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Which Nonlinearity in the Phillips Curve? ∗

The Absence of Accelerating Deflation in Japan

Emmanuel De Veirman

Reserve Bank of New Zealand

January 14, 2007

Abstract

It is standard to model the output-inflation trade-off as a linear relationship with
a time-invariant slope. We assess empirical evidence for three types of nonlinearity
in the short-run Phillips curve. At an empirical level, we aim to discover why large
negative output gaps in Japan during the period 1998-2002 did not lead to accelerating
deflation, but instead coincided with stable, be it moderately negative inflation. We
document that this episode is most convincingly interpreted as reflecting a gradual
flattening of the Phillips curve. The broader relevance of our analysis lies in its attempt
to shed light on the determinants of such time-variation in the Phillips curve slope.
Our results suggest that, in any economy where trend inflation is substantially lower
(or substantially higher) today than in past decades, time-variation in the slope of the
short-run Phillips curve has become too important to ignore.
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1 Introduction

The original Phillips curve was nonlinear: Alban W. Phillips (1958) estimated a nonlinear re-

lationship between nominal wage inflation and the unemployment rate in the United Kingdom.

Since that time, it has become standard to model the short-run Phillips curve as a linear rela-

tionship with a time-invariant slope. The present paper argues that this simplifying assumption

is not as innocent as it seems.

Our paper assesses the empirical performance of three classes of models in which the slope of

the Phillips curve varies endogenously over time. The model classes differ according to the set of

variables determining the slope of the output-inflation trade-off.

In papers such as Laxton, Meredith, Rose (1995), the size of the output gap determines the

slope of the Phillips curve. In particular, the output-inflation trade-off becomes steeper as the

output gap approaches the capacity constraint, which is the maximum possible level of output

that firms can supply in the short run. As such, the short-run Phillips curve is convex, with a

vertical asymptote at the capacity constraint.

In Ball, Mankiw, Romer (1988) and Dotsey, King, Wolman (1999), trend inflation is among the

determinants of the Phillips curve slope. In these models of costly price adjustment, the frequency

of price adjustment depends on firms’ optimizing decisions. A decrease in trend inflation, for one,

causes firms to adjust prices less frequently, which in turn implies a flatter Phillips curve.

In Lucas (1973), the slope of the Phillips curve depends on the volatility of aggregate demand

and supply shocks. For instance, if aggregate volatility decreases, a larger fraction of any change

in the overall price level is misperceived by firms as being a change in their relative price. In that

scenario, any change in aggregate demand has a larger impact on firms’ production, and a smaller

effect on inflation. That is to say, the Phillips curve flattens.
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Throughout this paper, we refer to the three classes of models as implying different types of

nonlinearity in the Phillips curve. Strictly speaking however, only the first of the above model

classes implies that the short-run Phillips curve is nonlinear at a given point of time. In the

other cases, the Phillips curve is linear at any point of time, but its slope changes over time as a

consequence of changes in trend inflation or aggregate volatility.

To test these theories of nonlinearity, we gather evidence from Japan. The period 1991-2002

in Japan can be characterized as a succession of recessions, interrupted only by brief or limited

recoveries. Standard estimates suggest that the output gap was negative for most of that period.

Initially, inflation declined, with core CPI inflation reaching the zero-level in the mid-nineties, and

turning negative in the second half of the nineties. After 1998 however, annual core CPI inflation

remained fairly stable at moderately negative levels, reaching its trough at -0.79% in 2002.

As we document in our paper, the fact that deflation remained surprisingly mild notwith-

standing a relatively long period of negative output gaps presents a puzzle to anyone who takes a

standard linear Phillips curve literally. This makes Japan a particularly interesting test case for

assessing the nature of the output-inflation trade-off.

An advantage of using recent data for Japan is that, unlike the samples typically used in

earlier empirical tests of the three types of nonlinearity, our sample includes a fairly large number

of observations from the region of the Phillips curve at which inflation is near-zero or negative.

The inclusion of low- and negative- inflation observations increases our chances of obtaining precise

results as to the existence and type of nonlinearity. Our results are instructive for other economies

in which a comparably long deflationary period has not occurred in the post-1945 period, yet

which bear sufficient resemblance to Japan in that inflation has tended to decline and/or become

less volatile over the course of recent decades.
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Our main results, and their relationship to previous papers’ findings, can be summarized as

follows.

We find evidence for a statistically significant, gradual flattening in a linear Phillips curve

which has been occurring since before the nineties. This finding is related to existing research on

the flattening of the Japanese Phillips curve,1 which however typically focuses on documenting a

one-time structural ’break’ in the Phillips curve under the assumption of a known break date.

Given that we observed a gradual flattening in the Japanese Phillips curve, we assess whether

such time-variation is consistent with any of the theories of nonlinearity. This part of our paper

is related to earlier empirical evidence on nonlinearity in the Phillips curve.2 We find that each

of the three types of nonlinearity is consistent with the data.

Our paper moves beyond documenting mere consistency of the nonlinear theories with the

data. We find that each of the nonlinear models performs significantly better, in an econometric

sense, than an atheoretical benchmark model in which the Phillips curve is linear, but its slope

varies over time as a random walk. This implies that the time-variation in the Phillips curve slope

has been largely systematic.

Moreover, we perform a series of non-nested model hypothesis tests to assess the relative per-

formance of the three types of nonlinearity. Our results favor the hypothesis that declining trend

1Nishizaki and Watanabe (2000) and Mourougane and Ibaragi (2004).
2A vast body of papers including Lucas (1973), Alberro (1981) and Kormendi and Meguire (1984) investigates

whether the Phillips curve tends to be steeper in economies with high aggregate volatility, without however examining
the determinants of changes in the Phillips curve slope over time. Froyen and Waud (1980) and Ilmakunnas and
Tsurumi (1985) are more closely related to our paper in that they provide some intertemporal evidence.
DeFina (1991), Hess and Shin (1999), and Kiley (2000) further test the Ball-Mankiw-Romer theory. The first two

papers as well as BMR provide some intertemporal evidence on the relation between changes in the Phillips curve
slope and changes in trend inflation. See Bonomo and Carvalho (2004) for a recent theoretical contribution.
In addition to Laxton-Meredith-Rose, papers which support the possible existence of asymmetries in the Phillips

curve include Turner (1995), Debelle and Laxton (1996), Laxton, Rose, Tambakis (1999), and Dolado, Maria-
Dolores, Naveira (2005). See Schaling (2004) for a related theoretical contribution.
Dotsey-King-Wolman and subsequent papers provide model simulations, but no empirical evidence on the relation

between trend inflation and the Phillips curve slope. Recent theoretical contributions include Golosov and Lucas
(2003), Burstein (2006), Gertler and Leahy (2006), and Dotsey, King, Wolman (2007).
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inflation caused firms to set their output prices less frequently, which would explain the observed

gradual flattening in the Phillips curve. All but one of our tests lend equally strong support to

the hypothesis that a decline in aggregate inflation volatility exacerbated firms’ misperceptions

about relative prices, implying a flatter Phillips curve. While stories in which capacity constraints

engender a convex short-run Phillips curve are consistent with the data, they perform poorly in

comparison with the two other models.

A few of the papers providing empirical evidence on the relation between the Phillips curve

slope and average inflation / aggregate volatility do so in the time dimension (see footnote 2).

Typically, these papers examine whether changes in the Phillips curve slope across subsamples are

positively related to cross-subsample changes in average inflation and/or aggregate volatility. Such

procedures assume that, if the Phillips curve slope changes over time, it does so in the form of a

sudden jump at the sample split point. Our paper is written in the belief that the actual Phillips

curve slope is more likely to vary gradually over time. For one, our finding that the Phillips curve

gradually flattened is based on a time-varying coefficients model which yields an estimate for the

Phillips curve slope at every point of time rather than only an estimate per subsample. This is

logically consistent with the fact that our regressions testing the nonlinear theories similarly do

not restrict time-variation in the Phillips curve slope to occur as a one-time jump.

