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Network Formation With Endogenous Decay. 1 

Francesco Feri2 

Department of Economics, Institute of Public Finance  

University of Innsbruck 

 

 

Abstract 

This paper considers a model of economic network characterized by an endogenous architecture 

and frictions in the relations among agents as described in Bala and Goyal (2000). We propose a 

similar network model with the difference that frictions in the relations among agents are 

endogenous. Frictions are modeled as dependent on the result of a coordination game, played by 

every pair of directly linked agents and characterized by 2 equilibria: one efficient and the other risk 

dominant. The model has a multiplicity of equilibria and we produce a characterization of those are 

stochastically stable.  
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1. Introduction 

The network of interactions among socio-economic agents may play an important role for the 

stability and efficiency of socio-economic systems and a such, it is essential to have theories about 

how such interaction structures form. Indeed many authors have examined the evolution of 

interaction in different economic contests. A very common characteristic of networks is the 

presence of decay, which is the value an individual receives from another as a decreasing function 

of their distance in the network. Decay could be considered as the effect of generic frictions in the 

relations among agents, for example noise or delay, which are inevitable in the real world. 

Generally, network models consider decay as an exogenous characteristic; but we note that in the 

real word there are many examples where the level of decay depends on some action, decision or 

behavior of the agents implied in the network. For example, the rate of decay in a communication 

network could depend on the quality of the device (or technology) used by each agent or by the 

level of the supplied individual effort. So, in a first step toward reality, we propose a first model of 

network formation where the rate of decay is endogenously determined by some action chosen by 

each agent. By the introduction of endogenous decay, the model becomes very complicated and it is 

very difficult both to provide a complete description of all possible Nash equilibria and to analyze 

the process of network formation. But using the assumption that agents make mistakes, we provide 

an almost full description of stochastically stable states without the need to know all possible 

equilibrium states when agents do not make errors. 

We consider the two-way flow network with decay described in Bala and Goyal [1]. They 

consider a setting in which agents unilaterally3 form (costly) links in order to access the benefits 

generated by other agents. These benefits flow in both directions, irrespective of who bears the cost 

of the link. The benefit that two agents derive from a link depends on the associated level of decay. 

Their main evidence is that equilibrium network architectures strictly depend on the relation among 

decay and link cost. Differently from  Bala and Goyal [1] we assume that the rate of decay in the 

network is endogenous: in a given link the rate of decay depends on the results of a social game 

between the two (directly) linked agents. There are two possible actions: the first one (the efficient 

action) produces a zero decay if both agents choose it and a maximum decay if the opponent 

chooses the other action; the second one (the risk dominant action) produces an intermediate value 

of decay indifferently from the partner’s choice. In this way we model a trade off  between 

                                                 
3  One agent does not need another agent's permission to form a link with him and the cost of link formation is 

supported only by the agent who initiates the link. 
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complexity (efficiency) and compatibility (risk dominance).4 In this way the network structure 

depends on the set of actions chosen by the agents through the (so determined) level of decay. A 

first result is that, provided the cost of link formation is not too high, the system converges in states 

characterized by connected networks and in which agents are coordinated on the same action. When 

the link’s cost is high the system could converge either in states characterized by an empty network 

or in states with a connected network and in which agents coordinate on the risk dominant action. 

Moreover, even though we are not able to provide a full description of all equilibrium states the 

system could converge to, we are able to describe, for a sufficiently large number of agents, 

stochastically stable states. We find that, for relatively low link cost, the force driving the 

equilibrium selection in the long run is a trade off between efficiency and risk dominance in the 

social game. Indeed, stochastically stable states are characterized by agents coordinated on the 

efficient action if the decay’s difference between efficient and risk dominant actions is large 

enough, otherwise stochastically stable states are characterized by agents coordinated on the risk 

dominant action. For high cost of link formation, stochastically stable states are characterized either 

by empty networks or by agents coordinated on the risk dominant action. 

Network formation in the presence of decay is studied by, among others, Hojman and Szeidl 

[12], Watts [25] and Feri [7]. Hojman and Szeidl study a network similar to the two-way flow 

model with decay described in Bala and Goyal [1], with the difference that agents have concave 

benefits from connections and decay is modeled in a more general way. Watts considers the 

dynamics of network formation in the case of the connection model of Jackson and Wolinsky [17] 

and shows that the resulting network structures are path-dependent. However, this second approach 

differs significantly from the first one mainly because it restricts attention to network models where 

the consent of both agents is necessary to form a link5. Feri [7] is the most related paper; it 

considers the two-way flow network with decay described in Bala and Goyal [1] and finds a 

suitable way to characterize stochastically stable states even in the absence of a full characterization 

of the equilibria the dynamic process could converge to. Applying this technique we are able to 

analyze a very complex environment characterized by endogenous decay and endogenous networks. 

A common result of the above papers is that, given the link cost, the equilibrium architectures 

strictly depend on the level of decay. However these papers, differently from the present one, study 

settings where the level of decay is exogenously determined. 

                                                 
4 This trade off is illustrated by the following example: an individual has to pass a message and can write it in word 

format or ascii format. The first choice is more efficient only if the reader has the Word software. The second choice is 

less efficient but all the people can read it.   
5  The link cost is supported by both agents 
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Strictly related papers are also those of Goyal and Vega-Redondo [10], Hojman and Szeidl [13], 

Jackson and Watts [15]. Indeed these papers study the interaction between link formation and action 

choice in a social game. Goyal and Vega-Redondo [10] use a framework where link formation is 

one side, links are two way-flow and agents interact only with direct neighbors. They find that when 

the cost of link formation is below a certain threshold then agents coordinate on the risk dominant 

action, while if the cost is above this threshold agents coordinate on the efficient action. As in our 

model the social game is played only among directly linked agents but its result affects only the two 

implied agents. Hojman and Szeidl [13] study a setting where agents interact with direct and 

indirect neighbours and links are one way flow. They find that long-run equilibrium depends on a 

trade off between efficiency and risk dominance in the social game. Jackson and Watts [15] study a 

setting where the consent of both agents is necessary to form a link.  Differently from our paper, in 

these models all equilibrium states, in which network is not empty, are characterized by network 

architectures that do not depend on which action agents coordinate. This difference is due to the fact 

that while in these approaches agents establish links to play a coordination game, in our model 

agents form links to obtain some benefit from other agents and play a coordination game to 

determine the quality of these benefits; so the result of a single game, determining the decay level in 

a link, affects the payoff of all agents that use that link in their indirect connections6.  

The paper is organized in the following way: In section 2 we describe the model. Section 3 

contains the main result.  Section 4 concludes the discussion and provides possible directions for 

further research. 

2. The Model  

2.1 Networks 

Let { }1, 2,...,N n=  be a set of agents where 3n ≥ . Each agent can obtain some benefit when he 

is directly or indirectly linked with other agents. Benefits can derive from the transmission of 

private information held by agents. Although other interpretations are possible we focus on 

information transmission for simplicity.7 Without loss of generality, in the following we assume 

that every agent is endowed with one unit of private information of value 1 as well as of a quantity 

of information derived from other agents in the network. 

Each agent can choose a subset of other agents with whom to establish links. Let 

( ),1 , 1 , 1 ,,.. , ,...i i i i i i i ng g g g g− +=  be the set of links formed by agent i where { }0,1ijg ∈  for each 

                                                 
6 and not only the payoffs of the implied agents. 
7 See Bala and Goyal [1], they use the example of gains from information sharing as source of benefits. 
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{ }i\Nj∈ . We say agent i forms a link with agent j if 1ijg = . The set of all agents' link decisions, 

denoted by ( )1 2, ,.... ng g g g= , defines a directed graph called network. With abuse of notation the 

network will be denoted by g and the set of all possible networks will be denoted by G. Specifically, 

the network { },g N≡ Γ  has the set of agents N as its set of vertices while its set of directed edges, 

N NΓ ⊆ × , is defined as follows: ( ){ }, : 1iji j N N gΓ = ∈ × = . Moreover a sub-network g g′ ⊆  is a 

network { }, MM Γ  where M N⊆  and ( ){ }, : 1M iji j M M gΓ = ∈ × = . 

Given a network g, we say that 2 agents are directly linked if at least one of them has established 

a link with the other one, i.e. { }max ,  1ji ijg g = . To describe the direct links with no regard to who 

supports them, we define the closure { }max ,ij ij jig g g= .  Let ( ),1 , 1 , 1 ,,.. , ,...i i i i i i i ng g g g g− +=  be the 

set of direct links of agent i. Then ( )1 2, ,.... ng g g g=  describes the graph with no regard to who 

supports the links. 

Let ( ) { },; : 1d
i jN i g j N g≡ ∈ =  be the set of agents in network g with whom agent i has 

established links, while ( ) ( ); ;d dv i g N i g≡  is its cardinality. In a similar way, let 

( ) { },; : 1d
i jN i g j N g≡ ∈ = be the set of agents in network g with whom agent i is connected, while 

( ) ( ); ;d dv i g N i g≡  is its cardinality. 

We say there is a path in g between i and j if there exists a set of agents { }1 2, .... mP j j j N= ∈  

where 1j i=  and mj j=  such that 
1 2 2 3 1

.... 1
m mj j j j j jg g g
−

= = = = . In the following we denote a path 

by ijt  and by ijT  we denote the set of all paths between agents i and j. 

In g the distance between agents i and j, denoted by ( ), ;d i j g , is defined as the number of links 

of the shortest path in ijT .8 A sub-network g g′ ⊆  is called a component of g if for all ,i j M∈ , 

ji ≠ , there exists a path in g′ connecting i and j, and there does not exist a path between an agent 

in M  and one in \N M . A network with only one component is called connected. 

