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Simultaneous probability statements for Bayesian P-splines

Andreas Brezger
Hypovereinsbank München
email: andreas.brezger@hvb.de

Stefan Lang
University of Innsbruck, Universitätsstr. 15, 6020 Innsbruck, Austria
email: stefan.lang@uibk.ac.at

Abstract

P-splines are a popular approach for fitting nonlinear effects of continuous covari-
ates in semiparametric regression models. Recently, a Bayesian version for P-splines
has been developed on the basis of Markov chain Monte Carlo simulation techniques
for inference. In this work we adopt and generalize the concept of Bayesian con-
tour probabilities to additive models with Gaussian or multicategorical responses.
More specifically, we aim at computing the maximum credible level (sometimes called
Bayesian p-value) for which a particular parameter vector of interest lies within the
corresponding highest posterior density (HPD) region. We are particularly interested
in parameter vectors that correspond to a constant, linear or more generally a poly-
nomial fit. As an alternative to HPD regions simultaneous credible intervals could
be used to define pseudo contour probabilities. Efficient algorithms for computing
contour and pseudo contour probabilities are developed. The performance of the ap-
proach is assessed through simulation studies. Two applications on the determinants
of undernutrition in developing countries and the health status of trees show how con-
tour probabilities may be used in practice to assist the analyst in the model building
process.

1 Introduction

The additive model

yi = ηi + εi = f1(xi1) + . . . + fp(xip) + εi, i = 1, . . . , n, (1)

models the mean of a continuous response variable yi as the sum of nonlinear but suffi-
ciently smooth functions f1, . . . , fp of covariates xi = (xi1, . . . , xip)′. It is a popular and
widely used tool for refined exploratory data analysis. Part of the success is due to mod-
ern software for fitting the models, see particularly the R packages mgcv (Wood (2006),
Wood (2006b)) and GAMLSS (Stasinopoulos et al. (2005)) and BayesX (Brezger et al.
(2005a), Brezger et al. (2005b)). In many applications, however, the resulting estimates
suggest simple functional forms for at least some of the nonlinear effects. Sometimes it is
even questionable whether a particular covariate should be included in the model. Two
questions arise frequently in consulting cases and in cooperations:

• The functional form of the effect of xj is close to a linear, quadratic or cubic fit.
Is it justified to replace the unspecified nonlinear function by a polynomial of low
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degree in order to ease interpretation? In this context interpretation means that the
parameters are interpretable (not only the estimated effect).

• The contribution of xj to the fit seems to be quite small. Is a more parsimonious
model with covariate xj omitted sufficient?

Representative for a number of cooperations we discuss two applications in more detail.
The first application analyzes determinants of childhood undernutrition for two African
countries. The nutritional status of a child is measured by an anthropometric score (vari-
able zscore) which compares the height of a child with the median height of children in
a reference population of the same age. One of the most important determinants of the
nutritional status is the age of the child. Figures 4 and 5 show the estimated effect of age
for Zambia and Tanzania. The estimated functions are based on Bayesian P-splines as
developed by Lang and Brezger (2004). For both countries a clear nonlinear effect can be
observed with decreasing nutritional status until the age of 20 months and an almost con-
stant effect thereafter. However, a more parsimonious modeling by a low order polynomial
of degree two or three seems to be a reasonable alternative.
The plan of this paper is to provide methodology that assists the applied statistician to
answer the questions stated above. The basis for the methodological development is a
Bayesian approach to generalized additive models (and extensions) based on P(enalized)-
splines as the main building block. P-splines have been originally suggested by O’Sullivan
(1986) and made popular by Eilers and Marx (1996), see also Marx and Eilers (1998) and
Eilers and Marx (2004). The Bayesian version is due to Lang and Brezger (2004) and
Brezger and Lang (2006). Bayesian inference is carried out using modern Markov Chain
Monte Carlo (MCMC) simulation techniques that allow to draw random numbers from the
posterior of the model. Based on a random sample posterior quantities of interest like the
posterior mean or standard deviation are easily estimated via their empirical counterparts.
Pointwise credible intervals, also called Bayesian confidence intervals, are obtained by
computing respective quantiles of the sampled parameters. For example a 95% credible
interval is defined by the 2.5% and 97.5% empirical quantiles of the random sample.
However, the decision whether a nonparametrically estimated effect could be replaced by
a more parsimonious polynomial fit, requires simultaneous probability statements about
the parameters. The primary goal of this paper is to develop techniques for obtaining
such simultaneous probability statements in the context of P-splines smoothing. Our
approach adapts ideas recently proposed by Held (2004) for estimating and computing
contour probabilities or Bayesian p-values. The definition of contour probabilities is based
on highest posterior density (HPD) regions which are constructed such that the posterior
density within the region is higher than outside. Bayesian p-values are defined as the
maximum credible level for which a particular parameter vector of interest lies within
the corresponding HPD region. We are particularly interested in parameter vectors that
correspond to a constant, linear or more generally a polynomial fit. The final goal is
to assist the analyst in the model building process towards more parsimonious models.
For instance, if the contour probability for a linear fit is small but relatively high for a
quadratic fit, a more parsimonious model with a parametric linear fit could be used. As an
alternative to HPD regions, simultaneous credible intervals as proposed by Besag, Green,
Higdon and Mengersen (1995) could be used to define pseudo contour probabilities.
Currently methodology is available for Gaussian responses and (multi)categorical logit and
probit models. As an example for multicategorical data we consider an application on the
health status of trees measured in three ordered categories.
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Additionally to Bayesian p-values model choice could be based on a global goodness of fit
measure that allows to compare competing models. The classical instrument for comparing
models in a Bayesian framework is the Bayes factor (e.g. Kass and Raftery (1995), DiCiccio
et al. (1997)). Suppose we are given two competing models M1 and M2 with parameters
θ1 and θ2. If the prior probabilities p(Mj) are equal, i.e. p(Mj) = 1/2, the two models
can be compared via the posterior odds, or in other words the Bayes factor,

BF =
p(M1|y)
p(M2|y)

=
p(y|M1)
p(y|M2)

,

with
p(y|Mj) =

∫
p(y|θj ,Mj) p(θj |Mj) dθj j = 1, 2. (2)

In many practical cases the computation of Bayes factors is difficult. An approximation
is given by the Bayesian information criterion (BIC) which is defined as

