Huber, Peter; Oberhofer, Harald; Pfaffermayr, Michael

Working Paper

Job creation and the intra-distribution dynamics of the firm size distribution

Provided in Cooperation with:
Department of Social Sciences and Economics, University of Salzburg

Suggested Citation: Huber, Peter; Oberhofer, Harald; Pfaffermayr, Michael (2012) : Job creation and the intra-distribution dynamics of the firm size distribution, Working Papers in Economics and Finance, No. 2012-05, University of Salzburg, Department of Social Sciences and Economics, Salzburg

This Version is available at:
http://hdl.handle.net/10419/71847

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
JOB CREATION AND THE INTRA-DISTRIBUTION DYNAMICS OF THE FIRM SIZE DISTRIBUTION

PETER HUBER, HARALD OBERHOFER AND MICHAEL PFÄFFERMAYR

WORKING PAPER NO. 2012-05
Job Creation and the Intra-distribution Dynamics of the Firm Size Distribution

Peter Huber*, Harald Oberhofer**, Michael Pfaffermayr***

April 2012

Abstract

Based on a three equations model for initial firm size, survival and firm growth we estimate firm-specific transition probabilities between size classes of the firm size distribution. This allows to analyze counterfactual scenarios that assess the impact of changes in exogenous variables on the intra-distribution dynamics of the firm size distribution. We find that a counterfactual decrease in average firm age increases the exit hazard of young firms, and at the same time reduces the probability to observe high growth firms. An increase in the industry-wide entry rate and an increase in market growth, by contrast, have virtually no impact on the intra-distribution dynamics of the firm size distribution. Finally, a larger birth size increases the probability for the youngest and smallest firms to be fast growing ones.

Keywords: Firm growth; survival; entry size; high growth firms; counterfactual scenario analysis; sample selection.

JEL: C24; D22; L11; L25; L26; M13.

* Austrian Institute of Economic Research, Arsenal, Objekt 20, A-1030 Vienna, Austria. Email: huber@wifo.ac.at.

** Department of Economics and Social Sciences and Salzburg Centre of European Union Studies (SCEUS), University of Salzburg, Residenzplatz 9, 5010 Salzburg, Austria, The Austrian Center for Labor Economics and the Analysis of the Welfare State. E-mail address: harald.oberhofer@sbg.ac.at.

*** Department of Economics, University of Innsbruck, Universitaetsstr. 15, A-6020 Innsbruck, Austria, Austrian Institute of Economic Research and CESifo, E-mail: Michael.Pfaffermayr@uibk.ac.at.
1 Introduction

The issue of which types of firms contribute most to job creation remains highly controversial in the economic literature and in policy debates. A large share of researchers provides evidence for the importance of small firms for (net) job creation and this seems to motivate political support for entrepreneurship and small, high-growth firms that are most likely to be upwardly mobile in the firm size distribution.\footnote{The literature typically refers to the latter as Gazelles. Accordingly, the OECD (2009) defines Gazelles as firms which are younger than 5 years, initially employed ten or more employees and experienced average annualized growth rates of (at least) 20 percent a year during at least three consecutive years. Henrekson and Johansson (2010) show that these high growth firms exist across all different industries.}

However, the economic literature has also documented that the size of firms influences (net) job creation via various channels. Typically, small firms are more likely to exit the market reducing their contribution to (net) job creation. However, conditional on survival, small firms exhibit larger job creation rates, as is also documented by the literature on Gibrat’s law of proportionate growth.\footnote{Although firm growth and job creation are discussed within two mainly unconnected strands of the literature, in this paper we argue that firm growth captures one important aspect of job creation, once the former is measured in terms of employment.} In a similar vein, firm age has also been identified to crucially affect (net) job creation. Thereby, young firms are less likely to survive but, again conditional on survival, are responsible for the overwhelming fraction of all newly created jobs. Altogether, these stylized facts imply that economic policy might influence the overall level of job creation via a relatively complicated relationship. To give only one example, public provision of financial resources (e.g., in terms of venture capital) might, ceteris paribus, allow start-up firms to initially produce at a larger scale and raise the job creation rate of these new firms. Moreover, initially larger firms are less likely to exit the market and, consequently, are less likely to destroy jobs. By contrast, these initially larger firms exhibit lower growth rates in comparison to small businesses so that their post-start-up job creation rates may be smaller. Generalizing this example, previous literature established systematic relationships between (i) (initial) firm size and survival, (ii) (initial) firm size and firm growth and (iii) survival and firm growth. Interestingly,
however, to our knowledge there is no paper that incorporates these different determinants of job creation in a single framework, which allows to disentangle direct and indirect effects of policy on the mobility within the firm size distribution and to examine its overall employment effects.