Given any g, the notation g ij+  denotes the network obtained with the formation of a new link 

between agents i and j; similarly, g ij−  refers to the network obtained deleting the link between 

agents i and j. A connected network is called minimally connected and denoted by mg  if mg ij−  is 

not connected for i, j N∀ ∈  characterized by ijg 1= ; a network is called essential if 0ij jig g⋅ =  

                                                 
8 The shorter path is that with the lower number of direct links; if a path between i and  j does not exist we assume 

( )d i, j; g = ∞ . 
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for ,i j N∀ ∈ ; empty and denoted by eg  if , 0i jg = for ,i j N∀ ∈ ; complete and denoted by cg  if 

, 1i jg = for ,i j N∀ ∈ ; star and denoted by sg  if there exists some i N∈  such that , 1i jg = and 

, 0k jg =  for all { }, \k j N i∈ and j k≠ ; among the star networks we denote by csg  the star with all 

links supported by the central agent, by psg  the star with all links supported by peripheral agents 

and by msg  all the intermediate cases.  Finally we define the following sets of networks: mG  is the 

set of all minimally connected networks; cG  is the set of all essential cg ; sG  is the set of all 

essential sg ; psG  is the set of all essential psg ; csG  is the set of all essential csg . 

Links are costly: every agent pays a cost k 0>  for each link she supports. In our model link 

formation is one-sided and non-cooperative: the formation of a link requires only the consent of the 

supporting agent. 

2.2 Decay and social game. 

Decay is endogenous. We assume that every pair of directly linked agents plays a 2 x 2 

symmetric game in strategic form with a common action set given by { }βα ,  A = . For each pair of 

actions Aa,a ∈′ , the share of information received by an agent choosing a when the partner plays 

a’ is denoted by ( )a,aδ ′  and it is given by the following table:     

 

 

(2.1) 

                                             

where 0,5 1e< < . 

Then, the quantity of information received by an agent choosing a when the partner plays a’ is 

given by ( )a,a xδ ′ ⋅ , where x is the information owned by the partner. In the bilateral game there 

are 2 Nash equilibria in pure strategies: ( )αα ,  and ( )ββ , . The first one is  efficient, the second one 

is risk dominant. Each agent plays the game with all directly linked agents and has to use the same 

action in all engaged  bilateral games.  

In the following we indicate agents choosing action a by a-agents where { }a ,α β∈ , by aN  we 

denote the set of all a-agents and a an N= . A subset S N⊆  is called a-group, where { }a ,α β∈ , if 

i S∀ ∈  is an a-agents and, for all ,i j S∈ , i j≠ , there exists a path in { }g , SS′ ≡ Γ connecting i and 

j and does not exist a direct link between an agent in S and one a-agent in \N S . Moreover we say 

that an a-group is minimally connected if deleting any link in the a-group we obtain two a-groups.  

 α  β  

α  1 0 

β  e e 
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For a generic agent i the strategy space is identified with A x G  S ii = , where iG  is the set of 

possible link decisions and A is the common action space of the underlying bilateral game. We 

denote by ( ),i i is g a=  the strategy played by agent i, where ia  is the chosen action and ig  is the set 

of established links. The state of the system is denoted by ( ),s g a=  where g is the set of all 

agents’link decisions and ( )1,..., na a a=  is the set of all chosen actions. The set of all possible states 

is denoted by S.  

Now we can present the payoff of the game. Given the strategies of other agents, 

( )i 1 i 1 i 1 ns s ,...s ,s ,....s− − += , the payoff of agent i deriving from her participation to the game playing 

some strategy ( ),i i is g a=  is given by:  

(2.2)  ( ) ( ) ( )
i ij

d
i i l k

j N l ,k t

s ,s a ,a k v i;gδ−
∈ ∈

⎡ ⎤
Π = − ⋅⎢ ⎥

⎣ ⎦
∑ ∏  

where { }i ijN j : T= ≠ ∅  and ( )
ij ij ij

ij l k
t T l ,k t

t arg max a ,aδ
∈ ∈

= ∏ . 

These payoff expressions allows us to particularize the standard notion of Nash equilibrium. 

Thus a state ( )* *
1 ns* s ,.......s=  is said to be  a Nash equilibrium if, for all i N∈ , 

(2.3)  ( ) ( )* * *
i i i i i is ,s s ,s  s S− −Π ≥ Π ∀ ∈  

On the other hand a Nash equilibrium will be called strict if every agent gets a strictly higher 

payoff with her current strategy than she would with any other strategy. 

2.3 Dynamics 

Time is modelled discretely, and denoted by 1,2,3,....t =  At each t, the state of the system is 

given by strategy profile ( ) ( ) ( ),s t g t a t= ⎡ ⎤⎣ ⎦  specifying the strategy ( ) ( ) ( ),i i is t g t a t= ⎡ ⎤⎣ ⎦  for 

i N∀ ∈ . At every period t one agent is randomly chosen to revise her strategy. When an agent 

receives this opportunity, she selects a best response  to strategy profile in the previous periods: 

(2.4)  ( ) ( )arg max , 1
ii s S i is t s s t∈ −∈ Π −⎡ ⎤⎣ ⎦ ; 

If there are several best responses, then any one of them is chosen with equal probability. This 

strategy revision process defines a Markov chain on 1 2 ... nS S S S≡ × × × . In the following we denote 

this process by unperturbed dynamics or selection mechanism.  

A no empty set of states A S⊆  is called absorbing if it is a minimal set with respect to the 

property of  being closed under the selection mechanism; hence there is zero probability to transit 
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from a state s A∈  to another state ' \s S A∈ .9 So the possible states the selection mechanism will 

converge are described by the states contained in absorbing sets . In the following we denote by S  

the set of all states belonging to absorbing sets and by S  the set of absorbing sets. As we will see, 

in our framework, this Markov chain could be characterized by several absorbing sets; in that case 

which states the selection mechanism will converge, depends upon the initial conditions which in 

turn motivates the following equilibrium selection. 

To select among all possible absorbing sets, we employ the standard techniques used by 

Kandory, Mailath and Rob [19] and Young [26]. We suppose, conditional on the chance to revise 

her strategy, agents make mistakes  (or mutations). In this case, agent chooses her strategy at 

random with some small probability 0ε > . For any 0ε > , the process defines an aperiodic and 

irreducible Markov chain that has a unique invariant probability distribution εμ . We analyze the 

structure of εμ  as the probability of mistakes ε  converges to zero. A state s is called stochastically 

stable if ( ) 0sˆ >μ  where 0ˆ limε εμ μ→=  and the set of all stochastically stable states is defined as 

( ){ }ˆ ˆ: 0S s sμ≡ > . 

3. Results   

In this section we characterize the efficient states, study the characteristics of static equilibria, 

and analyze the dynamics. 

3.1 Efficiency 

We use the utilitarian concept of efficiency: the efficient state is that producing the higher total 

net payoff (gross payoff less cost of links).   

Proposition 1: If k n≤ , in all efficient states  ia i Nα= ∀ ∈  and mg G∈ . If k n> , only states 

where eg g=  are  efficient.  

As the intuition provided below is simple, a formal proof  is omitted. Any state with all (or 

some) agents coordinated on action β  is dominated by a state characterized by an equal network 

and all agents coordinated on action α . When all agents are coordinated on α , from Proposition 

4.3 in Bala and Goyal [1] follows that, if k n≤ , minimally connected networks are efficient 

otherwise, if k n> , the efficient networks are empty.  

                                                 
9 Moreover we note that an absorbing set may contain many states or may contain only a single state, in this case we 

call it absorbing state. 
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There are several efficient network architectures: all kinds of star, the line and, more in general, 

all minimally connected architectures (i.e. with minimum number of links): to connect n agents are 

necessary at least n-1 links. Indeed, when all agents are coordinated on action α , there are not 

differences in payoff between a direct link and an indirect one. If ( ), 1δ α α < , we could restrict the 

set of efficient networks because the share of information arriving from an agent to another is 

decreasing with the number of links that has to pass through. In accordance with Proposition 1 in 

Jackson and Wolinsky [17], we find that the efficient networks are either complete or stars  or 

empty depending on the link cost k. 

3.2 Static equilibria.    

Our first result concerns the nature of states that arise in equilibrium. In this setting we have a 

multiplicity of Nash equilibria, such as, among others, states characterized by agents choosing 

different actions.  A Nash equilibrium in which some agent has multiple best responses is likely to 

be unstable since this agent can decide to switch to another payoff-equivalent strategy. This 

motivates an examination of strict Nash equlibria that are described in the following proposition.  

Proposition 2: Let ( ),s g a=  be a strict Nash equilibrium. Then g is essential, connected and 

 ,i ja a i j N= ∀ ∈ . Moreover: a)  if 1k >   ia i Nβ= ∀ ∈  b)  if  ia i Nα= ∀ ∈  then csg G∈ . 

The Proposition describes two important features of strict Nash equilibria: aggregation and 

conformity. A state characterized by a network with two or more separated components is not a 

strict Nash equilibrium because always some agent prefers to supports links with no connected 

agents. The special case of a state characterized by empty network cannot be strict because, even if 

the incentives to form links are not enough, agents indifferently choose an action or another. A state 

with agents coordinated on different actions cannot be strict because β -agents are indifferent on 

which α -agent to be linked.  Finally we note that  only for 1k <  efficient states are strict Nash 

equilibria. Indeed, in this range of link cost, states where all agents are coordinated on efficient 

action could be strict Nash equilibria as well as states where all agents are coordinated on the risk-

dominant one; in the first case the proposition says that the network has to be a center-sponsored 

star; for 1k >  only states where all agents are coordinated on the risk-dominant action can be strict 

Nash.  

