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Abstract

This note proposes a generalized two-part model for fractional response variables
that nests the one-part model proposed by Papke and Wooldridge (1996). Conse-
quently, a Wald test allows to discriminate between these two competing models.
A small scale Monte Carlo simulation demonstrates that the proposed Wald test
is properly sized and equipped with higher power than an alternative non-nested
P-test.
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1 Introduction

Many empirical studies deal with share data confined to the (0, 1) interval and, in addition,

with a significant amount of observations at the boundaries, 0 or 1. In their seminal

paper Leslie Papke and Jeffrey Wooldridge (1996) propose a one-part fractional response

model that extends the generalized linear model (GLM) literature from statistics for such

data.1 They introduce a quasi-maximum likelihood estimator (QLME) to obtain a robust

method to estimate one-part fractional response models without ad hoc transformation of

boundary values. In case of a significant share of boundary values, one may alternatively

consider a two-part model that accounts for an excessive number of boundary values of

ones or zeros, assuming a different econometric model for the boundary values.2

The literature so far uses a P-test for non-nested hypotheses to discriminate between

one-part and two-part models as described in Davidson and MacKinnon (1981) and Ra-

malho et al. (2010). This note shows that the one-part fractional response model can

be nested in a two-part hurdle model. Hence, one can simply use a Wald test as an

alternative to the P-test. A small scale Monte Carlo exercise reveals that the proposed

Wald test is properly sized and equipped with higher power than the P-test.

2 The one-part and two-part fractional response mod-

els

The fractional response model is based on the Bernoulli distribution. Assume there are

i = 1, . . . , N groups (firms) in which j = 1, . . . , ni units (workers) are confronted with a

zero or one decision (e.g., participation in a voluntary pension plan). Following Papke

and Wooldridge (1993, 1996) we assume that ni is fixed and exogenously given so that

it is appropriate to condition on ni. The probability that a particular unit j in group i

decides for 1 is denoted by θi and it is assumed to be group-specific but not unit-specific.

The number of units within a group deciding for 1 is denoted by Yi and the corresponding

share is yi = Yi

ni
with 0 ≤ yi ≤ 1.

In many empirical applications, the individual decisions of the units remain unob-

served and only the share of ones and zeros within a group is known, i.e., a sample of

a fractional response variable is available. The conditional distribution is then defined

in terms of the number of successes niyi in ni trials. Additionally, in comparison to the

1In a recent paper, Papke and Wooldridge (2008) discuss fractional response models for panel data.
Ramalho et. al (2010) provide a comprehensive up-to-date overview on the econometrics of fractional
response models.

2See Lambert (1992), Wooldridge (2002, Problem 19.8), Ramalho and Vidigal da Silva (2009) and
Ramalho, Ramalho and Muteira (2010).
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unweighted model analyzed in Papke and Wooldridge (1996), the individual contribu-

tions to the likelihood, the estimated score and the estimated information matrix are all

multiplied by ni (see Papke and Wooldridge, 1993, pp. 10-11). Under independent unit

decisions, Yi is Bernoulli distributed with conditional density

f(yi|xi, ni) =

(
ni
niyi

)
θniyi

i (1− θi)ni−niyi , (1)

where (the 1 × k vector) xi refers to a set of i-specific explanatory variables with the

corresponding parameter vector β. In particular, the probability of the share yi amount-

ing exactly to zero or one is given by (1 − θni
i ) and θni

i , respectively. The conditional

expectation of the fractional response variable yi is group-specific and specified as

E(yi|xi, ni) = θi = G(xiβ), i = 1, . . . , N. (2)

Typically, G(.) is a cumulative distribution function (cdf) like the logistic function

G(z) = exp(z)/(1 + exp(z)) which maps z to the (0, 1) interval.3 Finally, the Bernoulli

log likelihood is maximized to obtain estimates of the coefficient vector β:

N∑
i=1

ln(fi(β)) =
N∑
i=1

ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ))) + cons. (3)

Following Wooldridge (2002, Problem 19.8), Cameron and Trivedi (2005, p. 680), Ra-

malho and Vidigal da Silva (2009) and Ramalho et al. (2010), we alternatively consider a

two-part model to account for an excessive number of boundary values. We concentrate

on the case of boundary values of ones, but similar arguments apply to the case of an

excessive number of zeros. In the two-part model the boundary values are described by a

different data generating process which we specify as P (yi = 1) = qni
i with 0 < qi < 1 and

qi = G(xiγ). For notational simplicity, the explanatory variables in the first and second

part of the model are assumed to be the same, but in more general models they could be

different. In comparison to the standard two-part model, our specification additionally

takes into account the exponent ni. Formally, the two-part model can be defined as (see

Cameron and Trivedi, 2005, pp. 545, 680):

g(yi|xi, ni) =

{
qni
i if yi = 1

(1− qni
i )f(yi|yi < 1,xi, ni) if yi < 1.

