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Abstract

We use a panel cointegration model with multiple time- varying individual effects to

control for the enigmatic missing factors in the credit spread puzzle. Our model specification

enables as to capture the unobserved dynamics of the systematic risk premia in the bond

market. In order to estimate the dimensionality of the hidden risk factors jointly with

the model parameters, we rely on a modified version of the iterated least squares method

proposed by Bai, Kao, and Ng (2009). Our result confirms the presence of four common risk

components affecting the U.S. corporate bonds during the period between September 2006

and March 2008. However, one single risk factor is sufficient to describe the data for all time

periods prior to mid July 2007 when the subprime crisis was detected in the financial market.

The dimensionality of the unobserved risk components therefore seems to reflect the degree

of difficulty to diversify the individual bond risks.
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1 Introduction

In recent years, the use of panel data has attracted an increasing attention in empirical finance

studies. This is motivated by the goal to control the so called unobserved heterogeneity effect

which is undetectable in pure cross-section or pure time-series data (e.g., Hausman and Taylor

(1981)). Recent discussions by Ahn, Lee, and Schmidt (2005), Bai (2009), Pesaran (2006), Bai

and Kao and Ng (2009), and Kneip, Sickles and Song (2009) have focused on more advanced

panel data models in which the unobservable heterogeneity has a multi-dimensional factor struc-

ture. Indeed, for many economic applications, the use of the classical panel data approaches will

be inappropriate. When analysing stock or bond prices, for instance, the usual within estimation

method assumes the heterogeneity effect to be time-invariant. However, the individual effects

of such variables could be influenced by different time-changing and dynamic factors such as

stochastic market trends, systematic risks, etc...

Exploiting the aptitude of this new generation of panel models to control for unobserved

and complex heterogeneity, we consider in this paper the particular problem of the, so called,

credit spread puzzle. Defined as the difference between a corporate bond yield and a duration-

equivalent government bond yield, the credit spread has been considered for a long time to

be a simple compensation for the credit risk default. Empirical evidence shows, however, that

default risk can not be the unique determinant to explain such a large gap, see, e.g., Huang

and Huang (2003) and Elton, Gruber, Agrawal and Manne (2001). Elton, Gruber, Agrawal,

and Mann (2001) generated bond yields by implementing structural credit risk models.1 They

found that default probability could not explain more than 25% of the observed spot spreads2.

Using reduced-form-model approach, Longstaff, Mithal, and Neis (2004) argue that non-default

components such as bond-specific illiquidity and overall illiquidity risk do exist. This is because

most corporate bonds are traded in thin markets which are related with higher transaction

costs in compare to the trade markets of equities and Treasuries securities. Tax effect is also

considered to be an important determinant of the credit spread puzzle. In contrary to the

Treasury securities, corporate bonds are subject to tax-payments at the state level. Arbitrage

1Credit risk models can be classified in two main categories: the structural models and the reduced form

models. The basic framework of the first discipline consists to evaluate corporate bond prices by using option

theory, see Merton (1974) and Black and Scholes (1973). The second discipline is based however on arbitrage

theory, see, e.g., Duffie and Singleton (1997).
2Elton et al. (2001) define corporate sport rate and the government sport rate as the yield to maturity on a

zero-coupon corporate bond and the yield to maturity on a zero-coupon government bond respictively. The spot

spread is accordingly defined as the difference between both rates.
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theory implies hence that such a cost will be priced in the bond yields. Elton et al. (2001) find

that the effect of taxes is depending on the rating level and the maturity. Amato and Remolona

(2003) argue, however, that such dependency is weakly significant and that tax-effect is roughly

constant across rating classes. Extending the structural models proposed by Longstaff and

Schwartz (1995), Collin-Dufresne, Goldstein, and Martin (2001) examined the effect of a large

number of risk proxies.3 They detected high cross-correlations in the residuals of the regressed

time series and conjectured that an undefined messing factor is generating this cross-section

dependencies. The principal component analysis of the idiosyncratic residuals reveals that 75%

of the unexplained variation can be captured by the first component. The authors examined

additionally the effects of several macroeconomical and financial determinants and argued that

such variables do not explain the detected common effect.

In the finance literature, this enigmatic discrepancy between the spread levels and the ex-

pected default risk is called the ”‘credit spread puzzle”’. According to Elton et al. (2001),

Driessen (2004) and Amato and Remolona (2003), a possible explanation of this puzzle lies in

the existence of an unavoidable systematic risk factor which is difficult to diversify. Fama and

French (1993) investigated the yield spread of bond portfolios by using time series analysis.

They determined two main factors: the first is related to the maturity and the second can be

interpreted as the common default risk premium. The high fitting quality of the regression mod-

els shows that these two determinants can serve as a good explanation for bond portfolios. The

authors did not discuss, however, why these factors can not explain individual bonds when ob-

served separately. Kagraoka (2010) decomposed the credit spread into credit risk, liquidity risk,

and an unobservable common component which he defined as systematic risk premium. The

later is modelled by a unidimensional factor structure and estimated jointly with the remaining

model parameters by using a panel data model with a simple time-varying heterogeneity effect.

Motivated by this enigma, we extend in this paper the empirical development of Kagraoka

(2010) and allow for the unobserved systematic risk premium to have a multi-dimensional factor

structure. In fact, such model specification enables us to control precisely for the cross-section

dependencies detected in Collin-Dufresne et al. (2001). Although the credit spread was the focus

of many empirical investigations in the finance literature, none of the previous studies has used

a panel data model with multiple time-varying individual effects. Corporate bonds are indeed

3Collin-Dufresne et al. (2001) identify 6 theoretical determinants of the credit spread changes. The proposed

components are: Changes in the Sport Rate, Changes in the Slope of the Yield Curve, Changes in Leverage,

Changes in the Probability or Magnitude of a Downward Jump in Firm, and Changes in the Business Climate.
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exposed to divers sources of uncertainty, so that the unobserved risk effect can be generated by

multi-dimensional risk components. Moreover, our setting can provide an objective indicator to

assess the difficulty of diversification mentioned in Elton et al. (2001) and Amato and Remolona

(2003). We will show that by using state-of-the-art panel data models, it is possible to estimate

the number of the unobserved common risk factors, say d, simultaneously with the effects of the

observed risk components.

Our empirical model will be described in detail in Section 2. But after eliminating the rating

class effects, it belongs to a class of panel data regression models which can generally be written

in the form:

Yit = X ′
itβ + FtΛ

′
i︸︷︷︸

(1×d)×(d×1)

+ǫit for i = 1, · · · , N and t = 1, · · · , T. (1)

A precise definition of the dependent and the independent variables used in our application are

given in Section 2 and 3. The difference between (1) and the classical panel models consists in

the unobserved factor structure FtΛ
′
i. Here, Λi is a 1 × d vector of individual scores (or factor

loadings) and Ft is 1 × d vector of the unobservable common time-varying factors which we

interpret as systematic risk components. ǫit is the idiosyncratic component.

To estimate panel models of the form (1), Bai (2009) proposes an iterated least squares

method. The author considers the stationary case and provides asymptotic theory when N and

T are both large . However, assuming the common factors to be I(0) processes can be very

restrictive in the practice specially when studying panels of security prices which are mostly

affected by unknown stochastic trends. Bai et al. (2009) extend the theoretical development

of Bai (2009) and consider the case where the cross sections share common stochastic trends

of unit root processes. Using Bai’s method, they prove that the asymptotic bias rising from

the time series in such case can be consistently estimated and corrected. S. Ahn, Lee, and

Schmidt (2006) consider the classical case where T is small and N large and estimate the model

by using the Generalized Method of Moments (GMM) based on Instrumental Variables (IV).

They show that the GMM estimators are more efficient than the iterated least squares estimator

of Bai (2009) under fixed T . In contrast, Bai’s method provides an alternative set-up if T is

allowed to be large. A second critique on the iterative approach of Bai (2009) and Bai et al.