BIC = −2l(θ̂) + log(n) q

where l(θ̂) is the log-likelihood evaluated at the posterior mode, n the sample size and q
the number of parameters in the model. A nice justification of the BIC can be found in
Hastie et al. (2003). However, the applicability of the Bayes factor and with it the BIC
is restricted to models with proper prior distributions for the parameters. Since the prior
distribution used for Bayesian P-splines is partially improper these tools are not available
for model choice.
Another widely used tool for Bayesian model selection is the Deviance information criterion
(DIC) developed by Spiegelhalter et al. (2002). Similar to the AIC the derivation of the
DIC is based on information theoretic arguments. It is designed to compare complex
hierarchical models where the number of parameters overestimates the complexity of the
model. The DIC is based on a measure pD for the effective number of parameters in a
model as the difference between the posterior mean of the deviance and the deviance at
the posterior means of the parameters of interest. Specifically, pD = D(θ) −D(θ̄) where
D(θ) is the posterior mean deviance and D(θ̄) is the deviance of the posterior mean of θ.
Adding pD to the posterior mean deviance gives the DIC

DIC = D + pD.

The computation of the DIC is well suited to simulation based inference and is obtained
more or less as a by product of a MCMC sampler. The straightforward computation of the
DIC is certainly one of the reasons for its widespread use. However, from a practical point
of view the DIC comes with two limitations. First, the DIC is subject to sampling error.
Hence, a clear cut decision between two models with similar DIC is possible (if at all) only
if repeated MCMC samples are available allowing to assess the sampling error involved.
Second, for every model under consideration new and time consuming MCMC samples
are required to compute the DIC. This limits its applicability to the comparison of only a
few competing models. It will be the Bayesian p-values suggested in this paper that will
we helpful in assisting the analyst in detecting a small number of promising models that
could additionally be compared via the DIC.
The reminder of the paper is organized as follows:
The first subsection of the next section reviews additive models based on P-splines and
illustrates how the Bayesian version is constructed. Consecutive subsections are devoted
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to computing contour or pseudo contour probabilities for P-splines. Technical details
and proofs are deferred to two appendices. In section 3 the performance of the different
approaches is assessed through extensive simulation studies. In section 4 results for the
two applications on determinants of undernutrition and the health status of trees show
how the proposed methodology could be used in practice. The final section gives a brief
summary of the paper.

2 Bayesian P-Splines and model selection via contour prob-
abilities

2.1 Bayesian P-splines

Our approach for modeling the nonlinear functions fj in (1) is based on P(enalized)-
splines. The approach assumes that the unknown functions fj can be approximated by
a polynomial spline of degree l with equally spaced knots xj,min = κj0 < κj1 < · · · <
κj,r−1 < κjr = xj,max within the domain of xj . The spline can be written in terms of a
linear combination of m = r + l B-spline basis functions Bjk, i.e.

fj(xj) =
m∑

k=1

βjkBjk(xj). (3)

By defining the design matrices Xj , where the element in row i and column k is given by
Xj(i, k) = Bjk(xij), we can rewrite the predictor in (1) in matrix notation as

η = X1β1 + . . . + Xpβp.

The Penalized version assumes a moderately large number of knots (usually between 20
and 40) to ensure enough flexibility, and to define a roughness penalty based on squared
differences of adjacent B-spline coefficients to guarantee sufficient smoothness of the fitted
curves. This leads to a penalized least squares approach where

PLS(β1, . . . ,βp) = (y − η)′(y − η) + λ1

m∑

k=d+1

∆dβ1k + . . . + λp

m∑

k=d+1

∆dβpk (4)

is minimized with respect to β1, . . . ,βp. The index d indicates the order of differences.
Usually d = 1 or d = 2 is used leading to first differences βjk−βj,k−1 or second differences
βj,k − 2βj,k−1 + βj,k−2, respectively. The trade off between fidelity to the data (governed
by the least squares term) and smoothness (governed by the p penalty terms) is controlled
by the smoothing parameters λj . The larger the smoothing parameters the smoother the
resulting fit.
Recently, Lang and Brezger (2004) and Brezger and Lang (2006) developed a Bayesian
version of P-splines. The Bayesian point of view has several advantages. First, we gain
new insight in how the P-spline approach works. Second, it allows for a unified approach
for simultaneously obtaining point and interval estimates of the regression coefficients and
the smoothing parameters. The main difference of the Bayesian approach is that the
parameters in the model are treated as random variables for which a prior distribution is
specified. Note, that the assumption of a prior distribution for the parameters does not
necessarily imply that the parameters are random. The prior distribution rather reflects
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Figure 1: Illustration of the conditional mean of a parameter βjk given the left and right
neighbors βj,k−2, βj,k−1, βj,k+1,βj,k+2 for a second order random walk prior. The condi-
tional distribution is Gaussian with mean −1/6βj,k−2 + 2/3βj,k−1 + 2/3βj,k+1 − 1/6βj,k+2

and variance τ2
j /6.

the degree of uncertainty about the parameters. In many modern applications the prior
distribution models structural assumptions, e.g. smoothness, the degree of continuity etc.
The Bayesian version of P-splines is based on stochastic analogues of difference penalties
as smoothness priors for the regression coefficients. More specifically, first or second order
random walks are used as smoothness prior, i.e.

βjk = βj,k−1 + ujk, or βjk = 2βj,k−1 − βj,k−2 + ujk (5)

with Gaussian errors ujk ∼ N(0, τ2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝ const,

for initial values, respectively. The random walk priors could have been equivalently de-
fined via the conditional distributions of βjk given the left and right neighboring param-
eters, i.e. βj,k−1, βj,k+1 in case of a first order random walk and βj,k−2, βj,k−1 ,βj,k+1,
βj,k+2 in case of a second order random walk. From (5) it follows that these conditional
distributions must be Gaussian. To shed more light on the nature of the prior we study
the conditional means of the regression parameters given the neighboring parameters. For
both (equivalent) specifications of the prior the respective conditional means can be nicely
interpreted. We restrict ourselves to second order random walks which are most frequently
used in practise. The conditional mean of βjk given the two left neighbors βj,k−1, βj,k−2

is the extrapolation of the linear trend formed by the values βj,k−1, βj,k−2. The condi-
tional mean of βjk given the left and right neighbors is obtained by fitting a quadratic
polynomial to the four points (βj,k−2,−2), (βj,k−1,−1), (βj,k+1, 1) and (βj,k+2, 2). The
conditional mean E(βjk | ·) is then the point on the quadratic polynomial at value 0, see
figure 1.
Applying the law of total probability the priors (5) can be equivalently written in the form
of a global smoothness priors