(4)

3See Ramalho et al. (2010) for a comprehensive discussion on different functional forms in one-part
and two-part models.

2



The second part of the model is based on the conditional distribution f(yi|yi < 1, |xi, ni)
implying that the probability distribution f(yi|xi, ni) is divided by 1− θni

i to ensure that

the conditional probabilities sum up to 1. The conditional mean of the two-part model,

thus, is given by4

E(yi|xi, ni) = P (yi < 1|xi, ni)E(yi|yi < 1,xi, ni) + P (yi = 1|xi, ni)

=
1−G(xiγ)ni

1−G(xiβ)ni
(G(xiβ)−G(xiβ)ni) +G(xiγ)ni . (5)

The standard two-part literature typically uses a simplified version of the conditional

mean which ignores the fact that the second part of the model also assigns a non-zero

probability to boundary values. For example, Ramalho and Vidigal da Silva (2009, p.

8) specify the conditional mean E(yi|yi > 0,xi, ni) as G(xiβ). The likelihood of the two

part-model consists of individual contributions reading as

ln(g(γ, β)) =


ln(1−G(xiγ)ni) + ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ)))

− ln(1−G(xiβ)ni) + constant if yi < 1

ni ln(G(xiγ)) if yi = 1.

(6)

Under this specification maximum likelihood estimation is straight forward, since it sep-

arates into the estimation of the model explaining P (yi = 1|xi, ni) using all observations

and the estimation of the fractional response model based only on the observations with

yi < 1. In the following, we assume that the distributions upon which the one-part

and the two-part models are based are correctly specified and concentrate on maximum

likelihood estimation.5

The main advantage of this two-part-model is that it nests the one-part fractional

response model since under qni
i = θni

i the two-part-model reverts to the one-part fractional

response model. In case of xi being the same for the one-part and two-part model and

their parameters being equal, i.e., γ=β, the two models coincide and have the same

likelihood functions. This can easily be tested by a Wald test of the hypothesis γ=β. If

the first part of the two-part model includes additional explanatory variables denoted by

4In case of zero boundary values the conditional mean of this model is given by

E(yi|xi, ni) = P (yi > 0|xi, ni)E(yi|yi > 0,xi, ni) =
1− (1−G(xiγ))ni

1− (1−G(xiβ))ni
G(xiβ).

5Actually, one can apply quasi-maximum likelihood estimation (QMLE) to the one-part model as-
suming that the conditional expectation of yi is correctly specified (see Gourieroux et al., 1984). The
consistency of the estimated parameters of the two-part model require the assumption of the correct
specification of E(yi|yi < 1,xi, ni) and P (yi = 1|xi, ni). Since we are interested in the estimation of
the two-part model and in testing hypotheses about its estimated parameters, we resort to maximum
likelihood estimation.
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zi with parameter vector φ, the underlying hypothesis to test is γ=β, φ = 0. In applying

this Wald test it is crucial to use the weighted form of the likelihood given in (3) or

to assume ni = n, since it is not defined for ni = 1. Denoting the estimated variance

covariance matrix of γ̂ by V̂γ and that of β̂ by V̂β it can easily be shown that the Wald

test statistic is given by

W = (γ̂ − β̂)′(V̂γ + V̂β)−1(γ̂ − β̂). (7)

and is asymptotically distributed as χ2(k).

The literature commonly applies a (non-nested) P-test to discriminate between the

one-part and two-part model. Following Davidson and MacKinnon (1981) and Ramalho

et al. (2010) the P-test for the null hypothesis that the one-part model is the true one

and two-part model is the alternative is based on the artificial regression

yi − Ĝi = ĝixiδ1 + δ2((1− F̂i)M̂i + F̂i − Ĝi) + εi, (8)

where, ĝi = ∂G(xiβ̂)

∂xiβ̂
. Note, the alternative uses the specification F̂i = G(xiγ̂)ni and

M̂i = G(xiβ̂) similar to Ramalho et al. (2010). Hence, the two models are non-nested.

Under H0 the two-part model should not provide additional information to estimate the

conditional mean, which is equivalent to testing δ2 = 0 vs. δ2 6= 0.

3 Monte Carlo simulations

To investigate the performance of the two tests in finite samples we set up a small Monte

Carlo simulation exercise. We generate Bernoulli random variables using logistic func-

tion G(xi + 0.5), where xi is distributed uniformly over [0, 5] and held fixed in repeated

samples. To obtain a share variable we divide the resulting Bernoulli random num-

ber by ni. In a first set of experiments we assume ni = 100, while the second one

takes ni ∼ iid N(100, 5). The probabilities for the boundary values of 1 are based on

qi = G(α(xi+0.5))ni , where α varies between 0.95 and 1.05 so that at α = 1 the one-part

model is the true one. To obtain the dummy variable for boundary values that takes the

value 1 if boundary values of 1 are observed, we generate a uniformly distributed random

variable and set the value of the dummy variable to 1 if this random variable is lower

than qi and 0 otherwise.