Proof. The proof goes in two steps. In the first one we prove that in all strict Nash equilibria where 

 ,i ja a i j N= ∀ ∈  networks are essential and connected. In the second step we show that a state 

where ,i j N∃ ∈  such that i ja a≠  is never a strict Nash equilibrium. Step 1. Assume a strict Nash 

equilibrium where  ia i Nα= ∀ ∈ . From Proposition 4.2 in Bala and Goyal [1] we know that 
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when 1k <  only a state characterized by a csg G∈  is a strict Nash equilibrium. In this state every 

agent obtains a strictly positive payoff. Changing action an agent could obtain a payoff reduction of 

at least of 1 e−  for each connected agent. Then the considered state is a strict Nash equilibrium. For 

1k > , from Proposition 4.2 in Bala and Goyal [1] we know that the unique candidate to be a strict 

Nash equilibrium is any state characterized by an empty network. But in our model these states are 

never strict Nash because agents can switch action obtaining the same (zero) payoff. Now, assume a 

strict Nash equilibrium where  ia i Nβ= ∀ ∈ . The proof for essentiality and connecteness derives 

directly from Proposition 5.3 in Bala and Goyal [1]. If an agent switches to action α , she obtains a 

zero payoff. Then the considered state is a strict Nash equilibrium. Step 2. Consider any strategy 

profile where nα  agents are choosing action α ,  nβ  agents are choosing action β  and 1nα > .10 

Using the same arguments as in Proposition 4.2 in Bala and Goyal [1] we know that, if k<1, in a 

strict Nash equilibrium all α -agents have to link among themselves in a csg . Suppose that β -

agents are in one or more separated components. This state cannot be a strict Nash equilibrium 

because any β -agent, forming a link with an α -agent, could obtain an additional payoff of 

n e kα ⋅ −  that is strictly positive. All connected states where α -agents support links with β -agents 

cannot be strict Nash equilibrium because α -agents obtain a negative net payoff from their links 

with β -agents 11. Finally, all connected states where β -agents support links with α -agents cannot 

be strict Nash equilibrium because β -agents are indifferent on which α -agent to be tied. In the 

case for 1k ≥ , in a strict Nash equilibrium all agents must be β -agents because a strict Nash 

equilibrium for α -agents does not exist.  QED. 

3.3 Dynamics 

In this section we describe the dynamic properties of different equilibria. First we describe the 

characteristics of states where the selection mechanism will converge. Then we provide an almost 

complete description of stochastically stable states.  

The following proposition give us a description of the states belonging to absorbing sets.  

Proposition 3:  

I) Let 2k e e< − . Then ( ) ( ){ }:   m c
i iS s S g G a i N g G a i Nα β= ∈ ∈ ∧ = ∀ ∈ ∨ ∈ ∧ = ∀ ∈ .  

                                                 
10 The special case with 1nα =  cannot be a strict Nash equilibrium because the unique α -agent obtains zero payoff: 

she could change action obtaining at least a zero payoff (for example, if she changes action and does not link with 

anyone, she obtains zero payoff). 
11 an α -agent supporting one link with a β -agent obtains a negative payoff of -k. 
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II) Let 2 1e e k− < < . There exists a ( )n k ,e  such that for all ( )n n k ,e>  if s S∈  either 

 ia i Nβ= ∀ ∈  and g is essential and connected or  ia i Nα= ∀ ∈  and mg G∈ .  

III) Let ( ) 21 2k e n e< < + − ⋅ . If s S∈  either eg g=  or g is essential and connected  and 

 ia i Nβ= ∀ ∈ . 

IV) Let ( ) 22k e n e> + − ⋅ . Then { }: eS s S g g= ∈ =  

Proof. To show that only states described in the proposition can belong to absorbing sets it is 

enough to prove that under the selection mechanism: a) from any s S∈  there is a strictly positive 

probability to go in one state described in the proposition; b) there is zero probability to move from 

the states described in proposition to states that are not. We need the following lemmas. 

Lemma 1: From any state where  ia i Nα= ∀ ∈ , the selection mechanism goes, with probability 1, 

in a state  where:  

a)  ia i Nα= ∀ ∈ and mg G∈  if 1k ≤  

b) eg g=  if 1k >  

The proof is in the appendix. 

Lemma 2: From any state where  ia i Nβ= ∀ ∈ , the selection mechanism goes, with probability 1, 

in states where:  

a)  ia i Nβ= ∀ ∈ and cg G∈ ,  if 2k e e≤ − . 

b)  ia i Nβ= ∀ ∈  and g is essential and connected, if 2e e k e− < ≤ .   

c)  ,i ja a i j N= ∀ ∈  and g is essential and connected network, if e k 1< ≤ . 

d) either  ia i Nβ= ∀ ∈  and g is essential and connected or eg g= , if ( ) 21 2k e n e< ≤ + − ⋅ . 

e) eg g=  if  ( ) 22k e n e> + − ⋅  

The proof is in the appendix. 

Now we can prove proposition 3. Consider any state where  ,i ja a i j N= ∀ ∈ . The results in Lemma 

1 and 2 are enough to prove the convergence to states with the characteristics described in 

proposition. Now consider states where n 0α >  and n 0β > .  

Part I ( 2k e e≤ − ). Candidates to be absorbing states are those characterized by an unique and 
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completely connected β-group, with all β-agents supporting one link to the unique and minimally 

connected α-group. This result derives from a slight variation of part a of Lemma 1, part a of 

Lemma 2 and from the consideration that β-agents receive from one link with the α-group, a payoff 

equal to 0n e kα − > . A direct link with the α-group is preferred with respect to an indirect one 

because 2n e k n eα α− > . We note that β-agents are indifferent on which α-agent to be linked and any 

α-agent is chosen with equal probability. Then there is a strictly positive probability that the 

dynamic process goes in a state where all β-agents are linked to the same α-agent. Denote such 

agent by i and suppose that she is supporting x links. Her payoff is ( ) ( )i n 1 x kααΠ = − − ⋅ , while 

switching to action β she obtains ( ) ( )i n n 1 e x kα ββΠ = + − ⋅ − ⋅ . The condition such that agent i 

does not switch action is ( ) ( )i iα βΠ > Π , which can be rewritten as: 

(3.1)    
n e

n 1  
1 e
β

α

⋅
> +

−
  

Now consider a β-agent and denote him by j. Suppose that agent j is supporting x links, of which x-

1 with β-agents and one link with the α-group. Her payoff is ( ) ( )j n n 1 e x kα ββΠ = + − ⋅ − ⋅ , while 

switching to action α she obtains ( )j n kααΠ = − . The condition such that agent j does not switch 

action is ( ) ( )j jβ αΠ > Π , that can be rewritten as:  

(3.2)   
( ) ( )n 1 e x 1 k

n
1 e

β
α

− ⋅ − − ⋅
<

−
  

We note that it is impossible to satisfy both conditions (3.1) and (3.2); indeed the right part of (3.1) 

is larger that right part of (3.2) for any value 1x ≥ . It follows that at most one of these two 

conditions can be satisfied. Suppose the first one is not satisfied; if given the chance to revise, α-

agents switch to action β; suppose that (3.2) is not satisfied; if given the chance to revise β-agents 

switch to action α. Then, by a strictly positive probability, the selection mechanism goes in a state 

where ,i ja a i j N= ∀ ∈ . The results described in Lemma 1 and 2 are enough to complete the proof 

of the convergence to states described in the proposition. Finally we show there is zero probability 

to move from the states described in part I of the proposition to states that are not. Consider any 

state characterized by  ia i Nβ= ∀ ∈ and cg G∈ . The selection mechanism cannot move in another 

state, indeed it is directly verifiable that a) to change action is not a best response because it 

produces a zero payoff; b) all changes in the link strategy are not best responses because they 

reduce the payoff. Consider any state characterized by  ia i Nα= ∀ ∈ and mg G∈ . The selection 

mechanism cannot move in another kind of state, indeed it is directly verifiable that to change 
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action as well as a change in the link strategy such that the resulting network ' mg G∉ , are not best 

response because they cause a payoff reduction.   

Part II ( 2 1e e k− < < ). Candidates to be absorbing states are those characterized by an unique and 

connected β-group, with some β-agent supporting one link to the unique and minimally connected 

α-group. This result derives from a slight variation of part a in Lemma 1, part b of Lemma 2 and 

from the consideration that β-agents receive, from a link with the α-group, a payoff equal to 

n e kα − . Now we show that there exists a ( )n k ,e  such that for all ( )n n k ,e>  all candidate states to 

be  absorbing are characterized by 2( )n k e eα > − . Denote by i any β -agent directly connected 

with the α -group. Her payoff is ( ) ( ),i if g n n e kβ αβΠ = + ⋅ −  where ( ),if g nβ  is the net payoff 

accruing from the β -group. Switching to action α  agent i obtains ( )i n kααΠ = − . The condition 

such that agent i does not switch action is ( ) ( )i iβ αΠ > Π , that rewritten is: 

(3.3)   
( ),
1

if g n
n

e
β

α < −
 

Now denote by j any α -agent supporting x links and receiving all links that β -agents are 

supporting with the α -group. Her payoff is ( ) ( )j n 1 x kααΠ = − − ⋅ ; switching to action β , agent j 

obtains ( ) ( ) ( )j jf g ,n n 1 e x kβ αβΠ = + − ⋅ − ⋅  where ( ),jf g nβ  is the net payoff accruing from the 

β -group. Agent j does not switch action if ( ) ( )i iα βΠ > Π  that rewritten is:  

(3.4)   
( , )

1
1

jf g n
n

e
β

α > +
−

  