βj |τ2
j ∝ exp

(
− 1

2τ2
j

β′jKjβj

)
(6)

with penalty matrix Kj = D′D where D is a difference matrix of order one or two.
The penalty matrix Kj is rank deficient with rk(Kj) = d − 1 for first order differences
respectively a first order random walk and rk(Kj) = d − 2 for a second order random
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walk. Hence (6) has the form of a singular normal distribution and the prior for the
regression coefficients is improper. However, it can be shown that the posterior is proper,
see Fahrmeir and Kneib (2006).
The variances τ2

j and the smoothing parameters λj are related by λj = τ2
j /σ2 where

σ2 is the error variance. Hence, τ2
j may be seen as an inverse smoothing parameter.

Large variances correspond to small smoothing parameters and result in more wiggled
estimates. Smaller variances result in smoother estimates. To be able to estimate the
amount of smoothness simultaneously with the regression parameters additional invers
Gamma distributed hyperpriors p(τ2

j ) ∼ IG(aj , bj) independent from the priors on βj

are assigned to the variances τ2
j (and the overall variance parameter σ2). We assume

aj = bj = 0.01 which corresponds to noninformative priors (on the log scale).
Bayesian inference is entirely based on the posterior distribution which is proportional to
the product of the likelihood and the prior. For given variance parameters the posterior
mode estimate for the regression coefficients is obtained by minimizing the PLS criterion
(4). Fully Bayesian inference for all parameters involved can be based on MCMC simu-
lation. For Gaussian responses a Gibbs sampler can be used to successively update the
parameters β1, . . . , βp, τ

2
1 , . . . , τ2

p , see Lang and Brezger (2004) for details. For most mod-
els with categorical responses a representation of the models in terms of underlying latent
continuous variables may be utilized for MCMC simulation. In this case the Gibbs sampler
for Gaussian responses can be adapted to models with categorical responses. Details can
be found in Albert and Chib (1993) for binary and ordinal probit models, Fahrmeir and
Lang (2001) for multivariate probit models and Holmes and Held (2006) for binary and
multicategorical logit models. For other responses such as Poisson regression the sampling
schemes are more complicated, see Brezger and Lang (2006) for details.
Based on a sample of simulated parameters from the posterior most quantities of interest
are easily estimated. The posterior mean as a point estimator is estimated by the empirical
means of the simulated parameters. Pointwise credible intervals are based on the respective
quantiles of sampled parameters. As has been pointed out by various authors Bayesian
confidence intervals are preferable to their frequentist counterparts in terms of coverage
probabilities, see Wood (2006c) for a recent account. However, a much more challenging
task are simultaneous probability statements about the parameters. This will be the topic
of the next subsection.

2.2 Contour probabilities

In order to keep the notation as simple as possible the development in this section is
presented for a particular covariate x with regression parameters β. Hence the index j in
(3) and everywhere else is suppressed.
Suppose we are interested in simultaneous posterior probability statements for a particular
parameter vector β = β∗. The posterior contour probability P (β∗ |y) of β∗ is defined as
1 minus the content of the HPD region of p(β |y) which just covers β∗, i.e.

P (β∗ |y) = P{p(β |y) ≤ p(β∗ |y) |y}, (7)

see Box and Tiao (1973) and Held (2004). Note that p(β |y) is treated here as a random
variable. In the following we briefly review concepts for estimating the probability (7)
from posterior samples β(t), t = 1, . . . , T obtained via MCMC simulation.
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Held (2004) proposes to estimate (7) by

̂P (β∗ |y) =
1
T

T∑

t=1

1{p(β(t) |y) ≤ p(β∗ |y)}, (8)

i.e. the proportion of MCMC samples for which the posterior density is smaller than the
density of the point of interest β∗.
Unfortunately the functional form of the marginal density p(β |y) is unknown (otherwise
MCMC would not be necessary) and we have to employ some method of density estimation

to obtain estimates ̂p(β(t) |y), t = 1, . . . , T , and ̂p(β∗ |y). For Gaussian responses and
multicategorical data with latent Gaussian responses the full conditionals p(β | ·), i.e. the
conditional densities of β given the data and the remaining parameters, are available and
an approach based on Rao-Blackwellization seems natural (Held 2004). The Rao-Blackwell
estimate is more efficient than any other density estimate based on β(1), . . . , β(T ) and there
is no smoothing parameter involved. Using the Rao-Blackwell theorem estimates for the
marginal density p(β |y) evaluated at an arbitrary parameter vector β are obtained by

̂p(β |y) =
1
T

T∑

v=1

p(β |α(v)
− ,y), (9)

where α
(v)
− comprises all model parameters excluding β and hence p(β |α(v)

− , y) denotes
the full conditional density of β. The density estimator (9) is a simple average of the full
conditional evaluated at β. Averaging is done by conditioning subsequently on all sampled
parameters α

(v)
− , v = 1, . . . , T .

As an alternative to the mean in (9) Held (2004) suggests to use the median, i.e.

̂p(β |y) = med1≤v≤T

{
p(β |α(v)

− ,y)
}

. (10)

As an advantage, the estimated contour probabilities are invariant to monotonic transfor-
mations of p(β |y) in (7). For instance, one could replace p(β |α(v)

− ,y) in (10) by the log
density, i.e.

log( ̂p(β |y)) = med1≤v≤T

{
log(p(β |α(v)

− , y))
}

. (11)

Usually, this is computationally more favorable than using the density directly (see ap-
pendix B) and also more robust against extreme samples.
In order to estimate (8) the marginal densities p(β(t) |y) evaluated at the sampled random
numbers β(t), t = 1, . . . , T , have to be estimated. Using for instance (10) estimates are
now easily obtained by

̂p(β(t) |y) = med1≤v≤T

{
p(β(t) |α(v)

− ,y)
}

.