Our paper is structured as follows. Section 2 documents that, assuming a standard linear

relationship between the output gap and inflation, the size of the negative output gaps in Japan

would have warranted accelerating deflation in the period 1998-2002. Section 3 gives arguments

against popular explanations for the absence of accelerating deflation in Japan which do not imply

time-variation in the slope of the short-run Phillips curve.

The remainder of the paper focuses on time-variation in the slope of the short-run Phillips
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curve. In section 4, we detect a gradual, significant decline in the slope of the Phillips curve which

has been occurring since before the nineties. Sections 5 through 7 investigate the determinants

of the flattening of the Phillips curve. In section 5, we find that all three above-mentioned types

of nonlinearity are consistent with the data. In section 6, we find that each of the theories

of nonlinearity outperforms a model in which the Phillips curve is linear, yet its slope evolves

over time as a random walk. Section 7 evaluates the relative performance of the three types of

nonlinearity. Section 8 concludes and presents policy implications.

2 Background

This section deals with three issues. First, we discuss the output gap series used in this paper

and its relation to other output gap estimates for Japan. Second, we document that in Japan, the

output gap and inflation tended to comove positively through 1997, to such an extent that their

relationship could be reasonably well approximated by a standard linear Phillips curve. Third, we

show that, in the period 1998-2002, the output gap was sufficiently negative for a linear Phillips

curve to predict accelerating deflation, a prediction which is at odds with the data.

Figure 1 documents the evolution of Japan’s real Gross Domestic Product, along with potential

real output as estimated for Japan by the US Federal Reserve. It is evident that average economic

growth since the stock market crash of December 1989 has been lower than it was in any of the

previous two decades.

The potential output series in Figure 1 corresponds to the Fed’s estimates through 1998.

Because the Fed’s recent estimates of potential are confidential, we extrapolate potential output

for 1999Q1-2004Q4. In doing so, we use the IMF staff estimates/forecasts of potential growth, as

quoted in Bayoumi (2000), as a guideline.

6



According to our measure of potential, annual potential output growth has tended to slow

down gradually from 3.88% in 1990 to 1.20% in 1998. Subsequently, potential output growth

continued to decline, but at a slow pace, until it reached 0.83% in 2004.

The top panel of Figure 2 graphs the output gap series implied by the actual and potential

output data from the previous figure. Potential output growth turns out to have been sufficiently

high for a relatively large negative output gap to exist over most of the period 1993-2003. However,

since estimates of potential output are typically associated with a high degree of uncertainty, we

compare our output gap series with other existing output gap measures.

The Fed’s estimates are directly comparable to those output gap estimates for Japan which

are based on an estimate of potential output derived from a production function involving the

capital stock, the labor stock, and their respective long-run factor utilization rates. In particular,

the Bank of Japan (2006) has recently developed a production function based procedure, designed

to minimize any upward bias in potential output growth which may have existed in its earlier

production function based estimates, as reviewed in Kamada (2005).3

Like the Fed estimates which we use, the Bank of Japan (2006) estimates suggest that, even

when accounting for a sizeable decline in potential output growth from the early nineties to the

mid-nineties, Japan experienced relatively large negative output gaps for most of the nineties.

The Bank of Japan output gap implies that, if anything, the nineties was even worse a decade for

Japan than the Fed estimates suggest, relative to past output gaps.

Unlike the production function approach, two other standard procedures for estimating po-

tential output do not yield large negative output gaps. However, we do not consider output gaps

3For instance, the new measure treats the following two developments as structural factors, and in so doing
reduces the estimate of potential labor input which enters the production function: a decline in working hours,
among others due to labor law changes at the end of the eighties, and a decline in the labor force participation rate
since the mid-nineties, among others due to population aging.
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based on these procedures to be valuable tools for assessing time-variation in the relation between

the output gap and inflation in Japan.

First, univariate smoothing methods such as the Hodrick-Prescott filter yield an output trend

which is automatically close to actual output whenever the latter stagnates for a fairly long time at

the end of the sample. Unsurprisingly, we find (not shown here) that proxying potential output by

a HP-filter trend does not yield large negative output gaps at the end of the sample, as confirmed

by the HP-filter based output gap in Kamada (2005).

Second, we applied the methodology of Hirose and Kamada (2003) to estimate potential output

as the level of output at which inflation is stable. We find (not shown here) that the Hirose-Kamada

output gap moves around zero at the end of the sample. This outcome is not surprising: at times

when inflation is fairly stable, output is by definition near its stable-inflation level. In general,

there will be little to no time-variation in the slope of the relationship between inflation and an

output gap measure which is precisely constructed to fit inflation accurately at all times.

We are now ready to gain our first insights about the comovement of the output gap and

inflation in Japan. The lower panel of Figure 2 graphs annualized quarterly inflation in the

Consumer Price Index excluding fresh foods, which the Bank of Japan adjusted for consumption

tax reforms.4 Note that a simple comparison between the output gap and inflation is clouded by

supply shocks, such as the oil price shocks which led core CPI inflation to spike up in 1974Q1

and 1980Q2. For now, a casual inspection of Figure 2 suggests that the relationship between the

output gap and inflation was fairly well-behaved throughout the seventies and eighties, in the

sense that inflation declined when the output gap was negative, and tended to increase in booms.

To characterize the output-inflation comovement through 1997 somewhat more formally, we

4A consumption tax of 3% was introduced in April 1989. That sales tax was increased to 5% in April 1997.
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regress the following linear Phillips curve using data for 1971Q2-1997Q4:

πt = β1πt−1 + β2 πt−2 + β3 πt−3 + β4 πt−4 + γ1 ygapt−1 + γ2 ygapt−2 + δ impoilt + et (1)

Observations for 1970Q2-1971Q1 are used to construct lags. Annualized CPI inflation exclud-

ing fresh foods is a function of four inflation lags and two output gap lags. To control for supply

shocks in the seventies, we include relative inflation in the import prices of petroleum, coal, and

natural gas.5

In equation (1), inflation expectations are proxied by lags of inflation. In section 3.1, we

document that inflation expectations in Japan indeed tracked lagged inflation relatively closely.

The lag structure in equation (1) removes all serial correlation from the error term et, but is

sufficiently parsimonious for our estimations involving time-varying output gap coefficients and/or

nonlinearities in the Phillips curve in sections 4 through 7. We restrict the sum of the inflation

lag coefficients to equal one, and set the constant to zero.6

A linear Phillips curve estimated through 1997Q4 fits the data well: the adjusted R-squared

is 0.83. The sum of the output gap coefficients is positive (with a point estimate of 0.21) and

significant at the 5% level. This confirms that, during a typical episode in the period 1971Q2-

1997Q4, positive output gaps exerted upward pressure on inflation, while negative output gaps

5Oil import prices are on Yen basis. In equation (1) as in all Phillips curve specifications below, the results are
comparable when we include relative inflation in general import prices instead. Both supply shock measures are
obtained from the Bank of Japan.

6Augmented Dickey-Fuller tests reject a unit root in the output gap, and in relative oil import prices, at the
1% level. We cannot statistically reject a unit root in inflation, but the change in inflation is stationary. Moreover,
in an unrestricted regression with a constant, the sum of the inflation lag coefficients is not significantly different
from one. These considerations lead us to restrict the sum of the inflation lag coefficients to equal one, which is
analogous to rewriting (1) as an equation for the change in inflation, with three lags of the change in inflation on
the right-hand side. Since our Phillips curve is effectively written in terms of changes in inflation, excluding the
constant is necessary to avoid the possibility of a long-run trend in inflation. If we do include a constant, it is
virtually zero and insignificant.
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tended to coincide with disinflations.

The relationship between the output gap and inflation became gradually less pronounced. In

particular, we focus on the episode 1998-2002 because it constitutes the most striking puzzle. It

is the episode with the largest negative output gaps, yet it is among the episodes with the most

stable inflation rates. Over the period 1998-2002, actual output was on average 2.97% below

potential. Meanwhile, annual core inflation did fall from 0.82% in 1997 to -0.35% in 1998, but

from that point on declined only marginally until it reached its trough of -0.79% in 2002.