This paper aims to fill this gap by proposing an econometric approach which, for example, allows to identify the consequences of counterfactual policy scenarios for the occurrence of high growth firms. In addition, this approach allows to examine the impact of specific types of firms (such as high growth firms) on the (net) job creation at an aggregated level. To this end – building on the literature of firm growth and job creation – we generalize Heckman’s (1976, 1979) sample selection model to obtain a three equations system that includes initial firm size, firm survival and final firm size. The parameters of interest are estimated for the population of Austrian manufacturing firms that operated in 1999 are observed until 2004. With these parameters at hand, we are able to estimate firm-specific transition probabilities (e.g., the probability to be a high growth firm) and to explore the intra-distribution dynamics of the firm size distribution conditional on a set of explanatory variables. Additionally, this model allows to assess the impact of counterfactual (policy) scenarios on the intra-distribution dynamics and on overall employment. We are thus able to assess the impact of changes in policy variables on the frequency of high growth firms. In particular, we investigate the impact of a decrease in (average) firm age, e.g., the share of young firms, vis-à-vis a counterfactual situation of a larger firm size in the year of foundation. We also examine the hypothetical intra-distribution dynamics and job effects of an increase in market entry and market growth rates.

Our analysis suggests that a decrease in (average) firm age increases the exit hazards for both small and large young firms and reduces the frequency of small and young high growth firms. These negative effects on job creation are, however, offset by the the positive impact on the group of medium sized firms. An increase in the entry rate and enhanced market growth rates both exert virtually no impact on the intra-distribution dynamics of the firm size distribution and thus are not able to increase the share of fast growing firms. Finally, a counterfactual increase in a firm’s birth size positively affects the
smallest and youngest firms. Accordingly, these firms are more likely to become high growth firms. From a job creation point of view, our estimation results reveal that policies which aim at reducing average firm age might be most successful in creating additional jobs in the overall economy.

The remainder of the paper is organized as follows. In the next section, we briefly survey the related literature on job creation, firm survival and fast-growing firms to motivate our empirical approach. Section 3 lays out the econometric model, which simultaneously explains a firm’s entry size, survival and growth, describes our data and discusses the estimation results. Section 4 offers the counterfactual scenario analysis. Finally, in Section 5 we provide concluding remarks.

2 A Brief Review of the Related Literature

Empirically, the (relative) impact of small firms on (net) job creation is still ambiguous. Davis et al. (1996), for example, find that small firms constitute the vast majority of businesses, but they are only of limited importance with regard to overall employment. A number of other contributions provide evidence that jobs are mainly created by small firms (see, e.g., Broersma and Gautier 1997, Davidsson et al. 1998 and Picot and Dupuy 1998). Haltiwanger et al. (2012) stress the key role played by (small and large) young firms.

Small firms, however, also differ from large ones in a number of other ways. For instance, in comparison to large and old firms small businesses and new entrants are more likely to experience job losses (see, e.g., Bartelsman et al. 2005, Voulgaris et al. 2005, and Neumark et al. 2011). Moreover, the empirical literature on firm survival demonstrates that small firms face a substantially increased exit hazard leading to additional job losses (see, e.g., Hart and Oulton 1996, Audretsch et al. 2000, Fotopoulos and Louri 2000 and Yasuda 2005).

Since the seminal work of Gibrat (1931), the analysis of the relationship between firm size and firm growth has developed as a second and related strand of the literature (see, Coad 2009 for a recent survey). In particular, this literature has focused on the question whether firm growth is random
(i.e., firm size follows a random walk) and thus obeys Gibrat’s law of proportionate growth. Empirically, however, in comparison to large and old firms, small and young firms tend to exhibit higher growth rates, while Gibrat’s law accurately describes the growth performance of large and old firms (see, e.g., Hart 2000). This ‘stylized fact’ supports the view that small and young firms are important contributors to (net) job creation, while in the group of large and old firms the number of employees is relatively persistent.

On the other hand, market exit of firms is a very common phenomenon (see, e.g., Geroski 1995 and Knaup 2005). As already mentioned, small and young firms are much more likely to be forced out of the market. Over time, therefore, non-random exit of firms generates (highly) selected samples of surviving firms. Focusing exclusively on surviving firms is likely to bias any empirical results (see, e.g., Evans 1987a,b, Hall 1987, Dunne and Hughes 1994 and Pfaffermayr 2007). However, with regard to the relative importance of small firms for (net) job creation, the empirical evidence suggests that only a small fraction of small and young firms grows very rapidly, while the overwhelming majority struggles for survival.

In a similar vein, the macroeconomic conditions and the competitive environment have been identified as crucial determinants of firm survival. In particular, unfavorable macroeconomic conditions (e.g., recessions) increase a firm’s exit hazard (see, e.g., Geroski et al. 2010), while the impact of the macroeconomic environment on already established firms seems to be less pronounced. This is for two reasons: Firstly, during recession entry rates are lower and, therefore, the competitive pressure of new entrants on already existing firms is reduced (Caballero and Hammour 1994). Secondly, already established firms are less likely to be financially constrained (Cabral and Mata 2003) allowing them to survive more easily during recession periods. Overall, this reasoning suggests that especially new entrants and small firms are more likely to suffer existentially from economic downturns. With reference to the competitive environment, the economic literature and organizational ecology have demonstrated that high market entry rates render survival more difficult and, ceteris paribus, increase the exit hazard (see, e.g., Mata and Portugal 1994, Geroski et al. 2010). For these reasons, the impact of the surrounding macroeconomic conditions and market entry on overall
(net) job creation is ambiguous.