(2009) is that the proposed method considers the number of the unobserved factors to be known

which is, of course, not evident in the reality.4 Pesaran (2006) attempts to control for the

4In this context, Bai and Ng (2002) and Bai (2004) propose appropriate panel information criteria in order to

assess the number of the significant factors.
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hidden structure by introducing additional regressors in the model, which are the cross-section

(weighted) averages of the dependent variables and the (weighted) averages of the observed

explanatory variables. The advantage of the proposed estimation method is its invariance face

to the unknown factor structure dimension. However, the issue of identification requires special

rank conditions, which are not always fulfilled in economic and finance data. A new approach

based on a semi-parametric method and a (functional) factor analysis is proposed by Kneip,

Sickles, and Song (2009).

Our empirical study relies on a large number of U.S. corporate-government bond yield spreads

over a period of 397 business days. Our data are extracted from the on-line data base ”‘Datas-

tream”’. The time series of the collected variables seems to possess unit roots.5 We therefore

choose to implement slightly modified versions of the estimators proposed in Bai et al. (2009),

and propose an algorithmic refinement of the existing estimation method. Our algorithm enables

us to estimate the number of the unobserved common factors jointly with the remaining model

parameters and provides a practical and general iteration scheme which is easy to program.

Furthermore, we provide detailed inference procedures. Our result confirms the presence of four

uncorrelated systematic risk factors affecting the U.S. corporate bonds during the period be-

tween September 2006 and March 2008. However, one simple risk factor is sufficient to describe

the data for all time periods prior to mid July 2007 when the subprime crisis was detected in the

U.S. market. The dimensionality of the unobserved risk components therefore seems to reflect

the degree of difficulty to diversify the individual bond risks in the financial market.

The remainder of this paper is organized as follows: Section 2 describes our basic panel

data model and illustrates the explanatory variables to be considered. Section 3 proposes an

algorithmic refinement of the estimation method proposed by Bai (2009) and Bai et al. (2009)

in order to estimate jointly all the parameter of interest, namely, the common slope estimator,

the interactive parameters as well as the optimal factor dimension. Section 4 offers a simple and

brief pseudo code to program the estimation method in concrete terms. Section 5 discusses the

bias correction procedure to re-center the limiting distribution of the slope estimator. Section

6 discusses the estimation procedure of the pre-eliminated group effects. Section 7 describes

the data and presents our empirical results. Finally, conclusions and remarks are provided in

Section 8.

5The Panel Analysis of Non-stationarity in Idiosyncratic and Common Components (PANIC) proposed by

Bai and Ng (2004), enables us to examine stationarity not only in the observed variables but also in the hidden

time-varying common factors. The preliminary tests performed on the credit spread variable do not reject the

unit root hypothesis as we expected.
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2 The Model

We extend the idea of Kagraoka (2010) and decompose the corporate- government yield spread

into credit risk, liquidity risk and an unknown number d of time varying systematic risk premia.

More precisely, our panel model can be written as follows:

CSit = µt + LRitβ +

K∑

k=1

δikαkt +

d∑

l=1

λilflt + εit for i = 1, · · · , N and t = 1, · · · , T. (2)

The explained variable CSit is the corporate-government credit spread defined as

CSit = Rit − RG,it

where Rit and RG,it measure the corporate bond yield i at time t and its duration-equivalent

government bond, respectively. The explanatory variable LRit measures the liquidity risk of bond

i at time t. Several proxies of illiquidity have been considered in the literature. 6 Following

Bessembinder et al. (2005), we construct our measure based on the following quoted bid-ask

spread:

LRit =

∣∣∣∣
RA

it − RB
it

RB
it

∣∣∣∣× 100

where RA
it and RB

it are the ask-yield and the bid-yield of bond i at time t. It is indeed easy to

realize that the larger the spread, the more problematic the immediate trading becomes and

vice versa. We expect the credit spread to be larger for less liquid bonds.

Following many previous studies, we consider the rating class to be a measure for assessing

the credit default risk, see, e.g. Gebhardt, Hvidkjaer, and Swaminathan (2002), Houweling et

al. (2005) and Kagraoka (2010). In fact, the credit level constitutes the synthetic evaluation of

the rating agencies tacking into the account the default probability as well as the recovery rate.

In our model this proxy is presented by the delta function δik which we define as follows

δik =





1 If bond i has the rating level k and

0 else,

where the rating classes are nominally scaled from 1 to K. In our application, 1 stands for the

best rating class and K for the worst one. In order to focus our analysis on the unobserved

systematic risk premia, we consider only bonds which did not experienced a rating migration

during the observation period. Different from the most existing works, we allow for time-varying

rating effects αkt. This establishes a general framework which enables us to to assess possible

6See, e.g.,Bessembinder, Maxwell, and Venkataraman (2005), Chen, Lesmond, and Wei (2002), Houweling,

Mentink, and Vorst (2005)and Lesmond (1999).
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time changes in investors’ behavior. In fact, investors may not necessary accord the same

importance to the evaluation of the rating agency when acting in upward phases and when

acting in crisis time. We expect credit risk to possess higher explanatory power than liquidity

risk.

The stochastic process {flt} represents the time pattern of underlying common risk factors

which we expect to be non-stationary. Because flt is not depending on i, we may interpret these

components as unavoidable systematic risks affecting the totality of the credit spreads. The

scores λil are the corresponding individual loading parameters describing the effect of flt on

each bond i independently of its rating class. The distinction between the role of the individual

effects λi and the role of the time invariant rating levels can be expressed mathematically by

condition

(R.1):
∑K

k αkt = 0,
∑N

i λil = 0 and
∑N

j λjlδjk = 0 for l = 1, . . . , d and k = 1, . . . ,K.

Note that (R.1) does not impose any restriction but only identifies the values αkt and λjl in

model 2. Analogously to Kagraoka (2007), we interpret the interaction between λjl and flt as

the systematic risk premium imposed by the investors on the bond i at the time t.

The number of the systematic risk components d is considered to be unknown a priori and

has to be estimated jointly with the remaining model parameters. In our analysis, we accord

to the estimation of d a special attention. The role of d is in fact intended to determine the

number of the missing factors explaining the credit spread puzzle. Because d is describing the

space dimension of the orthogonal common risk factors, we interpret it as a measure to assess

the degree of difficulty to diversify the individual bond risks in the market. The higher the

factor dimension d, the more difficult to avoid the systematic risk.

An intrinsic problem of factor models consists in the fact that true factors only identifiable

up to rotation. Therefore, in order to ensure the uniqueness of λi and flt (up to a sign change),

we impose the following conditions which are commonly used in approximated factor analysis:

(R.2):
∑N

i λilλih = 0 for l 6= h and
∑N

i λ2
i1 ≥

∑N
i λ2

i2 ≥ · · · ≥
∑N

i λ2
id > 0

(R.3):
∑T

t ftlfth = 0 for l 6= h and 1
T

∑T
t f2

tl = 1 for all l, h ∈ {1, · · · d}.
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3 The Estimation Method

In a first step, we concentrate our presentation on estimating β, ftl, λli and d. For this purpose,

the rating effects are eliminated from our model by using a group mean filtration. This sim-

plifies the estimation procedure since it avoids to revert to constrained optimization techniques

explicitly relying on (R.1). The parameters αkt will be estimated in a second step (see Section

6). Let

yit = CSit −
∑K

k
1

♯{j|δik=1}
∑N

j CSjtδjk

xit = LRit −
∑K

k
1

♯{j|δik=1}
∑N

j LRjtδjk.
(3)

Now, rewriting our model (2) with Yi = (yi1, · · · , yiT )′, Xi = (xi1, · · · , xiT )′, F = {ftl} and

Λi = (λi1, . . . , λid), we get

Yi = Xiβ + FΛ′
i + ǫi. (4)

As outlined in the introduction, we consider here X and F to be I(1) processes. Bai et al.