To illustrate this point, Figure 3 shows the result of a dynamic out-of-sample inflation forecast

from equation (1) for the period 1998Q1-2004Q4, contrasted with actual inflation. Predicted

deflation accelerates to -8.36% in 2002Q3, while actual annualized inflation fell below -1% in only

two quarters, reaching -1.58% in 2000Q4.7 This suggests that deflation was milder than one would

have expected conditional on the large, negative output gaps, and assuming a linear relationship

between the output gap and inflation.

The out-of-sample forecast of accelerating deflation does not, by itself, constitute conclusive

evidence for a statistically significant break in a standard linear Phillips curve. We do find evidence

for statistically significant structural change in the Phillips curve slope in section 4. Before turning

our attention to the slope of the Phillips curve however, we first evaluate candidate explanations

for the absence of accelerating deflation which do not rely on time-variation in the Phillips curve

slope.

7We equally obtain a massive deflation forecast from an analogous equation with the GDP deflator. With the
GDP deflator, both actual and predicted inflation are more negative than in the CPI case.
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3 Capturing output-inflation comovement without time-varying

Phillips curve slope?

We give arguments against three possible explanations for the absence of accelerating deflation in

Japan, none of which implies time-variation in the slope of the short-run Phillips curve.

3.1 Did inflation expectations fail to turn negative?

The forecast of accelerating deflation in section 2 originated from an accelerationist Phillips curve,

in which inflation expectations were proxied by lagged inflation. Thus, equation (1) implicitly

assumes that inflation expectations turned moderately negative, along with actual inflation. It is

possible that inflation expectations did in fact not turn negative in the period 1998-2002, even at

times of deflation in the actual core CPI. If Japanese inflation expectations hovered around zero,

the Phillips curve would lose its accelerationist feature, as a passage in Blanchard (2000) explains.

Under that hypothesis, negative output gaps would imply negative, but stable inflation.8 This

would accurately capture the output-inflation comovement in Japan in the period 1998-2002.

However, every known measure of inflation expectations in Japan suggests that inflation ex-

pectations did turn negative. The one-shot 2002 METI survey finds that only 5.6% of firms, and

only 3.0% of consumers, expected deflation to end within one year. The December 2001 Consensus

forecasts predict headline CPI inflation of -0.9% for 2002. The finding that inflation expectations

turned negative is confirmed by qualitative price expectations data in the Tankan business survey,

and by inflation forecasts from the OECD and the US Federal Reserve.

8To see this, write the Phillips curve as πt = β.Et−1(πt) + γ1.ygapt−1 + γ2.ygapt−2 + δ.impoilt + e, where
Et−1(πt) stands for lagged expectations of current inflation. If inflation expectations remain at zero, this implies
that Et−1(πt) = 0. From the above equation, it follows that in that case, negative output gaps tend to coincide
with negative, but stable inflation.
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Basic econometric analysis confirms that inflation expectations continued to track lagged in-

flation relatively closely even as lagged inflation turned negative. Our results suggest that, if there

was any structural change at all in the process of expectations formation, inflation expectations

turned even more negative in the period since the mid-nineties than would otherwise have been

warranted by lagged inflation.9

3.2 Did expansionary monetary policy prevent massive deflation?

In a textbook world, fast money growth exerts upward pressure on inflation. Between March

2001 and March 2006, the Bank of Japan targeted the reserves (’current account balances’) of

commercial banks at the Bank of Japan, which at times resulted in massive growth in the monetary

base and M1.10 Is this among the factors which prevented deflation from accelerating?

On the one hand, high growth in narrow monetary aggregates has not translated into high

growth rates of broader aggregates such as M2, a fact which is plausibly related to a decline in

bank lending which continued for several years after the banking crises of 1997 and 1998.11 On

the other hand, we cannot exclude the possibility that the Bank of Japan’s policy of massive

quantitative easing did prevent the output gap from becoming even more negative, and/or did

keep agents from expecting more extreme deflation in the future. However, any such effects would

already be reflected in the output gap and inflation expectations data which we discussed in the

previous two subsections. As we documented, inflation expectations did turn moderately negative,

notwithstanding expansionary monetary policy. Similarly, the output gap did grow sufficiently

9We regress Consensus forecasts or OECD forecasts on a constant and lagged inflation, and test for all potential
break dates starting in 1995. The result is subject to data limitations: quarterly Consensus forecasts are only
available from about 1990, and the OECD forecasts pertain to annual inflation.
10As it did before March 2001, the Bank of Japan now uses the uncollateralized overnight call rate as its main

policy instrument.
11Growth in lending by domestic commercial banks has been negative throughout the period 1998-2004, and only

turned unambiguously positive in early 2006.
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negative to warrant accelerating deflation in a linear framework.

3.3 Downward nominal wage rigidity?

The explanation in this subsection deals with the specification of the Phillips curve, but it alters

the standard model in a different way than by allowing for time-variation in the slope of the

short-run Phillips curve.

Akerlof, Dickens, and Perry (1996) develop a model in which downward nominal wage rigidity

implies a convex long-run Phillips curve at inflation rates below 3%. The lower the inflation rate,

the larger is the fraction of firms which can implement desired real wage cuts only through a

reduction in the nominal wage. In the presence of downward nominal wage rigidity (DNWR), a

lower inflation rate thus implies that a larger fraction of firms is forced to pay real wages exceeding

the wage which they deem optimal. In the model of Akerlof, Dickens, Perry (1996), this increases

the long-run sustainable level of unemployment, an effect which becomes more pronounced as

inflation falls further below 3%.

For Japan, this story implies that, if DNWR exists, actual unemployment does not exceed its

long-run rate by as much as unemployment gap estimates based on the assumption of a vertical

and linear long-run Phillips curve would indicate.

However, wages have not been downwardly rigid in Japan during the period of our focus. At

a micro level, Kuroda and Yamamoto (2003 a,b) find evidence for DNWR with data spanning

1992-1998. In a more recent study however, Kuroda and Yamamoto (2005) find no evidence for

downward rigidity in the nominal wages of full-time workers during the period 1998-2001. Since

full-time workers’ nominal wages started being cut in 1998, downward nominal wage rigidity can

hardly explain the absence of accelerating deflation, which became a puzzle at exactly that time.
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At a macro level, Japan’s wages are even less rigid. As described in Morgan (2005), the

fraction of non-standard employees, such as part-time and temporary workers, has increased from

19.4% in 1995 to 29.0% in 2004. Furthermore, there is a large wage gap between regular and

non-standard employees. In 2004, a part-time worker’s hourly base wage was only 40.5% that of a

typical regular worker.12 Hence, even if no single group of workers had experienced nominal wage

cuts, the shift from regular to non-standard workers had led to a decline in the aggregate wage.

Since both micro-economic and macro-economic data suggest that wages were not downwardly

rigid during our period of interest, any story involving downward nominal wage rigidity is unlikely

to explain the absence of accelerating deflation in Japan.

4 Evidence for a flattening Phillips curve

From this point on, our paper focuses on the path and determinants of the slope of the short-run

output-inflation tradeoff.

The present section presents two findings. First, structural stability tests suggest that the

slope of the Phillips curve has changed over the sample in a statistically significant fashion. Given

that result, we estimate the Phillips curve slope as a time-varying parameter using the Kalman

filter. Our results suggest that the Phillips curve has flattened over the sample, where much of

the flattening occurred before the nineties.

4.1 Significant structural change in the Phillips curve slope

Redefining γ2 = p γ1, we rewrite the linear Phillips curve from equation (1) as:

12The overall monthly cost (including bonuses, fringe benefits, social security contributions, and training expenses)
of employing a part-time worker was 36.9% that of employing a full-time worker. Data are from Morgan (2005).
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πt = β1 πt−1 + β2 πt−2 + β3 πt−3 + β4 πt−4 + γ1 (ygapt−1 + p ygapt−2) + δ impoilt + et (2)

In order to assess the presence of structural change in the slope of the Phillips curve, we

test for the stability of γ1, while assuming that p remains constant at its estimated value. This

procedure is directly comparable to that of subsection 4.2., where we model γ1 as a time-varying

parameter, but continue to estimate p as being time-invariant. We motivate the assumption of

time-invariance in p in subsection 4.2.

