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Abstract

This paper states necessary and sufficient conditions for the exis-
tence, uniqueness, and updating according to Bayes’ rule, of subjective
probabilities representing individuals’ beliefs. The approach is prefer-
ence based, and the result is an axiomatic subjective expected util-
ity model of Bayesian decision making under uncertainty with state-
dependent preferences. The theory provides foundations for the exis-
tence of prior probabilities representing decision makers’ beliefs about
the likely realization of events and for the updating of these probabil-
ities according to Bayes’ rule.
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1 Introduction

In this paper I study necessary and sufficient conditions for the existence of
unique subjective probabilities representing individuals’ beliefs and their up-
dating, according to Bayes’ rule. The approach is preference based and the
result is a Bayesian decision theory. The work is motivated by three short-
comings of subjective expected utility theory. First, and most important,
the theory ascribes to decision makers probabilities that do not necessarily
represent their beliefs. Second, the theory does not imply the updating of
subjective probabilities according to Bayes’ rule. Third, the theory requires
that preferences be state independent. The alternative theory developed
here addresses all this issues.

The search for a choice-theoretic definition of subjective probabilities
that represent decision makers’ beliefs regarding the likely realization of
events began with the pioneering work of Ramsey [24] and de Finetti [4]
and attained its definitive formulation in the work of Savage [25]. Ulti-
mately, however, this quest failed to achieve its goal. The definitions of
subjective probabilities in these and later works invoke a convention that is
neither part of nor implied by the underlying axioms, namely, that the utility
functions are state independent. Whereas state-independent preferences are
implied by the axiomatic structure, state-independent utility functions are
not. In fact, an infinite number of combinations of state-dependent utilities
representing the same risk preferences and arbitrary probability measures
are consistent with the axioms. Consequently, the curvature of the utility
functions (and the ranking of “objective” lotteries, if such lotteries exist,
as, for example, in Anscombe and Aumann [1]) must be independent of the
underlying states, but the utility functions themselves may be positive lin-
ear transformations of each other.1 In many situations this convention is
untenable. Moreover, if a decision maker’s valuations of outcomes are not
independent of the underlying states, the imposition of state-independent
utility functions means that, even when the decision maker’s beliefs (that
is, a binary relation on the set of events that have the interpretation “more
likely of being realized than”) are representable by a probability measure,
they may be inconsistent with the subjective probabilities ascribed to the
decision maker by the theory.

Choices among alternative courses of action, or acts, reveal the deci-
sion maker’s marginal rates of substitution between outcomes across states.

1See the discussion in Drèze [5]; Schervish, Seidenfeldt, and Kadane [26]; Karni [13],
[15], and Karni and Schmeidler [17].
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These trade-offs confound subjective probabilities and marginal utilities and
are too coarse to allow a meaningful separation of the two. Misconstrued
separation of probabilities and utilities may result in inconsistencies between
verbal expression of preferences and observed choice behavior.2

A different issue concerns the definition of null events. Ideally, an event
is designated as null if the decision maker believes it to be impossible. The
standard choice-theoretic formalization of this idea involves the preference
ranking of acts that agree outside the given event. If the decision maker
displays indifference among all such acts, then the event is defined as null
and is assigned zero probability. However, by this definition there is no
distinction between an event that the decision maker perceives as impossible
and one whose possible outcomes he perceives as equally desirable. In fact,
it is possible that the theory ascribes zero probability to events that the
decision maker believes to be possible (or even likely). Consider, for instance,
a passenger about to board a flight and suppose that, being unattached and
having no dependents, he is indifferent to the size of his estate in the event
that he dies. (Such a person would decline flight insurance regardless of
the terms of the policy.) By the customary definition, for such passenger
a plane crash is a null event and is assigned zero probability, even though
the passenger may believe that the plane could crash. This problem renders
the representation of beliefs by subjective probabilities dependent on the
implicit and unverifiable assumption that in every event some outcomes are
strictly more desirable than others.3 If this assumption is not warranted the
procedure may result in misrepresentations of beliefs. The model developed
here overcomes this problem.

From the point of view of Bayesian statistics, to which subjective ex-
pected utility theory is supposed to provide a choice-theoretic foundation
of prior probabilities, the failure to obtain a correct representation of be-
liefs by probabilities is a fundamental flow. Moreover, with one exception,
while subjective expected utility theory is consistent with the updating of
the subjective probabilities according to Bayes’ rule, it does not imply it.4

The exception is Ghirardato [8], who replaced Savage’s Sure Thing Principle

2See the example and discussion in Karni [15].
3See Karni, Schmeidler, and Vind [18].
4The notion of conditional preferences on acts is well defined in subjective expected

utility theory. These conditional preferences are sometimes interpreted as the updated
preferences. However, this interpretation, appealing as it may be, is not implied by the
axioms. In other words, the axioms do not imply that if a decision maker receives in-
formation that makes him believe that a certain event obtains, he must update his prior
probability on this event equiproportionally. A more detailed discussion of this point is
provided in Kyburg [20].
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by dynamic consistency to obtain an axiomatic subjective expected utility
theory that implies the updating of the prior according to Bayes rule (see
Section 3.2 below for a more detailed discussion). In view of these observa-
tions, it is natural to define subjective expected utility maximizing decision
makers as Bayesian if, in addition to being subjective expected utility theory
maximizers they also update their prior beliefs according to Bayes’ rule.

A last, well known, criticism of subjective expected utility theory is its
requirement that the preferences be state independent. This requirement
imposes severe limitations on its possible applications. For example, the
theory is inappropriate for analysis of the demand for health or life insurance.

The failure of the choice-theoretic models to quantify decision makers’
beliefs by a probability measure is due to the restrictive nature of preference
relations defined solely on acts (that is, on functions from the set of states of
nature to the set of consequences). The extension of the choice set to include
conditional acts allows the expression of preferences that makes it possible
to separate utilities from probabilities in a more satisfactory manner.5 In
view of the role played by preferences on conditional acts in the subsequent
analysis, their interpretation merits some elaboration.

Conditional acts may be thought of as alternatives from which the deci-
sion maker could chose were he informed that the conditioning event obtains.
Such acts may be deliberately invoked by decision makers when trying to
clarify to themselves, or articulate to others, how they would choose among
alternative courses of action if they acquire new information pertinent to
their decision. Savage [25] uses this interpretation to justify his celebrated
Sure Thing Principle. To motivate this principle, he gives the following
example (italics are mine):

A businessman contemplates buying a certain piece of property.
He considers the outcome of the next presidential election rel-
evant to the attractiveness of the purchase. So, to clarify the
matter to himself, he asks whether he would buy it if he knew
that the Republican candidate were going to win, and decides

5Pflanzagl [23], Luce and Krantz [21], Fishburn [7], and Drèze and Rustichini [6] stud-
ied preferences on conditional acts. Luce and Krantz [21] maintain that, in many cir-
cumstances, decisions delimit which events may obtain and that in such circumstances
the application of Savage’s theory is cumbersome and unintuitive. They propose instead
a theory based on choice among conditional acts that, they believe, is simpler and more
natural. Their critical view of the adequacy of Savage’s theory is shared by Fishburn, ac-
cording to whom “although the Luce-Krantz theory might seem a bit more intricate than
Savage’s, it surely comes closer to making contact with the structure of actual decision
situations” (Fishburn [7] p. 5).
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that he would do so. Similarly, he considers whether he would
buy if he knew that the Democratic candidate would win, and
again finds that he would do so. Seeing that he would buy in
either event, he decides that he should buy. (Savage [25] p. 21)

The businessman compares the act of buying conditional on the event
that the Republican candidate wins and the act of not buying conditional on
the same event. He then proceeds to compare the same two acts conditional
on the complementary event. Because the decision maker knows the event
that obtains, presumably he is indifferent among all acts that agree on that
event. Insofar as he is concerned, comparison between two acts conditional
on any given event is independent of the values the two acts assume outside
the conditioning event. In other words, an act conditional on an event
may be regarded as the subset of all the unconditional acts that agree on
that event, and preferences among conditional acts may be expressed in
terms of preferences among subsets of unconditional acts that agree with
the conditional acts on the conditioning event.