Alternatively, economic policy might therefore aim at directly supporting new entrants with additional financial resources so that they are able to start their business at a larger scale. This is usually accompanied by higher labor demand and, therefore, positively contributes to net job creation. Additionally, initially larger firms persistently face lower exit probabilities (see, e.g., Geroski et al. 2010). Yet, in line with the discussion above, initially larger firms are less likely to be high growth firms. Consequently, economic policy which intends to increase the average start-up firm size may initially increase (net) job creation rates, while reducing post-start-up job generation later on. To sum up, the previous literature documents substantial trade-offs for economic policy aiming at increasing the overall number of jobs in an economy.

3 Modeling the Intra-distribution Dynamics of Firm Size

3.1 An Econometric Model of Firm Growth and Survival

The discussion above indicates that economic policy examines both direct and indirect effects on the overall level of (net) job creation. A careful treatment of these interactions requires an explicit econometric modeling at the firm level in system of equations that augments the typical Gibrat’s law regression framework.\(^3\) In addition, modeling initial firm size in a separate equation permits the calculation of the full transition matrix upon which the analysis of the (counterfactual) intra-distribution dynamics of the firm size distribution can be based.

Econometrically, we specify a three equations Heckman-type model with an equation for the log size of a surviving firm \(i\) at time \(T\) \((y_{iT})\) and one for

\(^3\)For example, it allows to analyze the impact of changes in a firm’s birth size on both its survival probability and its (estimated) size at the beginning of the time frame under investigation. The latter is commonly used to explain subsequent firm growth (see the growth equations used to test Gibrat’s law).
its size in the initial period \((y_{i1})\), which typically is not the firm’s birth size. The third equation accounts for sample selection due to exit and explains the probability that a firm’s survival up to period \(T\) modeled by the latent variable \(d^*_i\). Formally, the system of equations reads as

\[
\begin{align*}
 y^*_{iT} &= \lambda_i y_{i1} + x_{iT}' \beta_T + u_i \\
 y_{i1} &= x_{i1}' \beta_1 + v_i \\
 d^*_i &= x_{id}' \beta_d + w_i \\
 d_i &= 1 \quad \text{if } d^*_i > 0 \\
 y_{iT} &= y^*_{iT} \quad \text{if } d_i = 1 \\
 y_{iT} &= \text{unobserved if } d_i = 0,
\end{align*}
\]

where \(x_{i1}\) includes a firm’s birth size \(y_{i0}\). The stars for \(y^*_{iT}\) and \(d^*_i\) indicate that these are latent variables, while \(y_{iT}\), \(y_{i1}\) and \(d_i\) (without a star) refer to observed values. The dummy \(d_i\) takes the value 1 if \(d^*_i > 0\) and the firm survives and 0 otherwise. \(x_{iT}, x_{i1}\) and \(x_{id}\) comprise the set of exogenous explanatory variables in each respective equation while \(\beta_T, \beta_1\) and \(\beta_d\) denote the corresponding vectors of parameters to be estimated.\(^4\)

Based on the assumption that for each firm \(i\) the error term follows a trivariate normal distribution, this system of equations can be estimated using standard maximum likelihood methods.\(^5\)

Moreover, this approach enables us to calculate transition probabilities by integrating the trivariate normal for each firm \(i\) and, thus, allows to estimate overall job creation rates for different types of firms.\(^6\) For this we use the

\(^4\)The empirical specification for our application of this model is discussed in Section 3.2.

\(^5\)For technical details concerning the estimation procedure see Appendix A. Note, the law of large numbers implies that log firm size converges in distribution to a log normal (see, e.g., Sutton 1997 as well as Coad and Hölzl 2012). Thus, the yearly shocks reflected by the disturbances of the firm growth equation need not be normal. Form this point of view, the normality assumption should be interpreted as an approximation. More importantly, it allows to model sample selection and to derive transition probabilities by integrating the resulting trivariate normal. Since the transition probabilities are derived from the joint distribution of initial and final firm size, the absence of the equation for initial firm size would render such an approach impossible.

\(^6\)The technical details on the calculation of the transition probabilities and on the job
Geweke-Hajivassiliou-Keane (GHK) simulator (see Train 2003, for a detailed description). In order to do so, we have to make the simplifying assumption that
\[\lambda_i = \lambda_0 + \lambda_1 \ln Age_k, \]
where \(\ln Age_k \) is the mean of \(\ln Age_i \) within each of the quartiles. Therefore, the GHK simulator treats the variance covariance matrix of the disturbances of the reduced form of the system (derived in the Appendix) as constant across firms within each quartile.