Summarizing, the contour probability (7) is estimated by replacing the marginal densities
with (9), (10), or (11) if log densities are used. Using (10) we obtain

̂P (β∗ |y) =
1
T

T∑

t=1

1
{

med1≤v≤T

{
p(β(t) |α(v)

− ,y)
}
≤ med1≤v≤T

{
p(β∗ |α(v)

− , y)
}}

(12)
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Pseudo contour probabilities based on credible intervals

As an alternative to the definition of contour probabilities via HPD regions, we could base
the definition on simultaneous credible intervals for the parameter β∗ of interest. Besag
et al. (1995) propose to define a simultaneous credible interval as the hyperrectangular
defined by

[β[T+1−t∗]
k , β

[t∗]
k ] k = 1, . . . , r + l, (13)

where β
[t]
k , t = 1, . . . , T denotes the ordered samples of the parameter βk. The index t∗ is

the smallest integer such that the hyperrectangular (13) contains at least 100α percent of
the samples β(1), . . . , β(T ) if α is the desired level of the credible interval.
The (pseudo) contour probability P (β∗ |y) for β∗ can now be defined as 1 minus the
smallest credible level, for which β∗ is contained in the corresponding credible interval.
The advantage of pseudo contour probabilities is that they are much less computationally
demanding. However, as is shown through simulations they are less reliable than contour
probabilities.

2.3 Contour probabilities for P-Splines

In the context of P-splines, we are particularly interested in parameters β = β∗ that lead
to a constant, linear or in general a polynomial fit. Since P-splines are centered around
zero a constant fit corresponds to β∗ = 0, i.e. the corresponding covariate is excluded from
the predictor. In this section we determine conditions on the regression parameters that
lead to a polynomial fit rather than a piecewise polynomial as is generally the case.
It can be shown that a spline f(x) expressed in terms of (3) reduces to a polynomial of
degree s ≤ l if the (s + 1)-th differences of the regression parameters are zero, i.e.

∆s+1βk = 0, k = s + 2, . . . , r + l, (14)

or in matrix notation
Ds+1β = 0,

where Ds+1 is a difference matrix of order s + 1. A proof can be found in appendix A.
In order to compute (pseudo) contour probabilities the full conditional of Dsβ must be
computed. The full conditional of β is multivariate Gaussian

β |α−,y ∼ N(m, P−1) (15)

with
P =

1
σ2

X ′X +
1
τj

K, m = P−1 1
σ2

X ′(y − η̃).

Here, η̃ is the part of the predictor associated with all remaining effects in the model.
Thus Dsβ =: β̃ is also multivariate Gaussian

β̃ |α−, y ∼ N(m̃, P̃
−1

), (16)

with mean m̃ = Dsm and precision matrix P̃ = DsP
−1D′

s. Note that for the special
case s = 0, i.e. Ds = I, we recover (15) as full conditional for Dsβ.
Computational aspects of the estimator are discussed in appendix B.
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2.4 Software

Bayesian P-splines and contour probabilities are implemented in the software package
BayesX which is available free of charge at www.stat.uni-muenchen.de/~bayesx/. A
detailed description of the usage is given in the accompanying manuals. As an example
we take our application on undernutrition in Zambia and Tanzania. The following code
estimates for Zambia nonlinear effects of the age of the child and the mother’s body mass
index:

delimiter=;

dataset d;
d.infile using c:\zambia.raw;

bayesreg b;
b.regress zscore = agc(psplinerw2,countourprob=4) +
bmi(psplinerw2,countourprob=4), approx family=gaussian
iterations=12000 burnin=2000 step=10 predict using d;

Option contouprob=4 specifies that contour probabilities for difference orders zero to
four are computed. By defining the global option approx the computation of contour
probabilities is based on stochastic approximations for quantiles as described in Tierney
(1983), see appendix B for details.
Note that BayesX allows an arbitrary combination of P-splines with other components
for nonparametric modeling. Examples are random intercepts and slopes, spatial effects,
varying coefficients, two dimensional surface smoothers etc. Details are available from the
BayesX manuals.

3 Simulations

We realized an extensive simulation study in order to asses the performance of contour
probabilities and to compare them to pseudo contour probabilities. In particular we were
interested in the following questions: First, how successful is our tool in detecting a
parametric (polynomial), or nonparametric effect, given different signal to noise ratios
(SNR). Second, are there substantial differences regarding the type of definition for the
contour probabilities, and third, what is the extent of improvement that is achieved by
using contour probabilities rather than pseudo contour probabilities. Of course, given a
credible level 1 − α, say, the HPD region is by definition the region with the smallest
area, and therefore PCPs will always underestimate the p-value. However, it is unclear
in advance how dramatic the loss of efficiency is in practice, specifically in the context of
P-spline modeling.
We investigated the functions

yi = 1 + k · sin(2πxi) + εi, (17)

and
yi = 1 + xi + k · sin(2πxi) + εi, (18)

with different values for k. For x we chose 100 equidistant design points in the interval
[0, 1] and generated data sets with 250 replications of each of the models (17) and (18)
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with εi ∼ N(0, 0.5). This corresponds to a signal to noise ratio (SNR) of 0.0, 1.0 and
2.25 for k = 0.0, 1.0, 1.5 and model (17), and a SNR of approximately 0.17, 0.53 and 1.47
for k = 0.0, 1.0, 1.5 and model (18), respectively. We used an IG(0.001,0.001) prior for
the scale parameter σ2 and the variance parameter τ2. Alternatively, we assigned an
IG(1.0,0.005) and a uniform prior. However, the results proved to be insensitive regarding
the choice of prior.
We compare the results in terms of the ’p-values’ obtained from contour probabilities
based on the median and the mean of the log-density, and from pseudo contour probabil-
ities. Figure 2 shows boxplots of p-values for three selected SNRs. Note that ∆sβ = 0
corresponds to a constant fit (i.e. no effect) for both, s = 0 and s = 1. Figure 3 shows
the outcome of an alternative model selection according to the DIC. The results of both
models can be summarized as follows:

• No effect (SNR=0.0)
As we could have expected, for a signal to noise ratio of 0.0 the contour probabilities
are close to one for all difference orders considered, i.e. p-values give no evidence of
any influence of the covariate at all. Pseudo contour probabilities do not suggest the
existence of an influence of the covariate either, though they are considerably lower
than the contour probabilities.

It is striking that pseudo contour probabilities show a noticeable difference between
difference orders s = 0 and s = 1, though both correspond to the probability for
no effect of the covariate. Held (2004) reports severe underestimation for s = 0 and
conjures that this comes from strong correlations between successive parameters.
Since the correlation decreases when considering first differences of the parameters
instead of the parameters directly the problem becomes less distinctive. This may
explain the big differences between s = 0 and s = 1.

