<td>0.07 [0.03, 0.10]</td>
<td>0.39 [0.21, 0.53]</td>
</tr>
<tr>
<td>η</td>
<td>0.43 [0.05, 0.82]</td>
<td>0.35 [0.06, 0.67]</td>
<td>0.18 [0.04, 0.30]</td>
</tr>
<tr>
<td>ψ_1</td>
<td>1.43 [1.06, 1.76]</td>
<td>1.54 [1.17, 1.90]</td>
<td>1.79 [1.42, 2.16]</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.63 [0.34, 0.92]</td>
<td>0.57 [0.31, 0.82]</td>
<td>0.38 [0.16, 0.59]</td>
</tr>
<tr>
<td>ψ_3</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
</tr>
<tr>
<td>ψ_1^*</td>
<td>1.37 [1.06, 1.66]</td>
<td>1.39 [1.09, 1.67]</td>
<td>1.85 [1.52, 2.19]</td>
</tr>
<tr>
<td>ψ_2^*</td>
<td>1.13 [0.67, 1.57]</td>
<td>1.03 [0.61, 1.44]</td>
<td>0.49 [0.20, 0.75]</td>
</tr>
<tr>
<td>ψ_3^*</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
<td>0.00 [0.00, 0.00]</td>
</tr>
</tbody>
</table>

Notes: We fixed $\psi_3 = \psi_3^* = 0$ in all specifications.
Table 6: Log Marginal Data Densities

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Log Marginal Data Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSGE Model: Benchmark Prior, ψ_3, ψ_5^* estimated</td>
<td>-795.22</td>
</tr>
<tr>
<td>DSGE Model: Benchmark Prior, $\psi_3 = \psi_5^* = 0$</td>
<td>-786.78</td>
</tr>
<tr>
<td>DSGE Model: Perfect Pass-through</td>
<td>-788.58</td>
</tr>
<tr>
<td>DSGE Model: Diffuse Prior I</td>
<td>-788.83</td>
</tr>
<tr>
<td>DSGE Model: Diffuse Prior II</td>
<td>-763.66</td>
</tr>
<tr>
<td>VAR(4): $\tau = 2$</td>
<td>-834.18</td>
</tr>
<tr>
<td>VAR(4): $\tau = 3$</td>
<td>-788.93</td>
</tr>
<tr>
<td>VAR(4): $\tau = 5$</td>
<td>-754.34</td>
</tr>
<tr>
<td>VAR(4): $\tau = 20$</td>
<td>-795.19</td>
</tr>
</tbody>
</table>

Notes: The log marginal data densities for the DSGE model specifications are computed based on Geweke’s (1999) modified harmonic mean estimator. The marginal data densities for the VARs are calculated analytically (see Appendix C).

Table 7: Variance Decompositions of Depreciation Rate

<table>
<thead>
<tr>
<th></th>
<th>Benchmark, $\psi_3 = \psi_5^* = 0$</th>
<th>Perfect Pass-through</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prior Mean</td>
<td>90% Interval</td>
</tr>
<tr>
<td>Monetary Policy</td>
<td>0.08</td>
<td>[0.00, 0.19]</td>
</tr>
<tr>
<td>Monetary Policy (*)</td>
<td>0.03</td>
<td>[0.00, 0.06]</td>
</tr>
<tr>
<td>Stat Technology</td>
<td>0.02</td>
<td>[0.00, 0.04]</td>
</tr>
<tr>
<td>Stat Technology (*)</td>
<td>0.00</td>
<td>[0.00, 0.00]</td>
</tr>
<tr>
<td>Gov Spending</td>
<td>0.02</td>
<td>[0.00, 0.04]</td>
</tr>
<tr>
<td>Gov Spending (*)</td>
<td>0.02</td>
<td>[0.00, 0.04]</td>
</tr>
<tr>
<td>World Technology</td>
<td>0.03</td>
<td>[0.00, 0.06]</td>
</tr>
<tr>
<td>PPP Shock</td>
<td>0.82</td>
<td>[0.61, 0.99]</td>
</tr>
</tbody>
</table>
Figure 1: Output, Inflation, Interest Rates, and Exchange Rates

Notes: Top panel: log real per capita GDP ratio for U.S. versus Euro Area. Bottom panel: nominal exchange rate depreciation, quarter-to-quarter interest rate differential $\bar{R}_{t-1} - \bar{R}_{t-1}^*$, and quarter-to-quarter inflation differential $\bar{\pi_t} - \bar{\pi}_{t-1}^*$.
Figure 2: Impulse Response Functions for Benchmark Estimation

Notes: Figure depicts posterior means (solid lines) and pointwise 90% posterior probability intervals (dashed lines) for impulse responses of endogenous variables to one-standard deviation structural shocks.
Figure 3: Impulse Responses to a U.S. Monetary Policy Shock

Notes: Figure depicts impulse response functions at posterior mean parameter estimates (reported in Table 5). Solid responses correspond to imperfect pass-through, dashed responses correspond to perfect pass-through, obtained by setting $\theta_F = \theta_H^* = 0$.