3.2 Data and Empirical Specification

For our empirical analysis, we use data from the Austrian Social Security Database (ASSD), which is a widely used administrative data set in empirical research (see, e.g., Card et al. 2007, Huber and Pfaffermayr 2010, Del Bono et al. 2012).\(^7\) The dataset captures the universe of firms in the Austrian manufacturing industries between 1972 and 2004. Moreover, since information on firm age is only available for firms founded after 1972 we exclude 8,292 firms already existing in 1972 in order to avoid a censoring bias.\(^8\)

Empirically, we take explicit account of the OECD’s (2009) definition of high growth firms by focusing on firm growth during a five year time period. We define \(T = 2004 \) and include all firms existing in 1999 in our analysis so that the availability of firm specific information prior to the year 1999 allows to model a firm’s initial size in 1999. Hence, we have to exclude post 1999 entrants from our analysis. After this restriction the data covers 17,390 firms providing information on size (employment), age, region and industry. Out of these 12,167 firms (or, approximately 70%) survived the 5-year time period under consideration.

Among the explanatory variables used in our specification of the three creation rates are reported in Appendix B.

\(^7\)The ASSD contains a daily calendar of the starting date of an individual’s employment relationship at a particular business unit and the corresponding end date (if employment spells are terminated before the end of 2004). From these data we constructed the measure of firm size as the number of employees of each business unit on June 7th in each year using a head count of employment (see, Fink et al. 2010 for a comprehensive description).

\(^8\)In the working paper version of this paper we provide a robustness analysis where we additionally incorporate these firms. There, we slightly modify our estimation strategy to take account of the above mentioned censoring problem. This in turn, unfortunately, renders a direct comparison of the results impossible. For further details see Huber et al. (2011).
equation model described above, firm size at times T, 1 and 0 are measured in terms of employment. Thereby, birth size refers to the number of employees when a firm enters the ASSD for the first time.9 Firm age is calculated using a firm’s year of incorporation relative to the year 2004. Market growth is based on the average EU-wide average annual value added at factor costs growth rate in a 3-digit NACE industry during the time period 1999 to 2004.10 Entry rates are defined as the share of firms entering a 3-digit industry during the considered time period. Following, e.g., Scherer and Ross (1990) and Pfaffermayr (2007) the third quartile in the log firm size distribution within each 3-digit industry serves as a proxy for minimum efficient scale (MES).11

The specification of equation (1) explaining final firm size (y_{iT}) follows the literature (see Hart 2000 and Coad 2009, for recent surveys), and contains the (logs of) initial firm size, firm age, age squared and an interaction effect between age and initial firm size as well as (European-wide) 3-digit industry specific growth rates of value added to factor costs. Moreover, following Peneder (2003) we classify the observed 3-digit industries with regard to their factor and skill intensity and additionally control for these differences. Formally, we specify the persistence parameter as $\lambda_i = \lambda_0 + \lambda_1 \ln Age_i$, where Age_i denotes the age of the firm, in order to account for potentially higher persistence of firm size in older firms (see, e.g., Huber and Pfaffermayr 2010 and Oberhofer and Pfaffermayr 2012).12 Additionally, following the recent

9New firms are identified by their first appearance in the records. However, in establishing that database the Austrian Institute of Economic Research ran a series of checks and data cleaning procedures to make sure that only new firms are identified as entrants (see Schöberl 2004).

10This indicator is based on Europe-wide industry data obtained from Eurostat and collected by the Austrian Institute of Economic Research (WIFO). Given the high export-dependence of Austrian manufacturing firms an EU-wide measure better reflects the market growth opportunities for the respective firms.

11Since the ASSD only contains employee characteristics any output or profit measures are missing in the data at hand and, thus, we are not able to calculate alternative measures for MES.

12Thus, this equation nests both Gibrat’s law (which is equivalent to testing whether $\lambda = 1$) as well as some of the most influential explanations for deviations from this law, such as Penrose effects (Penrose 1959), organizational capabilities (Slater 1980), learning theories (Jovanovic 1982), financial constraints (Fazzari et al. 1988) and adjustment cost theories (Hamermesh and Pfann 1996). In line with Jovanovic (1982) we assume that, over time, young firms learn their productivity and the successful ones expand their firm size. By contrast, older established firms already know their productivity and, therefore, exhibit a different growth pattern characterized by high persistence which may be described well
literature we assume that a firm’s growth performance is affected by sector-specific business cycle fluctuations (see, e.g., Oberhofer 2012) and control for 3-digit industry-specific average growth rates during the observed time period. In order to control for additional unobserved industry-specific firm growth determinants we additionally include a set of 2-digit industry fixed effects.

With regard to initial firm size in equation (2), we consider the population of firms in 1999. This allows us to specify the initial firm size in period 1 as a function of the firm’s birth size, firm age, age squared and an interaction term of birth size with firm age. Similar to the argument above, the latter accounts for a potentially diminishing impact of birth size over time. Moreover, our initial firm size equation contains MES interacted with firm age as well as an interaction effect of firm age with market growth in the period 1988 to 1998. Lastly, we control for 2-digit industry-specific effects and differences with regard to factor and skill intensities across industries.