Note that increasing the number of agents, both nα  and nβ  have to increase. Indeed increasing only 

nα  equation (3.3) will become unsatisfied, as well as increasing only nβ , equation (3.4) will 

become unsatisfied 12. Then it exists a ( )n k ,e  such that for all ( )n n k ,e>  to satisfy condition (3.4) 

must be 2( )n k e eα > − . So when n is large enough, candidates to be absorbing states are those 

characterized by an unique and connected β -group, with each β -agent supporting one link to the 

unique and minimally connected α-group. Given that β -agents are indifferent on which α-agent to 

                                                 
12 Given that agent j is receiving all links that β-agents support to the α-group, the ( ) max d j,z;g  z Nβ∈  is given by 

the smaller integer d  such that dn e k n eα α− < . Otherwise, if it exists an agent z Nβ∈  such that ( )d j,z; g d> , the 

state under consideration cannot be absorbing because agent z can profitably change strategy supporting a direct link 

with the α-group.  Therefore, increasing the number of β -agents,  ( , )jf g nβ  has to increase at lest of  de  for each new  

β -agent. 
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be linked, there exists a positive probability that dynamic process goes in a state where all β -agents 

are linked to the same α-agent. The condition such that an α -agent, receiving links from all β -

agents, does not switch action is equal to (3.1).  Moreover consider the condition (3.3) such that a 

β -agent does not switch to action  α ; the less strict condition  is for ( , ) ( 1)jf g n n eβ β= − ⋅  and it is 

equal to (3.2) with 1x = . We note that it is impossible to satisfy both conditions; then by a strictly 

positive probability the selection mechanism goes in a state where i ja a ij N= ∀ ∈ . The results in 

Lemma 1 and Lemma 2 are enough to complete the proof of the convergence to states described in 

the proposition. The rest of the proof uses very similar arguments than in part I and it is omitted. 

Part III ( ( ) 21 2k e n e< < + − ⋅ ).  Giving repeatedly the chance to revise the strategy only to α -

agents, they delete their links between them. The proof of this result is omitted because use similar 

arguments than in Theorem 4.1 in Bala and Goyal and in Lemma 1 part b. When an α -agent deletes 

all her links remaining no connected with the other α -agents, she switches action with some 

positive probability. So, there is a positive probability to go in a state where ia i Nβ= ∀ ∈ . Then, 

the result stated in Lemma 2, part d it is enough to complete the proof. 

Part IV ( ( ) 22k e n e> + − ⋅ ). This result derives from Lemma 1, part b and Lemma 2 part e. QED. 

For any interval of link cost the proposition describes more than one absorbing set. When 1k <  

we can partition states belonging to absorbing sets into those in which agents coordinate on action 

α  and those in which agents coordinate on action β ; if 1k >  we can divide states with agents 

coordinated on action β  from those characterized by empty network (without interaction between 

agents).13 We note that emerging network structures depend on the action on which agents are 

coordinated.  So, given the multiplicity of absorbing sets, the final outcome of the dynamic process 

depends on initial conditions. Natural questions are about the most probable states to emerge in this 

process or which are the most “robust” states to perturbations, inevitable in the real word. But to 

answer these questions a complication is that we are not able to produce a full description of states 

belonging to absorbing sets in the interval ( )2 22e e k e n e− < < + − ⋅ . In spite of all that, we provide 

an almost complete description of a special subset of absorbing sets using the concept of stochastic 

stability. To do this selection the result stated in proposition 3 is important because it delimits the 

                                                 
13 Moreover, among the states described in the proposition we can identify some important class of states. For 

example, among states s S∈  such that ia i Nα= ∀ ∈  we find that those characterized by csg G∈  are absorbing 

states13; moreover among states s S∈  such that ia i Nβ= ∀ ∈ , when 2e e k e− < <  we find that those characterized by 

sg G∈  are absorbing, as well as states characterized by psg G∈  when ( ) 22e k e n e< < + − ⋅ . 
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set of states that can  potentially be stochastically stable since every such state must be a limit point 

for the unperturbed dynamics. The following theorem summarizes our analysis. 

Theorem 1: There exists n̂  such that for all ˆn n> : 

 I) Let 2k e e< − . If 12k
e

> −  then { }ˆ :  iS s S a i Nα= ∈ = ∀ ∈ ; otherwise  

{ }ˆ :  iS s S a i Nβ= ∈ = ∀ ∈ . 

II) Let 2e e k e− < < . If 
2 3e 2 e e 1k

2 e 1
+ ⋅ − −

>
⋅ −

 then { }ˆ :  iS s S a i Nα= ∈ = ∀ ∈ ; otherwise ˆs S∈  

implies s S∈  such that  ia i Nβ= ∀ ∈  and { }ˆ :  s
iS s S g G a i Nβ⊇ ∈ ∈ ∧ = ∀ ∈ , with equality if  

3k e e> − . 

III) Let 1e k< < . { }ˆ :  iS s S a i Nα⊇ ∈ = ∀ ∈ , with equality if 2 ek 1 e
n 2

< − −
−

. 

IV) Let 1k > . { }ˆ : eS s S g⊇ ∈ , with equality if ( ) 21
2

e n e
k

+ − ⋅
> . 

In order to determine which states are stochastically stable we use the techniques introduced by 

Kandory, Mailath and Rob [19] and Young [26] that can be summarized as follows.  Fix some 

absorbing set of states 'A ∈S . An A-tree is a directed graph on S  whose root is A and such that 

there is a unique (directed) path joining any other absorbing set 'A ∈S  to A.  For each arrow A’ 

→A” in any given A-tree, a cost is defined as the minimum number of mutations that are required 

for the transition from A’ to A” to be feasible through the ensuing operations of the unperturbed 

dynamics alone. The cost of the tree is obtained by adding up the costs associated with all the 

arrows of a particular A-tree.  The stochastic potential of an absorbing set A is defined as the 

minimum cost across all A-trees. Then an absorbing set A is stochastically stable if it has the lowest 

stochastic potential across all absorbing sets. 

To prove this Theorem we use the notion of recurrent set in the sense of Definition 7.4 in 

Samuelson [22]: a recurrent set ⊆Xs S  is a collection of absorbing sets with the following two 

properties: a) it is impossible starting from an absorbing set A∈X , to end up in an absorbing set 

'A ∉X , by means of a single perturbation followed by the selection mechanism; b) given two 

absorbing sets ', "A A ∈X , we can find a sequence of absorbing sets in X , 1 m MA ....A ....A  with 

1A A'=  and MA A"= , such that for any [ ]2m ,M∈  is possible to move from  Am -1 to Am by a 

transition that includes a single mutation followed by unperturbed dynamics. In the following we 

denote this kind of sequence as path of one step mutations. Sometime, in the following, we describe 
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a recurrent set as the set of states contained in the various absorbing sets that constitute the recurrent 

set, that is the union set of all absorbing sets in it.  

Finally we use the following results in Samuelson [22]: 1) By Proposition 7.4: a state is 

stochastically stable only if it is contained in an absorbing set, moreover all other states belonging 

to the same absorbing set are stochastically stable. 2) By Proposition 7.7: if a state is stochastically 

stable, then it is contained in a recurrent set and all states in the same recurrent set are stochastically 

stable. The first result permits us to concentrate our attention only to states with characteristics 

described in Proposition 3. The second one permits us to simplify the computations to find the set of 

stochastically stable states: if only one recurrent set exists, all states belonging to it are 

stochastically stable and we do not need to compute stochastic potential; if two or more recurrent 

sets exist we have to compute the stochastic potential only for absorbing sets belonging to a 

recurrent set.  

Proof.  In the proof we need of the following notation: assume that hS  and 'hS  are recurrent sets, by 

, 'h hm  we denote the minimum (mutation) cost across all paths joining some state in hS  to some state 

in 'hS , and with abuse of notation, by hS  we denote the number of absorbing sets in hS ; finally, by 

z⎡ ⎤⎢ ⎥  we denote the smallest integer no smaller that any given z R+∈ . We note that, by Proposition 

7.4 in Samuelson [22], candidates to be stochastically stable are the states described in Proposition 

3. In the proof we identify the recurrent sets and, if two or more recurrent sets exist, we prove which 

is stochastically stable.  

Part I ( 2k e e≤ − ). By the result stated in proposition 3 we identify two candidates to be recurrent 

sets: { }:  c
iS s S g G a i Nβ β= ∈ ∈ ∧ = ∀ ∈  and { }:  m

iS s S g G a i Nα α= ∈ ∈ ∧ = ∀ ∈ . We need the 

following lemmas: 

Lemma 3: Let k 1≤ . For any pair of absorbing sets A', A" Sα⊂ , there exists a path of one-step 

mutations in Sα , that  leads from A'  to A" .  

The proof is in the appendix. 

Lemma 4: Let 2k e e≤ − .  Then, ( ) ( )1 1m n eαβ = − ⋅ −⎡ ⎤⎢ ⎥  and  ( ) ( )e km n 1
1 kβα
−⎡ ⎤= − ⋅⎢ ⎥−⎢ ⎥

. 

Moreover, for n sufficiently large:  

a) , 1m mαβ βα > ; 

b) if 12k
e

> −  then 0m mαβ βα− > ; otherwise 0m mαβ βα− < . 
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The proof is in the appendix. 