First, we use a standard dummy variable procedure to test for a structural break in the Phillips

curve slope, at a hypothesized break date of 1990Q1.13 The test result suggests that, conditional

on the absence of structural change in the other parameters, γ1 was significantly smaller, at the

1% level, from 1990 onwards than before that time. Earlier research on the flattening of the

Japanese Phillips curve, such as Nishizaki and Watanabe (2000) and Mourougane and Ibaragi

(2004), similarly implemented dummy variable tests and found that the Japanese Phillips curve

was significantly flatter in the nineties than it was in earlier decades.

Second, we implement a test for structural change which, unlike the above test, does not

require us to assume any particular break date. In particular, we apply the Nyblom (1989) test,

in the version developed by Hansen (1992). We reject the null hypothesis of time-invariance in γ1

at the 1% level.14 It deserves emphasis that, unlike what is the case for other structural stability

tests such as the above dummy variable test, rejection of the null hypothesis does not necessarily

13We regress πt = β(L)πt + (γ1 + γ01 breakdum) (ygapt−1 + p ygapt−2) + δ impoilt + et , where breakdum = 1
for all quarters starting in 1990Q1, and 0 for all earlier observations. γ01 is estimated to be negative and significant.
14The joint test statistic for all model parameters suggests significant structural change in the overall Phillips

curve, at the 1% level. Furthermore, the relevant individual test statistic suggests significant change in the variance
of the error term, at the 1% level. On this point, note that the Hansen (1992) test is asymptotically robust to
heteroskedasticity. Throughout the paper, our OLS/NLS regressions use heteroskedasticity robust standard errors.
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imply a one-time jump in the Phillips curve slope, yet could just as well reflect gradual structural

change. In fact, the Nyblom test has optimal power against the hypothesis that a parameter

follows a martingale. Given the test result, we model γ1 as a random walk in the next subsection.

4.2 State-space form of model with time-varying Phillips curve slope

We write the model in state-space form. The measurement equation, in the form of Harvey (1994):

πt = [ygapt−1 + p ygapt−2] γ1,t + [β(L) πt + δ impoilt] + et (3)

Where γ1,t is the state variable. The error term et is normally distributed with mean zero and

variance σ2e.

In equation (3), we impose the restriction that the two output gap coefficients are proportional

at any point of time, i.e. γ2,t = p γ1,t, where p is a time-invariant parameter to be estimated by

Maximum Likelihood. The estimation results are similar whether we impose proportionality or

not, except for the fact that the sum of the output gap coefficients is imprecisely estimated if

the assumption of proportionality is not imposed. We simply do not have enough observations to

obtain precise estimates for the sum of two distinct time-varying coefficients. In any case, we are

primarily interested in the sum of the output gap coefficients, and less so in the precise way in

which this sum is allocated over the two individual output gap coefficients.

While equation (3) represents the measurement equation, the transition equation is as follows:

γ1,t = γ1,t−1 + v1,t (4)

Where v1,t is normally distributed with mean zero and variance σ2v1 = σ2e q1. The parameter
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q1 is the signal-to-noise ratio for the coefficient on the output gap’s first lag. The path of the

coefficient on the second output gap lag follows from γ2,t = p γ1,t.

4.3 Estimation procedure and results

We apply Maximum Likelihood to estimate the model constituted by equations (3) and (4). As

in Harvey (1994) and Kim and Nelson (1999), we compute the log likelihood function, in its

prediction error decomposition form, from the Kalman filter prediction errors and their variances.

We maximize the log likelihood function with respect to the hyperparameters.15 Finally, we

use the Kalman filter run that maximized the likelihood in order to compute Kalman smoothed

estimates of the time-varying output gap coefficients and their sum.

Table 1 compares the results of the time-varying coefficients linear Phillips curve with those

of a linear Phillips curve estimated by OLS. Both estimations, as well as all other estimations in

the remainder of this paper, are carried out over 1971Q2-2004Q4, where data for 1970Q2-1971Q1

are used to construct lags. The MLE estimates of the time-invariant parameters are comparable

to their OLS counterparts. Similarly, the average of the sum of the output gap coefficients is

virtually identical to the sum of the output gap coefficients implied by the OLS estimation. The

sacrifice ratio’s are plausible in both cases. In the MLE case, a disinflation of one percentage

point requires output to be 1.39% below potential for four quarters. This is in line with earlier

estimates of the Japanese sacrifice ratio in Ball (1994) and Zhang (2005).16

Figure 4 graphs Kalman smoothed estimates of the output gap coefficients and their sum,

along with a 95% confidence interval. The sum of the output gap coefficients declines gradually

15We use the Matlab-function fminunc to optimize the log likelihood function. We set the signal-to-noise ratio,
q1, to 1/1600 in the baseline. The parameter estimates reported in Table 1 are robust for all values of q1 up to 1/25.
16Ball (1994) computes a sacrifice ratio for Japan of 0.93%. Our slightly larger estimate is in line with a continued

flattening of the Phillips curve after 1994. Zhang (2005) computes a sacrifice ratio of 1.85% when accounting for
long-lived effects.
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over the sample. The results suggest that much of the flattening occurred before the nineties. The

absence of accelerating deflation in 1998-2002 is only one among the episodes consistent with the

time-path of the Phillips curve slope. For example, the finding that the Phillips curve was already

relatively flat during the bubble period in the late eighties is in line with the fact that inflation

remained surprisingly moderate at that time, notwithstanding large positive output gaps.

5 Why did the Phillips curve flatten? Candidate types of non-

linearity

The flattening of a linear Phillips curve may suggest that the output-inflation trade-off should ac-

tually be modeled as a nonlinear relationship. In this section, we assess the empirical performance

of three types of nonlinearity. The coefficient estimates from nonlinear Phillips curve regressions

are in line with each of the nonlinear theories. Moreover, while section 4 detected statistically

significant structural change in the output gap coefficients of a linear Phillips curve, there is no

significant structural change in the coefficients for any of the three types of nonlinearity.

5.1 A convex short-run Phillips curve due to capacity constraints?

Laxton, Meredith, Rose (1995) and related papers17 allow for convexity in the short-run

Phillips curve. In Laxton, Meredith, Rose (LMR), capacity constraints constitute the economic

rationale for nonlinearity. Suppose that at the current level of output, firms are operating near

the capacity constraint. In such a situation, any increase in aggregate demand can hardly be

met by increased production. As such, the increase in demand translates almost uniquely into an

increase in inflation, even in the short run. Hence, the Phillips curve is nearly vertical near the

17See footnote 2 for references to papers related to any of the theories of nonlinearity.
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capacity constraint, where the slope becomes gradually steeper as the economy moves towards the

capacity constraint. This story implies a vertical asymptote in the Phillips curve at the capacity

constraint. The baseline functional form which LMR use implies that, if convexity is present, it

exists along the entire Phillips curve.

Note that it is not obvious whether the presence of capacity constraints can be a rationale for

convexity in the Phillips curve in regions which are far away from the capacity constraint. The

answer to this question is particularly important for our purposes: the LMR model’s predictions

for Japan are that, since the economy was far from the capacity constraint in 1998-2002, Japan

was on a flatter part of a convex Phillips curve during that period. That would explain the

flattening which we observed in section 4. Yet, if convexity is not present at negative output gaps,

the Japanese economy would have moved along a linear part of the Phillips curve for most of

the nineties, such that the LMR model could not explain any time-variation in the Phillips curve

slope during that period. There are surely ways to motivate convexity at negative output gaps,18

but such reasonings are not contained in LMR’s original paper.

We follow LMR in using a functional form which implies that the Phillips curve is either convex

in all regions, or linear everywhere. The absence of a clear theoretical motivation for convexity at

negative output gaps will enter our overall model assessment in section 7.2.