The survival equation (3) is included to account for sample selection arising from the fact that exiting firms systematically differ in their observed and unobserved characteristics from their surviving counterparts (see, e.g., Evans 1987a,b, Hall 1987, Dunne and Hughes 1994 and Pfaffermayr, 2007). In particular, the equation contains a firm’s birth size, firm age, age squared, an interaction term of birth size with firm age and the industry minimum efficient scale (MES) which is interacted with firm age to capture a potentially decreasing impact of MES on the survival probability of older firms. In addition, the survival equation contains two industry-specific variables which are measured on the 3-digit industry level: market growth rates, industry-wide entry rates as well as differences in factor and skill intensities as defined above and 2-digit industry fixed effects.13

Table 1 reports descriptive statistics for our sample. A comparison of final firm size in 2004 with initial firm size in 1999 indicates that the average number of employees per business unit slightly increased from 16.37 in 1999 by Gibrat’s law.

13Given our set of exogenous variables and following the literature on firm survival discussed above, we expect that initially small and young firms are more likely to exit the market. Moreover, in more prosperous industries firms should find it easier to survive while high entry rates should decrease the survival probability of incumbent firms.
Table 1: Descriptive Statistics for the Full Sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final firm size (04)</td>
<td>12,167</td>
<td>20.28</td>
<td>94.60</td>
<td>1</td>
<td>6,448</td>
</tr>
<tr>
<td>Survival</td>
<td>17,390</td>
<td>0.70</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Initial firm size (99)</td>
<td>17,390</td>
<td>16.37</td>
<td>86.16</td>
<td>1</td>
<td>7,836</td>
</tr>
<tr>
<td>Birth size</td>
<td>17,390</td>
<td>11.23</td>
<td>71.72</td>
<td>1.5</td>
<td>6,324.5</td>
</tr>
<tr>
<td>Firm age</td>
<td>17,390</td>
<td>15.47</td>
<td>7.98</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>Mes</td>
<td>17,390</td>
<td>13.10</td>
<td>15.65</td>
<td>2</td>
<td>395</td>
</tr>
<tr>
<td>Market growth (88-98)</td>
<td>17,390</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Market growth (99-04)</td>
<td>17,390</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Entry rate</td>
<td>17,390</td>
<td>0.16</td>
<td>0.06</td>
<td>0.03</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Notes: Source: Austrian Social Security Database (ASSD).

to 20.28 in 2004. However, when excluding exiting firms the average number of employees remained relatively stable over this time period.\(^{14}\) With regard to firm age, we define 2004 as our reference year and, therefore, minimum (maximum) firm age is 5 (31) years for all firms which started their business in 1999 (1973). In 2004 the average firm age in our sample is approximately 15.5 years. Focusing on industry-specific information, the average MES is approximately 13.1 employees, while industry-specific market growth rates are, on average, 4\% during the time period 1988 to 1998 and only 1\% from 1999 to 2004. Market entry rates are 16\% on average and range from a minimum of 3\% (in the knitted and crocheted fabrics industry, code 176) to a maximum of 83\% in (manufacture of industrial process control equipment, code 333).

Table 2 additionally reports the distribution of firms by year of incorporation and across 2-digit industries. From the beginning of the nineties on, we observe a slight increase of market entries with an absolute maximum of 1,346 new firms in 1998. Focusing on the distribution of firms across industries, approximately 45\% of all firms operate either in the manufacturing of food products, metal products or furniture. By contrast, the share of firms in pulp and paper production, office machinery and computers and in other transport equipment production is below 1 percent of the full sample, respectively.

\(^{14}\)The corresponding figures are available from the authors upon request.
Table 2: Distribution of Firms by Birth Year and Across Industries