I consider a choice set that includes all conditional acts. This means that,
in the above example, the businessman can contemplate a choice between
buying the property knowing that the Republican candidate were going to
win and buying knowing that the Democratic candidate were going to win.
If the businessman could choose the next president as well as whether or
not to buy the property, the choice set would have obvious meaning. Such
choices rarely present themselves, however, and because they involve dis-
tinct conditioning events, may not even be possible. Thus preferences over
acts conditional on distinct events may be expressed only verbally. This de-
parture from the traditional choice-theoretic approach merits elaboration.
Preference relations over conditional acts may be decomposed as follows:
First, preferences among acts conditional on the same event, are taken to
represent a decision maker’s choice behavior were he to learn that the con-
ditioning event obtained.6 Second, to link the preference relations on acts
conditional on distinct events, suppose that, given any unconditional act,
the decision maker can identify consequences (that is, state-outcome pairs)
among which he would be indifferent to learning which consequence obtains.
In the above example, this means that the businessman can contemplate
placing a bet on the outcome of the presidential election that will leave him
indifferent between the two possible election outcomes. In this instance the
same proposition could be stated in the language of choice, namely, if, af-
ter placing his bet, the businessman happens to find himself in a position in

6See discussion in Arrow [2] and Ghirardato [8].
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which he could cast the deciding vote, he would be indifferent between voting
for the Republican or the Democratic candidate. In general, however, such
choices are impossible and the indifference can be expressed only verbally.
Now suppose that there are unconditional acts, dubbed constant-valuation
acts, each representing state-outcomes pairs among which the decision maker
is indifferent. For every given constant-valuation act, I assume that all the
induced conditional acts are equally preferred.

Subject to this understanding of the meaning of the preference relations
considered here, the significance of the analysis that follows is that it iden-
tifies necessary and sufficient conditions for the existence and uniqueness of
a probability measure representing decision makers prior beliefs and for the
updating of these probabilities and beliefs according to Bayes’ rule. More-
over, the theory is general in the sense of accommodating state-dependent
as well as state-independent preferences. The underlying premise is that the
mental processes at work - namely, the assessment of the likelihood of events
and the valuation of outcomes - are the same whether or not the preferences
are state independent. It is reassuring, therefore, that both cases are ad-
dressed using the same approach and that state-independent preferences are
merely a special instance of the more general model. As in Savage [25], the
probabilities in this model do not enter as primitives, appearing instead as
a derived concept.

The next section describes the model and the main results. Further
discussion and review of the relevant literature appears in Section 3. The
proofs appear in the appendix.

2 Subjective Expected Utility Theory

2.1 The analytical framework

Let S = {1, ..., n}, 2 ≤ n <∞, be a set of states of nature one and only one
of which is the true state. Nonempty subsets of S are events. Let S denote
the set of all events. When the true state belongs to the event E, we say that
E obtains. Uncertainty is the lack of knowledge regarding which state is the
true state. For each s ∈ S, let Xs be an interval in R whose elements are
outcomes (e.g., monetary payoffs) that are feasible in s.7 Unconditional acts
are n−tuples x = (x1, ..., xn), where xs ∈ Xs, representing possible courses of

7The assumption that Xs corresponds to an interval in the real line is aimed at simpli-
fying the exposition. More generally, Xs may be taken to be a linear topological separable
quotient space whose elements are indifference classes of the preference relation introduced
below.
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action. The set of all unconditional acts is the product setX := X1×...×Xn.
Note that the feasible sets of outcomes do not have to be the same across
states. This is a departure from Savage’s [25] model, in which the set of acts
includes all the constant acts and, consequently, requires that the feasible
outcomes be the same in every state.

For each s, denote by (x−s, y) the unconditional act obtained from x by
replacing its s− th coordinate with y ∈ Xs. For each E ⊂ S denote by xEy
the act that coincides with x on E and with y on S−E (that is, (xEy)s = xs
if s ∈ E and (xEy)s = ys if s ∈ S −E.)

To begin with assume that decision makers have preference relations, <,
(that is complete and transitive binary relations) on the set of unconditional
acts, where the strict preference relation Â and the weak preference relations
∼ are the asymmetric and symmetric parts of <, respectively.

Ideally, a state is designated as null if the decision maker believes it
impossible for it to be the true state. However, the standard choice-theoretic
formalization of this idea — namely, that a state s ∈ S is null if (x−s, y) ∼
(x−s, z) for all y, z ∈ Xs — is too coarse to allow a distinction between
situations in which the decision maker believes a state to be impossible
from situations in which he is indifferent among all the outcomes that are
feasible in that state. The extension of the choice set to include conditional
acts makes it possible to differentiate between these situations.

Given a preference relation < on X, a state s is obviously nonnull if
(x−s, y) Â (x−s, z) for some y, z ∈ Xs. Let S0 ⊂ S denote the set of obviously
nonnull states and denote by E 0 the power set of S0. Then an event E ∈ E
is obviously nonnull if it includes a nonnull state. Henceforth I assume that
S contains at least two obviously nonnull states.

Given E ∈ E 0 a conditional act, xE , is the generic element of XE :=Q
s∈E Xs. For each E ∈ E 0 assume that XE is endowed with the prod-

uct topology. Let X0= ∪E∈E 0XE denote the set of all acts conditional on
obviously nonnull events and assume that decision makers have preference
relations on X0 extending their preference relations < on X. To simplify the
notation at the cost of slight abuse I shall denote this extension by <. (I shall
return to the interpretation of this preference relation shortly). Using the
preference relation on the set of conditional acts it is possible to distinguish
between states that a decision maker believes to be impossible and states in
which he is indifferent among all feasible outcomes. The idea is to compare
acts conditional on distinct nonnull events one of which includes the state
s and the other does not. If the decision maker believes that the state s is
impossible, it should not make a difference him whether or not the state s
is in the event. However, if he is indifferent among all feasible outcomes in
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s but believes that s is possible it does make a difference whether s is in the
event or not. Formally:

Definition 1: A state s ∈ S is null if xE< yE if and only if xE< yE∪{s}
for all x,y ∈ X and E ∈ E 0 such that s /∈ E; otherwise it is nonnull.
An event E is null if it consists of null states; otherwise it is nonnull.

Denote by E the set of all nonnull events. Notice that E 0 ⊂ E , that is,
every event that consists of obviously-nonnull states is nonnull however an
event may be nonnull yet not obviously so. Let X = ∪E∈EXE denote the
set of all acts conditional on nonnull events and assume that it is endowed
with the topology whose open sets are the unions of the open sets in the
product spaces XE , E ∈ E . Assume that decision makers are characterized
by preference relations < on X extending their preference relations on X0.
Note that decision makers are not supposed to have preferences over acts
conditional on events they believe impossible. For expositional convenience,
I assume provisionally that all the states are either null or obviously nonnull
(that is E − E 0 = ∅). I revisit this issue in Section 2.5.

I assume throughout that < is a continuous weak order. Formally, < is
a complete and transitive binary relation on X such that the sets {xE ∈ X |
xE < yE0} and {xE ∈ X | yE0 < xE} are closed for all yE0∈X. The strict
preference relation Â and the indifference relation ∼ are defined as usual and
have the usual interpretation. The interpretation of the preference relation
< requires some explanation. Consider the statement xE < yE0 . If E = E0,
then this statement means that if the decision maker knew that the event
E obtained he would prefer the act x to the act y. This proposition has
clear operational meaning: if the decision maker were to leave instructions
to an agent to act on his behalf when new information became available,
he would instruct the agent to choose act x rather than y if he learned
that E obtained. Designate the restriction of < to acts conditional on E
by the conditional preference relation <E . Presumably, these conditional
preferences capture the decision makers updating of his preferences in view
of the new information. However, if E 6= E0, the meaning of xE< yE0 is not
obvious. To render it meaningful, I invoke the concept of constant valuation
acts.8

Definition 2: An act x∗ ∈ X is a constant-valuation act if x∗E ∼ x∗E0 for
all E,E0 ∈ E .

8The idea of constant valuation acts is similar to Drèze’s [5] notion of “omnipotent”
acts. Similar concepts appear in Karni [14] and Skiadas [27].
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The indifference relation in Definition 2 may be expressed verbally by
a decision maker as follows: “Given x∗ ∈ X, were I to choose, I would be
indifferent between between choosing E and E0.” Note that Definition 2 im-
plies that x∗{s} ∼ x∗{t} for all nonnull s, t ∈ S. This means that the decision
maker is indifferent between the outcome-state pairs (x∗s, s) and (x

∗
t , t). Un-

derlying Definition 2 is the presumption that, ultimately, the consequence
of a decision is a outcome-state pair (x∗s, s) and that observing an event is a
partial resolution of uncertainty. With constant valuation acts the ultimate
outcome is of the same valued whichever event obtains. The indifference
relation that figures in Definition 2 is a form of consequentialism, assert-
ing that the decision maker’s sole concerned is the ultimate consequence,
disregarding the particular form in which uncertainty is resolved.