We estimate a potentially nonlinear Phillips curve by Nonlinear Least Squares, where the

functional form of the output gap terms is equivalent to that in LMR:

πt = β(L)πt + γ1

∙µ
φ ygapt−1
φ− ygapt−1

¶
+ p

µ
φygapt−2
φ− ygapt−2

¶¸
+ δ impoilt + et (5)

18 In the presence of sectoral heterogeneity, it is possible that even at negative output gaps, a small fraction of
firms operates near full capacity. If so, it is plausible that the fraction of capacity-constrained firms increases as the
output gap becomes less negative (or more positive).
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Where γ1 is time-invariant. For equation (5), the Nyblom test fails to reject the null hypothesis

of structural stability in γ1, at the 10% level. That is, there appears to be little to no time-variation

in the Phillips curve slope beyond that implied by the nonlinearity of the functional form.

The crucial parameter to be estimated is φ. This parameter indicates the level of the output

gap at which the economy reaches the capacity constraint. By the same token, φ governs the

degree of nonlinearity in the Phillips curve. The smaller the point estimate for φ is, the smaller

the distance between the zero output gap and the capacity constraint will be. This in turn yields

a higher degree of convexity.

The rightmost column of Table 2 presents estimation results for equation (5). We also include

results from a purely linear Phillips curve, which essentially imposes the restriction that φ =∞.

In the potentially nonlinear case, φ is precisely estimated, with a point estimate of exactly 10.00.

This suggests that the economy would reach the capacity constraint if actual output were to

exceed potential output by 10%.

To illustrate the degree of convexity implied by the estimates for γ1, p, and φ in equation (5),

Figure 5 graphs the sum of the output gap terms as a function of the output gap. In particular,

the bold curve in Figure 5 graphs γ1 [(φ ygapt−1 / (φ− ygapt−1)) + p (φ ygapt−2 / (φ− ygapt−2))]

with respect to the output gap, where we impose that ygapt−1 = ygapt−2. For comparison, the

thin solid line in the same figure graphs the same function, with exactly the same values for γ1and

p, but imposing that φ =∞. Visually, we see a fairly strong degree of nonlinearity in the Phillips

curve.19 In other words, booms in real activity increase inflation by more than recessions decrease

it. The asymmetry in the effects of demand shifts becomes more pronounced as one moves further

from the zero output gap in either direction. For instance, an output gap of -5% tends to lead to

19The dotted line also uses the same values for γ1and p, but assumes a value for φ which is the upper bound of
the 95% confidence interval around the estimated nonlinearity parameter.
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a disinflation of 0.53 percentage points after two quarters, while the total impact of a 5% output

gap is to increase inflation by 1.60 percentage points.

5.2 A flatter Phillips curve due to a lower frequency of price adjustment?

In this subsection, we assess the empirical validity of two theories in which costs of price adjustment

lead firms to adjust their output prices infrequently: Ball, Mankiw, Romer (1988), and Dotsey,

King, Wolman (1999). In both models, lower trend inflation decreases the frequency of price

adjustment. Less frequent price adjustment in turn reduces the effect of aggregate demand shifts

on inflation. That is to say, the Phillips curve is flatter at lower rates of trend inflation.

In Ball, Mankiw, Romer (BMR), firms, when setting their price, also choose the length of

time over which their price will be in effect. Firms minimize a loss function which depends on

the average cost of price adjustment per period, and on deviations of their actual nominal price

from the profit-maximizing nominal price over the course of the period that the price is in effect.

When trend inflation is high, any firm expects its relative price to change rapidly over time, which

in turn leads the firm to expect a rapid change in its profit-maximizing nominal price. Thus, the

forward-looking firm will not fix its actual price for a long time. Instead, the firm opts for more

frequent price adjustment, thus paying a higher per-period cost of price adjustment, in order to

avoid large deviations of its future prices from their profit-maximizing levels.

In Dotsey, King, Wolman (DKW), higher steady-state inflation implies that any firm’s rela-

tive price has been eroded to a larger extent since its last price adjustment. This implies that

for a larger fraction of firms, the benefit of price updating will exceed the (labor) cost of price

adjustment. In conclusion, higher steady-state inflation leads to higher steady-state probabilities

of price adjustment.
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These two models’ prediction for Japan is that, as trend inflation gradually decreased over the

sample, the frequency of price adjustment declined, which in turn led to a gradually flattening

Phillips curve. At the time of writing, we are not aware of any publicly available time series data

on the average frequency of price adjustment for Japan. We therefore cannot model the frequency

of price adjustment explicitly, much like what was the case for the empirical analyses in the earlier

studies referenced in the introduction. However, we can test whether the slope of the Phillips

curve depends positively on trend inflation.

Inspired by DeFina (1991), we adopt a one-step approach.20 That is to say, we estimate a

Phillips curve in which the slope depends on the absolute value of trend inflation:21

πt = β(L)πt + [a+ b |πt|] [ygapt−1 + p ygapt−2] + δ impoilt + et (6)

We generate trend inflation at time t as a geometric average of J quarters of past inflation:

πt =
1− θ

θ − θJ+1

JX
j=1

θj πt−j (7)

In the baseline, θ = 0.93 and J = 71. Note that trend inflation does not depend on current

inflation, so as to avoid endogeneity issues in equation (6). The factor in front of the summation

sign ensures that the sum of the weights on the past inflation terms is equal to one.

In equation (6), the Nyblom test does not detect any structural change in a or b individually,

20Empirical findings on the relationship between the slope of the Phillips curve and trend inflation or aggregate
volatility, as referenced in the introduction, have mostly been based on a two-step approach. In a time-series setting,
it is undesirable to enter the Phillips curve slope as a left-hand side variable in a second-stage regression, among
others because the time-varying Phillips curve slope (obtained, say, from rolling windows regressions) is likely to be
nonstationary.
21We take the absolute value of trend inflation based on the intuition that the effects of more pronounced deflation

should affect firms’ relative prices, and hence the frequency of price adjustment, in much the same way as an increase
in inflation does. Neither DKW, BMR, nor DeFina (1991) take the absolute value, yet this can be attributed to
their dealing with economies in which negative trend inflation could hardly be imagined at that time.
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or a and b jointly, at the 10% level. This suggests that there is little to no time-variation in the

output gap coefficients beyond that associated with changes in trend inflation.

Table 3 displays the estimation results for equation (6). For comparison, we include results

from a Phillips curve in which the coefficient on trend inflation is set to zero. In equation (6), the

coefficient on trend inflation, b, is positive and significant at the 1% level. This result is in line

with the Ball-Mankiw-Romer and Dotsey-King-Wolman theories.

From the estimates for a, b, and p, and our series for trend inflation, we computed the implied

output gap coefficients and their sum. Given that the Phillips curve slope is a linear transformation

of trend inflation, it displays a similar pattern over time as trend inflation itself. In particular,

the sum of the output gap coefficients (not graphed here) increases until 1976, and decreases

quickly through the late eighties. From the early nineties on, the Phillips curve slope still tends to

decrease, but at a slower pace. It falls below zero in 1994, yet from 1996 on remains fairly stable

at moderately negative levels.

5.3 A flatter Phillips curve due to a decline in aggregate volatility?

In Lucas (1973), the slope of the Phillips curve depends on the volatility of aggregate demand

and supply shocks. Firms set quantities produced based on their perceived relative price. As

the variance of aggregate shocks decreases relative to the variance of firm-specific shocks, a larger

fraction of any change in the overall price level is misperceived by firms as being a change in their

relative price. In that way, lower aggregate volatility implies that any change in aggregate demand

has a larger effect on a typical firm’s production, and thus on aggregate output. Correspondingly,

demand shifts have a smaller impact on inflation. In conclusion, low levels of aggregate volatility

imply a flatter Phillips curve.
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A testable implication of this model for Japan is that a decrease in the variance of aggregate

demand and/or supply shocks would have been associated with the flattening of the Phillips curve

which we documented in section 4.22

We capture aggregate volatility by the variance of inflation.23 We estimate a Phillips curve in

which the slope is explicitly modeled as a function of the variance of inflation:

πt = β(L)πt + [c+ d vart(π)] [ygapt−1 + p ygapt−2] + δ impoilt + et (8)

We generate the variance of inflation at time t as a geometrically weighted average of past

squared deviations of inflation from its trend:

vart(π) =
1− θ

θ − θJ+1

JX
j=1

θj (πt−j − πt)
2 (9)

Where trend inflation πt is computed as in equation (7). Again, the baseline values are θ = 0.93

and J = 71.