<table>
<thead>
<tr>
<th>Birth year</th>
<th>Freq.</th>
<th>Percent</th>
<th>NACE Rev 1.1 2-digit Industry</th>
<th>Freq.</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>639</td>
<td>3.67</td>
<td>Manufacture of food products and beverages</td>
<td>2,442</td>
<td>14.04</td>
</tr>
<tr>
<td>1974</td>
<td>509</td>
<td>2.93</td>
<td>Manufacture of textiles</td>
<td>506</td>
<td>2.91</td>
</tr>
<tr>
<td>1975</td>
<td>352</td>
<td>2.02</td>
<td>Manufacture of wearing apparel; dressing and dyeing of fur</td>
<td>576</td>
<td>3.31</td>
</tr>
<tr>
<td>1976</td>
<td>434</td>
<td>2.50</td>
<td>Manufacture of leather and leather products</td>
<td>192</td>
<td>1.1</td>
</tr>
<tr>
<td>1977</td>
<td>394</td>
<td>2.27</td>
<td>Manufacture of wood and wood products</td>
<td>1,505</td>
<td>8.65</td>
</tr>
<tr>
<td>1978</td>
<td>394</td>
<td>2.27</td>
<td>Manufacture of pulp, paper and paper products</td>
<td>1,392</td>
<td>8.00</td>
</tr>
<tr>
<td>1979</td>
<td>407</td>
<td>2.34</td>
<td>Publishing, printing and reproduction of recorded media</td>
<td>543</td>
<td>3.12</td>
</tr>
<tr>
<td>1980</td>
<td>467</td>
<td>2.69</td>
<td>Manufacture of chemicals and chemical products</td>
<td>518</td>
<td>2.98</td>
</tr>
<tr>
<td>1981</td>
<td>407</td>
<td>2.34</td>
<td>Manufacture of rubber and plastic products</td>
<td>823</td>
<td>4.73</td>
</tr>
<tr>
<td>1982</td>
<td>469</td>
<td>2.70</td>
<td>Manufacture of other non-metallic mineral products</td>
<td>190</td>
<td>1.09</td>
</tr>
<tr>
<td>1983</td>
<td>437</td>
<td>2.51</td>
<td>Manufacture of basic metals</td>
<td>2,644</td>
<td>15.20</td>
</tr>
<tr>
<td>1984</td>
<td>472</td>
<td>2.71</td>
<td>Manufacture of fabricated metal products</td>
<td>1,372</td>
<td>7.89</td>
</tr>
<tr>
<td>1985</td>
<td>522</td>
<td>3.00</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>73</td>
<td>0.42</td>
</tr>
<tr>
<td>1986</td>
<td>507</td>
<td>2.92</td>
<td>Manufacture of office machinery and computers</td>
<td>316</td>
<td>1.82</td>
</tr>
<tr>
<td>1987</td>
<td>614</td>
<td>3.33</td>
<td>Manufacture of radio, television, communication equipment</td>
<td>209</td>
<td>1.20</td>
</tr>
<tr>
<td>1988</td>
<td>763</td>
<td>4.39</td>
<td>Manufacture of medical, precision, optical instruments</td>
<td>1,130</td>
<td>6.50</td>
</tr>
<tr>
<td>1989</td>
<td>744</td>
<td>4.28</td>
<td>Manufacture of motor vehicles, trailers and semi-trailers</td>
<td>41</td>
<td>0.24</td>
</tr>
<tr>
<td>1990</td>
<td>679</td>
<td>3.90</td>
<td>Manufacture of other transport equipment</td>
<td>2,549</td>
<td>14.66</td>
</tr>
<tr>
<td>1991</td>
<td>712</td>
<td>4.09</td>
<td>Manufacture of furniture; manufacturing n.e.c.</td>
<td>888</td>
<td>5.11</td>
</tr>
<tr>
<td>1992</td>
<td>1,006</td>
<td>5.78</td>
<td></td>
<td>888</td>
<td>5.11</td>
</tr>
<tr>
<td>1993</td>
<td>1,346</td>
<td>7.74</td>
<td></td>
<td>888</td>
<td>5.11</td>
</tr>
<tr>
<td>1994</td>
<td>1,224</td>
<td>7.04</td>
<td></td>
<td>888</td>
<td>5.11</td>
</tr>
<tr>
<td>Total</td>
<td>17,390</td>
<td>100</td>
<td></td>
<td>17,390</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Source: Austrian Social Security Database (ASSD).
3.3 Estimation Results

The estimated parameters of our baseline specification (shown in Table 3) are well in line with the literature. We reject Gibrat’s law for small and young firms implying that they grow more rapidly on average than old and large firms. The impact of initial firm size significantly increases with firm age with a parameter estimate of 0.128. However, the estimated λ_i significantly differs from one for the overwhelming majority of firms. In accordance with much of the literature, Gibrat’s law therefore seems to accurately describe the growth process of large and old firms, only. The firm growth equation also indicates that firm age exhibits a non-linear impact on the firm size in 2004. Young firms tend to increase employment more rapidly, while the growth process of old firms seems to follow a random walk. This can be inferred by the negative effect of age (-1.169) and the positive parameter estimate corresponding to its square (0.156). For the relevant age distribution in our sample (5 to 31) years the impact of age on firm growth is negative throughout. Firms also tend to be positively affected by market conditions: An increase in the 3-digit industry-specific growth rate, on average, leads to higher firm growth rates (parameter estimate: 1.125). Finally, 3-digit market entry rates do not directly influence variations in firm size in 2004 as indicated by the insignificant parameter estimate.

The estimation results, with regard to firm survival, are again in line with previous findings. Larger and older firms are more likely to survive, as demonstrated by the significantly positive interaction effect of birth size with firm age with a parameter estimate of 0.060. In addition, the overall effect of birth size is positive and increasing with firm age although the main effect of the former variable turns out to be insignificant. Our estimates also suggest that older firms are less likely to exit the market (see the significant parameter estimate of age amounting to 0.471). The former empirical finding is known as liability of smallness (see, e.g., Freeman et al. 1983) while the latter is often referred to as liability of newness (see, e.g., Stinchcombe 1965). Both of these results have especially been put forward by organizational ecology. However, for very old firms the exit hazard increases again as indicated by the negative parameter estimate associated with age-squared
Table 3: Estimation results for the full sample