Suppose that decision makers are capable of expressing preferences among
constant valuation acts conditional on the same event. Then xE < yE0

means that x∗∗E < x∗E, where x∗∗E ∼ xE and x∗E ∼ x∗E0 ∼ yE0 . In other words,
the comparison between xE and yE0 is indirect and < on X is the transitive
closure of the conditional preference relations <E, E ∈ E and the preference
relation on conditional constant valuation acts.

Constant valuation acts play a crucial role in the analysis that follows and
are analogous to constant acts in Savage [25]. However, unlike Savage, who
assumes implicitly that constant acts are constant-valuation acts, I recognize
that the same outcome may be assigned distinct values in different states.

(A.0) Assume that there exist unconditional constant valuation acts
x and x such that x Â x and x < xE< x for all x ∈ X and that the set of
constant valuation acts is convex.9

A decision maker’s prior beliefs are represented by a binary relation,
D, on E that has the following interpretation: For all T,Q ⊂ S, T D Q
means that the decision maker considers the event T as at least as likely
to obtain as the event Q. Following Ramsey [24], it is now commonplace to
infer a decision maker’s beliefs from his willingness to bet on different events.
However, given that the outcome valuations may be state dependent, care
must taken in defining bets.

Definition 3: A binary relation, D, on E represents a decision maker’s
prior beliefs if, for all constant valuation acts, x∗∗,x∗∈ X, satisfying
x∗∗Â x∗, and for all T,Q ∈ E , T D Q if x∗∗T x

∗< x∗∗Q x∗. A binary rela-
9The connectedness of the outcome space and the continuity of the preference relation

imply that there are infinitely many constant valaution acts. Indeed, implicit in the
discussion in the preceding paragraph is the presumption that every conditional act has
an equivalent constant valuation act.
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tion, DE, on 2E represents a decision maker’s posterior beliefs if for all
conditional constant valuation acts, x∗∗E ,x∗E∈ X, satisfying x∗∗E Â x∗E,
and for all T,Q ∈ 2E , T DE Q if (x∗∗T x

∗)E <
³
x∗∗Q x

∗
´
E
.

The following terminology is used throughout: A function W : X→ R is
said to be continuous additive valued if there exist continuous functions
wE (·; s) : Xs → R, for all E ∈ E and s ∈ E, such that W (xE) =P

s∈E wE (xs; s) . The functions wE (·; s) are called additive-valued functions.
They are said to represent < if xE < yE0 if and only if

P
s∈E wE (xs; s) ≥P

s∈E0 wE0 (ys; s) for all xE,yE0 ∈ X, and to be jointly cardinal if ŵE (·; s) :
Xs → R, for all E ∈ E and s ∈ E, is another array of additive valued
functions representing < then ŵE (·; s) = βwE (·; s) + γs, β > 0. They are
cardinally measurable fully comparable if, in addition, γs = γ for all s.

2.2 Axioms

Bayesian decision makers update their beliefs regarding the likely realization
of events independently of their valuation of outcomes. To capture this idea,
I assume that the preference relation reflects the same valuations of outcome-
state pairs regardless of the conditioning event. This is formally expressed
by the following two axioms:

(A.1) Cardinal Coherence For all w,x,y, z ∈ X, E,E0 ∈ E 0, s ∈ E ∩
E0, and as, bs, cs, ds ∈ Xs, if (x−s, as)E < (y−s, bs)E, (y−s, cs)E <
(x−s, ds)E, and (z−s, bs)E0 < (w−s, as)E0 then (z−s, cs)E0 < (w−s, ds)E0 .

Axiom (A.1) is an adaptation of Wakker’s [31] cardinal consistency ax-
iom. (Wakker [31] discusses the earlier literature on the idea underlying
cardinal consistency.) To grasp the meaning of this axiom, think of the
preferences (x−s, as)E < (y−s, bs)E and (y−s, cs)E < (x−s, ds)E as indicat-
ing that, given E, the “intensity” of the preference for cs over ds is suffi-
ciently greater than that of as over bs as to reverse the order of preference
between the other coordinates of x and y. Coherence requires that these in-
tensities are not contradicted by the preference relations on acts conditional
on another obviously nonnull events.

The next axiom asserts that the marginal rate of substitution between
outcomes in any two states is independent of the conditioning event pro-
vided, of course, that these states belong to the conditioning event. For-
mally,

10



(A.2) Ordinal Coherence For all x ∈ X, E ∈ E, s, t ∈ E, and (x0s, x
0
t) ∈

Xs ×Xt,
¡
(x−s, x0s)

−t, x0t
¢
∼ x if and only if

¡
(x−s, x0s)

−t, x0t
¢
E
∼ xE .

2.3 A preliminary result

The following conditions are well-known. Their role in the analysis that
follows is to ensure the separability of preferences on conditional acts. The
first condition requires that, for any given event, E ∈ E , the preference be-
tween any two acts conditional on E be independent of outcomes in states to
which the two acts assign the same outcomes. This assumption is analogous
to Savage’s [26] Sure Thing Principle (see Wakker [31]). Formally:

Conditional Coordinate Independence For all E ∈ E , x,y ∈ X,
s ∈ E and w, z ∈ Xs, (x

−s, z)E < (y−s, z)E if and only if (x−s, w)E <
(y−s, w)E .

The second condition is introduced to deal with events that have only
two nonnull states (see Wakker [31] Ch. III ).

Hexagon condition Let s and t be two nonnull states and E = {s, t}.
Then, for all xs, ys, zs in Xs, xt, yt, zt in Xt, and x ∈ X, if

¡
(x−s, xs)−t, yt

¢
E
∼¡

(x−s, ys)−t, xt
¢
E
and

¡
(x−s, zs)−t, xt

¢
E
∼
¡
(x−s, ys)−t, yt

¢
E
∼
¡
(x−s, xs)−t, zt

¢
E

then
¡
(x−s, ys)−t, zt

¢
E
∼
¡
(x−s, zs)−t, yt

¢
E
.

The following Lemma will be used in the proofs of the subsequent theo-
rems.

Lemma 1 Let there be at least two obviously nonnull states then: If < on
X satisfies (A.1) then it satisfies conditional coordinate independence and
the hexagon condition.

2.4 Subjective expected utility representation of state-dependent
preferences

The next theorem establishes the main result: there exists a unique sub-
jective probability distribution on the set of states representing the decision
maker’s prior beliefs; posterior probabilities obtained from the given prior by
Bayes’ rule; state-dependent utility functions on the respective sets of out-
comes representing the decision maker’s valuations; and subjective expected
utility representations of the decision maker’s conditional and unconditional
preferences. Implicit in this result is the notion that the decision maker may

11



imagine himself having to choose among act-event pairs being aware that
once the event is chosen, the probabilities he assigns to states belonging to
it increase equiproportionally.

Theorem 2 Suppose that there are at least two obviously nonnull states.
Then

a. The following two conditions are equivalent:

(i) Assumption (A.0) holds and the relation < is a continuous weak-order
on X satisfying (A.1) and (A.2).

(ii) There exists a probability measure π on S and an array of non-constant,
continuous functions {us : Xs → R}s∈S such that, for all xE,yE0 ∈ X,

xE < yE0 ⇔
X
s∈E

π (s | E)us (xs) ≥
X
s∈E0

π (s | E)us (ys) ,

where, for all B ∈ E, π (s | B) = π (s) /
P

t∈B π (t) is the probability
of state s conditional on the event B, and us (αsx) = u1 (x) for all
s ∈ S − {1}, x ∈ X1 and some αs > 0.

b. The utility functions {us}s∈S are cardinally measurable fully compara-
ble.

c. π is unique and π (s) = 0 if and only if s is null.