To prove that all s Sβ∈  are in the same recurrent set is sufficient to check property (b)  of recurrent 

sets. The proof is very similar to that of part I of Theorem I in Feri [7] and it is omitted14. To prove 

that all s Sα∈  are in the same recurrent set the result in lemma 3, satisfying property (b) of 

recurrent sets, is sufficient: assume that Sα  is split into two or more subsets and each subset is 

contained in a separate recurrent set. The result stated in Lemma 3  is in contradiction with property 

(a)  of recurrent sets. Therefore only Sα  and Sβ  are candidates to be recurrent sets. The result stated 

in part a of Lemma 4 is enough to prove that, for n sufficiently large, Sα  and Sβ  are two separate 

recurrent sets. Indeed this result says us that both Sα  and Sβ  satisfy property (a)  for recurrent sets. 

Given that only states in Sα  and Sβ  are candidates to be stochastically stable we have to compute 

the stochastic potential only for them. It is directly verifiable that A-trees for any absorbing set 

A Sα⊆  will have a minimum cost of 2m S Sβα α β+ + − , while A-trees for any absorbing set 

A Sβ⊆  will have a minimum cost of 2m S Sαβ α β+ + − . Then, to determine the stochastically 

stable set of states we simply need to compare mαβ  and mβα .  The rest of the proof derives directly 

from part b of Lemma 4.  

Part II ( 2e e k e− ≤ ≤ ). We need of the following lemma. 

Lemma 5: Let 3e e k e− ≤ ≤  and suppose any { }s
is s S : g G a  i Nβ∈ ∈ ∈ ∧ = ∀ ∈ . Then exists 

( )' ,n k δ such that after a single mutation followed by unperturbed dynamic, the state converges to 

any { }s
is s S : g G a  i Nβ∈ ∈ ∈ ∧ = ∀ ∈  if  ( )' ,n n k δ> . 

The proof is in the appendix. 

By the result stated in proposition 3 we identify two candidates to be recurrent sets: 

{ }:  m
iS s S g G a i Nα α= ∈ ∈ ∧ = ∀ ∈  and { }:  iS s S a i Nβ β⊆ ∈ = ∀ ∈ . By the proof of part I, we 

know that  Sα  satisfies property (b) of recurrent sets and that all s Sα∈  have to be in the same 

recurrent set. Now we show that Sβ  has to contain all states such that  ia i Nβ= ∀ ∈  and sg G∈  

and that, among all absorbing sets of states such that  ia i Nβ= ∀ ∈ , only Sβ  could be a recurrent 

set. The proof of this statement goes in two steps. In the first we note that a recurrent set 

                                                 
14 To use the proof in part I of Theorem I in Feri [7] is sufficient to assume mutations in which agents change only the 

link strategy and continue to use action β . 
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characterized by states where  ia i Nβ= ∀ ∈  but without states characterized by csg G∈  cannot 

exist. The proof is based on a slight variation of Lemma 1 in Feri[7]15: assume Sβ  does not contain 

states characterized by csg G∈ ; a single mutation in the link strategy, followed by unperturbed 

dynamic, is sufficient to move in a state where  ia i Nβ= ∀ ∈  and csg G∈ . This fact violates 

property (a) of recurrent sets. In the second step we show that all states s S∈  such that 

 ia i Nβ= ∀ ∈  and sg G∈  have to be in Sβ . The proof is based on a slight variation of Lemma 2 in 

Feri[7]16 satisfying property (b) of recurrent sets: assume that some state  s S∈  such that 

 ia i Nβ= ∀ ∈  and sg G∈  is not contained in Sβ ; the result stated in Lemma 2 in Feri [7] is in 

contradiction with property (a) of recurrent sets. These results together tell us that 

{ }:  s
iS s S g G a i Nβ β⊇ ∈ ∈ ∧ = ∀ ∈  and, among states characterized by  ia i Nβ= ∀ ∈ , only Sβ  

could be a recurrent set. Moreover, for n large enough and 3e e k e− ≤ ≤ , 

{ }:  s
iS s S g G a i Nβ β= ∈ ∈ ∧ = ∀ ∈ . The prove this statement the result in Lemma 5 is sufficient. 

Therefore only Sα  and Sβ  are candidates to be recurrent sets. 

Now we need of the following lemma: 

Lemma 6: Let 2e e k e− < < .  Then, ( )
2

2

1 e km n 1
1 e e kαβ

− −⎡ ⎤= − ⋅⎢ ⎥+ − −⎢ ⎥
 and ( ) e km n 1

1 kβα
−⎡ ⎤= − ⋅⎢ ⎥−⎢ ⎥

. 

Moreover, for n sufficiently large:  

a) , 1m mαβ βα > ; 

b) if 
2 3e 2 e e 1k

2 e 1
+ ⋅ − −

>
⋅ −

 then  0m mαβ βα− > ; otherwise 0m mαβ βα− < . 

                                                 
15 Lemma 1 in Feri [7] can be modified in the following way: Let 2e e k e− < < . To induce a transition from any state 

such that  ia i Nβ= ∀ ∈  to a state where  ia i Nβ= ∀ ∈  and csg G∈  it is sufficient to have one mutation followed by 

unperturbed dynamic. The proof of this statement is very similar to that in Feri [7]: it is sufficient to assume an initial 

mutation in which the “mutant” agent changes only the link strategy and continue to use action β . Given that for all 

agents to change action is not a best response because produces a zero payoff , it is directly verifiable that the proof is 

the same.   
16 Lemma 2 in Feri [7] can be modified in the following way: Let 2e e k e− < < . For any pair 

{ }s
is', s" s S : g G a  i Nβ∈ ∈ ∈ ∧ = ∀ ∈ , a path of one-step mutations, that  leads from s'  to s" , exists in 

{ }s
is S : g G a  i Nβ∈ ∈ ∧ = ∀ ∈ . The proof of this statement is very similar to that in Feri [7]: it is sufficient to assume 

mutations in which agents change only the link strategy and continue to use action β .  
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The proof is in the appendix. 

The results in part a of Lemma 6 is enough to prove that, for n large enough, Sα  and Sβ  are two 

separate recurrent sets. Indeed this result says us that both Sα  and Sβ  satisfy property (a)  for 

recurrent sets. Given that only states { }s S Sα β∈ ∪  can be candidates to be stochastically stable we 

have to compute the stochastic potential only for them. The principal complication is that we are not 

able to describe all absorbing sets in which  ia i Nβ= ∀ ∈  and that could be not belonging to Sβ . 

Denote this set by { }:  iA s S a i N s Sβ ββ= ∈ = ∀ ∈ ∧ ∉ . We note that one mutation is enough to 

cause a transition from any absorbing set characterized by states in which  ia i Nβ= ∀ ∈  to a state 

s S∈  such that csg G∈  and  ia i Nβ= ∀ ∈ . This statement derives directly by the slight variation 

of Lemma 1 in Feri [7] (see footnote 14). It is directly verifiable that A-trees for any absorbing set 

A Sα⊆  will have a minimum cost of 2m S S Aβα α β β+ + + − , while A-trees for any A Sβ⊆  will 

have a minimum cost of 2m S S Aαβ α β β+ + + − . Therefore to determine the stochastically stable 

set of states we simply need to compare mαβ  and mβα . The rest of the proof derives directly from 

the result stated in part b of Lemma 6.  

Part III ( e k 1≤ ≤ ). Let { }:  m
iS s S g G a i Nα α= ∈ ∈ ∧ = ∀ ∈ . We need the following lemmas: 

Lemma 7: Let 1e k< < . To induce a transition from any state s S∈  such that  ia i Nβ= ∀ ∈   to a 

state  s Sα∈  it is sufficient one mutation followed by unperturbed dynamics. 

The proof is in the appendix. 

Lemma 8: Let 1e k< < . From any s Sα∈ , after a single mutation followed by unperturbed 

dynamics the system converges to s Sα∈  if 2 ek 1 e
n 2

< − −
−

. 

The proof is in the appendix. 

A recurrent set without s Sα∈  cannot exist. To prove this statement Lemma 7 is sufficient: assume 

there is a recurrent set that does not contain any state s Sα∈ ; a single mutation, followed by an 

unperturbed dynamics, is sufficient to move the system in a state s Sα∈ . This fact violates property 

(a) of recurrent sets. By the proof of part I, we know that  Sα  satisfies property (b) of recurrent sets 

and that all s Sα∈  have to be in the same recurrent set. Therefore there exists only one recurrent set 

containing all s Sα∈ . If ( )2k 1 e e n 2< − − − , the unique recurrent set contains only s Sα∈ . To 
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prove this, Lemma 8 is sufficient. Given that only one recurrent set exists, all states belonging to it 

are stochastically stable (Proposition 7.7 in Samuelson [22]).  

Part IV ( k 1≥ ).  We need the following lemmas: 

Lemma 9: Let 1k > . To induce a transition from any state s S∈  such that  ia i Nβ= ∀ ∈  to a state 

s S∈  such that eg g=  it is sufficient one mutation followed by unperturbed dynamics. 

The proof is in the appendix. 

Lemma 10: Let 1k > . From any state  s S∈  such that eg g= , after a single mutation followed by 

unperturbed dynamics  the state converges to any s S∈  such that eg g=   if 21
2

nk e e−
> + ⋅   

The proof is in the appendix. 

In the first step we show that recurrent sets without s S∈  such that eg g=  cannot exist. To prove 

this statement Lemma 9 is sufficient: assume there is a recurrent set that does not contain s S∈  

such that eg g= ; a single mutation, followed by an unperturbed dynamics, is sufficient to move the 

system into s S∈  such that eg g= . This fact violates property (a)  of recurrent sets. In the second 

step we show that, for sufficiently large values of k, the unique recurrent set contains only s S∈  

such that eg g= . To prove this, Lemma 10 is sufficient. Given that only one recurrent set exists, all 

states belonging to it are stochastically stable (Proposition 7.7 in Samuelson [22]). QED 

4. Discussion on the result 

Ideally we would like to have a complete characterization of stochastically stable states for all 

values of k but we have been unable to describe completely the interaction structure in those 

characterized by ia i Nβ= ∀ ∈  when 2 3e e k e e− < < −  and  k e> . This fact is due to the difficulty 

to prove Lemma 5 in the interval 2 3e e k e e− < < −  and an equivalent lemma for states s S∈  such 

that ia i Nβ= ∀ ∈   and psg G∈  when k e> . 17 

We illustrate the stochastically stable states using the following figure, where we display their 

main characteristics according to the levels of e and k (x-axis displays e and y-axis displays k).  