(2009) propose, in this context, two methods to estimate β, F and Λ. The estimators, referred

to as CupBC (continuously-updated and bias-corrected) and CupFM (continuously-updated and

fully-modified) estimators, are the result of an iterated least squares approach as proposed by

Bai (2009) combined with a bias correction technique. However, the proposed methods rely on

a known factor dimension d. The authors suggest that, in practice, an appropriate d may be

estimated separately by using a suitable information criterion, see, e.g., Bai and Ng (2002) and

Bai (2004).

In this section, we propose a refined algorithmic in order to provide a joint estimation of all

the parameters of interest, namely, the common slope estimator β̂, the interactive parameters

Λ̂i and F̂ as well as an estimate d̂ of the factor dimension. The basic idea of our extension is

to consider the continuously-updated estimators of Bai et al. (2009) as conditional estimators

depending explicitly on the factor dimension. The latter is jointly estimated over all possible

d = 0, 1, . . . , dmax by means of a penalty term integrated directly in the global objective function

to be optimized. The final solution of our algorithm is obtained by double iteration: inner

iteration to obtain β̂, F̂ and λ̂ and an outer loop to select d̂. The updating procedure is repeated

till convergence of all the parameters. We will show in the appendix that such an extension do

not affect the asymptotic result elaborated by Bai et al. (2009). Our optimization criterion can

be therefore defined as a penalized least squares objective function of the form:

S(β, F,Λi, d) =
N∑

i

||Yi − Xiβ − FΛ
′

i||2 + dg{N,T}, (5)
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where g{N, T} is a penalty function depending exclusively on the sample size N and T . The

appropriate choice of g{N, T} will be discussed later. Note here, that, for known d, minimizing

S(β, F,Λi|d) with respect to (β, F,Λi) corresponds exactly to optimize the objective function

proposed by Bai (2009) and Bai et al. (2009). The role of the additional term dg{N,T} in (5)

is to pick up the optimal dimension of the unobserved factor structure FΛ
′

i. In order to focus

our presentation on the algorithmic aspect of the estimation method, we define a functional

hierarchy describing the way in which we will concentrate out our estimators iteratively:

Λ̂i ◦ F̂ ◦ β̂ ◦ d̂ = Λ̂i

(
F̂
(
β̂(d̂)

))
. (6)

Cao (2010) named this technique as Parameter Cascading and used it to estimate complex

mixed effects models with multi-level parameter structures. The algorithm is relatively easy to

program and can be described in the following steps.

Step 1 (the individual parameters Λi): First, we concentrate out the individual parameters

by minimizing the objective function S(β, F,Λi, d) with respect to Λi for each given F, β and

d. Because the penalty term is not depending on Λi, the intermediate optimization criterion at

this stage can be expressed as:

S1(λi|β, F,d) =

N∑

i

||Yi − Xiβ − FΛ
′

i||2. (7)

Now, minimizing for Λi and using restriction (R.3), we get

Λ̂
′

i(β, F,d) =
(
F ′F

)−1
F ′ (Yi − Xiβ) = F ′ (Yi − Xiβ) /T. (8)

Step 2 (the time trend effects F ): In order to estimate the multi-dimensional time effect F ,

we make use of result (8) from Step 1 and minimize a concentrated objective function S2(F |β,d)

depending only on β and d. In fact, introducing (8) in (5) and neglecting again dg{N,T}, the

new intermediate criterion S2(F |β,d) can be defined as

S2(F |β,d) =
∑N

i ||Yi − Xiβ − F Λ̂
′

i||2

=
∑N

i || [Yi − Xiβ] − FF ′

T [Yi − Xiβ] ||2.
(9)

Rearranging (9), we can see that minimizing S2(F |β,d) is equivalent to maximize the term
∑N

i ||FF ′

T (Yi − Xiβ)||2. Solving for F (β,d) subject to (R.3), we obtain the following result:

F̂ (β,d) =
√

T P̂ (β,d) (10)

8



where P̂ is a T × d matrix binding the first d eigenvectors (P̂1, P̂2, · · · , P̂d) which correspond to

the first d eigenvalues, ρ̂1(β,d) ≥ ρ̂2(β,d), · · · ,≥ ρ̂d(β,d), of the empirical covariance matrix

Σ̂(β,d) =
1

NT

N∑

i=1

(
[Yi − Xiβ(d)] [Yi − Xiβ(d)]′

)
(11)

such that
[
Σ̂(β,d) − ρ̂l(β,d)

]
P̂l(β,d) = 0 for all l = 1, . . . ,d. (12)

Step 3 (the common slope parameter β): To estimate the common slope parameter, we

reintegrate (8) and (10) in (5) and optimize the new intermediate objective function

S3(β|d) =

N∑

i

||Yi − Xiβ − F̂ Λ̂i(β,d)||2. (13)

Note that F̂ Λ̂i(β,d) depends nonlinearly on β. Minimizing S3(β|d) with respect to β for

each given d leads hence to solve a system of nonlinear equations. Because an analytical solution

is not given, optimization needs numerical techniques. Recall from the classical ordinary least

squares method that the infeasible common slope estimator for known F and Λi is given by

β̂infeasible(d) =

[
N∑

i=1

X ′
iXi

]−1 [ N∑

i=1

X ′
i

(
Yi − FΛ

′

i

)]
. (14)

Following Bai (2009), Bai et al. (2009), we propose to estimate β by replacing FΛ
′

i with

F̂ Λ̂i(β
(0), d) for an appropriate starting value β(0) and updating (14) iteratively till conver-

gence. At the optimum, the continuously-updated estimators (Cup) for β, F and Λ satisfy the

following equality7

β̂Cup(d) =

[
N∑

i=1

X ′
iXi

]−1 [ N∑

i=1

X ′
i

(
Yi − F̂ Λ̂

′

i(β̂Cup,d)
)]

. (17)

7Bai (2009) and Bai et al. (2009) use the analytical form of λ̂i to express S3(β|d) such that

S3(β) =

N∑

i

|| (Yi − Xiβ) −
1

T
F̂ F̂

′

(Yi − Xiβ) ||2. (15)

Alternatively to (17), the Cup-estimator of β, can be obtained by updating continuously

β̂ =

(
N∑

i=1

X ′

iMF̂ Xi

)−1( N∑

i=1

X ′

iMF̂ Yi

)
(16)

where MF̂ = IT×T − F̂ F̂
′

/T . However, programming β̂(d) as defined in (16) induces a slower routine which

requires updating the inverse matrix (
∑N

i=1
X ′

iMF Xi)
−1 during each iteration.
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Step 4 (the dimension d): Recall from equation (17) that our setting differs slightly from

that proposed by Bai (2009) and Bai et al. (2009). In effect, our estimation algorithm treats

β̂Cup(d) as an estimator depending explicitly on the unknown factor dimension dimension which

has to be jointly estimated from the data. In this regard, functions such as AIC, BIC, Mallows’

Cp are well known in the model selection literature. However, such criteria do not consider the

case of panel data models with simultaneously diverging N and T . Bai and Ng (2002) propose

adjusted criteria in order to ensure consistency of the selection procedure in such cases. The basic

idea of their approach consists simply to find a suitable penalty function which re-establishes

the undesired variance minimization when d increases8. Explicitly, the optimal dimension d̂ is

obtained by minimizing numerically a panel criterion of the form

PC(d) =
1

NT

N∑

i=1

T∑

t=1

(Yit − Ŷit(d))2 + dg{N,T},

where g{N,T} is a penalty function depending on the sample size N and T and scaled by a finite

parameter. The appropriate choice of g{N,T} is however subject to the context in which we are

modelling our data. Bai (2004) considers explicitly the case of I(1) common factors and proves

under similar assumptions that any penalty function satisfying the following conditions

(i) limN,T→∞ g{N,T} −→ ∞ and

(ii) limN,T→∞
log log(T )

T g{N,T} −→ 0,

will be able to pick up the true factor dimension d with probability P [d̂ = d] = 1, as N, T → ∞.

