Crespo Cuaresma, Jesus; Breitenfellner, Andreas

Working Paper
Crude oil prices and the euro-dollar exchange rate: A forecasting exercise

Provided in Cooperation with:
Institute of Public Finance, University of Innsbruck

Suggested Citation: Crespo Cuaresma, Jesus; Breitenfellner, Andreas (2008) : Crude oil prices and the euro-dollar exchange rate: A forecasting exercise, Working Papers in Economics and Statistics, No. 2008-08, University of Innsbruck, Department of Public Finance, Innsbruck

This Version is available at:
http://hdl.handle.net/10419/71923

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Crude Oil Prices and the Euro-Dollar Exchange Rate: A Forecasting Exercise

Jesus Crespo Cuaresma and Andreas Breitenfellner

2008-08
Crude Oil Prices and the Euro-Dollar Exchange Rate:

A Forecasting Exercise*

Andreas Breitenfellner#

Jesus Crespo Cuaresma+

Abstract

If oil exporters stabilize the purchasing power of their export revenues in terms of imports, exchange rate developments (and particularly, developments in the US dollar/euro exchange rate) may contain information about oil price changes. This hypothesis depends on three conditions: (a) OPEC has price setting capacity, (b) a high share of OPEC imports comes from the euro area and (c) alternatives to oil invoicing in US dollar are costly. We give evidence that using information on the US dollar/euro exchange rate (and its determinants) improves oil price forecasts significantly. We discuss possible implications that these results might suggest with regard to the stabilization of oil prices or the adjustment of global imbalances.

JEL-Classification Numbers: Q43, F31, C53

Keywords: oil price, exchange rate, forecasting, multivariate time series models.

* We would like to thank Doris Ritzberger-Grünwald and the participants at internal research seminars at the Oesterreichische Nationalbank, the European Central Bank and Banque de France, as well as participants in the “Enerday” Conference in Dresden for many helpful comments on earlier drafts of this paper.
Oesterreichische Nationalbank, Foreign Research Division. Email: andreas.breitenfellner@oenb.at.
+ University of Innsbruck, Department of Economics. Email: jesus.crespo-cuaresma@uibk.ac.at.
1. Introduction

Due to the recent oil price shock, economists have devoted an increasing share of their effort to the analysis of energy markets. Similarly, the continuous build up of global imbalances keeps on triggering their dedication with exchange rate issues. Despite these co-occurring events, little attention has been paid to the relation between oil prices and exchange rates. Only few economists have shown an active interest in the following question: Is it just coincidence that crude oil prices soar while the US dollar depreciates simultaneously to record levels?

To the extent that oil exporting countries aim to stabilize the purchasing power of their (US dollar) export revenues in terms of their (predominantly euro-denominated) imports, changes in the US dollar/euro exchange rate may mirror themselves in their pricing behaviour. The plausibility of this theory hinges at least on three conditions: First, oil exporters have some price setting capacity. Second, oil exporters receive a substantial share of their imports from Europe, and particularly from euro area countries. Third, for good reasons, oil invoicing takes place in US dollar.

In this study we analyze the forecasting ability of the US dollar/euro exchange rate for oil prices. In particular, we analyze whether including information on the exchange rate and its determinants in simple time series models of the oil price improves their predictive power.

Apart from the obvious motivation of enlarging our understanding of oil markets and improving oil price forecasts, there are also a number of pertinent economic debates related to this research path. One issue at stake, for instance, is the contribution of oil exporting countries to persistent global imbalances. The surge in oil prices since the end of the nineties has lead to rising current account surpluses of oil exporting countries, outpacing those of Asian emerging economies and corresponding to a major part of US current account deficits. As a consequence, the US Treasury has suggested that “(...) oil exporters should consider the role that the choice of foreign exchange regime can play in the adjustment process” (McCown et al., 2006, p.7). The IMF concludes from this debate that “[h]igher spending [of oil producing countries] (...) would help (...) contribute to reducing global imbalances” (IMF, 2006 p.81). Given that oil exporters import (industrial) goods and services predominantly and
increasingly from Europe and Asia rather than the USA (see for example Ruiz Perez and Vilarrubia, 2006) and diversify their investment away from dollar-denominated assets (BIS, 2006), it is not obvious that this recommendation will be fulfilled. Indeed, it is usually argued that petrodollar recycling may have exacerbated global imbalances as it may have alleviated the dampening effect of the current oil shock on European growth (European Commission, 2006). The impact of oil prices on Europe, furthermore, has already been moderated by the appreciation of its currencies – in particular of the euro – to the US dollar.

This contribution is also related to the research agenda on the nexus between commodity prices, currencies and their fundamentals. Chen et al. (2008) successfully forecast commodity prices with the use of exchange rates of important “commodity currencies”, i.e. of economies with floating exchange rates and a substantial share of commodities in their exports. The explanation to this phenomenon provided by Chen et al. (2008) relates to the fact that commodity currencies embody important information about future commodity price movements, while commodity markets are less forward-looking. In this sense our paper contributes as an extension of their approach to non-commodity currencies, while presenting a complementary explanation.

Other related debates are that on the future international role of the euro as a reserve or invoicing currency (Kamps, 2006); the monetary policy dilemma of oil exporters caused by the so-called Dutch disease (Corden and Neary, 1982) in the context of the curse of natural resources phenomenon (Sachs and Warner, 1995); or the discussion over the general impact of foreign exchange rate volatility on the real economy (Aghion et al., 2006). Understanding the relation of exchange rate and oil price developments could potentially alter our perception of the past and recent oil price shocks, e.g. as a monetary phenomenon (Barsky and Kilian, 2001) or as an endogenous response to dollar depreciations.

The paper is organized as follows. Section 2 exposes some stylized facts and introduces a review of the theoretical and empirical literature on the relation between oil and exchange rates. Section 3 discusses the three conditions commented above of the hypotheses on oil markets, terms of trade and oil invoicing. In Section 4 we present the forecasting exercise. Section 5 concludes.
2. History, theory and previous evidence

2.1. A short contemporary history of oil prices and the dollar exchange rate

During post-war economic history (1950 to 2006) roughly four periods can be distinguished in terms of the relationship between the oil price and the euro exchange rate of the US dollar. Figure 1 shows annual time series of US import crude oil prices (source: International Energy Agency) and nominal US dollar/euro exchange rates (the synthetic euro is used for the period prior to 1999, source: Bank of International Settlements).