                                                 
17 By the proofs of Lemmas 6 and 8 it is directly verifiable that  states s S∈  such that ia i Nβ= ∀ ∈   and psg G∈  

are belonging to the unique recurrent set when 
( ) 2

2 1
1

2 2
e n eee k

n
+ − ⋅

− − < <
−

 and k>e. Moreover we note that, 

conditional on ia i Nβ= ∀ ∈ , these states are characterized by an efficient interaction structure. 
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We note that there is a trade off between compatibility and efficiency. When the premium18 to 

play efficient action (α ) is small, states characterized by coordination on the risk dominant action 

( β ) are  stochastically stable because they are more robust to perturbations; otherwise 

stochastically stable states are those characterized by the efficient action. The intuition is that agents 

choosing action α  receive more payoff from other α -agents but receive nothing from β -agents, 

while β -agents receive payoff from all agents. So when an agent switches from β  to α , her 

payoff increases of at least 1 e−  for each α -agent but decreases of e  for each β -agent; on the 

contrary, when an agent switches from α  to β , her payoff decreases of at least 1 e−  for each α -

agent and increases of e  for each β -agent. It follows that smaller 1 e− , the more mutations are 

needed to cause a transition from states characterized by coordination on β  action (the risk 

dominant action) to states in which agents coordinate on action α  (the efficient one) and the less 

mutations are needed for the reverse transition. 

Externalities generated by passive links are a second cause that increases robustness of states 

characterized by coordination on the risk dominant action because they decrease the number of 

perturbations needed to switch from states with all agents choosing action α  to states with all 

agents choosing action β . The intuition is described in the following example: denote by i a β -

agent supporting a link with an α -agent, denoted by j; agent j does not receive any payoff from the 

passive link, while switching action she will receive an externality of e. That is, passive links from  
                                                 

18 In the single game is 1 e−  
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β -agents generate externalities only to β -agents. So in a first approximation, there is an incentive 

of e to switch from action α  to action β  for each passive link from β -agents. Viceversa a passive 

link from an α -agent generates externalities (of different size) for all kinds of agents, of 1 for α -

agents, of e for β -agents. So in a first approximation, there is an incentive of 1 e−  to switch from 

action β  to action α  for each passive link from α -agents. Given that 0,5e >  passive links 

generate more incentives to switch from action α  to action β  that viceversa.  

A third effect affecting stochastically stable states is the link cost. Indeed, for any given value of 

e,  efficient states are stochastically stable only for intermediate values of k.  The intuition is that, 

for small values of k, the advantage to be coordinated on the efficient states, deriving from a smaller 

number of links,  is lower. On the other side for large values of k, coordination problems seem to 

play an important role to rule out the efficient states.  

5. Conclusion 

In this paper we have analyzed in a stylized form a social network characterized by an 

endogenous level of decay that is assumed to depend on the actions chosen by agents participating 

to the network. Differently from Hojman and Szeidl [13], Jackson and Watts [15],  Goyal and Vega 

Redondo [10], our model is characterized by equilibrium network architectures that depend on 

which action agents coordinate.  

In this model we have a large number of equilibria and we are not able to produce a full 

description of them; on the contrary we are able to produce an almost full characterization of the set 

of stochastically stable states. The main result is that efficient states are stochastically stable for 

intermediate levels of link cost and if the premium to play efficient action is sufficiently high.  

Further development can be made in many directions. First, we might consider a model with 

two-side link formation: this is more similar to real world and it may change the result on stochastic 

stability. Second, we might use a setting where small deviations from the best response are more 

likely that large ones. Third, we can model the endogenous decay using different social games that 

could be better fit to different empirical situations.  
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Appendix. 

Proof of Lemma 1. 

Part a ( 1k < ). In this range of link’s cost  the best response of any α -agent is to be tied (either 

directly or indirectly) with all other α -agents in unique α -group because 1 0k− > . Then after the 

first agent has revised, the network will be connected. We note that agents have incentive to delete 

all links that are not necessary to maintain the network connected. Indeed it is directly verifiable 

that deleting these links the payoff of supporting agents increases of k for each deleted link. Then 

after all agents have revised, the network will be minimally connected. Finally we note that agents 

have no incentive to switch to action β  because it causes a payoff reduction of 1 e−  for each 

connected agent. 

Part b ( 1k > ). From any s S∈  such that  ia i Nα= ∀ ∈  there is a postive probability to go in a state 

s S∈  such that eg g= . The proof of this result is omitted because it uses the same arguments than 

in Theorem 4.1 in Bala and Goyal [1]. We note that agents characterized by a best response to 

support at least one link and those receiving at least one passive link have no incentive to switch to 

action β  because it causes a payoff reduction of at least 1 e−  for each connected (either directly or 

indirectly) agent. Only no-connected agents could switch to action β . Moreover we note there is no 

incentive to support links with no-connected agents. These evidences are sufficient to prove that 

there is zero probability that system converges to a ste characyerized by a coonected network and 
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ia β=  for some i N∈ . QED. 

Proof of Lemma 2. 

Part a ( 2k e e< − ).  The best response of β -agents is to be directly tied with all other agents 

because 2e k e− > ; to change action is not a best response because produces a zero payoff. It is 

directly verifiable that, after all agents have revised, the network will be a cg G∈ . 

Part b ( 2e e k e− < < ).  The best response of β -agents is to be either directly or indirectly tied with 

all other agents because 0e k− > ; to change action is not a best response because produces a zero 

payoff. Therefore it is directly verifiable that, after all agents have revised, the network will be 

connected. 

Part c ( e k 1< < ). Given any g G∈  we define the following sets of agents: 

( ) { }; : 0  ijL i g i N g j N= ∈ = ∀ ∈ , ( ) { }; : 1 at least for one ,ijM i g i N g j N j i= ∈ = ∈ ≠  

Give the chance to revise only to agents i M∈ . After each  revision M  decreases or does not 

change while  L  increases or does not change. Therefore the dynamic process converges either: a) 

in a state where M is empty ( eg g= ) or b) in a state where 0M >  and does not change.   

Suppose case a). We note that a state characterized by eg g=  cannot be an equilibrium. Indeed, in 

this state, agents with the chance to revise choose the action randomly and when happen that one 

chooses action α , all revising agents will have as best response to choose action α  and to be tied in 

an unique α -group. So the state will be characterized by  ia i Nα= ∀ ∈ and mg G∈ . 

Suppose case b). In this case i M∀ ∈  obtains a positive net payoff from her (link) strategy. Now 

suppose more than one component; each agent can profitably add to its current links (if any) the 

links supported by any agent i M∈  in another component and, by doing so, obtains an additional 

payoff. Then, after all agents have revised, the network will be connected.   

Part d ( ( ) 21 2k e n e< < + − ⋅ ).  The proof follows the same reasoning of part c, then it is omitted. 

We note that the probability to move from any state s S∈  such that eg g=  to states s S∈  such that 
eg g≠  is zero.  

Part e  ( ( ) 22k e n e> + − ⋅  ). This proof is based on the observation that the link cost is higher of the 

maximum payoff obtainable from a single link. QED.  

Proof of Lemma 3  

Start with a state s' Sα∈   and consider an agent 1i N∈   that changes strategy by choosing her 
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corresponding strategy in any s" Sα∈ . Then, if 1i  obtains the chance to revise her strategy after the 

other agents have revised, we obtain another type of s Sα∈  where agent 1i  has the same profile of 

link decisions as in s" . We denote this new state by 1s  and we note that network is minimally 

connected. Consider an agent { }2 1i N / i∈  who changes strategy by choosing her corresponding 

strategy in s" . We note that after this mutation the link between 1i  and 2i  is supported as in g" . If 

1i  and 2 i  obtain the chance to revise their strategy after the other agents have done so, we obtain 

another type of s Sα∈ , denoted by 2s , where agents 1i  and 2i  have the same profile of link 

decisions as in s" . Consider an agent { }3 1 2i N / i ,i∈  that changes strategy by choosing her 

corresponding strategy in s" . After this mutations the links between 1i , 2i  and 3 i  are supported as 

in g" . If 1i , 2 i  and 3 i  obtain the chance to revise their strategy after the other agents have revised, 

we obtain another type of s Sα∈  where agents 1i , 2i  and 3i  have the same profile of link decisions 

as in 2s .  In this way, we can find a path of one step mutations, which produce the transition 

between two generic types of s Sα∈ . QED. 

Proof of Lemma 4 

Denote by h
iq , { }h , α β∈ , the number of links that agent i supports to agents choosing action h. 

Similarly, h
ir  stands for the number of passive links received from agents choosing action h.   

Step I. Consider the transition from some s Sα∈  to some 's Sβ∈ . Suppose that in any state s Sα∈  x 

agents switch randomly to some strategy ( ),i is g β=  and denote by Mαβ  the set of these agents. 