It is however important to notice that the above setting assumes the factors to be extracted

directly form observed variables without the presence of additional regressors in the model. In

a similar context, Bai (2009) argue that estimating β jointly with F and Λ will not affect the

analysis of Bai and Ng (2002) as long as β can be consistently estimated for any bounded d̄,

such that d ≤ d̄ ≤ dmax. Motivated by this argument, we introduce the penalty term in the

global objective function presented in (5). Now, adopting the development of Bai (2004) and

making use of result (8), (10) and (17), we define our dimensionality criterion as

S4(d) =
1

NT

N∑

i

||Yi − Xiβ̂Cup(d) − F̂ Λ̂i(β̂Cup,d)||2 + dσ̂2a
log(b)

b
, (18)

where a = T/(4 log log(T )), b = NT/(N + T ) and σ̂2 denotes the variance estimator of the

idiosyncratic errors ǫit. In practice, σ̂2 has a proper scaling role and can be simply replaced by

8Kapetanios (2009) proposes alternatively a threshold approach based on the empirical distribution properties

of the largest eigenvalue. The method requires the idiosyncratic errors to be independent and identically dis-

tributed. Onatski (2009) extended the approach of Kapetanios (2009) by allowing the errors to be either serially

correlated or cross-sectionally dependent (but not both). Alternatively, S. C. Ahn and Horenstein (2009) propose

to estimate d by maximizing the ratio of two adjacent eigenvalues (or the ratio of their growth rate).
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σ̂2
dmax

= 1
NT

∑N
i ||Yi − Ŷi(dmax)||2. Note that, minimizing S4(d) numerically by mean of a naive

selection procedure for all possible d = 0, 1, . . . , dmax suffices to minimize entirely our global

objective function defined in (5). This requires however extensive computations specially when

N and T are large. To leave out such ambiguity, we propose to select d̂ simply by replacing

β̂Cup(d) and F̂ Λ̂i(β̂Cup,d) in (18) by β̂Cup(d
(0)) and F̂ Λ̂i(β̂Cup, d

(0)) for an appropriate starting

value d(0) and updating d̂ iteratively. In fact, during each iteration stage, say m, the first term

on the right hand-side of equation (18) can be simply expressed in term of the eigenvalues
{

ρ̂l(β̂Cup,d
(m−1)) |l = 0, 1, . . .

}
. The latter do not require any extra computations because they

are essentially needed to estimate F̂Cup(β̂Cup, d
(m−1)) during the previous iteration (see Step 2).

Optimizing d(m) returns therefore to select directly the dimension corresponding to the smallest

element of the following set

{
T∑

l=d+1

ρ̂l(β̂Cup,d
(m−1)) + dσ̂2a

log(b)

b

∣∣∣∣∣ d = 0, 1, . . . , dmax

}
. (19)

Finally, the global minimizer of the objective function (5) is obtained by double iterations:

inner iteration to optimize β̂Cup(d), F̂Cup(d) and λ̂Cup(d) for each d and an outer iteration to

select the optimal dimension d̂. The updating process is repeated entirely till convergence of all

the parameters. The starting values and the iteration scheme will be discussed in Section 4. At

the optimum, the obtained estimators, referred hereafter to as entirely updated estimators and

denoted by Eup, satisfy the following equation system:

d̂ = arg min
d

[
T∑

l=d+1

ρ̂l(β̂Eup, d̂)

]
+ dσ̂2a log(b)

b ,

β̂Eup =

[
N∑

i=1
X ′

iXi

]−1 [ N∑
i=1

X ′
i

(
Yi − F̂ Λ̂

′

i(β̂Eup, d̂)
)]

,

F̂Eup =
√

T P̂ (β̂Eup, d̂),

Λ̂
′

Eup,i = F̂
′

Eup

[
Yi − Xiβ̂Eup

]
/T.

(20)

4 Iteration Scheme

Though the complex structure of our estimators, implementing the algorithm which optimize

S1(λi|β, F,d), S2(F |β,d), S3(β|d) and S4(d) simultaneously is relative easy. In order to converge

to the global optimum, the starting values β(0) and d(0) should be however chosen with a

minimum of precaution.

In this paper, we distinguish two natural choices of β(0): if the observed regressors are

11



supposed to be uncorrelated with the factor structure, then we can start with the classical within

estimator; in the contrary, if the unobserved time-varying factors and the observed regressors

are expected to be highly correlated, then the within estimator can fail. In this case, we set

β(0) = 0 and start directly with the eigenvectors of the empirical covariance matrix defined in

(11). As an initial dimension d(0), we propose to choose an arbitrary mid-large integer dmax.

A simple pseudo code which optimize the global objective function S(λi, F, β,d) presented

in (5) can be simply described as following:

1. Set d(m) =





dmax if m = 0

d(m−1) if m > 0

2. Set β(r) =





{0, β̂within} if r = 0

β(r−1) if r > 0

3. Call (10) to calculate F (r) = F̂ (β(r),d(m))

4. Call (8) to calculate Λ
(r)
i = Λ̂i(F

(r), β(r), d(m))

5. Call (17) to update β(r+1) = β̂(d(m)|F (r)Λ
(r)′

i )

6. If (β(r+1) = β(r)) go to 7, else repeat 2 - 6 with (r + 1) instead of (r)

7. Select d(m+1) according to (19)

8. If (d(m+1) = d(m)), exit, else go to 1 with (m + 1) instead of (m).

Furthermore, in order to speed up the computation process when T > N , we may reconstruct

the algorithm with the functional hierarchy F̂ ◦ Λ̂ ◦ β̂ ◦ d̂ instead of Λ̂ ◦ F̂ ◦ β̂ ◦ d̂. The benefit of

such modification is to calculate the eigenvectors of a smaller covariance matrix with a dimension

N × N instead of T × T . Both computations lead ultimately to the same result.

5 Inference and Bias Correction

Our theoretical set-up heavily relies on the basic work of Bai et al. (2009). A crucial condition

is that Xi and F are generated by I(1) processes. However, theoretical analysis of our model

(4) encounters the additional complication that effects of group mean filtration has to be taken

in the account.

12



Asymptotic properties of our estimators along with all underlying assumptions are given in

the appendix. Fortunately, it can be shown that filtration effects are asymptotically negligible

and that the results of Theorem 1 and 2 in Bai et al. (2009) generalize to our situation. In

particular, the slope estimator β̂Cup(d) to be obtained for the true factor dimension d is at least

T consistent. The limiting distribution of
√

NT (β̂Cup(d) − β) is however not centered at zero

and given by
√

NT (β̂Cup(d) − β) −
√

Nφ
d−→ MN(0,Σc) (21)

for some φ and Σc where MN denotes the mixed normal distribution .9 We show in Theorem 2 in

the appendix that d̂ is a consistent estimator of d and that our final estimator β̂Eup = β̂Cup(d̂)

which has the same asymptotic properties as β̂Cup(d). Note that performing the usual test

statistics such as t−, F− and χ2 tests directly on β̂Eup, may lead to false interpretations. This

is due to the presence of the bias term φ in (21). Analogously to Hahn and Kuersteiner (2002),

Bai et al. (2009) prove that it is possible to construct a consistent estimator φ̂. Following their

suggestion we define our entirely updated and bias corrected estimator by:

β̂EupBC = β̂Eup −
1

T
φ̂. (22)

We want to emphasize that calculating φ̂i requires extra exertion because it is depending on

unknown matrices, say Ωi and Ω∗
i which are the long run and one-sided long run covariances of

the vector containing the errors of the stochastic processes Yit, Xit and Ft. Following Moon and

Perron (2004) and Bai et al. (2009), we estimate Ωi and Ω∗
i by using a kernel estimator. The

precise formulas for constructing φ̂ are given in the appendix.