Theorem 2 implies that, for all x,y ∈ X,

x < y ⇔
X
s∈S

π (s)us (xs) ≥
X
s∈S

π (s)us (ys) ,

and, for all xE,yE ∈ XE ,

xE < yE ⇔
X
s∈E

π (s | E)us (xs) ≥
X
s∈E

π (s | E)us (ys) .

Hence the probability measure π has the interpretation of a Bayesian prior
and, since xE < yE if and only if

P
s∈E π (s | E)us (xs) ≥

P
s∈E π (s | E)us (ys) ,

π (· | E) is the posterior probability distribution on E obtained by the ap-
plication of Bayes rule.
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The proof is rather long. The following remarks may serve as a ‘road
map’ to the proof that, in part (a), (i) → (ii), which is the hard part. Be-
cause the preference relation < is a continuous weak order satisfying (A.1)
there is an additive-valued representations of < onXE and, for all E,E0 ∈ E ,
the additive-valued functions that figure in the representation are positive
affine transformations of one another. Axiom (A.2) serves to fix a uniform
scale of the additive-valued functions across events. Finally, the assumed ex-
istence of constant valuation acts serve to identify the utility and probability
components implicit the additive valued functions, thus allowing the decom-
position of the additive-valued functions into a product of state-dependent
(but event-independent) utility and conditional probability.

To understand the role of ordinal coherence notice that absent this axiom
the updating of the subjective probabilities does not necessarily obey Bayes
rule. Formally,

Theorem 3 Suppose that there are at least two obviously nonnull states.
Then assumption (A.0) holds and the relation < is a continuous weak-order
on X satisfying (A.1) if and only if there exists a unique family of probability
measures {π(· | E) | E ∈ E} on S and an array of non-constant, continuous
functions {us : Xs → R}s∈S such that, for all xE,yE0 ∈ X,

xE < yE0 ⇔
X
s∈E

π (s | E)us (xs) ≥
X
s∈E0

π (s | E)us (ys) ,

where us (αsx) = u1 (x) for all s ∈ S − {1}, x ∈ X1 and some αs > 0.
Moreover, the utility functions {us}s∈S are cardinally measurable fully com-
parable, and, for all E ∈ E and s ∈ E, π (s | E) = 0 if and only if s is
null.

Unlike in Theorem 2, the conditional probabilities in Theorem 3 do not
necessarily satisfy π (s | E) = π (s) /

P
t∈E π (t) for all E ∈ E .

2.5 Subjective expected utility representation of state-independent
preferences

State-independent preferences are a special case of the theory just presented.
To study this case, assume, without essential loss of generality, that the
same outcomes are feasible in all states (i.e., X1 = ... = Xn = X). To help
keep this in mind, I denoteX byXn. Intuitively speaking, state-independent
preferences require that the “intensity” of the preferences be the same across
states. To formalize this idea I invoke the condition of cardinal coordinate
independence of Wakker ([31], Ch. IV).

13



(A.3) Cardinal Coordinate Independence - For all x,y, z,w ∈ Xn,
nonnull s, t ∈ S, and a, b, c, d ∈ X, if (y−s, b) < (x−s, a), (x−s, c) <
(y−s, d) and (z−t, a) < (w−t, b) then (z−t, c) < (w−t, d).

The interpretation of cardinal coordinate independence is analogous to
that of cardinal coherence. The relations (y−s, b) < (x−s, a) and (x−s, c) <
(y−s, d) indicate that the “intensity” of the preference for c over d in state s is
sufficiently greater than that of b over a as to reverse the order of preference
between the other coordinates of x and y. State independence requires that
these intensities are not contradicted by the preferences between the same
outcomes in any other state t.

The next lemma gives necessary and sufficient conditions for the state-
dependent utility functions to be affine transformations of one another.

Lemma 4 Let < be a continuous weak order on Xn. Then the following
conditions are equivalent:

(i) < satisfies (A.3).

(ii) There exist u : X → R and positive affine or constant functions ϕs :
u (X)→ R for all s ∈ S such that, for all x,y ∈ X .n,

x < y ⇔
nX

s=1

ϕs ◦ u (xs) ≥
nX

s=1

ϕs ◦ u (ys) .

The proof of Lemma 4 follows immediately from Wakker’s [31] Theorem
IV.2.7 and is omitted.10

In general, even if the preference relation has an expected utility repre-
sentation, state-independence preferences does not imply state-independent
utility functions. However, if the utility functions are not the same across
states then, by Lemma 4, they must be positive affine transformations of
one another (i.e., for all s ∈ S and x ∈ Xs, us (x) := σsu (x) + ξs, where
σs > 0). In other words, the dependence of the evaluation of an outcome
on the underlying states is quantifiable by the multiplicative coefficients σs
and the additive constants ξs. Note that if ϕs is a constant function, then s
is null. The next theorem captures this fact and is analogous to Theorem 2.

10 If the assumption Xs = Xt does not hold, then the utility functions of nonnull states
are positive affine transformations of one another over the outcomes that are in the inter-
section of the sets of feasible outcomes.
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Theorem 5 Suppose that there are at least two obviously nonnull states.
Then

a. The following conditions are equivalent:

(i) Assumption (A.0) holds and the relation < is a continuous weak-order
on X satisfying (A.1)—(A.3).

(ii) There exists a probability measure π on S, a continuous non-constant
function u : X → R, and for all s ∈ S , there are numbers σs > 0 and
ξs such that, for every xE,yE0 ∈ X,

xE < yE0 ⇔
X
s∈E

π (s | E) [σsu (xs) + ξs] ≥
X
s∈E0

π
¡
s | E0

¢
[σsu (ys) + ξs] ,

where, for all B ∈ E , π (s | B) = π (s) /
P

t∈B π (t) is the probability of
the state s conditional on the event B, and us (αsx) = u1 (x) for all
s ∈ S − {1}, x ∈ X1 and some αs > 0.

b. The triplet (u, σs, ξs) is unique. (That is, if (v, ζs, τ s) represent the
preference relation as in (ii) then v = βu + α and, for all s ∈ S,
ζs = σs/β, and τ s = ξs − αζs.)

c. π is unique and π (s) = 0 if and only if s is null.

The proof of Theorem 5 is similar to that of Theorem 2 and is outlined
in the appendix.

Notice that if constant valuation acts happen to be constant acts then the
utility functions are state independent. In other words, the utility functions
that figure in the representation in Theorem 5 are such that σs = σ and
ξs = ξ for all s ∈ S.

The definitions of subjective probabilities in Theorems 2 and 5 represent
the decision makers’ prior beliefs. Letting the probability of an event E be
given by π (E) =

P
s∈E π (s), the representations in Theorems 2 and 5 and

Definition 3 imply that, for all T,Q ⊂ S,

T D Q ⇔ π (T ) ≥ π (Q) .

Moreover, for every given event E ∈ E the posterior beliefs, DE, are rep-
resented by the conditional probabilities π(· | E). Notice that, because the
state-space is finite, these are not the only representations of the prior and
posterior relations D and DE on E , by probabilities. However, these are
the only such probabilities that are compatible with the decision maker’s
preferences.

15



2.6 Neither null nor obviously nonnull states

Suppose that there are states that are neither null nor obviously nonnull
(that is, states that the decision maker believes are possible but in which
all the feasible outcomes are equally preferred). The analysis above may
be extended to cover this possibility using the following procedure: De-
note the set of all states that are neither null nor obviously nonnull by K
and, disregarding the states in K, construct a representation as above to
obtain the conditional probabilities on the event T = S − K. Then ex-
tend the representation to S as follows: Let t ∈ K and suppose that there
are x,y ∈ X such that xT ¿ yT and xT ∼ yT∪{t}. Define wT∪{t} (yt; t) =P

s∈T [π (s | T )us (xs)− π (s | T )us (ys)] . Because t in not obviously non-
null, by definition, yT∪{t} ∼

¡
y−t, z

¢
T∪{t} for all z ∈ Xt. Hence, by transi-

tivity, wT∪{t} (yt; t) is a constant function. Denote its value by wt. Repeat
this procedure for every t ∈ K that satisfies the condition above.

Given t ∈ K, let y∗ be a constant valuation act satisfying y∗T∪{t} ∼
yT∪{t}. Define ut = us (y

∗
s) , s ∈ T (because y∗ is a constant valuation act

us (y
∗
s) is independent of s) and let p (t) = wt/ut. Repeat this procedure for

every state in K using, if necessary, different constant valuation acts. Let
p (K) =

P
t∈K p (t) and, for each s ∈ S −K, let p (s) = π (s) (1− p (K)) .