Figure 1: Oil prices (bold, left axis) and the US dollar/euro exchange rate (dashed, right axis)

The four periods can already be visually discerned in terms of different volatility and degree of co-movement of these two variables. Interestingly, these periods coincide with important regime shifts in both markets. No temporal delimitation based on historical events can go without some degree of arbitrariness. Nevertheless the distinction is also reflected by changing correlations (see Table 1). While the whole sample delivers a correlation coefficient of –0.61, the four periods vary quite substantially in terms of sign and size of this correlation, a result which is also confirmed by rolling correlation exercises.
Table 1: Periods of correlation between US dollar exchange rate and oil prices

<table>
<thead>
<tr>
<th>Period</th>
<th>Time spread</th>
<th>Key element</th>
<th>Volatility</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1950 to 1970</td>
<td>Bretton Woods System</td>
<td>low</td>
<td>-0.62</td>
</tr>
<tr>
<td>2</td>
<td>1971 to 1984</td>
<td>Oil supply shocks I and II</td>
<td>high</td>
<td>-0.18</td>
</tr>
<tr>
<td>3</td>
<td>1985 to 1998</td>
<td>OPEC collapse</td>
<td>medium</td>
<td>+0.44</td>
</tr>
<tr>
<td>4</td>
<td>1998 to 2006</td>
<td>Emerging market demand</td>
<td>high</td>
<td>-0.73</td>
</tr>
</tbody>
</table>

The first period between 1950 and 1970 coincides with the existence of the Bretton Woods system of fixed exchange rates, introduced in 1946. The commitment to the convertibility of the US dollar to gold at a fixed rate created a World Dollar Standard (McKinnon, 2005), i.e. all exchange rates have been anchored to the (gold) dollar. During this Golden Age (Marglin and Schor, 1990) of low inflation, low interest rates and high growth, crude oil prices remained remarkably stable and low. The price formation process took place under the control of the so-called Seven Sisters, i.e. those seven oil companies that dominated mid-20th century oil production, refinement, and distribution.

This period of extraordinary stability was followed by an episode of rupture between 1971 and 1984, which is usually associated with the first and second oil shock of 1973 and 1979, respectively. Already before the first oil shock, the so-called Nixon Shock (see for example Kuroda, 2004) occurred on August 15, 1971, when US president Richard Nixon announced the discontinuation of gold convertibility of the US dollar given the deteriorating US balance of payments. This resulted in a steep depreciation of the value of the US dollar against gold and many other currencies, notably the German mark and the Japanese yen. Since oil was invoiced in dollars, this implied that oil producers were receiving fewer revenues for the same price. The Organisation of Oil Exporting Countries (OPEC) was initially slow in adjusting prices to reflect this depreciation.

Only two years later, during the Yom Kippur War, OPEC cut production of oil, and placed an embargo on shipments of crude oil to the West. As a result the oil price quadrupled by 1974 to nearly 12 US dollar per barrel. The second oil crisis occurred in the wake of the Iranian Revolution, which
temporarily shattered oil production in the country. The subsequent panic and a phased decontrol of oil prices by the Carter administration triggered another boost of crude oil price over the next 12 months to almost 40 US dollar. Prices moderated slightly despite the ongoing First Gulf War, but remained at a high level.

Meanwhile the dollar started to regain strength due to the so-called *Volcker Shock*. By limiting money supply and abandoning interest rate targets, the Chairman of the Federal Reserve, Paul Volcker, successfully trimmed down inflation by more than ten percentage points in two years, entailing, however, a significant recession. The negative correlation between the US dollar exchange rate and the crude oil price can be observed until 1985.

Between 1985 and 1998 the correlation between exchange rate and oil prices diminishes in absolute value, while both remain remarkably stable (see also Krichene, 2006). This period is characterized by the collapse of the OPEC cartel and a weak US dollar following the *Plaza Accord* concluded by G7 countries. In August 1985, Saudi Arabia renounced to act as a swing producer, cutting production in order to stem price decreases. Instead, they linked their oil prices to the spot market for crude and more than doubled their extraction quantity. By mid-1986, crude oil prices dropped below 10 US dollar per barrel. For the rest of the period oil prices remained weak and attempts of OPEC to set price targets failed, not least because rapidly growing spot, forward and futures markets brought about greater price transparency and independence.

In September 1985, the Plaza Accord was signed by five nations with the aim to depreciate the US dollar in relation to the Japanese yen and German mark in order to help the US to reduce its current account deficit and to emerge from a serious recession. Over the next two years, coordinated central bank intervention in currency markets caused a depreciation of the US dollar against the yen by more than 50%. The decline of the US dollar exchange rate was slowed by the *Louvre Accord* of 1987 but its recuperation had to wait until the mid of the next decade.

The price of crude oil boosted temporarily in 1990 during the Iraqi invasion of Kuwait but after the subsequent *Second Gulf War* crude oil prices declined interruptedly, partly squeezed by transition
recessions in Former Soviet Union and Central and Eastern Europe (Borensztein and Reinhart, 1994), reaching their deepest level throughout the Asian Crisis of 1997–98.

The last period from 1999 until now is marked by an oil price pickup which has been essentially driven by demand from emerging markets, in particular from China. The failure of oil producers to anticipate the fast rebound of the Asian economies and low levels of exploration investment due to low prices in the 1990s led to insufficient supply. On top of the demand-driven oil price surge we also witness a revival of some OPEC market power, as announced production cuts have now again been at least partly effective. Additionally, potential mismatches between supply and demand as well as the nervousness about geopolitical tensions give rise to speculation which tends to exacerbate the overshooting market.

At the beginning of this period the US dollar got support from the booming US economy. However, from around 2002 onwards the relation between the US dollar exchange rate and oil prices became again clearly negative. Accumulating US external imbalances built up pressure on the US dollar, which recently has been aggravated by a diminishing positive interest rate differential and a mounting negative growth differential in comparison to the euro area.