In equation (8), the Nyblom test rejects the null of no structural change in c individually, and

in c and d jointly, but only at the 10% level. It fails to reject the hypothesis of time-invariance

in d. This suggests that changes in the variance of inflation explain most, but not all, of the

time-variation in the sum of the output gap coefficients.

Table 4 contains the estimation results for equation (8). As predicted by the Lucas-theory,

the coefficient d on inflation volatility is positive and significant at the 1% level.

22Ball, Mankiw, Romer (1988) equally implies that a decrease in the variance of aggregate shocks leads to a flatter
Phillips curve. Yet, in BMR, the mechanism works through the frequency of price adjustment: declining aggregate
volatility, which reduces uncertainty about future optimal prices, enables firms to set their prices for a longer period
of time. A lower frequency of price adjustment in turn implies a flatter Phillips curve.
23The other standard candidate, the variance of nominal GDP, would not be as appropriate a measure to capture

both supply and demand shocks. For instance, if aggregate demand is unit-elastic, aggregate supply shocks have no
visible impact on nominal GDP, since their effect on prices is exactly offset by their effect on real activity.
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The sum of the output gap coefficients implied by equation (8) increases steeply from 1973 to

1975, then decreases quickly through the late eighties. From the early nineties on, the implied

Phillips curve slope decreases only slightly. It stays positive at all times.

6 Do the nonlinear models beat the random walk model?

In the present section, we estimate models in which the Phillips curve slope depends on a random

walk term as well as on a function implied by a particular theory of nonlinearity.

In the cases where we test for it, we find that we can omit the random walk term from

the encompassing model without engendering a significant decline in the value of the likelihood

function. This is related to our finding, in section 5, of no structural change in the coefficients on

the output gap terms for each of the nonlinear models. Beyond that, the present section’s results

imply that adding any of the three types of nonlinearity to a pure random walk model yields a

significant improvement in the fit.

6.1 The trend inflation model beats the random walk model

We estimate a model which encompasses the random walk model and the Ball-Mankiw-Romer /

Dotsey-King-Wolman (BMR / DKW) trend inflation model, and test for the statistical relevance

of the random walk term on the one hand, and the trend inflation term on the other hand.

The Phillips curve, alias measurement equation of the state-space model, is exactly the same

as equation (3):

πt = [ygapt−1 + p ygapt−2] γ1,t + [β(L) πt + δ impoilt] + et (10)

The novelty lies in the transition equation. In the encompassing model, the output gap coeffi-
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cient γ1,t is allowed to depend both on its own lag and on trend inflation. In the pure random walk

model, γ1,t = γ1,t−1 + v1,t. On the other hand, in the pure BMR / DKW model, γ1,t = a+ b πt .

Nesting these two yields the first row of the state equation:

γ1,t = λ (γ1,t−1 + v1,t) + (1− λ) (a+ b πt) (11)

Note that trend inflation appears as an exogenous variable in the first row of the transition

equation. Textbook treatments of the Kalman filter such as Harvey (1994), Hamilton (1994), or

Kim and Nelson (1999) do not discuss solutions for how to enter an exogenous variable in the

state equation. If we wish to enter πt in the transition equation, we need to specify a transition

process for trend inflation, and enter this process in the second row of the state equation. We

derive such process from the definition of trend inflation in equation (7). For θ sufficiently small

and J converging to infinity, we find:

πt+1 = (1− θ)πt + θ πt (12)

The transition equation thus becomes:

⎡⎢⎢⎣ γ1,t

πt+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣ (1− λ) a

(1− θ)πt

⎤⎥⎥⎦+
⎡⎢⎢⎣ λ (1− λ) b

0 θ

⎤⎥⎥⎦ .
⎡⎢⎢⎣ γ1,t−1

πt

⎤⎥⎥⎦+
⎡⎢⎢⎣ λ v1,t

0

⎤⎥⎥⎦ (13)

First, we estimate the encompassing model, consisting of equations (10) and (13). In the

unrestricted model, λ is estimated to be -0.51. Essentially, the weight on the BMR / DKW model

in the transition equation exceeds unity.

Next, we restrict λ = 0, in which case the model reduces to the BMR / DKW trend inflation
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model. We test that restriction by means of a likelihood ratio test. Since we are testing one

restriction, the likelihood ratio statistic has a χ2(1) distribution. According to the test result,

relaxing the restriction that λ = 0 does not significantly improve the fit, not even at the 10%

level.

Finally, we restrict the model such that equation (11) reduces to a random walk. In this

case, the likelihood ratio has a χ2(3) distribution.24 Abstracting from the BMR / DKW term

significantly deteriorates the fit at the 1% level.

On the one hand, we found that the pure BMR / DKW model does not perform significantly

worse than the encompassing model. On the other hand, the pure random walk model does

perform significantly worse than the encompassing model. We conclude that the BMR / DKW

model provides a more accurate description of the data than the random walk model does.

6.2 The misperceptions model beats the random walk model

This subsection implements a similar procedure for the Lucas misperceptions model as the previous

subsection did for BMR / DKW. The measurement equation is exactly the same as equation (10).

The state equation is analogous to equation (13), but is somewhat complicated by the fact

that the transition process for the variance of inflation is more involved than the process for trend

inflation. The first row of the transition equation is analogous to equation (11):

γ1,t = λ (γ1,t−1 + v1,t) + (1− λ) [c+ d vart(π)] (14)

From the definition of the variance of inflation in equation (9), we derive its transition process,

24At first sight, the distribution appears to be nonstandard, since a and b potentially act as nuisance parameters.
Yet, rewrite equation (11) as γ1,t = γ1,t−1+v1,t+(λ−1) (γ1,t−1+v1,t)+(1−λ) a+(1−λ)b πt . Redefining (1−λ) a
and (1− λ)b such that they are parameters in their own right, this equation is in effect linear in the parameters. It
reduces to the random walk model after imposing three restrictions: (λ− 1) = 0, (1− λ) a = 0, and (1− λ)b = 0.

27



to be included in the second row of the state equation. For θ sufficiently small and J converging

to infinity, we find that:

vart+1(π) = (1− θ)Xt + θ vart(π) (15)

Where Xt = (2− θ) (πt − πt)
2 − 2 1−θθ (πt − πt)

JX
j=1

θj(πt−j+1 − πt).

The transition equation thus becomes:

⎡⎢⎢⎣ γ1,t

vart+1(π)

⎤⎥⎥⎦ =
⎡⎢⎢⎣ (1− λ) c

(1− θ)Xt

⎤⎥⎥⎦+
⎡⎢⎢⎣ λ (1− λ) d

0 θ

⎤⎥⎥⎦ .
⎡⎢⎢⎣ γ1,t−1

vart(π)

⎤⎥⎥⎦+
⎡⎢⎢⎣ λ v1,t

0

⎤⎥⎥⎦ (16)

Where Xt is as defined under equation (15).

In the encompassing model, which consists of equations (10) and (16), the nesting parameter

λ is not significantly different from zero, with a point estimate of -0.13. This is evidence in favor

of the Lucas model, relative to the random walk model. As in the previous subsection, we find

that imposing the restriction that λ = 0 does not significantly worsen the fit, while imposing

restrictions such that equation (14) reduces to a random walk leads to a significant decline in the

log likelihood function value at the 1% level.

In conclusion, the random walk model provides a significantly less accurate fit than the en-

compassing model, while the fit of the Lucas model is statistically indistinguishable from that of

the encompassing model. Hence, the misperceptions model beats the random walk model.

6.3 Convexity even with independent time-variation in the Phillips curve slope

In section 5, we detected a strong degree of nonlinearity in a Phillips curve modeled as in Laxton,

Meredith, Rose (LMR). However, that section’s procedure is not designed to determine whether

the nonlinearity is statistically significant. In the present subsection, we do find that a model
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which allows for LMR-style nonlinearity captures the evolution of the Phillips curve slope in a

significantly better fashion than a pure random walk model does.