The bias corrected estimator β̂EupBC now satisfies (see Theorem 2 in the appendix)

√
NT (β̂EupBC − β)

d−→ MN(0, Σc). (23)

A consistent estimator Σ̂c of Σc is also defined in the appendix. This then allow us to calculate

t-statistic and the test for the significance of β̂EupBC . After having calculated β̂EupBC a final

bias corrected estimators of F and Λi can be obtained by F̂EupBC =
√

T P̂ (β̂EupBC , d̂) and

Λ̂
′

EupBC,i = F̂
′

EupBC

(
Yi − Xiβ̂EupBC

)
/T , respectively. Theorem 2 in the appendix shows that

F̂EupBC provides consistent estimator of the true factors up to rotations.

9The exact expression of φ and Σc is given in the appendix.
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6 Estimating the Group Effects

Recall from Section 3 that our objective function (5) is used only to estimate Λ, F, β and d.

In order to estimate the pre-eliminated rating effects αkt discussed in Section 2, we propose

to use a dummy variable regression once β̂EupBC and F̂ Λ̂
′

(β̂EupBC , dopt) are obtained. In fact,

calculating α̂k does not require any iteration. This is due to restriction (R.1) which ensures a

linear independency between αit and Λi. The solution has consequently the same form as the

classical fixed effects estimators:

µ̂t = CS.t − LR.tβ̂EupBC

α̂kt = CSkt − LRktβ̂EupBC − µ̂
(24)

where CS.t = 1
N

∑N
i CSit, LR.t = 1

N

∑N
i LSit, CSkt = 1

mk

∑N
i δikCSit, and LRkt = 1

mk

∑N
i δikLSit,

with mk = ♯{i|δik = 1} for k = 1, . . . ,K. Under our assumptions given in the appendix, it is

easy to show that α̂it is
√

mk consistent and has an asymptotic normal distribution, such that

√
mk(α̂kt − αkt)

d−→ N(0, σ2
kt) (25)

where σ2
kt = V ar(ǫit.) with ǫit. = 1

mk

∑N
i δikεit. A consistent estimator of σ2

kt can be obtained

by

σ̂2
kt =

1

mk

N∑

i

δik

(
CSit − ĈSit

)2
. (26)

where ĈSit = µ̂t + LRitβ̂EupBC +
∑K

k=1 δikα̂kt +
∑d̂

l=1 λ̂il,Eupf̂lt,Eup. A 95% confidence interval

for αit can be therefore constructed at each time point t as follwoing

[
α̂kt − 1.96

σ̂kt√
mk

, α̂kt + 1.96
σ̂kt√
mk

]
. (27)

7 Application: The Unobserved Risk Premia of Corporate Bonds

We write the estimation algorithm in a R-Package (hereafter to be called phtt). The routines

as well as the R-workspaces and graphic codes are provided on the website of our Institute.

7.1 Data Description

Our data are extracted from Datastream which is an on-line database containing a broad range

of financial entities and instruments. Our explained variable is the credit spread defined as
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the difference between the corporate bond yield and the treasury (or government) bond yield

with the same maturity. Because the maturities for most of the bonds for which the spread is

calculated will not exactly match the maturity of the available government benchmark bonds,

Datastream uses a linear interpolation to estimate the yield of the duration-equivalent govern-

ment benchmark. The spread is expressed as yield difference in basis points. The explanatory

variables are the credit rating levels and the quoted bid-ask yield spread of the corresponding

bonds. Our observation period extends from September 18, 2006 to May 25, 2008 including

so the (first) alarms of the subprime mortgage problem detected in the U.S. market mid 2007.

We choose U.S. corporate bonds rated by S&P. In order to focus our analysis on the impact of

the unobserved time varying systematic risk premium, we eliminate bonds which experienced a

rating migration during the observation period. Moreover, we choose fixed rate bonds with long

remaining time to maturity. This is to marginalize the possible term structure effects. Finally,

we neglect securities that have missing prices. We then obtain an equidistant panel data based

on 96 U.S. corporate bonds over a period of 397 business days. The retained rating classes are

AAA, AA, A, and BBB. The number of bonds by rating is presented in table 1. Descriptive

statistics about the credit spread and the liquidity spread variables are summarized in table B.

The non-stationarity of the collected data is tested by using the PANIC-analysis proposed

by Bai and Ng (2004). Several procedures for testing unit root hypothesis in panel data models

have been proposed in the recent literature, see e.g. Bai and Ng (2004), Moon and Perron

(2004), Pesaran (2007) and Chang (2002). However, The PANIC method (Panel Analysis of

Non-stationarity in Idiosyncratic and Common Component) enables us to examine stationarity

not only in the observed variables but also in the hidden time-varying factor structure. For our

data the null hypothesis is not rejected.10

Figure 1 displays the 3 dimensional charts of the time series spread curves before and after

the within group transformation discussed in Section 2.

7.2 Empirical Results and Interpretations

The results of our estimation method are presented in Table 3. The estimated liquidity risk effect

is statistically significant and amounts to 0.1006726 with a standard deviation of 0.0050672. This

result confirms the previous findings of Chen et al. (2002), Elton et al. (2001) and Kagraoka

10The test was applied using Xi and Wi = Yi − Xiβ̂Eup.
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18 Sep. 2006

16 Jul. 2007

25 Mar. 2008

AAA
AAABBB

YS

The Yield Spreads

18 Sep. 2006

16 Jul. 2007

25 Mar. 2008

AAA
AAABBB

YS (WGT)

The Within Group Transformed Yield Spreads

Figure 1: The spread curves before and after the within group mean filtration (in 3D)

(2010). In fact, the more illiquid the bond, the higher the expected credit spread is.

Recall from our Model 2, that the rating effects are considered to be time varying parameters.

Indeed, investors may not accord the same importance to the rating class when planing to invest

in an upward phase as when acting in crisis tide. The time series of the estimated parameters

α̂kt and their corresponding 95%− confidence intervals are depicted in Figure 2. The confidence
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Figure 2: The time series of the estimated rating effects.

intervals of the default risk parameters indicate that the rating effects are statistically significant,
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except for class A during the short time period from January to February 2008. This finding

qualitatively agrees with the existing literature which confirms the significance of the default

risk effect, see e.g. Collin-Dufresne et al. (2001), Huang and Hunag (2003) and Kagraoka (2010).

It is however clearly seen, that the time pattern exhibits some structural changes after July

16, 2007. In particular, the volatility of α̂kt over the rating classes k = 1, . . . ,K increases. The

stable negative effect of the rating class A during the first period registered some irregularity

in the second period of time and became positive in 2008. It is important to note here that

these structural changes coincide with the beginning of the subprime problems detected in the

U.S. market mid July 2007. This indicates a change of investors’ behavior how seem to possess

different perception of the external credit rating in stable and crisis time.

The dimensionality criterion presented in (18) is minimized for d̂ = 4. This result confirms

the presence of a multi-dimensional systematic risk affecting the yield spread variable. The first

common risk factor F̂1t and the boxplots of the corresponding individual loading parameters λ̂1i

(grouped by rating class) are displayed in Figure 3.11 The structural change affecting the rating
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Figure 3: The first common factor and the loading parameters.

effects in Figure 2 is explicitly shown in Figure 3-a. The trajectory of F̂1 is quite obviously non-

stationary and registers a dramatic increase starting from July 16, 2007. This may be explained

by the emergency of the subprime crises at this time. The boxplots presented in Figure 3-b show

a high volatility of the loading parameters among the rating class BBB comparing to A, AA and

11Note that there is an ambiguity to interpret directly F̂l and λ̂il as estimators of Fl and λil because the sign

of Fl is not uniquely identified by imposing the classical restrictions (R.1)- (R.3). To overcome this problem

we propose to choose the sign of F̂1 such that
∑N

i

∑T

t
F̂t1Yit > 0. This is just to ensure that the time-varying

common factor and the main trend of the credit spread curves maintain essentially the same movement direction.
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AAA. The standard deviations of the individual parameters corresponding to the rating groups

BBB, A, AA and AAA amount to 0.419, 0.0831, 0.0448 and 0.0264 respectively. The individual

time series of the first component Ĉi1 obtained by

Ĉi1 = λ̂i1F̂1

are displayed in Figure 4. Bonds which have positive effects during the period from September

The first risk component
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Figure 4: The first principal component.