As this short overview suggests, any meaningful interpretation of the behaviour of the data has to be acquainted with geopolitical and historical economic events. Notwithstanding the difficulties of abstracting from them, some theories of a general nature have already been proposed.

2.2. Theoretical models of the oil price – exchange rate link and empirical evidence

The exchange rate/oil price link has been defined as a kind of natural relationship by Mundell, 2002, p. 1): “[t]here is a definite link between monetary policies, exchange rates and commodity prices (…)”. This view acknowledges the simple truth that changes in prices might also reflect changes in their numéraire. With the gold-dollar-standard it has been obvious to price and quote homogenous goods like commodities using the US dollar. Later, under flexible exchange rates, markets stuck to the dollar, partly because having only one reference and vehicle currency is efficient. Yet, the extreme instability of the foreign value of the US dollar has translated into dollar prices of commodities such as
crude oil. The underlying causes of this apparent link between the commodity price cycle and the dollar cycle, however, is debated. They may mutually affect each other or be both caused by common factors. Depending on the channel highlighted by the corresponding theory, the link might either be positive or negative, or might change from one period to the other.

The explanation we put forward in this study is neither new nor complicated: oil exporters simply try to maintain their purchasing power (see also the arguments in Amuzegar, 1978). Following up on the role of the dollar as a numéraire of standard commodities (dollar commodities), a change in dollar exchange rates alters the terms of trade between any pair of countries, the extent of this change depends on the proportion of “dollar goods” relative to “nondollar goods” in their trade structure (see also Schulmeister, 2000). Since the difference between the export and the import share of dollar goods is greatest for oil-exporting countries, their income position is most strongly affected by dollar exchange rate fluctuations. Hence, they have an incentive to react to a dollar depreciation by increasing export prices, as long as they have pricing power.¹

There are various other hypotheses leading to the same conclusions concerning the link between the two variables (see for example Cheng, 2008). Apart from the described supply side purchasing power channel,² there is arguably also a demand side local price channel at work. According to Austvik (1987), fluctuations in the exchange rate of the US dollar create disequilibria in the market for crude oil. Dollar depreciation makes petrol less expensive for consumers in nondollar regions (in local currency), thereby increasing their commodity demand which eventually causes adjustments in the oil price denominated in US dollars. An additional asset channel is put in motion, as a falling US dollar reduces the returns on dollar-denominated financial assets in foreign currencies, hence increasing the attractiveness of oil and other commodities as a class of alternative assets to foreign investors. Furthermore their attractiveness rises as well as a hedge against inflation, since dollar depreciation raises risks of inflationary pressures in the United States. Co-movements could also be educed by a monetary channel, as dollar depreciation entails monetary easing elsewhere, including oil producing...
countries with currencies pegged to the dollar. In turn, lower interest rates increase liquidity, thereby stimulating demand, together with that for oil (Cheng, 2008). Finally, a currency market channel might be at work as well, since foreign exchange markets are possibly more efficient than oil markets and hence anticipate developments in the real economy that affect the demand and supply of oil (Chen et al., 2008).

The causality of this last channel only appears to go from the dollar to oil prices, while it is actually just secondary to an underlying relation which runs in the opposite direction. In this sense hypotheses on a negative relation from oil to the US dollar might complement rather than substitute this reverse direction of causality.

Similarly, both relative price developments may have common causes. Most prominently, the hypotheses that oil and other commodity price developments are influenced by interest rates (Frankel, 2006) in combination with the theory of (uncovered) interest rate parity of exchange rates would allow such an rationalization.

One of the above mentioned channels might dominate the relationship, which does not exclude the influence of even (temporarily) contradictory forces. Krugman (1980), for instance, proposed a three-country model where the direction of the effect depends on a comparison of balance of payment effects of higher oil prices with those of petrodollar recycling. Initially the relation would be positive as oil profits are invested in US dollar assets, but it might turn to negative in the long run since over time OPEC’s spending rises with a preference for manufactured products from other countries. Extensions of this model by Krugman (1984) deliver similar outcomes, namely that an oil shock affects all countries, and its exchange rate effects arise from asymmetries between countries. The same asymmetries determine the outcome of the above mentioned purchasing power channel of the reversed relationship.

Ultimately the question concerning which one of these factors dominates should be approached empirically. Table 2 collects the most relevant pieces of the empirical literature on the exchange rate-oil price link, which display a great variety of estimation results due to differences in theoretical
concepts, data definition and temporal delimitation.³ Over time, the negative relation between the US dollar and oil, driven by the exchange rate, gets increasing support (Cheng, 2008; Krichene, 2005; Yousefi and Wirjanto, 2005). Still, a considerable faction of authors disagrees (Amano and van Norden, 1998; Bénassy-Quéré et al., 2005; Schimmel, 2008).

The impact of oil prices on exchange rates of currencies other than US dollar have at least partly been confirmed by various researchers (Akram, 2004; Chen and Chen, 2007; Habib and Kalamova, 2007; Korhonen and Juurikkala, 2007). Typically, such studies focus on currencies of oil exporting countries, where the nexus arises more directly than in the case of the US dollar. The apparent difference in terms of direction of causality between these results and most studies on the dollar oil relation indicate that the US dollar could be an exception due to its role as the oil invoicing currency.

Recently, related studies on a more general link between exchange rates and commodity prices have delivered important results. In the case of freely floating commodity currencies, there seems to be more evidence on the direction that commodities are affected by currencies than vice versa (Chen et al., 2008; Clements and Fry, 2006). On a broader, less selective sample of commodity currencies, however, the opposite conclusion can be drawn (Cashin et al., 2004).