The DIC exhibits features (similar to AIC) that have been observed in many cases.
In approximately 25 percent of the cases a linear or even more complex effect is
found where there is essentially none.

• Very low to low signal to noise ratio (SNR=0.17, 0.53, 1.0)
For the very low and low signal to noise ratios (0.17, 0.53 in model (18), 1.0 in model
(17)) the p-values clearly decrease for all difference orders smaller than 4, i.e. the
posterior probabilities for a (at least) cubic effect increase, as the SNR increases
from 0.17 to 1.0. For the model with SNR = 1.0 contour probabilities actually
speak against the hypothesis of the covariate having no effect. However, neither
contour probabilities nor pseudo contour probabilities give clear cut results and hence
further investigation is advisable. An exception are p-values from pseudo contour
probabilities based on 0-th order differences. Here, pseudo contour probabilities
exhibit mainly very low p-values. However, this may be due to the underestimation
mentioned by Held (2004).

The DIC clearly is in favor of more complex models. Cubic modeling is selected in
approximately 70 percent of the cases and nonparametric modeling in 30 percent.

• Medium signal to noise ratio (SNR=1.47, 2.25)
For medium signal to noise ratios (1.47 in model (18), 2.25 in model (17)) the
contour probabilities for parametric fits with polynomials of degree smaller than
three (i.e. difference order smaller than 4) are very small, suggesting that a more
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flexible modeling is needed. However, the need of a polynomial of degree higher
than 3 is rather unlikely a posteriori. This is in perfect agreement with the data,
since a sine curve can be approximated by a polynomial of degree 3 without major
deviations. Pseudo contour probabilities, on the other hand, perform very poorly
for difference orders higher than 1.

Similar to low signal to noise ratios the DIC is able to detect the nonlinear effects.
In roughly 50 percent of cases a cubic fit is preferred and for the rest of the cases
even nonparametric modeling.

• Contour probabilities versus pseudo contour probabilities
It turns out that p-values based on pseudo contour probabilities are apparently
smaller than that obtained from the contour probabilities for very low signal to
noise ratios. This is in accordance with findings of Held (2004) who reported severe
underestimation of p-values especially in the case of difference order s = 0, but also
- to a smaller degree - when considering first differences.

In contrast, pseudo contour probabilities behave rather conservative regarding higher
differences compared to contour probabilities. For a SNR of 2.25 p-values in favor of a
parametrization by polynomials of a degree higher than quadratic are still reasonably
close to one.

• Contour probabilities versus the DIC

The main difference is that contour probabilities are more conservative than the
DIC. The DIC detects even nonlinear effects with low signal to noise ratio whereas
for contour probabilities clear decisions are possible only for moderate (or larger)
SNR’s. However, there is nothing like a free lunch. In a considerable number of
cases the DIC detects an effect where there is none.

• Contour probabilities based on the median/mean of log-density
Estimated p-values may differ slightly regarding on which definition they are based.
In our simulation study we compared p-values based on the median or on the mean of
the log-density, respectively. We found p-values based on the mean of the log-density
to be noticeably higher than the ones based on the median.

Based on the findings we draw the following conclusions:

• Pseudo contour probabilities underestimate the p-values regarding the decision
whether a covariate has an effect on the response or not, whereas for the decision
of modeling an effect linearly (or by a polynomial of higher degree) they seem to
behave too conservative and are therefore not recommended.

• Contour probabilities seem to give highly reasonable results for medium or higher
SNRs . In situations where the SNR is small, it is difficult to base model selection
solely on contour probabilities in cases when the obtained p-values lie in a medium
range (i.e. between 0.1 and 0.4, approximately).

• The DIC detects nonlinear effects even for small SNR’s. On the other hand in a
considerable number of cases too complex models are selected.
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Estimated contour probabilities (based on the mean of the log–density)
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Figure 2: Boxplots of p-values obtained from contour probabilities based on the median
(top), contour probabilities based on the mean of the log-density (middle), and pseudo
contour probabilities (bottom) for different SNRs and difference orders. Difference order
s = 0 and s = 1 corresponds to no effect, s = 2 (3, 4) corresponds to a linear (quadratic,
cubic) effect.
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Figure 3: Percentage of cases in which the DIC selected the constant, linear, quadratic,
cubic or nonparametric model for SNR = 0.0, 1.0, 1.47.

4 Applications

In this section we illustrate the application of the previously described model selection
tools by applications that result from cooperations. Our first example investigates under-
nutrition of children in Zambia and Tanzania and is based on data already analyzed by
Kandala et al. (2001). The second analysis investigates the impact of covariates on the
degree of defoliation of trees measured in three categories. This is an application of con-
tour probabilities to non-Gaussian responses. Based on the results of the previous section
we restrict the discussion to contour probabilities and do not report corresponding pseudo
contour probabilities. We propose the following modeling strategy in applications:

• We start with a complex model where effects of continuous covariates are estimated
nonparametrically by P-splines. The model building process at this stage is primarily
guided by knowledge from previous studies and the scientific background.

• We compute contour probabilities in order to identify a small number of reasonable
and potentially less complex models.

• We additionally compute the DIC as a global goodness of fit measure for the models
under consideration.

• Sensitivity analysis regarding the hyperpriors, outliers and influential points is per-
formed for the most promising models. In the remainder details to this step are
omitted because this is not the topic of this paper.

• Based on the results we extract the undoubted core findings with least degree of un-
certainty. Usually for some aspects of the analysis considerable uncertainty remains
because of unstable results.