18, 2006 to July 16, 2007 register an important raise in the next period. In the counterpart,

bonds which perform badly in the first period due to the negative amounts of Ĉi1 show further

decreases in the yield spread during the second period. This result confirms the hypothesis of

Jegadeesh and Titman (1993) and Chan, Jegadeesh, and Lakonishok (1996) who assert that

security returns are affected by a so called momentum effect. This term is used to describe a

typical investors’ behavior which consists in buying stocks which have performed well in the

past and selling stocks that have performed poorly. Our analysis thus sheds some light on an

on-going discussion in the literature on stock market prices. Harvey and Siddique (2000) and

Kang and Li (2009) argue that the momentum effect is an individual aspect which can not be

explained by using common components. In the contrary, Chordia and Shivakumar (2002) and

Chichernea and Slezak (2010) assert that momentum may effectively stem from some common

factors.

In order to interpret the second, third and fourth individual risk components, we consider
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Figure 5: The second, third and fourth principal components.

the sum

Ĉi,2,3,4 =
4∑

l=2

Ĉil where Ĉil = λ̂ilF̂l.

Note that the product λ̂ilF̂l is by nature uniquely identifiable and does not require any additional

restrictions. The obtained time series are depicted in Figure 5. Different from the first period,

the individual time patterns of the vector Ĉi,2,3,4, show complex and heavily heterogeneous

structures during the subprime crisis. More interestingly, when re-estimating our model for the

period spanning only the time before July, 16 2007, the dimensionality criterion discussed in

Section 3 detects the presence of just one I(1) factor. The emergence of the additional risk

components Ĉi2, Ĉi3 and Ĉi4 seems hence to reflect the panic behaviour of the market actors

during the crises. The number of the detected common risk factors can be interpreted as an

index assessing the difficulty of diversification mentioned in Elton et al. (2001) and Amato and

Remolona (2003) as a possible explanation of the credit spread puzzle. Indeed, the higher the

number of the common risk factors, the more difficult it is to diversify the individual bond risks.

To summarize, we find out that the effects of the default risk account for an amount between

32.87% and 57.52% of the credi spread variation. This result roughly agree with thre previous

findings reported by a large number of papers in the existing literature. Our analyis shows,

however, that the explanatory power of the credit rating is lower in crisis time, especially for

A and BBB bonds. Compared to the results of Elton et al. (2001), Huang and Hunag (2003),

we find the contribution of liquidity risk to explain credit spread is relatively low (between 1%
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and 10.23%). Finally, we are successful to estimate the unobserved time varying systematic risk

component which can neither be detected in the pure time series regressions nor in classical

panel data analysis. Moreover, by allowing the systematic risk to have a multi-dimensional

factor structure, we provide a more general framework than Kagraoka (2010) how assumes that

unobserved heterogeneity can be described by exactly one common component. By estimating

the factor dimension our approach provides an objective measure to assess the difficulty of

diversifying the individual risk of corporate bonds in the financial market.

8 Conclusion

Motivated by the enigma of the credit spread puzzle, we used a panel coeintegration model with

multi-time-varying individual effects and esetimate the unobserved systematic risk premium of

corporate bonds together with the default risk and liquidity risk effects. Our model specification

enables us to control for the cross-section dependencies detected in the most empirical researches

applied on the credit spread variable, see e.g. Collin-Dufresne, Goldstein and Martin (2001).

In order to estimate the number of factors jointly with the model parameters, we propose

an algorithmic refinement of the iterated least squares method proposed Bai (2009). We are

successful to estimate the unobserved time varying systematic risk component which can not be

detected neither in pure time series regressions nor in the classical panel data analysis. Moreover,

the joint estimation of the common factor dimension seems to provid an objective measure to

assess the difficulty of diversifying the individual risk of corporate bonds. Our result confirms

the presence of four common risk components affecting the U.S. corporate bonds during the

period between September 2006 and March 2008. However, one single risk factor is however

sufficient to describe the data for all time periods prior to mid July 2007 when the subprime

crisis was detected in the U.S. market.

Our analysis neglects, however, the possible effect of taxes. The later can be introduced in

the regression function by mean of a reasonable determinant. It is also important to note that

the asymptotic properties of the the Eup estimator is elaborated for the case where X and F

are generated by I(1) processes. This is, however, a special case of non-stationary processes and

imposes a strong restriction of applicability.

20



A Assumptions and theoretical results

Throughout, we denote by M a finite positive constant, not depending on N and T . We write

the Euclidean norm of a vector z as ||z||. We use B(.) to denote a Brownian motion process

defined on [0, 1] and [τ ] to denote the largest integer ≤ τ .

We now consider inference of (4) as (N, T ) → ∞. Here, (N, T ) → ∞ has to be interpreted

as a sequential limit: first T → ∞ and then N → ∞. For all N we assume an i.i.d random

sample of individuals. In order to establish more generally applicable results we will consider a

vector of p ≥ 1 explanatory variables, i.e., Xi ∈ R
P .

Our analysis relies on a slight modification of the arguments in Bai et al. (2009). It is

important to note that common factors are only identifiable up to rotation. We assume that

there are true underlying factors F 0 as well as corresponding loadings Λ0 such that

Yi = Xiβ + F 0Λ0′

i + ǫi. (28)

Our model assumptions will closely follow the setup of Bai (2004) and Bai et al. (2009).

Common factors and explanatory variables are assumed to be I(1) variables. However, we have

to take into account that (28) has been obtained by subtracting group means.

Let δik = 1, if individual i belongs to rating class k ∈ {1, . . . ,K}, and δik = 0, else.

Furthermore, set mk =
∑N

i=1 δik, k = 1, . . . ,K. In this setup, δik are i.i.d random variables and

mk

n converges a.s. to E(δik) as n → ∞. We will assume that infk=1,...,K E(δik) > 0.

Let EC(·) denote conditional expectation given F 0. Our analysis will be based on the

following assumptions:

(a) The loadings parameters: E||Λ0
i ||4 ≤ M ; As N → ∞, E(Λ0

i δik) = 0 for all k = 1, . . . ,K,

and 1
N

∑
i Λ

0
i Λ

0′
i

d→ ΣΛ, a d × d positive definite matrix.

(b) The common stochastic trends: Ft = Ft−1+ηt, where ηt are zero mean random variables

with E||ηt||4+γ ≤ M for some γ > 0 and for all t; As T → ∞, 1
T 2

∑
t FtF

′
t

d→
∫

BηB
′
η, a

d × d random matrix, where Bη is a vector of Brownian motions with a positive definite

covariance matrix Ωη. ηt is independent of δik for all i, t, k.

(c) Law of iterated logarithm: lim infT→∞
log log(T )

T 2

∑T
t=1 FtF

′

t = C a.s., where C is a non-

random positive definite matrix.
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(d) Explanatory variables: Xit = Xi,t−1 + ζit −
∑K

k=1 δik(X̄k,t−1 + ζ̄kt), where ζit are zero

mean random variables and X̄k,t−1 = 1
mk

∑n
j=1 Xj,t−1δjk as well as ζ̄kt = 1

mk

∑n
j=1 ζjtδjk.