³ One noticeable detail is that most studies use real instead of nominal data. However, we regard nominal data as more appropriate since oil prices contribute directly and indirectly via other input costs, such as energy or other commodities, to inflation. Thus, inflation adjustment removes some important information of this relative price.
Table 2: Selection of studies on the relationship between crude oil price and US dollar exchange rate

<table>
<thead>
<tr>
<th>Study</th>
<th>Direction</th>
<th>Causality</th>
<th>Theory</th>
<th>Model</th>
<th>Period</th>
<th>Data FX</th>
<th>Data Oil</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng, 2008</td>
<td>Short- and long-term negative (except 1980s)</td>
<td>USD → Oil</td>
<td>Purchasing power, local price, asset, and monetary channel</td>
<td>Demand-supply-framework (Borensztein/Reinhart 1994)</td>
<td>1980-2007</td>
<td>NEER and REER USD</td>
<td>Average petroleum spot price</td>
<td>Dynamic Ordinary Least Squares</td>
</tr>
<tr>
<td>Bénassy-Quéré et al., 2005</td>
<td>Cointegration; long-term positive, but negative from 2002 on.</td>
<td>Real Oil → Real USD</td>
<td>Causality reversal</td>
<td>China impacts via USD peg and energy-intensive growth</td>
<td>Four country model (Krugman 1980): US, China, OPEC (dollar bloc); EU</td>
<td>1974-2004 (1980-2004)</td>
<td>REER USD; robustness EUR-USD</td>
<td>Real market price crude petroleum</td>
</tr>
<tr>
<td>Krichene, 2005</td>
<td>Cointegration Long- and short-term negative impact</td>
<td>USD → Oil</td>
<td>Purchasing power, local price, channel</td>
<td>Simultaneous equation model (SEM) structural model + interest rates & NEER</td>
<td>1970-2004</td>
<td>NEER USD</td>
<td>IMF crude oil price index</td>
<td>VAR</td>
</tr>
<tr>
<td>Yousefi and Wirjanto, 2005</td>
<td>Negative export price elasticity</td>
<td>Real USD → Oil</td>
<td>Purchasing power of oil revenues channel</td>
<td>Incomplete FX pass-through Oligopolistic rivalry of OPEC (Bertrand competition)</td>
<td>1989-1999</td>
<td>REER USD index</td>
<td>Monthly spot prices of 4 OPEC members</td>
<td>OLS estimation with standard error correction</td>
</tr>
<tr>
<td>Yousefi and Wirjanto, 2004</td>
<td>Negative correlation</td>
<td>USD → Oil</td>
<td>Purchasing power of oil revenues channel</td>
<td>Partial market-sharing model. Price leadership Saudi Arabia</td>
<td>1989-1999</td>
<td>REER USD (price adjusted PnCDi + Pbdi)</td>
<td>WTI, Brent, OPEC + monthly spot prices</td>
<td>Hansen’s GMM, Perfect correlation</td>
</tr>
</tbody>
</table>

3. Conditions of the purchasing power channel

As already pointed out, the plausibility of the purchasing power channel hypothesis hinges at least on three conditions: First, oil exporters have some price setting capacity. Second, oil exporters receive a substantial share of their imports from Europe. Third, for good reasons, oil invoicing takes place in US dollar. We will briefly present evidence on each of these three conditions.

3.1 Price setting power

The market for crude oil is often described as a cartel, which at best is an oversimplification (Krugman, 2000). Certainly, members of the OPEC do exert some market power, but the extent of it varies dramatically over time depending on general market conditions. OPEC itself admits that it was price maker until the mid-eighties but maintains that since then prices have been determined at the spot markets on the three big petroleum exchanges in New York (NYMEX), London (IPE) and Singapore (SIMEX). Indeed, concurrence of declining production with plummeting prices during the early 1980s and the reversal of this behaviour of both time series in the following period does not feature a cartelized market (Yousefi and Wirjanto, 2005). In any case, with soaring demand from China and other emerging economies as well as gradually depleting sources in Non-OPEC oil producing countries OPEC has arguably recaptured some price setting capacity. In 2006 OPEC’s 13 member countries represented 55% of world crude oil exports, 45% of world oil production and about 78% of the world's oil reserves.

Perhaps the most accurate way to describe the market has been undertaken by Yousefi and Wirjanto (2005). They consider a model of oligopolistic rivalry among oil exporting countries with partial sharing of a world oil market segmented by quality differences (sweet vs. sour, heavy vs. light, etc.). In each segment each member country enjoys a certain degree of market power due to non-homogenous commodities (imperfect substitutes). This results in Bertrand competition with

1 Krugman refers to an idea of multiple equilibria developed by Cremer and Isfahani (1991). According to this the fact that oil is an exhaustible resource means that not extracting it is a form of investment.

2 http://www.opec.org/library/FAQs/aboutOPEC/q20.htm
incomplete price equalization and Saudi Arabia – by far the biggest OPEC oil producer with about one third of OPEC production – displays price leadership.

Other reasons for price setting capacity could be put forward. For instance, oil supply could be split in a competitive and a monopolistic sector. Given very low marginal costs, inelastic total (short-run) demand and inelastic non-OPEC supply due to short-run peak capacity, the OPEC cartel should be successful. Oligopolistic behaviour can also be explained by a *kinked demand curve* (Pindyck and Rubinfeld, 2005).

3.2 Asymmetric trade structure

The asymmetry of the trade structure of oil exporting economies results on the one hand from the fact that oil is invoiced in US dollar and on the other hand from the geographic pattern of their import. While the first implies that virtually all exports are going to the *dollar area*, the latter reveals that the US dollar plays only a marginal role with respect to oil exporters’ imports. In particular the EU dominates as source region for consumption and investment goods in exchange for petrodollars. The share of the euro area is still somewhat greater than that of Asia.

Table 3: Geographical Trading Patterns of 11 major oil exporters 2005

<table>
<thead>
<tr>
<th>Shares in %</th>
<th>USA</th>
<th>Euro area</th>
<th>EU</th>
<th>Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export destinations</td>
<td>13.9</td>
<td>27.4</td>
<td>38.7</td>
<td>25.6</td>
</tr>
<tr>
<td>Import sources</td>
<td>6.8</td>
<td>29.2</td>
<td>41.9</td>
<td>25.4</td>
</tr>
</tbody>
</table>

(Source: ECB, 2007)

Eventually, such asymmetry should translate into the terms of trade. Mazraati (2005) calculated that between 1970 and 2004 the loss in purchasing power of OPEC oil revenues through dollar depreciation has been significant (15.6%), although less than the loss through inflation (57.4%). Yet

6 Note that in this sample Russia and Norway are included, which compared to OPEC have closer ties to the EU than to Asia. According to Mazraati (2005), average import shares of OPEC between 1970 and 2004 have been 28.82% from the euro area and 13.45% from the USA.