4.1 Undernutrition in Zambia and Tanzania

The Demographic and Health Surveys (DHS) of Tanzania and Zambia, both conducted
in 1992, draw a representative sample of women in reproductive age in the two countries.
Thereafter they administer a questionnaire and an anthropometric assessment of them-
selves and their children that where born within the previous five years. The data contains
6299 cases in Zambia and 8138 cases in Tanzania. Kandala et al. (2001) use this data to
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explore determinants of undernutrition measured through stunting, which is insufficient
height for age, indicating chronic undernutrition. Stunting for a child i is determined by
a Z-score

Zi =
AI i −MAI

σR
,

where AI refers to the childs height at a certain age, MAI refers to the median of a
reference population, and σR denotes the standard deviation of the reference population.
Kandala et al. (2001) estimate separate additive models for each country with a predictor

η = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ ′x,

where the mothers body mass index bmi and the age of the child agc are modeled non-
parametrically with Bayesian P-splines. The expression fspat(d) denotes a spatial effect
associated with the district d the child lives in, and is modeled as the sum of i.i.d and
spatially correlated random effects for Zambia. For Tanzania the i.i.d random effects are
excluded from the model. The fixed effects γ include categorical variables concerning the
education and employment situation of the mother, the gender of the child and the char-
acteristic of the area (urban or rural), where the child resides. For more details on the
analysis we refer the reader to Kandala et al. (2001).
Here, our aim is to investigate whether the nonparametric modeling of bmi and agc is
necessary by employing contour probabilities. As a starting point, we use the model
developed by Kandala et al. (2001) and model the effects of both continuous covariates,
bmi and agc, nonparametrically by P-splines. The resulting fits together with 80 and 95
percent pointwise credible intervals are given in the first rows of figures 4 and 5. The effects
of the body mass index are both slightly U-shaped and close to linearity. The U-shape is
more pronounced for Tanzania. Overall this is in line with the literature on undernutrition.
Mothers who exhibit a very low BMI, indicating their poor nourishment, are likely to have
poorly nourished children. At the same time, parents with a very high BMI might also
have poorly nourished children as the obesity associated with their high BMI indicates
poor quality of nutrition and might therefore indicate poor quality of nutrition for their
children. For the latter presumption support from the data is weak as both effects are
close to linearity.
The age effect indicates a continuous worsening of the nutritional status up until about
20 months of age. This deterioration sets in right after birth and continues, more or less
linearly, until 20 months. After 20 months, stunting stabilizes at a low level. Again the
effect is in line with the literature. The main difference between the two countries is an
additional local maximum in the interval [25, 30] for Tanzania. This is picking up the
effect of a change in the data set that makes up the reference standard. Until 24 months,
the currently used international reference standard is based on white children in the US of
high socioeconomic status, while after 24 months, it is based on a representative sample of
all US children. Since the latter sample exhibits worse nutritional status, comparing the
Tanzanian children to that sample may lead to a sudden improvement of their nutritional
status at 24 months.
For both effects it is reasonable to think of a more parsimonious modeling. The effect of
bmi seems close to linearity. The effect of agc may possibly be modeled by a quadratic
or cubic polynomial. To shed more light on this issue we take a look at the contour
probabilities displayed in table 1. They suggest a quadratic, cubic or (for Tanzania) even
nonparametric effect for the age of the child. The p-values based on contour probabilities
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in favor of ’no effect’ of bmi are in a medium region and allow no clear decision. In
either case, a linear effect for bmi seems to be sufficient. Based on these observations we
investigate a number of additional model specifications summarized as follows:

η1 = γ0 + f1(bmi) + f2(agc) + fspat(d) + γ ′x
η2 = γ0 + + f2(agc) + fspat(d) + γ ′x
η3 = γ0 + + β1agc + β2agc2 + fspat(d) + γ ′x
η4 = γ0 + + β1agc + β2agc2 + β3agc3 + fspat(d) + γ ′x
η5 = γ0 + α1bmi + f2(agc) + fspat(d) + γ ′x
η6 = γ0 + α1bmi + β1agc + β2agc2 + fspat(d) + γ ′x
η7 = γ0 + α1bmi + β1agc + β2agc2 + β3agc3 + fspat(d) + γ ′x

In table 2 values for the DIC of the models are summarized. Models are ordered according
to the DIC.
For Zambia the best fit in terms of the DIC is achieved by model 5, featuring a nonpara-
metric fit for agc and a linear fit for bmi . However, models 7 (bmi linear, agc cubic) and
1 (both nonparametrically) perform roughly equally well. Model 7 is the model which is
best in line with the observed contour probabilities. The second row of figure 4 compares
the three different fits for bmi and agc obtained by models 1, 5 and 7. Since the two linear
fits for bmi and the two nonparametric fits for agc are almost identical the respective
second fit is omitted. We conclude that a linear effect for bmi and a cubic effect for agc
is sufficient to describe the variability of the data.
Slightly different results are obtained for Tanzania. The best fit in terms of the DIC is
achieved by model 1 with nonparametric modeling of bmi and agc. Model 5 which is best
in line with the observed contour probabilities shows the second best fit. The DIC for
this model is, however, considerably larger than for model 1. The bottom line of figure
5 compares the different fits. Obviously, the cubic fit totally misses the local maximum
exhibited by the nonparametric estimate of the effect of agc. Regarding the effect of
bmi contour probabilities and the DIC exhibit the largest differences. While contour
probabilities are in favor of (at maximum) a linear fit the DIC clearly supports the U-
shaped effect obtained by the nonparametric modeling. However, the U-shaped effect is
mostly driven by a few observations with very large body mass index. A sensitivity analysis
reveals that exclusion of the 6 observations with bmi > 39 yields that both models perform
equally well in terms of the DIC criterion. We conclude that the effect of agc should be
modeled nonparametrically because of the local maximum of the effect in the interval
[25, 30]. The effect of the bmi is clearly linear for mothers with bmi < 32. For bmi > 32
there is considerable uncertainty about the effect. There is some support for the U-shaped
effect predicted in the literature but more information is needed for a clear decision.

4.2 Forest health study

In this longitudinal study on the health status of trees, we demonstrate the usefulness
of our approach for non Gaussian data. We analyze the influence of calendar time t,
age of trees A (in years), canopy density CP (in percent) and location L of the stand
on the defoliation degree of beeches. Data have been collected in yearly forest damage
inventories carried out in the forest district of Rothenbuch in northern Bavaria from 1983
to 2001. The state of a tree is assessed by the degree of defoliation measured in three
ordered categories, with yit = 1 for ”bad” state of tree i in year t, yit = 2 for ”medium”
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Table 1: Undernutrition in Zambia and Tanzania: Contour probabilities for the effects of
bmi and agc. Displayed are the results for model 1.

difference order 0 1 2 3 4
degree of polynomial const const linear quadratic cubic
Zambia
bmi (based on median) 0.29 0.38 1.0 1.0 1.0
bmi (based on mean of log-density) 0.30 0.42 1.0 1.0 1.0
agc (based on median) 0.0 0.0 0.0 0.09 0.84
agc (based on mean of log-density) 0.0 0.0 0.0 0.12 0.87
Tanzania
bmi (based on median) 0.33 0.14 0.79 0.93 0.93
bmi (based on mean of log-density) 0.42 0.25 0.86 0.97 0.97
agc (based on median) 0.0 0.0 0.0 0.0 0.09
agc (based on mean of log-density) 0.0 0.0 0.0 0.01 0.20

Table 2: Undernutrition in Zambia and Tanzania: DIC for models 1-5. The models are
ordered according their DIC.