(e) Error term: ǫit = εit −
∑k

k=1 δikεkt with ε̄kt =
∑n

j=1
1

mk

∑n
j=1 εjtδjk. Here, ǫit are zero

mean error terms and EC(ε̄kt|δik = 1) = 0 for all k. Conditional on ηt the error terms ǫit

are cross-sectionally independent, and also independent of Xit.

The additional terms X̄k,t−1, ζ̄kt and ε̄kt in Assumption d) reflect our subtraction of group

means. We want to emphasize that such transformation only influences the structure of error

terms and explanatory variables, but not the factor F 0
t . The condition of uncorrelatedness

of λ0
ij and λ0

il for j 6= l just identifies the different common factors and does not impose any

restriction. The requirement E(Λ0
i δik) = 0 for all k = 1, . . . ,K is the population version for

our condition (R.1) introduced for identifying αkt. If ℓ0
i denote the (uncorrelated) loadings

of the original model (2), then after subtraction of group means, (28) necessarily holds with

loadings Λ0
i = ℓ0

i − δik ℓ̄k, where ℓ̄k =
∑K

k=1
1

mk

∑n
j=1 ℓ0

jδjk. If as N → ∞, 1
N

∑
i ℓ

0
i ℓ

0′
i converges

to a diagonal matrix, then 1
N

∑
i Λ

0
i Λ

0′
i converges to a diagonal matrix with diagonal entries

E
(
(ℓ0

ij −
∑K

j=1 δikE(ℓ0
ij |δik = 1))2

)
, j = 1, . . . , d.

Let ζ∗it = ζit −
∑K

k=1 δikζ
0
kt with ζ0

kt = EC(ζkt|δik = 1), k = 1, . . . ,K, and define X∗
it =

X∗
i,t−1 + ζ∗it, t = 2, . . . , T with X∗

i1 = Xi1 − δikX̄k1. Note that if conditional on ηt the original

random variables ζit are cross-sectionally independent, then also the transformed variables ζ∗it

are conditionally independent across i.

We need some further assumptions on the joint behavior of the wit = (εit, ζ
∗
it, ηt).

(f) The processes wit: The multivariate processes wit = (εit, ζ
∗
it, ηt) are stationary. For each i,

wit =
∑∞

j=0 Πijvi,t−j , where vit = (vε
it, v

ζ
it, v

η
t ) are mutually independent over i, t as well as

identically distributed over t. Furthermore, E(vit) = 0, E(vitv
′

it) > 0, and E(‖vit‖8) ≤ M ,

where M < ∞ is independent of i, t. vit are independent of λ0
j for all i, j, t. In addition,

all further conditions of Assumptions 2. and 3. of Bai et al. (2009) are satisfied.

(g) No cointegration: {X∗
i,t, Ft} are not cointegrated.

It will be shown in Theorem 1 below that the additional effects introduced by subtracting

group means are negligible, and that the inference results derived in Bai et al. (2009) also apply

in our situation. The structure of the asymptotic distribution of βCup(d), already mentioned in
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(21), involves a bias term φ and a covariance matrix Σc which are defined in Bai et al. (2009).

Before stating the theorem we now define these quantities and show how to construct consistent

estimates from given data.

Following again Bai et al. (2009) we first use kernel estimators to approximate the long-run

covariance matrices of wit. Estimates of ǫit, ζit and ηt are given by the regression residuals ǫ̂it,

ζ̂it = ∆Xit and η̂t = ∆F̂t. For all h = −T +1, . . . , T − 1 and all i = 1, . . . , n let Γ̂ǫ,i(h), Γ̂ǫ,ζ,i(h),

Γ̂ǫ,η,i(h), Γ̂ǫ,b,i(h) and Γ̂b,i(h) denote the 1 × 1, 1 × p, 1 × d , 1 × (p + d) and (p + d) × (p + d)

empirical lag h autocovariance matrices of (ǫ̂it, ǫ̂i,t+h), (ǫ̂it, ζ̂i,t+h), (ǫ̂it, η̂t+h), (ǫ̂it, (ζ̂
′
i,t+h, η′t+h)′)

as well as ((ζ̂ ′i,t+h, η̂′t+h)′, (ζ̂ ′i,t+h, η̂′t+h)′), t = 1, . . . , T . Then define

Ω̂ǫ,i =

T−1∑

j=−T+1

ω(
j

κ
)Γ̂ǫ,i(j), Ω̂ǫ,b,i =

T−1∑

j=−T+1

ω(
j

κ
)Γ̂ǫ,b,i(j)

Ω̂b,i =
T−1∑

j=−T+1

ω(
j

κ
)Γ̂b,i(j), Ω̂ǫ|b,i = Ω̂ǫ,i − Ω̂′

ǫ,b,iΩ̂b,iΩ̂ǫ,b,i,



∆̂+
ζ,ǫ,i

∆̂+
η,ζ,i



 =




∑T−1

j=0 ω( j
κ)Γ̂ǫ,ζ,i(h)

∑T−1
j=0 ω( j

κ)Γ̂ǫ,η,i(h)



−
T−1∑

j=0

ω(
j

κ
)Γ̂b,i(h)Ω̂−1

b,i Ω̂ǫ,b,i.

Here, the kernel function ω satisfies the following assumption:

(h) The kernel function ω(.) : R → [−1, 1] satisfies (i) ω(0) = 1, ω(x) = ω(−x), (ii)
∫ 1
−1 ω(x)2dx < ∞ and with Parzen’exponent q ∈ (0,∞) such that lim 1−ω(x)

|x|q < ∞ and

lim infN,T↔∞
(

log(T )
log(N)

)
> 1; the bandwidth parameter κ ∼ N b where b ∈ ( 1

2q , lim inf
(

log(T )
log(N)

)
−

1).

Ω̂ǫ,i, Ω̂ǫ,b,i, Ω̂b,i, Ω̂ǫ|b,i, ∆̂+
ζ,ǫ,i and ∆̂+

η,ζ,i estimate their theoretical analogues Ωǫ,i, Ωǫ,b,i, Ωb,i, Ωǫ|b,i,

∆+
ζ,ǫ,i and ∆+

η,ζ,i which are defined by replacing in the above equation the terms ω( ·
κ)Γ̂·(·) by the

corresponding true autocovariance matrices of wit = (εit, ζ
∗
it, ηt). In addition, summation then

ranges from −∞ to ∞ (instead of −T + 1 to T − 1) and 0 to ∞ (instead of 0 to T − 1).

Now define the projection matrices of F 0 as M̂F = IT − F 0(F 0′F 0)−1F 0′ and the scalar aik as

the element i, k of the projection matrix AΛ = Λ0(Λ0′Λ0)−1Λ0′ . Corresponding estimates M̂F

and âik are obtained by replacing F 0 and Λ0 by F̂ and Λ̂ Then let

Zi = MF X∗
i − 1

N

N∑

j=1

M̂F X∗
j aij , Ẑi = M̂F Xi −

1

N

N∑

j=1

M̂F Xj âij
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Conditional on F 0, the bias term φNT is then given by

φ =

(
1

NT 2

N∑

i=1

Z
′

iZi

)−1
1

N

N∑

i=1

θi,

θi = Z
′

i(∆bi)Ωb,iΩǫ,b,i + ∆+
ζ,ǫ,i − δ

′

i∆
+
η,ζ,i,

∆b̂i = (∆X∗
i − 1

N

N∑

j=1

∆X∗
j aij ,∆F 0), δi = (F 0′F 0)−1F 0′Xi,

and a consistent estimator can be determined by

φ̂NT =

(
1

NT 2

N∑

i=1

Ẑ
′

iẐi

)−1
1

N

N∑

i=1

θ̂i,

θ̂i = Ẑ
′

i(∆b̂i)Ω̂b,iΩ̂ǫ,b,i + ∆̂+
ζ,ǫ,i − δ̂

′

i∆̂
+
η,ζ,i,

∆b̂i = (∆Xi −
1

N

N∑

j=1

∆Xj âij ,∆F̂ ), δ̂i = (F̂
′

F̂ )−1F̂
′

Xi.