For any agent /i N Mαβ∈  the best payoff from choosing action β  is given by: 

(A.1)   ( ) ( ) ( )i in 1 e L q kββΠ = − ⋅ − + ⋅  

where L denotes the number of α -groups do not linked to agent i. It is directly verifiable that the 

best response of agent i is to support one link for each agent j Mαβ∈  such that 0jig =  and one link 

for each α -group that is no linked with her. The payoff from choosing  action α  is equal to:  

(A.2)   ( ) ( )i n 1 x L kαΠ = − − − ⋅  

In this case agent i receives a strictly positive payoff only from agents choosing α , then her best 

response is to support one link for each α -group that is no linked with her and not to support any 

link with all others. Agent i prefers action β  if and only if ( ) ( ) 0i iβ αΠ −Π ≥  that rewritten is: 

(A.3)  ( ) ( )1 1ix q k n eβ≥ ⋅ + − ⋅ −   

It is directly verifiable that the minimum number of mutations needs to induce agent i to switch to 
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action β   is when all agents j Mαβ∈  are supporting a link with her, that implies 0iqβ = . In this 

case minimum number of mutations needs to induce agent i to switch to action β   is given by: 

(A.4)   ( ) ( )1 1m n eαβ = − ⋅ −⎡ ⎤⎢ ⎥  

Now we show as mαβ  mutations are also sufficient to induce a transition from some s Sα∈  to some 

's Sβ∈  through the ensuing operations of unperturbed dynamics alone. Assume that all i Mαβ∈  

support links with all /j N Mαβ∈ . In this case the best response of any /j N Mαβ∈  is to switch to 

action β . Then giving the chance to revise to agents i Mαβ∈  after all /j N Mαβ∈  have revised, the 

system transits to some state in Sβ . From (A.4) it is directly verifiable that 2mαβ ≥  for values of n 

large enough.  

Step II. Consider the transition from some s Sβ∈  to some 's Sα∈ . Suppose that in a state s Sβ∈  x 

agents switch to some strategy ( ),i is g α=  and denote by M βα  the set of these agents. For any 

agent /i N M βα∈  the best payoff from choosing action β  is given by (A.1) while that from 

choosing  action α  is:  

(A.5)   ( )i x L kαΠ = − ⋅  

Agent i prefers action α  if and only if ( ) ( ) 0i iα βΠ −Π ≥  that rewritten is: 

(A.6)                          ( )1 ix n e q kβ≥ − ⋅ − ⋅ .  

It is directly verifiable that the minimum number of mutations needs to induce agent i to switch to 

action α  is for an agent i supporting links with all /j N M βα∈ , that implies iq n 1 xβ = − − . In this 

case the minimum number of mutations needs to induce agent i to switch to action α  is given by: 

(A.7)  ( ) ( )e km n 1
1 kβα
−⎡ ⎤= − ⋅⎢ ⎥−⎢ ⎥

. 

Now we show as mβα  mutations are also sufficient to induce a transition from some s Sβ∈  to some 

's Sα∈  through the ensuing operations of unperturbed dynamics alone. Suppose a state s Sβ∈  in 

which every agent 1, 2,....,i n=  supports links with all j i>  and assume that agents 1, 2,....,mβα  

have switched to action α . If the chance to revise is given to all agents  i mβα>  in order (according 

to the index i), condition minimizing (A.6) is satisfied for all revising agents, indeed 1x i mβα= − ≥  

and iq n 1 xβ = − − . Therefore it is directly verifiable that condition (A.6) is satisfied for all agents 

1i mβα≥ + . After all  agents i mβα>  have revised, the convergence to some state s Sα∈  is proved 
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using the result in Lemma 2. From  (A.7) it is directly verifiable that 2mβα ≥  for values of n large 

enough.  

Step III. Consider the difference m mαβ βα− . Using expressions (A.4) and (A.7) we find that 

m mαβ βα>  if ( )1 21 0
1

e ekn
k

− +⎡ ⎤− >⎢ ⎥−⎢ ⎥
; this condition verified when 12k

e
> −  and n is sufficiently 

large; otherwise m mαβ βα<  if 12k
e

< −  and n is sufficiently large. QED. 

Proof of Lemma 5 

Consider any s S∈  such that ia i Nβ= ∀ ∈   and sg G∈ . Suppose a mutation in which an agent 

changes link strategy but does not switch action. We note that in this case no agent has incentive to 

switch action; indeed, using action β  any agent obtains a strictly positive payoff from any link 

strategy; on the contrary, switching to action α any agent obtains a zero payoff. Therefore for this 

kind of mutation the proof is equal to that of Lemma 3 in Feri [7] and it is omitted.  Now consider a 

mutation where the “mutant” agent changes both link strategy and action. We have to prove the 

convergence in the following cases: a) mutation of the central agent, denoted by c; b) mutation of a 

peripheral agent, denoted by m. Consider case (a), where agent c switches to action α and chooses 

randomly any link strategy.  We note that for any link strategy chosen by agent c, all other agents 

do not receive any indirect payoff. Therefore, if n is sufficiently large, the best response of the first 

agent with the chance to revise is to have a direct link with all other agents19. When other agents 

have the chance to revise their strategy, they delete all supported links because they are optimally 

(indirectly) linked with all others. When agent c obtains the chance to revise, he switches to action 

β  and deletes all supported links. Therefore, after all agents have revised their strategy the state 

will be characterized by  ia i Nβ= ∀ ∈  and sg G∈ .  Consider case (b), where a peripheral agent 

(denoted by m) switches to action α and chooses randomly any link strategy. After this mutation, 

the states can be summarized in the following two sub-cases: b1) agent m is no connected; b2) agent 

m is connected. Now consider case (b1). All agents /i N m∈  are connected in a star network (with 

agent c at the center). If the chance to revise the strategy arrives to agent c, her best response is to 

support a new link with agent m (she obtains an additional payoff of e k− ).  In this new state the 

                                                 
19 Suppose the revising agent is receiving a link from c; if she switches to action α , she obtains a payoff of 1 ; if she 

continues to use  action β  and supports link with all others, she obtains a payoff of ( ) ( )2e e k n+ − ⋅ − ; this last case is 

a best response if ( ) ( )1 1n k e k> + − − . It is directly verifiable that, when the revising agent is supporting the link with 

c, the condition is the same.     
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network will be a star and it is directly verifiable that the best response of  /i N m∀ ∈  is not to 

change strategy. Therefore agent m switches to action β  as soon as possible. If the chance to revise 

the strategy arrives to a peripheral agent, her best response is to support a new link with agent m 

(she gains an additional payoff of e k− ).  In this new state the best response of /i N m∀ ∈  is not to 

change strategy. Then, when the chance to revise the strategy arrives to m, she switches to action β  

and, if n is sufficiently large, supports a new link with agent c.20 Finally in this new state the only 

agent with an incentive to change strategy is the agent supporting a link with m (the first revising 

agent): as soon as possible she deletes that link (increasing her payoff of ( )2e e k− − ). In both cases 

discussed above the final state will be characterized by  ia i Nβ= ∀ ∈  and sg G∈ . Now consider 

case (b2) in which, after the mutation, agent m remains connected in the network. Note that all 

agents / ,i N m c∈  are directly linked with c and agents do not receive indirect payoff from a link 

with m. Moreover ( ), 2 / ,d i j ij N m c= ∀ ∈  and either ( ), 2 /d i m i N c= ∀ ∈  or 

( ), 3 /d i m i N c= ∀ ∈  depending on agent m is directly linked with c or not.  From these 

considerations it follows that all agents /i N m∈  have no incentive to change strategy. Therefore, 

when agent m receives the chance to revise she switches to her ante-mutation strategy and the state 

goes back to the initial one. QED.  

Proof of Lemma 6 

Let h
iq  and  h

ir , { }h , α β∈ , defined as in Lemma 4.   

Step I. Consider the transition from any s Sα∈  to any 's Sβ∈ . Suppose that in any s Sα∈  x agents 

switch randomly to some strategy ( ),i is g β=  and denote by Mαβ  the set of these agents. For any 

agent /i N Mαβ∈  the best payoff from choosing action β  is given by: 

(A.8)    ( ) ( ) ( ) ( )
d

d
i i i i ,1 i ,d i ,d i i

d 2

r q y e y y e q q kβ β α α β α ββ
=

Π = + + ⋅ + + ⋅ − + ⋅∑  

where i ,dyα  is the number of α -agents belonging toα -groups indirectly linked with agent i through 

d-1 β -agents 21, i ,dyβ  is the number of β -agents indirectly linked with agent i through d-1 β -

agents and d  is the maximum integer such that if d d≤  then de k e− < . Note that 

                                                 
20 Choosing action β  and without a link with c, agent m receives a payoff of ( )2 33e e n e+ + − ⋅ ; supporting a new 

link with c , agent m receives ( ) 22 3e n e k⋅ + − ⋅ − . Then if ( ) ( )2 2 33n k e e e e⎡ ⎤> + − − −⎣ ⎦   to support a direct link with 

c is a best response. 
21 Note, by i ,dyα  we denote the number of α -agents belonging toα -groups that are directly linked with agent i 
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( )
d

i i i ,1 i ,d i ,d
d 2

q r y y y n 1β β α α β

=

+ + + + = −∑  and 
d

i i i ,d
d 2

r q y xβ β β

=

+ + =∑ . By ,i dLyα  denote the number of α -

groups to which the ,i dyα  agents belong. When agent i is optimally linked, i ,dy 0α >  implies that: 

(A.9)                        d
i ,d i ,d i ,dy e y e k Lyα α α⋅ > ⋅ − ⋅ ,  

otherwise agent i could increase her payoff supporting a direct link for each of the ,i dLyα  α -groups. 