7 Algeria, Iran, Kuwait, Libya, Nigeria, Norway, Russia, Saudi Arabia, UAE and Venezuela.
these two effects are difficult to disentangle as virtually all oil producing economies with undiversified economies and dollar pegged currencies display an inverse relationship between the value of the US dollar and inflation (Alhajji, 2004).

Already in advance to the first oil shock, certain OPEC members and international oil companies could no longer ignore these distortions entailed by the world currency situation. In 1972 they concluded the Geneva I Agreement that introduced quarterly adjustments to posted prices to take account of the exchange rate changes. The Geneva I Index for crude oil prices used for its calculation the arithmetic average of the deviations of exchange rates of nine currencies against USD⁸. Changed to an import-weighted index, the present modified Geneva I + US dollar currency basket accounts for both inflation and currency fluctuations (OPEC, 2006). Half of the basket is made up by the euro (46,4%), other currencies included are the US dollar (25,3%), the Japanese yen (15,3%), the UK pound (10,1%) and the Swiss franc (2,8%; Mazraati, 2005). We take the high weight of the euro in this OPEC basket, reflecting a similarly high share in currency denomination of oil exporters’ imports, as justification for simplifying our empirical exercise by using the USD/EUR exchange rate as a proxy to nominal effective exchange rates.

Role of the US dollar

Oil exporters have to face three interrelated currency choices: Invoicing, recycling and pegging. First, using one vehicle currency is efficient in terms of minimizing transaction costs and providing price transparency. Invoicing in a single currency is particularly useful in the case of standardized products and volatile prices. The initial decision has possibly to do with reputation and herding behaviour but is also built on political grounds (see next paragraph). Once you have chosen a currency it is difficult to abandon it. Mileva and Siegfried (2007) explain the almost universal use of the US dollar in invoicing petroleum⁹ as a homogeneous good traded in commodity exchanges. Stability of the US economy and the depth of the US financial markets – and as we would argue, the US dollar/gold standard of the Bretton Woods System – privileged the US dollar as a store of value with low liquidity costs. They

⁸ The national currencies of Belgium, France, Germany, Italy, Japan, Netherlands, Sweden, Switzerland and the United Kingdom.
⁹ Attempts to shift to euro invoicing have been made by Iran, Iraq and Venezuela.
suggest, however, that international oil trade is less homogeneous than usually presumed and predominantly regional in nature, indicating that multiple currency oil invoicing might prove to be more likely.\(^\text{10}\)

Second, however, the choice of invoicing currency goes hand in hand with the not exclusively economic decision on where to save and spend the money earned. In the mid-1970s, the Gulf Cooperation Council (GCC) led by Saudi Arabia was highly influential in ensuring that oil-pricing was set in US dollars\(^\text{11}\). Since then, they have supported the value of the US dollar by invoicing oil in dollars and by investing in US dollar reserves and securities. Despite their nervousness about US imbalances and declining value of US dollar reserves, GCC oil exporters are unlikely to undermine the dollar in the short-term as oil future markets increasingly took over command of oil-pricing (Momani, 2006) and they have big stake in the US economy. Nevertheless, GCC states are gradually shifting petrodollar recycling away from US assets to other dollar-denominated investments in Asia and to intraregional investment.

Third, the first two choices have an impact on the exchange rate regime of oil-exporting countries. Almost all of them have their exchange rates either formally pegged or tightly oriented to the US dollar. In particular, the GCC countries have used the US dollar as the anchor currency since the 1970s (ECB, 2007). They regard dollarization as beneficial given their reliance on the export of a single dollar priced commodity, but also because it lowers financing costs, helps attract foreign investment and supports fiscal as well as macroeconomic stability. More importantly, the choice of the US dollar as a common denominator has been seen as facilitating the transition to a common currency of the GCC countries by 2010\(^\text{12}\). Only after its adoption, it may be either anchored to the euro, a currency basket, or let be freely floating (BIS, 2003). However, a decline in the value of US dollars and expansionary monetary policy in the United States adds to the inflationary pressure in the Gulf States.

\(^{10}\) OPEC Secretary-General Abdullah Al Badri announced in February 2008: “Maybe we can price the oil in the euro. It can be done, but it will take time.” (http://www.gulfnews.com/business/Oil_and_Gas/10188508.html)

\(^{11}\) In 1975 a preceding US-Saudi deal to recycle Saudi wealth into US bonds was complemented by a subsequent arrangement to invoice oil in US dollars. Saudi Arabia used its OPEC influence to persuade the other members to sell OPEC oil in dollars, in exchange for enhanced power at the IMF and military protection (Momani, 2006).

\(^{12}\) A currency union is seen an instrument to integrate and to diversify the economies of the region. The decision to establish a common currency has already been taken at the foundation of the GCC in 1981. The official adoption of the US dollar as a common basis has been agreed in 2001.
already mounting due to soaring oil prices. Additionally, enhanced trade ties with Europe and the envisaged reduction of oil dependence favour a reorientation of their economies away from the dollar toward the euro. Nevertheless, the dominant role of the US dollar as invoice, investment and anchor currency seems so far unchallenged despite the fact that it has pushed oil exporters into a monetary dilemma and in conflict with their own development strategies. As long as feasible alternatives are not in sight the current OPEC strategy of dollarization and oil price stabilization appears reasonable.