Then the representation theorems 2, 3, and 5 hold with the probability mea-
sure p = (p (1) , ..., p (n)) replacing π. Moreover, p is a unique representation
of the decision maker’s beliefs, and p (s) = 0 if and only if s is null.

3 Discussion

3.1 Beliefs and probabilities

The crucial aspect of the definition of subjective probabilities in this paper
is that the probabilities quantify the decision makers’ prior and posterior be-
liefs correctly. It is important to note that if one is not interested in the cor-
rect representation of beliefs by probabilities (that is, the correct separation
of utilities and probabilities), the only meaning of subjective expected utility
theory is that it yields separately additive representation. However, sepa-
rately additive representations may be obtained with less restrictive assump-
tions. The Anscombe and Aumann [1] model without state-independence,
for example, yields separately additive representation (see also the discussion
in section 3.3 below). In Karni [15] I argued that a correct representation
of beliefs is mandatory if a decision maker’s choice behavior is to be consis-
tent with the verbal expressions of his preferences. I show next that correct
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representation of beliefs is also important for normative economic analysis.
Harsanyi’s [11] aggregation theorem shows that if individuals and social

preference relations on social-state lotteries satisfy the axioms of expected
utility theory of von Neumann and Morgenstern [29] and the social prefer-
ence relation satisfies a Pareto indifference condition, then the social prefer-
ences may be represented as a linear combination of individual utilities. In
Harsanyi’s theorem the probabilities of the social-state lotteries are given.
If these probabilities are subjective, then Harsanyi’s approach suggests that
individual utilities and probabilities should be aggregated separately into
social utilities and probabilities and then combined to obtain an expected
utility representation of social preferences. Unfortunately, such an aggre-
gation is inconsistent with Pareto indifference (see Hylland and Zeckhauser
[12] and Mongin [22]).

Gilboa, Samet, and Schmeidler [9] argue, convincingly, that the Pareto
condition requiring that, when all members of a society are indifferent be-
tween two alternatives the social preferences must also be indifferent, is
compelling only when the individual members do not hold contradictory
beliefs. In other words, without some qualification, the Pareto condition
cannot be used to justify social preference over alternatives about which in-
dividual members hold conflicting beliefs. They also show that if the Pareto
indifference condition is imposed only when there is agreement among indi-
viduals’ beliefs, then Pareto indifference implies that the social preferences
are represented by a subjective expected utility functional with probabili-
ties that are an affine combination of the individual subjective probabilities
and a social utility function that is a linear combination of the individual
utilities.

Gilboa et al. do not distinguish between probabilities and beliefs. In
fact, following the traditional practice in decision theory, they tacitly define
beliefs by probabilities and use these probabilities in the formulation of
their restricted Pareto condition. This approach opens a gap between their
verbal argument, which is stated, quite compellingly, using the language of
beliefs, and their formal argument, which is presented in terms of Savage-
type ascribed probabilities. What happens if beliefs are not represented by
the ascribed probabilities? Not surprisingly, this may lead to two types of
errors. Errors of the first type occur when the restricted Pareto condition
is not used to justify social preferences when it should be. Errors of the
second type occur when the restricted Pareto condition is used to justify
social preferences when it should not be.

To grasp the problem, consider the following example. Let there be
two individuals, a and b, and two states of nature, 1 and 2. Suppose that
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individual tastes are captured by state-dependent utility functions defined
on the level of wealth as follows:

State
Individual 1 2

a wα 2wα

b wβ wβ

Consider next the beliefs of the individuals.
Case 1: Both individuals believe that state 1 is twice as likely to obtain

as state 2. Being subjective expected utility maximizers, their subjective
probabilities are π (1) = 2/3 and π (2) = 1/3. However, according to tradi-
tional subjective expected utility theory, the representation of the individual
preferences are:

Ua ((w1, w2)) =
1

2
wα
1 +

1

2
wα
2

U b ((w1, w2)) =
2

3
wβ
1 +

1

3
wβ
2

Thus since the two individuals appear to disagree on the probabilities, the
restricted Pareto condition of Gilboa et. al. does not apply, even though,
by their normative argument, it should.

Case 2: Individual a believes that state 1 is four times more likely to
obtain than state 2 (i.e., πa (1) = 4/5 and πa (2) = 1/5), while individual b
believes, as before, that state 1 is twice is likely to obtain as state 2. The
preference of the two individuals are represented by:

Ua ((w1, w2)) =
2

3
wα
1 +

1

3
wα
2 ,

and
U b ((w1, w2)) =

2

3
wβ
1 +

1

3
wβ
2 .

In this case, the model of Gilboa et al. implies that restricted Pareto in-
difference should apply, even though the individuals hold conflicting beliefs.
In other words, Gilboa et al. would use the restricted Pareto condition to
justify social preferences even though, by their own argument, the situation
does not warrant it. In conclusion, to avoid making errors in using the re-
stricted Pareto condition to justify social preferences, it is necessary to use
the corrected probability representations of individual beliefs.
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3.2 Related literature

Karni and Schmeidler (1980)11 and Karni, Schmeidler, and Vind [18] model
subjective expected utility with state-dependent preferences using hypothet-
ical preference relation on hypothetical acts that is linked axiomatically to
the preference relation on actual acts in the framework of Anscombe and
Aumann [1]. Subsequently, Wakker [30] extended the work of Karni, Schmei-
dler, and Vind by replacing the roulette lotteries of Anscombe and Aumann
with topologically connected consequence spaces. In both cases the consis-
tency requirement imposes state-wise agreement between the hypothetical
and the actual conditional preferences on the ranking of lotteries. Karni and
Mongin [19] observed that only the model of Karni and Schmeidler (1980)
leads to a definition of subjective probabilities that faithfully represents the
decision maker’s beliefs. Other models, including Karni, Schmeidler, and
Vind [18] and Wakker [30], involve a choice of hypothetical probabilities over
the states that renders the resulting subjective probabilities arbitrary.12 A
common feature of all these contributions is the reliance on expressed prefer-
ences among hypothetical lotteries or objective probability distributions on
the states. The model presented here is different in that it relies on prefer-
ences on conditional acts. It thus circumvents the need to use probabilities
as primitive concepts. In addition, the use of preferences on conditional acts
eliminates the last vestige of ambiguity in the definition of the subjective
probabilities associated with the possible existence of states in which the
decision maker is indifferent among all the outcomes.

Skiadas [28], [29] axiomatized subjective probabilities representing deci-
sion makers’ beliefs in a model that accommodates state-dependent prefer-
ences and admits nonseparability (across states) of the evaluation of acts. In
Skiadas’ model acts and states are primitive concepts, and preferences are
defined on act-events pairs. For any such pair the consequences (utilities)
are the decision maker’s expression of his holistic valuation act not knowing
whether the event occurred. In other words, preferences are an expression
of anticipated feeling. Thus, unlike the approach taken here, Skiadas’ ap-
proach is nonconsequentialist. To link preferences on acts given distinct
events, Skiadas uses constant valuation acts. As in this paper this enables
him to identify the utility of act across events and, consequently, to derive
a subjective probability representation of decision makers’ beliefs. The an-

11“An Expected Utility Theory for State-Dependent Preferences,” Working Paper 48-80,
Foerder Institute for Economic Research, Tel Aviv University.
12Grant and Karni [11] extended the work of Karni and Schmeidler (1980) to nonex-

pected utility preferences. Karni [17] extended it to the framework of Wakker [31].
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alytical framework in this paper differs from that of Skiadas as does the
axiomatic structure. In particular, Skiadas defines conditional preferences
but his model does not include preferences on conditional acts. Hence, un-
like the present work and that of Ghirardato described below, his axiomatic
structure does not establish a formal link (that is, dynamic consistency) be-
tween the preferences on unconditional and conditional acts. Thus, as usual
in subjective expected utility theory, the interpretation of the Bayesian up-
dating as reduced-form ex-post Bayesian updating, where a dynamic con-
sistency assumption is implicit. Moreover, Skiadas take the set of null state
to be a primitive independent of the preferences. He does not deal with the
issue presented by the possible existence of states, or events, that are neither
null nor obviously nonnull.