Zambia DIC Tanzania DIC
M5 12733.9 M1 15555.8
M7 12736.9 M5 15563.1
M1 12737.9 M7 15592.8
M2 12756.2 M2 15606.5
M4 12761.7 M4 15638.4
M6 12779.5 M6 15672.6
M3 12804.2 M3 15723.6
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Figure 4: Zambia: Effects of bmi (left panel) and agc (right panel) for the nonparametric
model 1. The second row compares the nonparametric fits with competing parametric fits
obtained from models 5 and 7. The dots at the bottom of the graphs indicate the distribution
of the data.

and yit = 3 for ”good”. A detailed description of the data can be found in Göttlein and
Pruscha (1996).
We use a three-categorical ordered probit model with predictor

ηit = γ0 + f1(t) + f2(Ait) + f3(CPit) + fspat(Li). (19)

The functions f1 to f3 are modeled nonparametrically by cubic P-splines. The expression
fspat denotes the spatial effect of the location Li of the tree, modeled by a spatially
correlated random effect. The data have already been analyzed in Fahrmeir and Lang
(2001) (for the years 1983-1997 only), where nonlinear functions have been modeled solely
by random walk priors.
Again, we are interested in the appropriateness of nonparametric modeling of the function
f1 to f3 compared to parametric alternatives. Table 3 summarizes the obtained p-values
and figure 6 displays the estimated effects. Looking at contour probabilities, nonpara-
metric modeling is clearly suggested for the effects of time and age, whereas modeling of
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Figure 5: Tanzania: Effects of bmi (left panel) and agc (right panel) for the nonparametric
model M1. The second row compares the nonparametric fits with competing parametric fits
obtained from models 5 and 7. The dots at the bottom of the graphs indicate the distribution
of the data.

canopy density is suggested as at most linearly. Based on the relatively clear results we
additionally estimated only one competing model with linear effect for CP . The DIC for
this model is 1350.7 and is slightly less than for the nonparametric model. In this applica-
tion the observed contour probabilities and the DIC are fully consistent in the sense that
they lead to the same conclusion: The effects of calendar time and the age of the trees
can not be modeled by polynomials whereas the effect of canopy density may be modeled
linearly.
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Figure 6: Nonparametric effects of t, A and CP together with 80% and 95% pointwise
credible intervals. Additionally the nonparametric and the linear fit for canopy density are
compared.

Table 3: Contour probabilities for the effects of t, A and CP. Displayed are the results for
model 1.

difference order 0 1 2 3 4
degree of polynomial const const linear quadratic cubic
t (based on median) 0.0 0.0 0.0 0.0 0.01
t (based on mean of log-density) 0.01 0.0 0.0 0.01 0.02
A (based on median) 0.0 0.0 0.0 0.0 0.0
A (based on mean of log-density) 0.0 0.0 0.0 0.0 0.0
CP (based on median) 0.04 0.09 0.51 0.87 0.98
CP (based on mean of log-density) 0.06 0.12 0.44 0.85 0.99
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5 Conclusion

The paper developed contour probabilities and pseudo contour probabilities for Bayesian
P-splines in order to decide whether nonparametric modeling of continuous covariates is
necessary or if parametric modeling by polynomials of small degree is sufficient. Cur-
rently the methodology is available for Gaussian responses and for multicategorical logit
or probit models with latent Gaussian responses. Estimating Bayesian p-values for general
distributions from an exponential family is computationally much more expensive since
the marginal distributions are no longer available by Rao-Blackwellization. A possible ap-
proach could be based on a paper by Chib and Jeliazkov (2001) who present methodology
for computing posterior ordinates of densities based on MCMC. However, the approach is
quite computer intensive and currently not available for routine use in applications.
The simulation study shows that contour probabilities are a valuable tool for model choice
at least for moderate or larger signal to noise ratios. They also proved to be superior
compared to pseudo contour probabilities. However, we do not recommend to base model
selection solely on contour probabilities. We rather propose to use a combination of
simultaneous probability statements, goodness of fit measures and sensitivity analysis to
perform this complex task. Examples of the proposed model selection approach are given
by the two applications on undernutrition in developing countries and the health status
of trees.
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A Proof of equation (14)

For a proof of (14) we exploit the fact that the B-spline basis functions in (3) for repre-
senting the spline can be computed as differences of truncated power functions (Eilers and
Marx (2004)), i.e.

Bk(x) = −1l+1∆l+1t(x, k)/(hll!), k = 1, . . . , r + l (20)

where h is the distance between two neighboring knots and t(x, k) := (x− (κ0 + kh))l
+ is

the truncated power function that corresponds to the knot κk = κ0 + kh.
Assume first that s = 0, which corresponds to a constant fit. Then we get

(hll!)
−1l+1

f(x) =
(hll!)
−1l+1

r+l∑

k=1

Bk(x)βk =
r+l∑

k=1

∆∆lt(x, k)βk =
r+l∑

k=1

∆lt(x, k)βk−
r+l∑

k=1

∆lt(x, k−1)βk

Rearranging the two sums by combining the respective k-th summand of the first sum and
the (k + 1)-th summand of the second sum yields

(hll!)
−1l+1

f(x) = −
r+l−1∑

k=1

∆lt(x, k)∆βk+1 + ∆lt(x, r + l)βr+l −∆lt(x, 0)β1. (21)
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Provided that ∆βk = 0, the summands in the first term are all zero. The second term in
(21) is zero within the range [xmin, xmax] of x because the polynomial part of t(x, r + l)
starts at xmax. In the third term the truncated power function t(x, 0) is a polynomial of
degree l within the range of x. Since the l-th difference of a polynomial of degree l is a
constant (compare, e.g. Schlittgen and Streitberg, p. 39f), the spline f(x) reduces to a
constant as claimed in (14).
For an arbitrary degree s ≤ l the proof is based on analogous arguments. Using again
relationship (20) we get

(hll!)
−1l+1

f(x) =
r+l∑

k=1

∆s+1∆l−st(x, k)βk

= a1

r+l∑

k=1

∆l−st(x, k)βk + · · ·+ as+2

r+l∑

k=1

∆l−st(x, k − (s + 1))βk

(22)

with constants a1, . . . , as+2 given by

aj = (−1)s+j

(
s + 1
j − 1

)
, j = 1, . . . , s + 2.