4. The dollar exchange rate and oil prices: a forecasting exercise

In this section we perform a simple forecasting exercise aimed at evaluating whether changes in the US dollar/euro exchange rate contain information about future changes in oil prices. For that purpose we compare the predictions from a simple autoregressive (AR) model on oil price changes with those from a vector autoregressive (VAR) model including changes in the exchange rate, its determinants and oil prices, as well as a vector error correction (VEC) model for these variables. In the case of the VAR and VEC models, the specification can be interpreted as a monetary model of exchange rate determination augmented with an oil price variable (see for example Frenkel, 1976, Meese and Rogoff, 1983, MacDonald and Taylor, 1992 and 1994) where the exchange rate is assumed to be determined by changes in the relative money supply, output and interest rate changes of the US and the euro area. The two competing models are thus given by the following specifications,

\[
\Delta p_t = \phi_0 + \sum_{k=1}^{p} \phi_k \Delta p_{t-k} + \varepsilon_t, \quad (1)
\]

and

\[
\Delta v_t = \Theta_0 + \sum_{k=1}^{p} \Theta_k \Delta v_{t-k} + \mathbf{u}_t, \quad (2)
\]

where \(v_t = (p_t, e_t, m_t, y_t, i_t)'\), \(p_t = \ln(p_t), e_t = \ln(e_t), m_t = \ln(M_{t,US}/M_{t,EUR}), y_t = \ln(Y_{t,US}/Y_{t,EUR}), i_t = (r_{t,US} - r_{t,EUR})\) and \(e_t = \ln(e_t)\), where \(p_t\) is the oil price, \(M_t\) is money supply, \(Y_t\) is output, \(r_t\) is the interest rate and \(e_t\) is

the nominal US$/EUR exchange rate. Θ_0 is a 5-dimensional vector of intercept terms and Θ_k are 5×5 matrices of parameters. The error term ε_t is assumed to be a white noise process with constant variance σ^2, and $u_t = (u_{1t} \ u_{2t} \ u_{3t} \ u_{4t} \ u_{5t})'$ is assumed to be an iid vector process with zero mean and constant variance-covariance matrix Σ.

Since there is evidence of a unit root for all variables in the vector v, a potential specification relating these variables would be a vector error correction (VEC) model, where there is an adjustment in the long run to a cointegration relationship given by a linear function relating the covariates of the model,

$$\Delta v_t = \Gamma_0 + \sum_{k=1}^{p} \Gamma_k \Delta v_{t-k} + \alpha \beta' v_{t-1} + u_t,$$

where the β is the (column) cointegrating vector, which defines the long-run equilibrium among the variables of the system, given by $\beta' v_t$, and α is a (column) vector capturing the adjustment speed of each one of the components of v_t.

The forecasting exercise is carried out as follows. The models given by (1), (2) and (3) are estimated using monthly data from January 1983 to December 1996, choosing the optimal lag length (p in the specifications above) by minimizing the Bayesian information criterion (BIC) for lag lengths one to twelve. With the estimated models, out-of-sample forecasts for the oil price are produced for forecasting horizons ranging from one month ahead to three years (36 months) ahead. Measures of forecasting error are computed for the predictions using the actually realized oil prices at the different forecasting horizons. The observation corresponding to January 1997 is added to the estimation sample, the models are re-estimated (after choosing a potentially new optimal lag length) and the procedure described above is repeated for this new in-sample period. This procedure is iterated until no usable out-of-sample observations are left.

We compute two measures of forecasting accuracy:

- The source of the oil price data is the EIA and the rest of the variables are obtained from DATASTREAM.
a) The root mean squared error (RMSE), given by

\[RMSE(h) = \sqrt{\frac{1}{N} \sum_{n=T+h}^{T+h+N} (p_n^h - p_n)^2} \]

(4)

where \(p_n^h \) is the forecast for \(p_t \) obtained by the model with data ranging up to \(t-h \), and \(N \) is the number of out-of-sample forecasts carried out. Root mean squared errors are computed for forecasting horizons (\(h \)), ranging from one month ahead to 36 months ahead.

b) The direction of change (DOC) statistic, defined as the number of correctly forecast changes in the oil price for forecasting horizon \(h \) divided by the total size of the forecasting sample for that forecasting horizon. This measure describes the ability of the model in forecasting the direction of change of the oil price correctly.

If two models deliver forecasts of different quality (as measured for instance by the RMSE), the question arises if the “better” model performs significantly better than the “worse” model in statistical terms. In order to evaluate the statistical significance of differences in RMSE, we compute the Diebold-Mariano test. The Diebold-Mariano test (Diebold and Mariano, 1995 henceforth, DM) is an asymptotic test for the null of equal predictive accuracy of two models. For a given forecasting horizon \(h \), the null hypothesis in the DM test is that

\[d_n = E[g(e_{1n}) - g(e_{2n})] = 0, \]

(5)

where \(e_{1n} \) is the forecasting error produced by model 1 when forecasting \(p_t \), \(e_{2n} \) is defined analogously for model 2 and \(g(z) \) is a loss function associated to the forecast error. In our case, the loss function is a quadratic one, so that \(g(z)=z^2 \). The DM test is based on the observed average forecast error difference, \(\bar{d} \). The DM test statistic is given by

\[S_1 = [\hat{V}(\bar{d})]^{-1/2} \bar{d}. \]

(6)

\(\hat{V}(\bar{d}) \) is an estimate of the asymptotic variance of \(\bar{d} \), given by
\[
\hat{V}(\mathcal{J}) = \frac{1}{N} \left(\hat{\gamma}_0 + 2 \sum_{k=1}^{k-1} \hat{\gamma}_k \right)
\]

where \(\hat{\gamma}_k \) is the \(k \)-th order sample autocovariance of the forecasting error difference series. The asymptotic distribution of \(S_1 \) is standard normal, so tests for equality of predictive accuracy between different models can be easily carried out. Although the DM test has become standard in forecasting evaluation research, this test methodology is not free of criticism. For a recent critical assessment to testing predictive accuracy using the DM test statistic (Kunst, 2003).