A model of subjective expected utility with Bayesian updating appears
in Ghirardato [8], who uses derived conditional preferences over uncondi-
tional acts. The framework is similar to that of Savage [26], with the Sure
Thing Principle replaced by dynamic consistency, which connects the uncon-
ditional and conditional preferences. In addition, the model imposes consis-
tency between unconditional and conditional preferences over constant acts,
which together with Savage’s P4 imply state-independent preferences. Ghi-
rardato’s model implies the existence of a unique prior and event-dependent
posterior probability distributions connected through Bayes’ rule. However,
these probabilities do not necessarily represent the decision makers’ beliefs,
and the model does not admit state-dependent preferences.
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APPENDIX

A. Proof of Lemma 1. Suppose that, for some x,y ∈ X, E ∈ E 0, s ∈ E,
and z, w ∈ Xs, (x

−s, z)E < (y−s, z)E and (y−s, w)E Â (x−s, w)E. In (A.1)
let as = bs = z and cs = ds = w, E = E0, x = z and y = w. Then (A.1)
implies that (x−s, w)E < (y−s, w)E , a contradiction. Thus (x−s, z)E <
(y−s, z)E if and only if (x−s, w)E < (y−s, w)E. This complete the proof that
< satisfies conditional coordinate independence.

To prove that < satisfies the Hexagon condition let E = {s, t}, where
s and t are obviously nonnull states. Suppose that

¡
(x−s, xs)−t, yt

¢
E
∼¡

(x−s, ys)−t, xt
¢
E
and

¡
(x−s, zs)−t, xt

¢
E
∼
¡
(x−s, ys)−t, yt

¢
E
∼
¡
(x−s, xs)−t, zt

¢
E
.

Apply (A.1) with E = E0, as = cs = ys, bs = xs, ds = zs, z
−s =¡

x−t, zt
¢−s

, y−s = (
¡
x−t, yt

¢
)−s, and w−s = y−s. Then

¡
(x−s, xs)−t, yt

¢
E
∼¡

(x−s, ys)−t, xt
¢
E
is equivalent to (y−s, bs) ∼ (x−s, as) ,

¡
(x−s, zs)−t, xt

¢
E
∼¡

(x−s, ys)−t, yt
¢
E
is equivalent to (x−s, ds) ∼ (y−s, cs) , and

¡
(x−s, ys)−t, yt

¢
E
∼¡

(x−s, xs)−t, zt
¢
E
is equivalent to (y−s, cs) := (w−s, as) ∼ (z−s, bs) . Ap-

ply (A.1) twice to obtain (z−s, cs) ∼ (w−s, ds) . Hence
¡
(x−s, ys)−t, zt

¢
E
∼¡

(x−s, zs)−t, yt
¢
E
. ¤

B. Proof of Theorem 2 - (a.i) ⇒ (a.ii). Let x̄ and x be constant
valuation acts such that x̄ < xE < x for every xE ∈ X and x̄ Â x. (That
such x̄ and x exist is an implication of (A.0)). The connectedness of the
outcome space and the continuity of the preference relation imply that for
every xE ∈ X there is a constant valuation act x∗ satisfying x∗ ∼ xE. Note
that null states do not affect the preferences among acts. Thus, without loss
of generality, when writing xE it is assumed that all states in E are nonnull.

Since < is a continuous weak order satisfying (A.1), by Lemma 1 it also
satisfies conditional coordinate independence and the hexagon condition.
Hence, by Theorem III.4.1 of Wakker [31], for every event E containing
at least two states, there exist additive value functions WE : XE→R that
represent < on XE with jointly cardinal continuous functions {wE (·; s) :
Xs → R}s∈E (that is, for all E ∈ E2, where E2 ⊂ E denotes the set of events
in E containing at least two nonnull states, and xE,yE∈ XE,xE< yE if and
only if WE (xE) =

P
s∈E wE (xs; s) ≥

P
s∈E wE (ys; s) = WE (yE)). If E is

a singleton, say {s}, then the fact that < is a continuous weak order imply
that there exist a continuous real-valued function w{s} (xs; s) representing
< on Xs (Debreu [3] Theorem I).

21



Invoking the uniqueness property of the jointly cardinal representation
normalize {wE (·; s)}s∈S as follows: For all E ∈ E and s ∈ E set wE (xs; s) =
0 and

WE (x̄) =
X
s∈E

wE (x̄s; s) = 1. (1)

Next I show that, for all E ∈ E and s ∈ E, wE (·; s) is a positive affine
transformation of wS (·; s) .

Claim 1: For all E ∈ E , s ∈ E, and x0s, xs ∈ Xs wE (x
0
s; s) ≥ wE (xs; s) if

and only if wS (x
0
s; s) ≥ wS (xs; s).

Proof of Claim 1: Let (x−s, x0s) < (x−s, xs) . But (x−s, x0s) < (x−s, x0s) ,
(x−s, x0s) < (x−s, xs) and (x−s, x0s)E < (x−s, x0s)E . Thus, by (A.1), (x−s, x0s)E <
(x−s, xs)E . By the same argument (x−s, x0s)E < (x−s, xs)E implies (x−s, x0s) <
(x−s, xs) . The conclusion is implied by the representation of < on X and
XE, respectively. ♦

The next Lemma shows that, for all E,E0 ∈ E , wE and wE0 are nonneg-
ative affine transformations of one another.

Lemma 6 Assume that there are at least three nonnull states, then the
following conditions are equivalent:

(i) < is a continuous weak-order on X satisfying (A.1) and (A.2).

(ii) For every E ∈ E there exist positive affine or constant function φE :
∪s∈EwS (Xs; s)→ R such that, for all s ∈ E, wE (·; s) = φE ◦wS (·; s),
where {wE (·; s) : Xs → R}s∈S constitute a jointly cardinal continuous
additive representation of < on XE, for all E ∈ E.

Proof of Lemma 6 (i)⇒ (ii) . Suppose that < is a continuous weak order
satisfying (A.1) and (A.2). Fix E ∈ E2 then, by the representation, for every
t ∈ E there exist w, z ∈ X such thatX

r∈S−{t}
[wS (wr; r)− wS (zr; r)] = ζ > 0, (2)

and xE ,yE∈ XE satisfyingX
r∈E−{t}

[wE (xr; r)−wE (yr; r)] = ε > 0. (3)
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By continuity of the additive valued functions wE (·; s) and the connected-
ness of the sets Xs, for every ζ̂ ∈ [−ζ, ζ], ε̂ ∈ [−ε, ε], and t ∈ E there exist
w̄, z̄ ∈ X and x̄E, ȳE∈ XE such thatX

r∈S−{t}
[wS (w̄r; r)− wS (z̄r; r)] = ζ̂ (4)

and X
r∈E−{t}

[wE (x̄r; r)−wE (ȳr; r)] = ε̂. (5)

For every E ∈ E2 and s ∈ E define a function φ(E,s) by wE (·; s) =
φ(E,s) ◦wS (·; s) . Then φ(E,s) is continuous. To show that it is positive affine
function fix t ∈ E and letWt = wS (Xt; t) . Then, by the connectedness ofXt

and the continuity of wS (·; t) , Wt is an interval in R. Take α, β, γ, δ ∈ Wt

such that −ζ ≤ α − β = γ − δ ≤ ζ and −ε ≤ φ(E,t) (α) − φ(E,t) (β) ≤ ε.
Let at, bt, ct, dt ∈ Xt satisfy wS (at; t) = α, wS (bt; t) = β, wS (ct; t) = γ and
wS (dt; t) = δ. Take ŵ, ẑ ∈ X such thatX

r∈S−{t}
[wS (ŵr; r)− wS (ẑr; r)] = α− β. (6)

By the representation
¡
ŵ−t; at

¢
∼
¡
ẑ−t; bt

¢
and

¡
ŵ−t; ct

¢
∼
¡
ẑ−t; dt

¢
.

Take x̂E, ŷE∈ XE such thatX
r∈E−{t}

[wE (x̂r; r)− wE (ŷr; r)] = φ(E,t) (α)− φ(E,t) (β) . (7)

Since wE (·; t) = φ(E,t) ◦ wS (·; t) this implies
¡
x̂−t; at

¢
E
∼
¡
ŷ−t; bt

¢
E
. Ap-

plying (A.1) twice yields
¡
x̂−t; ct

¢
E
∼
¡
ŷ−t; dt

¢
E
. Thus

φ(E,t) (γ)−φ(E,t) (δ) =
X

r∈E−{t}
[wE (x̂r; r)− wE (ŷr; r)] = φ(E,t) (α)−φ(E,t) (β) .