We specify a Phillips curve which nests the linear time-varying coefficient model of equations

(3) and (4), and the nonlinear LMR model of equation (5):

πt = β(L)πt + γ1,t

∙µ
φ ygapt−1
φ− ygapt−1

¶
+ p

µ
φygapt−2
φ− ygapt−2

¶¸
+ δ impoilt + et (17)

Where γ1,t evolves as a random walk:

γ1,t = γ1,t−1 + v1,t (18)

This model collapses to the linear time-varying coefficients model if φ = ∞, and reduces to

the nonlinear model with time-invariant coefficients if v1,t = 0 for all t.

We estimate two models, one in which the nonlinearity parameter φ is restricted to be a very

large number,25 and one in which φ is freely estimated.

In the unrestricted model, the nonlinearity parameter is small and precisely estimated, be it

somewhat larger than in section 5.

We apply a likelihood ratio test to examine whether the model in which φ is freely estimated

performs significantly better than the model in which linearity is imposed. The likelihood ratio

statistic is distributed χ2(1). The test result suggests that relaxing the assumption of linearity

significantly increases the value of the likelihood function at the 1% level.

In conclusion, the LMR model adds information beyond that contained in the linear time-

varying coefficients model.

25We impose φ = 1E20.
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7 Which type of nonlinearity in the Phillips curve?

So far, we have found that each of the three models of nonlinearity not only is consistent with

the data, but also outperforms the benchmark random walk model. In the present section, we

compare the three nonlinear theories’ success in explaining the flattening of Japan’s Phillips curve.

7.1 Non-nested model fit comparison

We perform three hypothesis testing procedures to compare the performance of the nonlinear

models.

First, we regress Phillips curves which nest two nonlinear models. For example, the following

equation nests the Laxton, Meredith, Rose (LMR) model from equation (5) and the Ball-Mankiw-

Romer / Dotsey-King-Wolman (BMR / DKW) model of equation (6):

πt = β(L)πt + [a+ b |πt|]
∙µ

φ ygapt−1
φ− ygapt−1

¶
+ p

µ
φygapt−2
φ− ygapt−2

¶¸
+ δ impoilt + et (19)

As it turns out, the coefficient on trend inflation b is positive and significant at the 1% level,

which is in line with the BMR / DKW model. The nonlinearity parameter φ is estimated to be

12.94, with a somewhat larger standard error than in sections 5 or 6, which all in all suggests that

the LMR-convexity still plays a role.

The results with a Phillips curve nesting the LMR- and Lucas-models are similar: there is

evidence for both models. On the other hand, regressing a Phillips curve in which the output

gap coefficients depend on both trend inflation and the variance of inflation does not yield con-

clusive results. To see why, note that the correlation between trend inflation and the variance of

inflation is 0.96. In the presence of multicollinearity, it is not surprising that both variables enter
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insignificantly.

Second, we discuss results from pairwise non-nested tests as developed by Davidson and MacK-

innon (1981). The LMR convexity turns out to perform poorly relative to the other two models.

The coefficient on the fitted value from the BMR / DKW model, when added to a LMR regres-

sion, is significant at the 5% level. This suggests that the BMR / DKW model adds information

beyond that contained in the LMR model. An analogous result holds when we add the fitted

value from the Lucas model to the LMR model. On the other hand, Davidson-MacKinnon tests

favor the BMR / DKW and Lucas models. The fitted value from the LMR model does not enter

significantly in either model.

Third, to assess which among the models in our model space is most likely to correspond to

the truth, we apply Bayesian model averaging methods as in Brock, Durlauf, and West (2004). In

particular, we use the procedure in Kiley (2005) to compute pseudo-posterior model odds based on

a comparison of the Bayesian Information Criteria from the three nonlinear models and the linear

model. This procedure assumes a uniform prior distribution over the model space. As Table 5

documents, the results strongly favor the BMR / DKW endogenous pricing model. According to

the pseudo-posterior distribution, the probability that the BMR / DKW model is the true model

is 81.42%. The pseudo-posterior model odds for the Lucas model are 18.58%. The probability for

either the LMR model or the linear model to be the true model is virtually zero.

7.2 Assessment

Two out of three procedures yielded conclusive results. Davidson-MacKinnon tests, as well as the

computation of pseudo-posterior model odds, suggested that the Laxton, Meredith, Rose (LMR)

model provides a less accurate description of the data than the two other models.
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In this subsection, we take a more detailed look at the regression results from section 5, so

as to examine why the LMR model performed poorly in the non-nested model hypothesis tests.

Before doing so, remember from section 5.1 that it is doubtful whether capacity constraints can be

a rationale for convexity at regions of the Phillips curve which are far from the capacity constraint.

It turns out that the accurate fit of the LMR model in a regression of equation (5) over

1971Q2-2004Q4 is mostly driven by its superior fit around the time of the first oil price shock.

Much of the nonlinearity seems to spring from the 1974Q1 observation, when oil import prices

surged, annualized core CPI inflation spiked to 32%, and the pre-1974 boom suddenly halted.

As a robustness test, we perform regressions for the three nonlinear models as in section 5, but

over a sample which excludes all pre-1975 observations. It turns out that there is no evidence for

LMR-type convexity over the sample 1975Q1-2004Q4. More precisely, the standard error on the

nonlinearity parameter φ is that large that no inference can be drawn as to whether the Phillips

curve is convex or linear. In contrast, the results for the BMR / DKW and Lucas models are

robust to the exclusion of observations from the oil shock episode. Trend inflation and the variance

of inflation, respectively, enter significantly at the 1% level even when pre-1975 observations are

excluded.

8 Conclusion

At a direct empirical level, our paper investigates why deflation did not accelerate in Japan

notwithstanding large negative output gaps during the period 1998-2002. We find that the absence

of accelerating deflation cannot be adequately addressed by popular explanations which assume a

linear short-run relation between the output gap and inflation with a time-invariant slope. Given

that finding, the body of our paper focuses on the path and determinants of the Phillips curve
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slope. We document a gradual, significant flattening of the Japanese Phillips curve which predates

the nineties.

As for the determinants of such time-variation in the Phillips curve slope, our results favor the

Ball-Mankiw-Romer / Dotsey-King-Wolman hypothesis that declining trend inflation created an

environment in which prices became stickier, which in turn caused the Phillips curve to flatten.

All but one of our tests lend equally strong support to the Lucas hypothesis that a decline in

aggregate inflation volatility exacerbated firms’ misperceptions about relative prices, implying a

flatter Phillips curve. While stories such as Laxton-Meredith-Rose in which capacity constraints

engender a convex short-run Phillips curve are consistent with the data, they perform poorly in

comparison with the two other models.

On a broader level, our results are indicative for the appropriate theoretical framework to

model the output-inflation trade-off. If it is indeed a general rule that the Phillips curve flattens

as trend inflation declines, we see two implications for monetary policy makers in economies where

trend inflation is low today relative to past experience.

First, the Ball-Mankiw-Romer / Dotsey-King-Wolman model implies that the Phillips curve in

those countries is currently flatter than the standard linear model would suggest. All other things

being equal, this implies a higher sacrifice ratio: if the central bank brings about a disinflation,

the associated reduction in output will be larger than it would appear from the linear model.

Second, although the endogenous pricing models imply that the Phillips curve turns flatter as

trend inflation declines to zero, these models do not predict that the risk of a deflationary spiral is

negligible. On the contrary, both the Ball-Mankiw-Romer and Dotsey-King-Wolman models are

symmetric around zero. Once trend inflation turns negative, these models imply that any further

decrease in trend inflation is associated with an increase in the frequency of price adjustment.

33



This in turn means that any negative output gap has stronger deflationary effects, thus increasing

the risk of a more pronounced negative interaction between deflation, real activity, and financial

sector vulnerabilities.