In a preliminary analysis, we ran Granger causality tests between changes in the exchange rate and the oil price in the framework of a bivariate VAR in first differences, in order to grasp the existing causality links between these two variables. The results are relatively inconclusive in this respect: there is marginal evidence of causality running from the exchange rate to the oil price if VAR models of lag length higher than six are used. However, the optimal lag length for the bivariate VAR model as chosen by the BIC for the complete sample is equal to one. At this lag length it cannot be rejected that there are no causality links between the two variables.¹⁵

Table 4 presents the results of the forecasting exercise described above. The results corresponding to the best models in terms of forecasting accuracy are presented in bold characters. For each forecasting horizon in which the VAR and/or VEC model performs better than the benchmark AR model we carried out a DM test for equal forecasting accuracy and the result in terms of significance is presented in the table in the form of asterisks. Some interesting results can be read from Table 4. In terms of RMSE, models including information on the exchange rate and its determinants perform better than the benchmark AR model for forecasting horizons up to one year ahead and over 18 months ahead. For short-term forecasts the VAR model, which abstracts away from the existence of a long-run relationship linking the variables in the VAR structure, is the specification that performs best, obtaining forecasts which are significantly better than the benchmark model (as measured by the DM test statistic) in forecasting horizons ranging up to 6 months ahead. The VEC model performs best for

¹⁵ Detailed results of the causality analysis are available from the authors upon request.
relatively long forecasting horizons, and obtains significantly better forecasts than the AR benchmark at forecasting horizons of more than two and a half years ahead.

The results concerning the DOC statistic speak clearly for the inclusion of information on the exchange rate when forecasting oil prices. The best performing model according to this criterion is the VAR model for relatively short forecasting horizons (up to nine months ahead) and the VEC model for longer forecasting horizons. The supremacy of the models including information on the exchange rate and its determinants when forecasting the direction of change of the oil price is systematic and robust for all forecasting horizons considered.

As a robustness check we also performed the forecasting exercise using exclusively bivariate time series models formed by the oil price and the exchange rate, that is, without controlling for the potential determinants of the exchange rate. The results of this exercise are presented in Table 5, and they reinforce those found with the larger vector autoregressive models.
Table 4: Results of the forecasting exercise: multivariate time series models.

<table>
<thead>
<tr>
<th>Months ahead</th>
<th>AR model</th>
<th></th>
<th></th>
<th>VAR model</th>
<th></th>
<th></th>
<th>VEC model</th>
<th></th>
<th></th>
<th># Out of sample observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.084</td>
<td>0.472</td>
<td>0.082</td>
<td>*0.509</td>
<td>0.084</td>
<td>0.491</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.164</td>
<td>0.453</td>
<td>0.152</td>
<td>*0.528</td>
<td>0.171</td>
<td>0.481</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.242</td>
<td>0.379</td>
<td>0.223</td>
<td>*0.515</td>
<td>0.265</td>
<td>0.447</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.307</td>
<td>0.410</td>
<td>0.295</td>
<td>0.490</td>
<td>0.345</td>
<td>0.490</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.370</td>
<td>0.371</td>
<td>0.365</td>
<td>0.392</td>
<td>0.407</td>
<td>0.474</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.428</td>
<td>0.362</td>
<td>0.428</td>
<td>0.340</td>
<td>0.451</td>
<td>0.511</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.466</td>
<td>0.418</td>
<td>0.471</td>
<td>0.308</td>
<td>0.478</td>
<td>0.516</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.494</td>
<td>0.398</td>
<td>0.505</td>
<td>0.284</td>
<td>0.491</td>
<td>0.523</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.516</td>
<td>0.388</td>
<td>0.532</td>
<td>0.165</td>
<td>0.492</td>
<td>0.565</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.522</td>
<td>0.383</td>
<td>0.540</td>
<td>0.198</td>
<td>0.483</td>
<td>0.617</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.532</td>
<td>0.316</td>
<td>0.551</td>
<td>0.139</td>
<td>0.483</td>
<td>0.544</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.547</td>
<td>0.250</td>
<td>0.562</td>
<td>0.145</td>
<td>0.482</td>
<td>0.539</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.569</td>
<td>0.151</td>
<td>0.581</td>
<td>0.123</td>
<td>0.486</td>
<td>0.493</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asterisks refer to the significance level of the Diebold-Mariano test statistic of the corresponding model against the AR model. * (***) refers to significance at the 10% (5%) significance level. Best models for each forecasting horizon are in bold font.

Table 5: Results of the forecasting exercise: bivariate time series models.

<table>
<thead>
<tr>
<th>Months ahead</th>
<th>AR model</th>
<th></th>
<th></th>
<th>VAR model</th>
<th></th>
<th></th>
<th>VEC model</th>
<th></th>
<th></th>
<th># Out of sample observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td>RMSE</td>
<td>DOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.084</td>
<td>0.472</td>
<td>0.081</td>
<td>*0.528</td>
<td>0.084</td>
<td>0.472</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.164</td>
<td>0.453</td>
<td>0.151</td>
<td>*0.566</td>
<td>0.176</td>
<td>0.519</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.242</td>
<td>0.379</td>
<td>0.219</td>
<td>*0.563</td>
<td>0.280</td>
<td>0.437</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.307</td>
<td>0.410</td>
<td>0.291</td>
<td>*0.550</td>
<td>0.365</td>
<td>0.480</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.370</td>
<td>0.371</td>
<td>0.360</td>
<td>0.433</td>
<td>0.423</td>
<td>0.464</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.428</td>
<td>0.362</td>
<td>0.421</td>
<td>0.362</td>
<td>0.461</td>
<td>0.500</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.466</td>
<td>0.418</td>
<td>0.462</td>
<td>0.352</td>
<td>0.483</td>
<td>0.505</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.494</td>
<td>0.398</td>
<td>0.495</td>
<td>0.318</td>
<td>0.490</td>
<td>0.534</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.516</td>
<td>0.388</td>
<td>0.521</td>
<td>0.224</td>
<td>0.486</td>
<td>0.576</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.522</td>
<td>0.383</td>
<td>0.527</td>
<td>0.235</td>
<td>0.474</td>
<td>0.630</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.532</td>
<td>0.316</td>
<td>0.537</td>
<td>0.215</td>
<td>0.473</td>
<td>0.544</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.547</td>
<td>0.250</td>
<td>0.547</td>
<td>0.197</td>
<td>0.470</td>
<td>0.539</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.569</td>
<td>0.151</td>
<td>0.565</td>
<td>0.164</td>
<td>0.473</td>
<td>0.493</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asterisks refer to the significance level of the Diebold-Mariano test statistic of the corresponding model against the AR model. * (***) refers to significance at the 10% (5%) significance level. Best models for each forecasting horizon are in bold font.
In the short run, the VAR model including the exchange rate forecasts significantly better than the simple autoregressive benchmark, while in the long run it is the VEC model with the exchange rate and the oil price which significantly beats the other alternative specifications. These results offer thus extra evidence concerning the fact that the US dollar/euro exchange rate contains information about the future development of oil prices.