(8)
By Wakker [30] Lemma 4.4 this implies that φ(E,t) is affine. Claim 1 implies
that φ(E,t) is nondecreasing, and the restriction of E to include only nonnull
states implies that φ(E,t) is positive, that is, there are numbers β(E,t) > 0
and α(E,t) such that wE (·; t) = β(E,t)wS (·; t) + α(E,t).

Next I show that β(E,t) is independent of t.

Claim 2: For all t, s ∈ E, β(E,t) = β(E,s) = βE.
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Proof of Claim 2: Let (x0s, x
0
t) ∈ Xs × Xt and x ∈ X be as in (A.2).

Then, by (A.2) and the representation,

wE

¡
x0s; s

¢
− wE (xs; s) = wE (xt; t)−wE

¡
x0t; t

¢
(9)

if and only if

wS

¡
x0s; s

¢
− wS (xs; s) = wS (xt; t)−wS

¡
x0t; t

¢
. (10)

But wE (·; s) = β(E,t)wS (·; s) + α(E,t) for all E and t ∈ E. Hence equation
(9) implies

β(E,s)[wS

¡
x0s; s

¢
−wS (xs; s)] = β(E,t)

£
wS (xt; t)− wS

¡
x0t; t

¢¤
. (11)

Together equations (10) and (11) imply that β(E,s) = β(E,t) for all t, s ∈ E.
♦

Let the states 1 and 2 be nonnull and suppose, by way of negation, that
for some constant valuation act x∗,

w{1} (x
∗
1; 1) = wS (x

∗
1, 1) /wS (x̄1; 1) , w{2} (x

∗
2; 2) = wS (x

∗
2, 2) /θ2. (12)

where θ2 > wS (x̄2; 2). Let E = {1, 2} then, since E is nonnull, the proof of
Lemma 6 implies that there exist βE > 0 and α(E,·) such that, for all x ∈ Xt

and t ∈ E,
wE (x; t) = βEwS (x; t) + α(E,t). (13)

Moreover, by Definition 2 and the normalization,

wE (x1; 1) + wE (x2; 2) = βE [wS (x1; 1) + wS (x2; 2)] +
X

t∈{1,2}
α(E,t) = 0,

(14)
and

wE (x̄1; 1) + wE (x̄2; 2) = βE [wS (x̄1; 1) + wS (x̄2; 2)] +
X

t∈{1,2}
α(E,t) = 1.

(15)
Hence βE = [wS (x̄1; 1) +wS (x̄2; 2)]

−1 and
P

t∈{1,2} α(E,t) = 0. By Defini-
tion 2, for every constant valuation act, x∗,

βE [wS (x
∗
1; 1) + wS (x

∗
2; 2)] = w{1} (x

∗
1; 1) = w{2} (x

∗
2; 2) . (16)

But
wS (x

∗
1; 1) = wS (x̄1; 1)w{1} (x

∗
1; 1) (17)
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and
wS (x

∗
2; 2) = θ2w{2} (x

∗
2; 2) > w{2} (x

∗
2; 2)wS (x̄2; 2) . (18)

Hence, using the fact that w{1} (x∗1; 1) = w{2} (x
∗
2; 2) ,

βE [wS (x
∗
1; 1) + wS (x

∗
2; 2)] > βE (wS (x̄1; 1) + wS (x̄2; 2))w{2} (x

∗
2; 2) = w{2} (x

∗
2; 2) .

(19)
This contradicts equation (16). Hence, for all s and xs ∈ Xs, w{s} (xs; s) =
wS (xs, s) /wS (x̄s; s) .

(ii) ⇒ (i) . Let {wE (·; s) : Xs → R}s∈S constitute a jointly cardinal
continuous additive representation of < on XE, for all E ∈ E . Assume
that there exist positive affine transformations

¡
βE > 0, α(E,s)

¢
such that

wE (·; s) = βE ◦wS (·; s) +α(E,s) for all E ∈ E1 and s ∈ E. That (ii) implies
that < is a continuous weak order satisfying (A.2) is immediate.

To show that (ii) implies (A.1) suppose that (x−t, at)E < (y−t, bt)E,
(y−t, ct)E < (x−t, dt)E and

¡
z−t, bt

¢
E0
<
¡
w−t, at

¢
E0
. By the representation,

(x−t, at)E < (y−t, bt)E if and only if

wE (at; t) +
X

s∈E−{t}
wE (xs; s) ≥ wE (bt; t) +

X
s∈E−{t}

wE (ys; s) (20)

and (y−t, ct)E < (x−t, dt)E if and only if

wE (dt; t) +
X

s∈E−{t}
wE (xs; s) ≤ wE (ct; t) +

X
s∈E−{t}

wE (ys; s) . (21)

Hence

wE (bt; t)−wE (at; t) ≤
X

s∈E−{t}
[wE (xs; s)− wE (ys; s)] ≤ wE (ct; t)−wE (dt; t) .

(22)
Now wE (·; t) = βEwS (·; t) + α(E,·) and wE0 (·; t) = βE0wS (·; t) + α(E0,·).

Hence inequality (22) implies that

wE0 (bt; t)− wE0 (at; t) ≤ wE0 (ct; t)− wE0 (dt; t) . (23)

By the representation
¡
z−t, bt

¢
E0
<
¡
w−t, at

¢
E0
if and only ifX

s∈E0−{t}
wE0 (zs; s) + wE0 (bt; t) ≥

X
s∈E0−{t}

wE0 (ws; s) + wE0 (at; t) . (24)

Thus

wE0 (bt; t)− wE0 (at; t) ≥
X

s∈E0−{t}
[wE0 (ws; s)−wE0 (zs; s)] . (25)
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But inequality (23) impliesX
s∈E0−{t}

wE0 (zs; s) + wE0 (ct; t) ≥
X

s∈E0−{t}
wE0 (ws; s) + wE0 (dt; t) . (26)

Hence, by the representation,
¡
z−t, ct

¢
E0
<
¡
w−t, dt

¢
E0
. This completes the

proof of Lemma 6. ♦

By the representation, for all E ∈ E , t ∈ E, xE∈ XE and x, x0 ∈ Xt,

(x−t, x)E< (x−t, x0)E ⇔ wE (x; t) ≥ wE

¡
x0; t

¢
. (27)

By Lemma 6 and the normalization, for all E ∈ E , t ∈ E and x ∈ Xt,

wE (x; t) = βEwS (x; t) , βE > 0, (28)

where βE =
£P

s∈E wS (x̄s; s)
¤−1

. (In particular, for all nonnull t ∈ S,

w{t} (x; t) = β{t}wS (x; t), where β{t} = wS (x̄t; t)
−1).

For each s ∈ S let us (·) = w{s} (·; s) and define π (s) = β−1{s} = wS (x̄s; s) ,

if β{s} > 0 (i.e., if s is nonnull) and π (s) = 0 otherwise. (Notice that, by

this definition, βE =
£P

s∈E π (s)
¤−1). Then wS (x; s) = π (s)us (x) and, for

all x,y ∈ X,

x < y ⇔
X
s∈S

π (s)us (xs) ≥
X
s∈S

π (s)us (ys) . (29)

To show that the functions {wE (·, s) | s ∈ S,E ∈ E} constitute an
additive-valued representation of < on {xE∈X|x̄ < xE < x} take xE,yE0 ∈
X. Let x∗ and y∗ be constant valuation acts such that xE ∼ x∗ and yE0 ∼
y∗. Then, by the representation,X

t∈E
wE (xt; t) =

X
t∈S

wS (x
∗
t ; t) and

X
t∈E0

wE0 (yt; t) =
X
t∈S

wS (y
∗
t ; t) .

(By definition x∗E ∼ x∗ and by transitivity, xE ∼ x∗E . Thus
P

t∈E wE (xt; t) =P
t∈E wE (x

∗
t ; t) =

P
t∈E βEwS (x

∗
t ; t) . But

P
t∈E βEwS (x

∗
t ; t) =

P
t∈E βEπ (t)u (x

∗
t ; t) =P

t∈S π (t)u (x
∗
t ; t) =

P
t∈S wS (x

∗
t ; t) .Hence

P
t∈E wE (xt; t) =

P
t∈S wS (x

∗
t ; t) .)