On the other hand, the payoff from choosing  α  is equal to:  

(A.10)  ( )
d

i i i ,d
d 2

n 1 x q Ly kα αα
=

⎛ ⎞Π = − − − + ⋅⎜ ⎟
⎝ ⎠

∑  

The agent i prefers action β  if and only if ( ) ( ) 0i iβ αΠ −Π ≥ , that rewritten is: 

(A.11)         ( ) ( ) ( ),1 , , ,
2 2 2

1
d d d

d d
i i d i d i i i d

d d d
x n y e y e k Ly r e q e k y eα α α β β β

= = =

≥ − − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − − ⋅∑ ∑ ∑  

The minimum number of mutations needs to induce agent i to switch to action β  is given by the 

network minimizing the right part of  (A.11).  It happens when: 

1) ,2 1iy n xα = − − , , 0 2i dy dα = ∀ ≠  and , ,i d i dLy yα α= , that is, all α -agents are indirectly linked to 

agent i through one β -agent and between α -agents there are no links. 

2) ir xβ = , 0iqβ =  and , 0i dy dβ = ∀ , that is all β -agents support a link with i. 

Then, using these conditions and solving (A.11) in x ,we find the minimum number of mutations 

needs to induce agent i to switch to action β , that is given by: 

(A.12)  ( )
2

2
1 e km n 1

1 e e kαβ
− −⎡ ⎤= − ⋅⎢ ⎥+ − −⎢ ⎥

 

Now we show as mαβ  mutations are also sufficient to induce a transition from some s Sα∈  to some 

's Sβ∈  through the ensuing operations of unperturbed dynamics alone. Start with an s Sα∈  such 

that csg G∈  and suppose: a) mαβ  agents switch to action β , b) the central agent of the star 

(denoted by c) belongs to Mαβ , c) all i Mαβ∈  support links with all /j N Mαβ∈ . In this case the 

best response of any /j N Mαβ∈  is to switch to action β  because are verified the conditions 

minimizing the right part of (A.11). Note that when agents /j N Mαβ∈  revise, their best link’s 

strategy is not to support any link because they are optimally linked (directly or indirectly through 

agent c) to all others. Then giving the chance to revise to agents /i M cαβ∈  after all /j N Mαβ∈  

have revised (and switched to action β ), it is directly verifiable that they sever all supported links 

because are optimally linked through agent c. Therefore the resulting state will be s Sβ∈  such that 
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csg G∈ .  From (A.12) it is directly verifiable that 2mαβ ≥  if 2k 1 e< −  and n is large enough, 

otherwise, if 2k 1 e≥ − , it is not possible to find a sufficiently large value of n such that 1mαβ > . 

Step II. Consider the transition from some s Sβ∈  to some 's Sα∈ . Suppose that in any state s Sβ∈  

x agents switch randomly to some strategy ( ),i is g α=  and denote by M βα  the set of these agents. 

For any agent /i N M βα∈  the best payoff from choosing action β  is given by (A.8) with the 

difference that now is
d

i ,d
d 1

y xα

=

=∑ . The best payoff from choosing action α  is:  

(A.13)   ( )
d

i i i ,d
d 2

x q Ly kα αα
=

⎛ ⎞Π = − + ⋅⎜ ⎟
⎝ ⎠

∑  

Agent i prefers action α  if and only if ( ) ( ) 0i iα βΠ −Π ≥ , that rewritten is: 

(A.14)             ( ), , ,1 ,
2 2 2

d d d
d d

i d i d i i i d i
d d d

x k Ly y e y e r e y e q e kα α α β β β

= = =

> ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + −∑ ∑ ∑  

The minimum number of mutations needs to induce agent i to switch to action α  is given by the 

network minimizing the right part of (A.14).  It happens when: 

1) ,1iy xα = , , 0 1i dy dα = ∀ > , that is all α -agents are directly linked to i.  

2) 0ir
β = , 1iq n xβ = − −  and , 0i dy dβ = ∀ , that is agent i supports links with all β -agents. 

Then using these conditions and solving (A.14) in x we find the minimum number of mutations 

needs to induce agent i to switch to action α  that is given by: 

(A.15)  ( ) e km n 1
1 kβα
−⎡ ⎤= − ⋅⎢ ⎥−⎢ ⎥

 

Now we show as mβα  mutations are also sufficient to induce a transition from some s Sβ∈  to some 

's Sα∈  through the ensuing operations of unperturbed dynamics alone. Start with an s Sβ∈  such 

that cg G∈  and suppose mβα  agents switch to action α  and that the central agent of the star 

(denoted by c) belongs to i M βα∈ . In this case the best response of any /j N M βα∈  is to switch to 

action α  because are verified the conditions minimizing the right part of (A.14). Indeed in this 

case, the best response of any agent /j N M βα∈ , conditional to ja β= , is to support a new link for 

each β -agent (then one link for each ( )/z N M jαβ∈ ∪  and either to support or to maintain a direct 

link with agent c. It implies ,1iy xα =  and 1iq n xβ = − − . The best response of any agent 

/j N M βα∈ , conditional to ja α= , is either to support or to maintain a direct link with agent c. 

Therefore it is directly verifiable that giving the chance to revise to all agent /j N M βα∈  the 
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system converges to a state s Sα∈  such that cg G∈ . From (A.15) it is directly verifiable that 

2mαβ ≥  if n is large enough. 

Step III. Finally we consider the difference  m mαβ βα− . Using expressions (A.12) and (A.15) we 

find that 0m mαβ βα− >  if 
2 3e 2 e e 1k

2 e 1
+ ⋅ − −

>
⋅ −

 and n is sufficiently large22; otherwise  

0m mαβ βα− <  if 
2 3e 2 e e 1k

2 e 1
+ ⋅ − −

<
⋅ −

 and n is sufficiently large.  QED. 

Proof of Lemma 7 

Consider any state s S∈  such that  ia i Nβ= ∀ ∈  and suppose a mutation in which an agent m 

forms links with all others and does not change action. When agents /i N m∈  have the chance to 

revise, they delete all supported links (note that they do not change action because any agent, 

switching action, obtains a payoff equal to zero, while choosing β  obtains a strictly positive 

payoff). After all agents /i N m∈  have revised, the state will be characterized by a csg G∈  with 

agent m at the center. In this state agent m obtains a strictly negative payoff equal to ( 1) ( )n e k− ⋅ − . 

When agent m has the chance to revise, she will sever all supported links and the state will be 

characterized by eg g=  and  ia i Nβ= ∀ ∈ . We note that in this state any revising agent is 

indifferent to chose an action or another because she obtains, in any case, a payoff  equal to zero. 

Then, when an agent receives the chance to revise, he will choose the action randomly. After a first 

agent has switched to action α , the best response of all other agents will be to switch to action 

α and to support one (new) link with any α -agents. Then giving the chance to revise to all agents 

the state will go in any s Sα∈ .   QED. 

Proof of Lemma 8 

This results is strictly related to Lemma 6. When m 1αβ >  (one mutation is not enough to cause a 

transition from any s Sα∈  to s Sα∉ ), using equation (A.12), we obtain 21
2

ek e
n

< − −
−

. QED 

Proof of Lemma 9 

Consider any state s S∈  such that  ia i Nβ= ∀ ∈  and suppose a mutation in which an agent m 

forms links with all others and does not change action. When agents /i N m∈  have the chance to 
                                                 

22 The necessary condition for 1mαβ >  is 21k e< − ; it is always satisfied for all 
2 3e 2 e e 1k

2 e 1
+ ⋅ − −

>
⋅ −

 such that 

2e e k e− < < . 
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revise, they delete all supported links (note that they do not change action because any agent, 

switching action, obtains a payoff equal to zero, while choosing β  obtains a strictly positive 

payoff). After all agents /i N m∈  have revised, the state will be characterized by a csg G∈  with 

agent m at the center. In this state agent m obtains a strictly negative payoff equal to ( 1) ( )n e k− ⋅ − . 

When agent m has the chance to revise, she will sever all supported links and the state will be 

characterized by eg g=  and  ia i Nβ= ∀ ∈ . In this state the best response of any agent is not to 

support any link, because she could receive only a strictly negative payoff. QED. 

Proof of Lemma 10 

Consider any state s S∈  such that eg g= . The best-response of an agent supporting links with 

agents that are not linked with any other, is to sever such links. Consider any state characterized by 
eg  and suppose a mutation in which an agent m forms x links ( 0 1x n< < − ) and chooses action β . 

The best-response of non connected agents is to choose action β  and to form a link with m if: 

(A.16)     ( ) 2x k e e≥ −  

otherwise their best-response is not to form links and, when agent m has a new chance to revise, the 

system goes in a state characterized by eg . If  (A.16) is true and agent m has the chance to revise 

her strategy after y non connected agents have done ( 0 y n x< < − ), the state will be characterized 

by a psg  with y+1 β -agents (agent m severs all supported links with peripheral agents). Follows 

that best-response of non connected agents is to support a link with m and to choose action β  if: 

(A.17)    ( ) 2y k e e≥ −  

Then, if (A.17) is true, after all non connected agents have revised their strategy, the resulting state 

will be characterized by a (connected) psg  and  ia i Nβ= ∀ ∈ , otherwise (if (A.17) is false) the state 

will be characterized by a eg ; indeed in this second case the best-response of all agents is not to 

support any links. Then, to transit in a state where  ia i Nβ= ∀ ∈ , both conditions (A.16) and 

(A.17) have to be true (agents receiving the link from m have to be different from agents supporting 

link with him). A necessary condition is a sufficiently large number of agents, that is 1n x y≥ + + . 

Then using conditions (A.16) and (A.17) and solving by k the necessary condition is: 

(1.18)     2n 1k e e
2
−

< + ⋅  . 

Therefore if (1.18) is not satisfied one mutation is not enough to transit in an absorbing state 

different from the initial one. QED.     
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