Our analysis also lends some empirical support to the Lucas model. This model implies that,

in economies where inflation is currently more stable than in earlier decades, the Phillips curve

is flatter than the standard linear model would suggest. Hence, this model implies that in such

economies, the short-run output costs of disinflation are higher than they would appear from a

linear model.
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Figures and tables
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Figure 1

Note: since the Fed’s recent potential output estimates are confidential, we extrapolate poten-
tial output for 1999Q1-2004Q4 using IMF staff estimates/forecasts for potential output growth,
as quoted in Bayoumi (2000), as a guideline.
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Figure 2

Note: ’Annualized Core CPI inflation’ stands for annualized quarterly inflation in the Con-
sumer Price Index excluding fresh foods, which the Bank of Japan adjusted for consumption tax
reforms in April 1989 and April 1997.
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Figure 3

Note: The linear Phillips curve is estimated over 1971Q2-1997Q4; the forecast window is
1998Q1-2004Q4. The result suggests that, assuming a standard linear relationship between the
output gap and inflation, the size of the negative output gaps in Japan would have warranted
accelerating deflation in the period 1998-2002.
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Linear Model: Time-invariant vs. Time-varying Output Gap Coefficients

πt = β(L)πt + γ1,t (ygapt−1 + p ygapt−2) + δ impoilt + et

Sample: 1971Q2-2004Q4 OLS (linear) MLE (linear TV)

β1 0.67*** (0.17) 0.67*** (0.08)

β2 0.17 (0.16) 0.17** (0.08)

β3 0.39*** (0.15) 0.37*** (0.08)

β4 -0.23 (0.16) -0.21*** (0.07)

γ1,t 0.87** (0.36) 0.75*** (0.16) avg

γ2,t = p.γ1,t -0.70** (0.35) -0.58*** (0.12) avg

δ 0.018* (0.009) 0.018*** (0.004)

σe - 1.33*** (0.04)

p -0.81*** (0.10) -0.77*** (0.10)

Sum output gap coefficients 0.17** (0.07) 0.18*** (0.04) avg

Sacrifice ratio 1.47 1.39

Fit R2 =0.85 LLF=-255.94

R
2
=0.84

Standard errors are in parentheses.
*** indicates significance at the 1% level; ** at 5% level; * at 10% level.

Table 1

Note: The rightmost column shows the results from estimating the state-space model consisting
of equations (3) and (4) by means of the Kalman filter and Maximum Likelihood. The Phillips
curve is linear, yet the output gap coefficients are allowed to vary over time as a random walk.
’avg’ indicates the average of a time-varying coefficient and its standard error over the sample.
For comparison, the middle column shows the results from estimating a standard linear Phillips
curve with time-invariant output gap coefficients.
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Figure 4

Note: This figure graphs the Kalman-smoothed time-varying output gap coefficients corre-
sponding to the estimation results in Table 1, along with their 95% confidence interval. Note that
the sum of the output gap coefficients is graphed on a different scale than the individual output
gap coefficients in the top row.
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Linear Phillips Curve vs. Laxton-Meredith-Rose Phillips Curve

πt = β(L)πt + γ1

h³
φ ygapt−1
φ−ygapt−1

´
+ p

³
φygapt−2
φ−ygapt−2

´i
+ δ impoilt + et

Sample: 1971Q2-2004Q4 OLS (linear) NLS (LMR)

β1 0.67*** (0.17) 0.70*** (0.14)

β2 0.17 (0.16) 0.15 (0.14)

β3 0.39*** (0.15) 0.37** (0.15)

β4 -0.23 (0.16) -0.22 (0.17)

γ1 0.87** (0.36) 0.69** (0.30)

γ2 = p γ1 -0.70** (0.35) -0.54* (0.29)

δ 0.018* (0.009) 0.019** (0.008)

φ ∞ 10.00*** (1.83)

p -0.81*** (0.10) -0.77*** (0.12)

Fit R2 =0.85 / R
2
=0.84 R2 =0.87 / R

2
=0.86

Q-stat [with p-value]: 4th lag 5.61 [0.23] 5.26 [0.26]

Q-stat [with p-value]: 12th lag 6.74 [0.16] 9.27 [0.68]

Huber-White standard errors are in parentheses.
*** indicates significance at the 1% level; ** at 5% level; * at 10% level.

Table 2

Note: The rightmost column shows the results from estimating a Laxton-Meredith-Rose
Phillips curve. The nonlinearity parameter φ is precisely estimated. As Figure 5 demonstrates,
its point estimate implies a fairly strong degree of convexity in the Phillips curve, with a vertical
asymptote at an output gap of 10%. For comparison, the middle column in the table above graphs
the results from estimating a linear Phillips curve.
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Figure 5

Note: This figure graphs γ1 [(φ ygapt−1 / (φ− ygapt−1)) + p (φ ygapt−2 / (φ− ygapt−2))], as
estimated in Table 2, with respect to the output gap. The dotted line graphs the same function
imposing a value for φ which equals the upper bound of the 95% confidence interval around the
point estimate for φ.
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Standard Phillips Curve vs. Ball-Mankiw-Romer / Dotsey-King-Wolman Phillips Curve

πt = β(L)πt + [a+ b |πt|] [ygapt−1 + p ygapt−2] + δ impoilt + et

Sample: 1971Q2-2004Q4 OLS (linear) OLS (BMR/DKW)

β1 0.67*** (0.17) 0.77*** (0.10)

β2 0.17 (0.16) 0.18 (0.12)

β3 0.39*** (0.15) 0.22** (0.09)

β4 -0.23 (0.16) -0.17* (0.10)

γ1 0.87** (0.36) 0.76 avg

γ2 = p γ1 -0.70** (0.35) -0.63 avg

δ 0.018* (0.009) 0.019** (0.008)

a γ1 -0.53*** (0.19)

b 0.00 0.34*** (0.05)

p -0.81*** (0.10) -0.82*** (0.07)

Fit R2 =0.85 / R
2
=0.84 R2 =0.90 / R

2
=0.89

Q-stat [with p-value]: 4th lag 5.61 [0.23] 0.61 [0.96]

Q-stat [with p-value]: 12th lag 6.74 [0.16] 4.29 [0.98]

Huber-White standard errors are in parentheses.
*** indicates significance at the 1% level; ** at 5% level; * at 10% level

Table 3

Note: The rightmost column contains the results from estimating a Phillips curve in which
the slope depends on the absolute value of trend inflation. In line with Ball-Mankiw-Romer and
Dotsey-King- Wolman, the coefficient b on trend inflation is positive and significant at the 1%
level. For comparison, the middle column provides the results from a standard Phillips curve in
which the coefficient on trend inflation is set to zero.
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Standard Linear Phillips Curve vs. Lucas Phillips Curve

πt = β(L)πt + [c+ d vart(π)] [ygapt−1 + p ygapt−2] + δ impoilt + et

Sample: 1971Q2-2004Q4 OLS (linear) OLS (Lucas)

β1 0.67*** (0.17) 0.83*** (0.12)

β2 0.17 (0.16) 0.14 (0.11)

β3 0.39*** (0.15) 0.22** (0.09)

β4 -0.23 (0.16) -0.19* (0.10)

γ1 0.87** (0.36) 0.66 avg

γ2 = p γ1 -0.70** (0.35) -0.52 avg

δ 0.018* (0.009) 0.020** (0.008)

c γ1 -0.05 (0.20)

d 0.00 0.04*** (0.01)

p -0.81*** (0.10) -0.79*** (0.10)

Fit R2 =0.85 / R
2
=0.84 R2 =0.90 / R

2
=0.89

Q-stat [with p-value]: 4th lag 5.61 [0.23] 0.27 [0.99]

Q-stat [with p-value]: 12th lag 6.74 [0.16] 2.79 [1.00]

Huber-White standard errors are in parentheses.
*** indicates significance at the 1% level; ** at 5% level; * at 10% level.

Table 4

Note: The rightmost column contains results from a Phillips curve in which the slope depends
on the variance of inflation. In line with the Lucas misperceptions theory, the coefficient d on the
variance of inflation is positive and significant at the 1% level.
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Bayesian Model Averaging: Pseudo-Posterior Model Odds

Ball-Mankiw-Romer / Dotsey-King-Wolman 81.42%

Lucas 18.58%

Laxton-Meredith-Rose 1.95E-06%

Linear 1.84E-09 %

Table 5

Note: This table displays the pseudo-posterior odds for each of the four listed models to be
the true model, according to a Bayesian Model Averaging procedure as in Brock, Durlauf, West
(2004). This procedure places equal prior probability on each of the models.
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