We run each Monte Carlo experiment 10,000 times for sample sizes of 500 and 1,000,

respectively, and calculate the size of the tests as share of rejections at α = 1 and nominal

size 0.05. Hence, with a nominal size of 5 percent a 95-percent confidence interval of the
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calculated size is given by [4.48, 5.43]. The power of the tests is defined as share of

rejections at α 6= 1.

The results of this simulation exercise are summarized in Table 1. Under H0 and at

n = 100, 14% of the observations fall on the boundary of 1. Increasing n = 200 yields a

share of 6% of ones under H0. In case of varying ni these shares are of comparable size.

Increasing α leads to an increase in the share of boundary values.

The Monte Carlo simulation results indicate that the simulated size of the Wald test

is within a 95-percent confidence interval in 7 out 8 experiments. Contrary, the P-test

tends to be marginally oversized especially at lower group sizes. The Wald test and the

P-test have power in both directions a < 1 and a > 1, and as expected it increases with

sample size. Moreover, the power of the two tests does not differ between the experiments

that assume fixed and variable group size. However, in all experiments the power of the

P-test is considerably smaller than that of the Wald test.

4 Conclusions

In many applications of the fractional response model the number of units upon which

the outcome variable is based can be observed. In such a situation one can specify a

two-part model that nests the fractional response model and as an alternative to the

available P-tests a Wald test can be applied to discriminate between the two models. A

small Monte Carlo simulation exercise shows that the Wald test exhibits higher power

than the P-test.
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Table 1: Monte Carlo simulation: 10,000 replications

a Share of Wald test P-test Share of Wald test P-test
ones ones

N = 500 N = 1, 000
n̄ = 100
Fixed 0.95 0.11 0.491 0.121 0.11 0.796 0.210

0.96 0.12 0.337 0.094 0.12 0.599 0.142
0.97 0.12 0.210 0.070 0.12 0.380 0.093
0.98 0.13 0.122 0.050 0.13 0.209 0.065
0.99 0.13 0.068 0.048 0.13 0.096 0.047
1.00 0.14 0.049 0.058 0.14 0.051 0.056
1.01 0.15 0.056 0.063 0.14 0.062 0.082
1.02 0.15 0.090 0.089 0.15 0.133 0.119
1.03 0.16 0.156 0.114 0.16 0.277 0.167
1.04 0.16 0.254 0.154 0.16 0.467 0.240
1.05 0.17 0.394 0.198 0.17 0.685 0.323

Variable 0.95 0.11 0.484 0.128 0.12 0.820 0.238
0.96 0.12 0.330 0.091 0.13 0.632 0.157
0.97 0.12 0.212 0.067 0.13 0.391 0.100
0.98 0.13 0.125 0.052 0.14 0.214 0.063
0.99 0.13 0.073 0.053 0.15 0.091 0.050
1.00 0.14 0.051 0.054 0.15 0.050 0.054
1.01 0.15 0.057 0.066 0.16 0.069 0.078
1.02 0.15 0.086 0.087 0.16 0.140 0.122
1.03 0.16 0.148 0.112 0.17 0.294 0.182
1.04 0.16 0.251 0.156 0.18 0.498 0.264
1.05 0.17 0.381 0.197 0.18 0.693 0.357

n̄ = 200
Fixed 0.95 0.04 0.431 0.142 0.04 0.760 0.270

0.96 0.05 0.285 0.104 0.05 0.552 0.186
0.97 0.05 0.172 0.080 0.05 0.337 0.120
0.98 0.05 0.103 0.061 0.05 0.171 0.078
0.99 0.06 0.055 0.052 0.06 0.071 0.056
1.00 0.06 0.049 0.053 0.06 0.052 0.051
1.01 0.07 0.057 0.062 0.07 0.079 0.066
1.02 0.07 0.107 0.079 0.07 0.176 0.106
1.03 0.08 0.188 0.110 0.08 0.347 0.156
1.04 0.08 0.324 0.152 0.08 0.580 0.226
1.05 0.09 0.469 0.200 0.08 0.778 0.321

Variable 0.95 0.040 0.424 0.146 0.04 0.795 0.260
0.96 0.050 0.285 0.107 0.05 0.609 0.187
0.97 0.050 0.176 0.075 0.05 0.359 0.123
0.98 0.050 0.096 0.056 0.06 0.183 0.076
0.99 0.060 0.053 0.051 0.06 0.077 0.053
1.00 0.060 0.044 0.053 0.07 0.051 0.051
1.01 0.070 0.055 0.063 0.07 0.084 0.067
1.02 0.070 0.106 0.081 0.08 0.185 0.104
1.03 0.080 0.189 0.114 0.08 0.381 0.158
1.04 0.080 0.319 0.152 0.09 0.614 0.234
1.05 0.090 0.474 0.211 0.09 0.825 0.345
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