Combining the k-th summand of the first sum, (k + 1)-th summand of the second sum, to
the (k + s + 1)-th summand of the (s + 2)-th sum, k = 1, . . . , r + l − s− 1, we obtain

(hll!)
−1l+1

f(x) = (−1)s+1
r+l−s−1∑

k=1

∆l−st(x, k)∆s+1βk+s+1 + R1 + R2 (23)

with

R1 = a1

(
∆l−st(x, r + l − s)βr+l−s + · · ·+ ∆l−st(x, r + l)βr+l

)

+ · · ·+ as+1∆l−st(x, r + l)βr+l−s

and

R2 = a2∆l−st(x, 0)β1 + · · ·+ as+2

(
∆l−st(x,−s)β1 + · · ·+ ∆l−st(x, 0)βs+1

)
.

Provided that ∆s+1βk = 0, the sum in (23) is zero. The expression R1 is zero within the
range [xmin, xmax] of x. Since the (l − s)-th difference of a polynomial of degree l is a
polynomial of degree s (compare Schlittgen and Streitberg, p. 39f) all differences of the
truncated power functions appearing in R2 are polynomials of degree l−s within the range
of x. Hence R2, and therefore the spline f(x), is a polynomial of degree s.

B Computational aspects

This section is concerned with computational aspects of the estimator (12). We will
distinguish the two cases s = 0 and s > 0.
In the case s = 0 we have to evaluate

log(p(β(t) |α(v)
− , y)) =

1
2

log(|P (v)|)− 1
2
(β(t) −m(v))′P (v)(β(t) −m(v)) (24)
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for t, v = 1, . . . , T in order to estimate (12). Here, P (v) is the posterior precision matrix
evaluated at the v-th sample of τ2 and σ2 and m(v) is the posterior mean evaluated at
the v-th sample of P , σ2 and η̃. It is useful to decompose the quadratic form in (24) by

(β(t) −m(v))′P (v)(β(t) −m(v)) =
1

(σ2)(v)
(β(t))′X ′Xβ(t) +

1
(τ2)(v)

(β(t))′Kβ(t) + (m(v))′P (v)m(v) − 2(m(v))′P (v)β(t),

This shows that (12) can be evaluated by computing and storing the samples
log(|P (t)|), (β(t))′X ′Xβ(t), (β(t))′Kβ(t), (m(t))′P (t)m(t) and (m(v))′P (v)β(t). Except
(m(v))′P (v)β(t) these quantities are obtained as a by product of the MCMC simulation
run. For t ≤ v, t, v = 1, . . . , T it is also possible to store (m(v))′P (v)β(t). For t > v
the quantity (m(v))′P (v)β(t) must be computed after the MCMC simulation. This is
facilitated by storing (m(v))′P (v) after every iteration of the MCMC sampler.
The case s > 0 is computationally more demanding. In this case the log densities

log(p(β̃
(t) |α(v)

− , y)) =
1
2

log(|P̃ (v)|)− 1
2
(β̃

(t) − m̃(v))′P̃
(v)

(β̃
(t) − m̃(v))

must be computed. Evaluation of the quadratic form yields

(β̃
(t) − m̃(v))′P̃

(v)
(β̃

(t) − m̃(v)) = (β̃
(t)

)′P̃
(v)

β̃
(t)

+ (m̃(v))′P̃
(v)

m̃(v) − 2(m̃(v))′P̃
(v)

β̃
(t)

.

Hence the quantities log(|P̃ (v)|) and (m̃(v))′P̃
(v)

m̃(v) can be computed as a by product of

the MCMC sampler and stored in every iteration. However, the quantities (β̃
(t)

)′P̃
(v)

β̃
(t)

and (m̃(v))′P̃
(v)

β̃
(t)

can only be stored for t ≤ v. For t > v both quantities must be
computed after the MCMC run.

Now we can compute medv

{
log(p(β̃

(t)|α(v)
− , y))

}
for all t in two ways which differ in the

order of evaluations:

Algorithm 1:

For t = 1, . . . , T :

1. For v = 1, . . . , T :

(a) If t > v:

Compute P̃
(v)

and with it the quantities (β̃
(t)

)′P̃
(v)

β̃
(t)

and (m̃(v))′P̃
(v)

β̃
(t)

.

(b) Compute log(p(β̃
(t)|α(v)

− ,y)).

2. Compute medv

{
log(p(β̃

(t)|α(v)
− ,y))

}
.

This algorithm is very time consuming, because P̃
(v)

has to be computed T (T − 1)/2
times.

22



The second algorithm is:

Algorithm 2:

1. For v = 1, . . . , T :

(a) Compute P̃
(v)

.

(b) For t = 1, . . . , T :

If t ≤ v: Compute log(p(β̃
(t) |α(v)

− , y)) based on the stored quantities.
If t > v:
Compute first (β(t))′P̃

(v)
β(t) and (m̃(v))′P̃

(v)
β̃

(t)
and then log(p(β̃

(t) |α(v)
− ,y)).

2. For v = 1, . . . , T : Compute medv

{
log(p(β̃

(t) |α(v)
− ,y))

}
.

The drawback of this algorithm is that it takes an enormous amount of memory space,
because we have to create a T × T matrix to store all values log(p(β̃

(t) |α(v)
− , y)), t, v =

1, . . . , T , before computing the median. A remedy is to take only every k-th sample to

estimate
̂

p(β̃
(t)|y), but the memory requirement is still quite high.

As an alternative to the direct computation of the medians, we propose to use the method
of stochastic approximation as described in Tierney (1983). The advantage is, that the
quantiles can be estimated by a very space-efficient recursive procedure. Throughout this
work we use Algorithm 2 together with stochastic approximation of quantiles to avoid
extensive use of memory space.
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Göttlein, A. and Pruscha, H. (1996), Der Einfluß von Bestandskenngrößen, Topographie,
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