But xE < yE0 if and only if x∗ < y∗. Hence, by the representation,

xE < yE0 ⇔
X
t∈E

wE (xt; t) ≥
X
t∈E0

wE0 (yt; t) . (30)
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Moreover, by equations (28) and using wS (x; s) = π (s)us (x) and βE =£P
s∈E π (s)

¤−1
, for all xE,yE0 ∈ X,

xE < yE0 ⇔
X
s∈E

π (s | E)us (xs) ≥
X
s∈E0

π
¡
s | E0

¢
us (ys) , (31)

where π (t | E) = bEπ (t) = π (t) /
P

s∈E π (s).
Because the set of constant valuation acts is convex, if x̂ is a constant val-

uation act then there isα ∈ Rn
+ such that α1 = 1 and x̂ =(α1x̂, α2x̂, ..., αnx̂) .

But, by definition, x̂E ∼ x̂. Hence the representation (31) implies thatP
s∈E π (s | E)us (αsx̂) =

P
s∈S π (s)us (αsx̂) for all E. Thus us (αsx̂) =

u1 (x̂) for all s ∈ S − {1}. This completes the proof that (a.i)⇒ (a.ii) .
(a.ii) ⇒ (a.i) . The fact that (ii) implies that < is a continuous weak

order satisfying (A.2) is straightforward. To show that (ii) implies (A.1)
take E ∈ E , w,x,y, z ∈ X, aj , bj , cj , dj ∈ Xj and suppose that (x−j , aj) <
(y−j , bj), (y−j , cj) < (x−j , dj),

¡
z−j , bj

¢
E
<
¡
w−j , aj

¢
E
. By (ii) (x−j , aj) <

(y−j , bj) impliesX
s∈S−{j}

π (s)us (xs)+π (j)uj (aj) ≥
X

s∈S−{j}
π (s)us (ys)+π (j)uj (bj) , (32)

and (y−j , cj) < (x−j , dj) impliesX
s∈S−{j}

π (s)us (xs)+π (j)uj (dj) ≤
X

s∈S−{j}
π (s)us (ys)+π (j)uj (cj) . (33)

and
¡
z−j , bj

¢
E
<
¡
w−j , aj

¢
E
impliesX

s∈S−{j}
π (s | E)us (zs)+π (j | E)uj (bj) ≥

X
s∈S−{j}

π (s | E)us (ws)+π (j | E)uj (aj) .

(34)
But equations (32) and (33) imply that

uj (cj)− uj (dj) ≥ uj (bj)− uj (aj) . (35)

Hence equations (34) and (35) implyX
s∈S−{j}

π (s | E)us (zs)+π (j | E)uj (cj) ≥
X

r∈S−{j}
π (s | E)us (ws)+π (j | E)uj (dj) .

(36)
Equation (36) and (a.ii) imply

¡
z−j , cj

¢
E
<
¡
w−j , dj

¢
E
. Hence (a.ii) implies

(A.1).
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That us (αsx̂) = u1 (x̂) for all s ∈ S−{1} implies the convexity of the set
of constant valuation acts is immediate. Because {us}s∈S are non-constant,
there are constant valuation acts, x̄ and x such that x̄ Â x. Hence (a.ii)
implies assumption (A.0).

(b) To prove the uniqueness of {us}s∈S note that, for all E ∈ E and
s ∈ E, wE (·; s) = us (·)π (s | E) . Hence if {ûs}s∈S is another array of utility
function representing < in the sense of (a.ii) then ŵE (·, s) := ûs (·)π (s | E)
for all E ∈ E and s ∈ E, is another separately additive representation of
< . But {wE (·, s) | s ∈ S,E ∈ E}s∈S are jointly cardinal, hence ûs (·) =
βus (·)+γs. Applying the representation in (a.ii) to constant valuation acts
imply that for all E ∈ E ,

P
s∈S π (s) γs =

P
s∈E π (s | E) γs. Hence γs = γ

for all s ∈ S.

(c) Let π and {us}s∈S satisfy part (a) of Theorem2. If t ∈ S is non-
null then for some x̄t, xt ∈ Xt, and x ∈ X,

¡
x−t, x̄t

¢
{t} Â

¡
x−t, xt

¢
{t} . Hence

ut (x̄t)−ut (xt) > 0. Moreover,
¡
x−t, x̄t

¢
Â
¡
x−t, xt

¢
implies π (t) [ut (x̄t)− ut (xt)] >

0.Thus π (t) > 0. If t is null then, for all y, z ∈ Xt,
¡
x−t, y

¢
∼
¡
x−t, z

¢
implying

π (t) [ut (y)− ut (z)] = 0 for all y, z ∈ Xt. Since, by assumption, all states
are either null or obviously nonnull, ut (y) − ut (z) 6= 0 for some y, z ∈ Xt.
Hence π (t) = 0.

To prove the uniqueness of π suppose, by way of negation, that there
exists a probability measure, µ, on S and utility functions {ûs}s∈S that
satisfy the representation in (a.ii), and µ 6= π . Then there are states
s, t ∈ S such that µ (s) > π (s) and π (t) > µ (t) . Note that µ (s) > π (s)
and π (t) > µ (t) imply that s and t are nonnull. Let us (·) = csûs (·) ,
for some cs > 0. Then the representation requires that µ (s) = csπ (s) /c̄
for all s ∈ S, where c̄ =

P
t∈S ctπ (t) . But for constant valuation acts, x

∗,
us (x

∗
s) = ut (x

∗
t ) and ûs (x

∗
s) = ût (x

∗
t ) . Since us (·) = csûs (·) for all nonnull

s it follows that cs = ct = c̄. Thus µ (s) = csπ (s) /c̄ implies µ (s) = π (s) . A
contradiction. ¤

C. Proof of Theorem 3 The proof of Theorem 3 follows from that of
Theorem 2 upon observing that, absent axiom (A.2), Claim 2 in the proof
does not hold. Thus it is possible that, for some t, s ∈ E, β(E,t) 6= β(E,s).

By Lemma 6 and the normalization, for all E ∈ E , s ∈ E and x ∈ Xt,

wE (x; s) = β(E,s)wS (x; s) , β(E,s) > 0.

In particular, for all nonnull s ∈ S, w{s} (x; s) = β({s},s)wS (x; s), where

β({s},s) = wS (x̄s; s)
−1 .
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For each s ∈ S let us (·) = w{s} (·; s) and define π (s) = β−1({s},s) =

wS (x̄s; s) , if β({s},s) > 0 (i.e., if s is nonnull) and π (s) = 0 otherwise.
Hence wS (x; s) = π (s)us (x) and, for all x,y ∈ X, x < y if and only ifP

s∈S π (s)us (xs) ≥
P

s∈S π (s)us (ys) .
By the normalization,

P
s∈E β(E,s)π (s) = 1 and β(E,s)π (s) ≥ 0 for all s,

with strict inequality if s is nonnull. Define a probability measure π(· | E)
on S by π(s | E) = β(E,s)π (s) , s ∈ E and π(s | E) = 0 otherwise. ThenX
s∈E

wE (xs; s) =
X
s∈E

β(E,t)wS (xs; s) =
X
s∈E

β({E,s)π (s)us (xs) =
X
s∈E

π(s | E)us (xs; s) .

The conclusions follow by the same arguments as in the proof of Theorem
2. ¤

D. Proof of Theorem 5 - Theorem 5 follows from Theorem 2 with
the following additional specifications: Without loss of generality let 1 be
a nonnull state and set u (x) = u1 (x) , x ∈ X. Then, by Lemma 4 and
Theorem 2, for every s ∈ S, us (x) = σsu (x) + ξs, where σs > 0. Hence, by
Theorem 2, for all x,y ∈ X,

x < y ⇔
X
s∈S

π (s)σsu (xs) ≥
X
s∈S

π (s)σsu (ys) . (37)

and, for every xE ,yE0 ∈ X,

xE < yE0 ⇔
X
s∈E

π (s | E) [σsu (xs) + ξs] ≥
X
s∈A

π
¡
s | E0

¢
[σsu (ys) + ξs] .

(38)
The proof that (ii) implies (i) is follows immediately from the represen-

tation.
The proofs of the part (b) is straight forward. The proof of part (c)

follow from the proof of part (c) in Theorem 2. ¤
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