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Birth Size</td>
<td>1.275***</td>
<td>-0.050</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.051)</td>
<td></td>
</tr>
<tr>
<td>Initial Firm Size (99)</td>
<td>-</td>
<td>-</td>
<td>0.555***</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Age</td>
<td>1.868***</td>
<td>0.471**</td>
<td>-1.169***</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.192)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Age²</td>
<td>-0.355***</td>
<td>-0.121***</td>
<td>0.156***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.036)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Birth Size*Age</td>
<td>-0.183***</td>
<td>0.060***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Initial Firm Size (99)*Age</td>
<td>-</td>
<td>-</td>
<td>0.128***</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Mes</td>
<td>-</td>
<td>-0.204***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.076)</td>
<td></td>
</tr>
<tr>
<td>Mes*Age</td>
<td>0.160***</td>
<td>0.064**</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.028)</td>
<td></td>
</tr>
<tr>
<td>Market Growth (88-98)*Age</td>
<td>3.460***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.647)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Market Growth (99-04)</td>
<td>-</td>
<td>2.284***</td>
<td>1.125**</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.811)</td>
<td>(0.483)</td>
</tr>
<tr>
<td>Entry Rate</td>
<td>-</td>
<td>-0.701**</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.284)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>Industry Effects²</td>
<td>374.25***</td>
<td>55.91***</td>
<td>129.12***</td>
</tr>
<tr>
<td>Factor Intensity</td>
<td>-</td>
<td>5.27</td>
<td>9.67*</td>
</tr>
<tr>
<td>Skill Intensity</td>
<td>-</td>
<td>3.46</td>
<td>12.21***</td>
</tr>
<tr>
<td>Observations</td>
<td>17,390</td>
<td>17,390</td>
<td>12,167</td>
</tr>
</tbody>
</table>

Notes: Parameter estimates are reported. Standard errors in parenthesis. *The initial size equation comprises 3-digit industry effects, while we control for 2-digit industry effects in the survival and firm growth equations, respectively. *, ** and *** denote significance at 10%, 5% and 1% levels, respectively.
(-0.121). The literature on firm survival refers to this latter result as *liability of adolescence* (see, e.g., Brüderl and Schüssler 1990). Additionally, in industries with a larger MES, firms are more likely to exit the market. This effect, however, diminishes with firm age. This finding is well in line with the neo-classical theory of the firm which argues that, in case of the existence of scale economies, firms which fail to reach the MES quickly will not be able to successfully compete in their markets. Furthermore, a firm’s market exit probability is also systematically affected by market conditions and the competitive environment. In more prosperous industries a firm’s average survival probability is higher while more market entry increases a firm’s exit hazard. The corresponding parameter estimates are 2.284 and -0.701, respectively.

Finally, with regard to the initial firm size equation, unsurprisingly, firms with a larger size at their year of incorporation (i.e., birth size) are also larger in 1999. This effect, however, is decreasing with firm age, implying that the impact of birth size vanishes over time. In addition, older firms are larger on average and the market growth rate in the period from 1988 to 1998 positively influences the firm size in 1999. Finally, older firms in industries with a larger MES, on average, exhibit a larger initial firm size.\(^\text{15}\)

4 A Counterfactual Scenario Analysis

The results obtained from our three equation system allow a counterfactual scenario analysis regarding the impact of changes in one of the exogeneous variables on exit hazards, intra distribution dynamics as well as on the probability to observe high growth firms. Moreover, this approach also permits an examination of the respective impacts on overall (net) job creation. While in principle this can be done for arbitrary groupings of firms, we are interested in the role of different scenarios for small versus large and young versus old firms. Moreover, this counterfactual scenario analysis allows to disentangle direct and indirect effects of variables targeted by economic policy on (net) job creation. Thereby, the former refers to the direct impact of policies on the number of employees while the latter is associated with changes

\(^{15}\text{Note that in the initial firm size equation the main effects referring to market growth from 1988 to 1998 and to the MES are captured by the 3-digit industry fixed effects.}\)
in survival probabilities and the changes in the firms’ counterfactual growth performance.

In particular, we analyze four different counterfactual scenarios. First, we counterfactual decrease each firm’s age by approximately one half of its standard deviation (i.e., four years) to simulate successful entrepreneurship policies, which aim at increasing market entry of new firms. Over time, these policies might lead to a decrease in average firm age.\footnote{Moreover, according to policy discussions some authors argue that, in comparison to the US, innovation in the European Union remains weak because of a smaller share of young (and large) innovative firms (see, e.g., Veugelers and Cincera 2010).}

Second, we increase current market entry rates by one standard deviation. Besides the above already discussed focus of entrepreneurship policies on increasing entry rates, this counterfactual scenario could also be the result of Europe-wide competition policies aiming at facilitating market entry. Moreover, financial liberalization might also contribute to an increase in market entry (see, e.g., Kerr and Nanda 2010).