Conditional on F 0, Bai et al. (2009) show that there exists random matrices RCi, defined as

conditional expectations of integrated Brownian motions with individually different covariance

structure, such that as (N, T ) → ∞ we have 1
NT 2

∑N
i=1 ZiZ

′

i →d limN→∞
1
N

∑N
i=1 RCi. The

covariance matrix Σc is then defined by

Σ̂c =

(
lim

N→∞
1

N

N∑

i=1

RCi

)−1(
lim

N→∞
1

N

N∑

i=1

Ωǫ|b,iRCi

)(
lim

N→∞
1

N

N∑

i=1

RCi

)−1

, (29)

Bai et al. (2009) do not propose an estimator of Σc. However, following their arguments it

is straightforward to show that a consistent estimate of the covariance matrix Σc is given by

Σ̂c =

(
1

NT 2

N∑

i=1

Ẑ
′

iẐi

)−1
1

NT 2

N∑

i=1

Ω̂ǫ|b,iẐ
′

iẐi

(
1

NT 2

N∑

i=1

Ẑ
′

iẐi

)−1

,

We then obtain the following theorem:

Theorem 1: Under the above assumptions we have as (N, T ) → ∞

a)

Σ−1/2
c

(√
NT (β̂Cup(d) − β) −

√
Nφ)

)
d−→ N(0, Ip) (30)

where φ and Σc are defined as above.

b) Σ̂c and φ̂NT constitute consistent estimators of φNT and Σc. Furthermore, the bias cor-

rected estimator β̂CupBC(d) − 1
T φ̂NT satisfies

Σ−1/2
c

(√
NT (β̂CupBC(d) − β)

)
d−→ N(0, Ip) (31)
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Proof: Consider Assertion a) and let Z̃i = MF Xi − 1
N

∑N
j=1 M̂F Xjaij . In view of Propo-

sition 4 and Lemma A.2 of Bai et al. (2009) we only have to show that 1
NT 2

∑N
i=1 Z̃

′

iZ̃i and

1√
NT

∑N
i=1 Z̃

′

iǫi have the same limit distributions as 1
T 2 Z

′

iZi and 1√
NT

∑N
i=1 Z

′

iεi. Note that

Xit − X∗
it = Xi,t−1 − X∗

i,t−1 + (
∑K

k=1 δik(ζ̄kt − ζ0
kt)) is also an I(1)-process. But the innovations

(
∑K

k=1 δik(ζ̄kt − ζ0
kt)) are averages over mk individuals and hence varC((

∑K
k=1 δik(ζ̄kt − ζ0

kt)) ≤
M1/N , where M1 < ∞ is some constant independent of i, t. Therefore, as (N, T ) → ∞
‖ 1

NT 2

∑N
i=1 Z̃iZ̃

′

i − 1
NT 2

∑N
i=1 ZiZ

′

i‖ = OP (N−1/2). Our assumptions imply that conditional

on η the random variables ζ∗it and εit are independent. Consequently, as (N, T ) → ∞, we

have 1√
NT

∑N
i=1 Z̃

′

i(
∑K

k=1 δikε̄k) =
∑K

k=1(
1√
NT

∑N
i=1 δikZ̃

′

i)ε̄k = oP (1) as well as 1√
NT

∑N
i=1(Z

′

i −
Z̃

′

i)εi = oP (1). One can conclude that 1√
NT

∑N
i=1 Z̃

′

iǫi = 1√
NT

∑N
i=1 Z

′

iεi + op(1). Assertion a)

is an immediate consequence. Assertion b) follows from a straightforward generalization of the

arguments used in the proof of Theorem 2 of Bai et al. (2009). All additional terms induced by

the differences X∗
it − Xit and εit − ǫit are asymptotically negligible. �

A difference between our approach and the methodology of Bai et al. (2009) consists in

the fact that our estimation procedure directly incorporates a dimension estimate. Our final

estimator β̂EupBC = β̂CupBC(d̂) thus relies on the estimated dimension d̂. The following theorem

shows that with high probability d̂ will asymptotically coincide with the true dimension d. The

asymptotic distributions derived in Theorem 1 thus remain valid when replacing β̂CupBC(d) by

β̂EupBC . Furthermore, the final estimator F̂EupBC yields a consistent estimator of the true factor

structure (up to rotations).

Theorem 2: Under the above assumptions we have as N, T → ∞

a)

Σ−1/2
c

(√
NT (β̂EupBC − β)

)
d−→ N(0, Ip) (32)

b For some d × d invertible matrix A

1

T

T∑

t=1

‖ 1

T
F̂EupBC,t − H · F 0

t ‖2 = OP (
1

N
) + OP (

1

T
)

Proof: We can infer from the theoretical results of Bai et al. (2009) that 1
NT

∑N
i=1

∑T
t=1(Yit−

Ŷit(d))2 = OP (1) holds for the true dimension d. Since estimates are obtained by least squares,

this immediately implies that 1
NT

∑N
i=1

∑T
t=1(Yit−Ŷit(r))

2 = OP (1) for all r = d, d+1, . . . , dmax.

On the other hand, for r < d a straightforward generalization of the arguments of Bai (2004)

shows that, as (N, T ) → ∞, 1
NT

∑N
i=1

∑T
t=1(Yit − Ŷit(d))2 a.s. tends to infinity with rate at
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least T/ log log(T ). By definition of the penalty term in (18) we can therefore conclude that

lim(N,T )→∞ P (d̂ = d) = 1. Hence,

Σ−1/2

c

(√
NT (β̂CupBC(d̂) − β)

)
= Σ−1/2

c

(√
NT (β̂CupBC(d) − β)

)
+ Σ−1/2

c

(√
NT (β̂CupBC(d̂) − β̂CupBC(d)

)

= Σ−1/2

c

(√
NT (β̂CupBC(d) − β)

)
+ oP (1)

Assertion a) is an immediate consequence. Assertion b) follows from lim(N,T )→∞ P (d̂ = d) = 1

and Proposition 5 of Bai et al. (2009). �

B Data: Descriptive statistics

Rating class AAA AA A BBB Total

Number 24 30 27 34 115

Table 1: The number of corporate bonds by rating class

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

CS −5.5890 −1.0990 0.0000 0.07261 1.2530 5.5610 1.5043

LS −4.2450 −0.0901 0.0000 0.00395 0.0896 3.3560 0.4377

Table 2: Descriptive statistics

C Results
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The Liquidity Effect

Effekts Parameters Estimation Std z−value p−value

Liq.Spr. β 0.1081998 0.00556194 16.905 < 2e − 16

The Rating Effects

Effekts Parameters 1st Qu. Mean Median 3rd Qu.

AAA α1 -0.4732 -0.4126 -0.3628 -0.3274

AA α2 -0.2161 -0.1587 -0.1596 -0.1156

A α3 -0.1450 -0.1074 -0.1340 -0.1174

BBB α4 0.6137 0.6787 0.6774 0.7261

The Factor Dimension

Criterion Parameters Estimation

IPC d 4

The Unobserved Multi- Interactive Parameters

Min Mean Median Max

1st Fact. F1 -3.9658201 -0.4025673 0.2067615 0.2976783

λ1 -793.64243 -42.19382 -31.96755 38.34758

2nd Fact. F2 -1.3018116 0.8342434 1.0586595 1.5216967

λ2 -793.64243 -42.19382 -31.96755 38.34758

3rd Fact. F3 -3.9658201 -0.4025673 0.2067615 0.2976783

λ3 -793.64243 -42.19382 -31.96755 38.34758

4th Fact. F4 -1.3018116 0.8342434 1.0586595 1.5216967

λ4 -95.48161 -23.83846 -20.33178 73.02035

Table 3: Parameter Estimation
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