5. Concluding remarks

Building on the stabilization of the import purchasing power of oil exporter revenues, we elaborate a simple explanation linking exchange rates of the US dollar to the oil price. The asymmetric trade structure of oil exporting countries implies a deterioration of the dollar price level of oil exporters’ imports in the case of exchange rate depreciation. Under imperfect competition they can re-establish the terms of trade by increasing export prices unalterably denominated in US dollars. While, both from a theoretical perspective and from simple Granger-causality tests, the direction of causality is unclear; we show that exchange rate information improves oil price forecasts significantly. Our results do not exclude that other channels may also be at work, such as demand shifts owing to local price changes, monetary policy and asset or currency markets.

This paper provides another piece of evidence that exchange rates do matter in forecasting commodity prices. The political implications of our results we prefer to state in form of pertinent questions rather than unproved assertions. Given the vulnerability of oil prices to monetary shocks, should Taylor-like rules explicitly include crude price volatility (see Krichene, 2005)? To what extent is a stable US dollar a prerequisite for stable oil prices? Would exchange rate flexibility of oil exporters be a remedy or an amplifier of global imbalances? Which effect would a hard landing scenario of the US dollar have on oil prices? Is there an alternative of the US dollar as invoicing, reserve and anchor currency? How best should an orderly replacement be managed? And will with euro, yuan or basket denominated oil the stagflationary effects of oil price shocks be reduced (Wohltmann and Winkler, 2005)?
Future research should concentrate on exploring non-linearity and asymmetries in the relation (see also Crespo Cuaresma et al., 2007). Robustness should also be checked in terms of alternative oil data sets, diverse frequency or trade weighted exchange rates. Making an explicit distinction between supply and demand shocks may also shed a light on the nature of the relationship (see Killian, 2008).
References

Mazraati, M., 2005. Real purchasing power of oil revenues for OPEC Member Countries: a broad currency basket and dynamic trade pattern approach. OPEC Review. 29, 153-175.
Recent papers

2008-08 Jesus Crespo Cuaresma and Andreas Breitenfellner: Crude Oil Prices and the Euro-Dollar Exchange Rate: A Forecasting Exercise

2008-07 Matthias Sutter, Stefan Haigner and Martin Kocher: Choosing the carrot or the stick? – Endogenous institutional choice in social dilemma situations.

2008-06 Paul A. Raschky and Manijeh Schwindt: Aid, Catastrophes and the Samaritan’s Dilemma.

2008-05 Marcela Ibanez, Simon Czermak and Matthias Sutter: Searching for a better deal – On the influence of group decision making, time pressure and gender in a search experiment.

2008-03 Jesus Crespo Cuaresma and Tomas Slacik: On the determinants of currency crises: The role of model uncertainty.

2008-02 Francesco Feri: Information, Social Mobility and the Demand for Redistribution.

2008-01 Gerlinde Fellner and Matthias Sutter: Causes, consequences, and cures of myopic loss aversion - An experimental investigation.

2007-31 Andreas Exenberger and Simon Hartmann: The Dark Side of Globalization. The Vicious Cycle of Exploitation from World Market Integration: Lesson from the Congo.

2007-30 Andrea M. Leiter and Gerald J. Pruckner: Proportionality of willingness to pay to small changes in risk - The impact of attitudinal factors in scope tests.

2007-26 Matthias Sutter: Deception through telling the truth?! Experimental evidence from individuals and teams. Revised version accepted for publication in The Economic Journal.

2007-24 Jesus Crespo Cuaresma: Forecasting euro exchange rates: How much does model averaging help?

2007-23 Matthias Sutter, Martin Kocher and Sabine Strauß: Individuals and teams in UMTS-license auctions.

2007-22 Jesus Crespo Cuaresma, Adusei Jumah and Sohbet Karbuz: Modelling and Forecasting Oil Prices: The Role of Asymmetric Cycles.

2007-21 Uwe Dulleck and Rudolf Kerschbamer: Experts vs. discounters: Consumer free riding and experts withholding advice in markets for credence goods.

2007-15 Sergio Currarini and Francesco Feri: Bilateral information sharing in oligopoly.

2007-14 Francesco Feri: Network formation with endogenous decay.

2007-10 Jesus Crespo Cuaresma and Tomas Slacik: An “almost-too-late” warning mechanism for currency crises.

2007-09 Jesus Crespo Cuaresma, Neil Foster and Johann Scharler: Barriers to technology adoption, international R&D spillovers and growth.

2007-08 Andreas Brezger and Stefan Lang: Simultaneous probability statements for Bayesian P-splines.

2007-07 Georg Meran and Reimund Schwarze: Can minimum prices assure the quality of professional services?.

2007-06 Michal Brzoza-Brzezina and Jesus Crespo Cuaresma: Mr. Wicksell and the global economy: What drives real interest rates?.

2007-03 Paul Raschky: The overprotective parent - Bureaucratic agencies and natural hazard management.

2007-02 Martin Kocher, Todd Cherry, Stephan Kroll, Robert J. Netzer and Matthias Sutter: Conditional cooperation on three continents.

Crude Oil Prices and the Euro-Dollar Exchange Rate: A Forecasting Exercise

Abstract
If oil exporters stabilize the purchasing power of their export revenues in terms of imports, exchange rate developments (and particularly, developments in the US dollar/euro exchange rate) may contain information about oil price changes. This hypothesis depends on three conditions: (a) OPEC has price setting capacity, (b) a high share of OPEC imports comes from the euro area and (c) alternatives to oil invoicing in US dollar are costly. We give evidence that using information on the US dollar/euro exchange rate (and its determinants) improves oil price forecasts significantly. We discuss possible implications that these results might suggest with regard to the stabilization of oil prices or the adjustment of global imbalances.