Third, we increase industry specific market growth by one standard deviation. This could result from fiscal and monetary stabilization policies as well as sectoral growth policies. Consequently, this counterfactual policy scenario could be useful to assess the impact of an economic boom on the distribution of (net) job creation across different types of firms and on the prevalence of high growth firms. In line with recent literature on the impact of macroeconomic aggregates on firm behavior, we assume that market growth exerts a causal impact on the individual firms’ growth performance (see, e.g., Oberhofer 2012).

Finally, we increase a firm’s birth size by one employee as this could again be the result of financial liberalization policies providing additional finance for young firms (Kerr and Nanda 2010). But also other policies and regulations could affect the entry size of firms. To give one example, Da Rin et al. (2010) demonstrate that variation in effective corporate tax rates is able to explain differences in entry size. Moreover, this last experiment also allows to analyze a potential trade-off between initial firm size and firm growth. As discussed above, firms with a larger birth size increase the start-up job creation rate while they might exhibit lower post-start-up growth
rates.

Table 4 presents the main results of our counterfactual scenario analysis. The upper part of this table reports the baseline transition probabilities obtained from our three equation system. Here, we only report the full matrices of transition probabilities for the groups of smallest and largest firms in 1999 and separately display the respective probabilities for the four quartiles of the firm age distribution. To give an example, the exit hazard for the initially smallest and youngest firms (reported in the left hand side panel of the table) is approximately 38.1%, while the smallest but oldest firms exit the market with a 37.4% probability. Contrary to this, the largest but youngest firms (in the right hand side panel) exhibit an exit probability of approximately 32.8% while for the largest and oldest firms the respective value is given by 21.4%.

Overall, the upper part of Table 4 shows that firms are most likely to stay in their size class from 1999 to 2004. In fact, the staying probabilities range from 51.0% to 60.3% and increase with firm age. Put differently, more than half of all initially smallest and largest firms in 1999 are still in in the same size cohort in 2004. Market exit constitutes the second most likely event for both the smallest and largest firms. Moreover, exit hazards tend to decrease with firm age. Here the only exception are firms in the smallest and oldest firm group which face a slightly increased exit hazards. In comparison to the group of the smallest firms the initially largest firms face lower exit hazards.

In this exercise we measure the frequency of high growth firms by the probability for the initially smallest firms to transit from the smallest firm size class to the third or fourth firm size quartile (i.e., from small to medium-large) during our observational period of five years. Table 4 indicates that the average probability to be a high growth firm is 2.9%. This effect, however, is heterogeneous across firm age groups. Accordingly, for an initially smallest but youngest firm the probability to be a high growth firm is 4.3% while for a very old firm with the same size this probability is reduced to only 1%. By contrast, the probability to transit from the 4th to the 2nd/1st quartile for the initally largest firms is 6.7% (i.e., from large to medium-small), on average, and tends to increase with firm age. Large firms which are also old are, therefore, more likely to dramatically reduce their number of employees
<table>
<thead>
<tr>
<th>Age group</th>
<th>Exit Small</th>
<th>Medium</th>
<th>Large<sup>b</sup></th>
<th>Index<sup>a</sup></th>
<th>Exit Small</th>
<th>Medium</th>
<th>Large<sup>b</sup></th>
<th>Med. - Med. -</th>
<th>∆ Jobs</th>
<th>∆ Jobs</th>
<th>∆ Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>0.381</td>
<td>0.510</td>
<td>0.065</td>
<td>0.043</td>
<td>0.328</td>
<td>0.535</td>
<td>0.095</td>
<td>0.042</td>
<td>-87</td>
<td>-2,821</td>
<td>-3,163</td>
</tr>
<tr>
<td>Mid-young</td>
<td>0.359</td>
<td>0.550</td>
<td>0.057</td>
<td>0.033</td>
<td>0.272</td>
<td>0.555</td>
<td>0.114</td>
<td>0.060</td>
<td>-1,151</td>
<td>13,161</td>
<td>-16,978</td>
</tr>
<tr>
<td>Old</td>
<td>0.374</td>
<td>0.590</td>
<td>0.026</td>
<td>0.017</td>
<td>0.231</td>
<td>0.568</td>
<td>0.126</td>
<td>0.074</td>
<td>-1,066</td>
<td>24,681</td>
<td>-32,659</td>
</tr>
<tr>
<td>Total</td>
<td>0.365</td>
<td>0.556</td>
<td>0.050</td>
<td>0.029</td>
<td>0.504</td>
<td>0.576</td>
<td>0.119</td>
<td>0.067</td>
<td>-3,040</td>
<td>52,990</td>
<td>-71,579</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 1: age –1/2 Std. dev.</th>
<th>χ²-Stat.<sup>c</sup></th>
<th>χ²-Stat.<sup>c</sup></th>
<th>Counterfactual Changes in ∆ Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>0.284</td>
<td>-0.207</td>
<td>0.021</td>
</tr>
<tr>
<td>Mid-young</td>
<td>0.086</td>
<td>-0.072</td>
<td>-0.004</td>
</tr>
<tr>
<td>Old</td>
<td>-0.008</td>
<td>0.005</td>
<td>-0.008</td>
</tr>
<tr>
<td>Total</td>
<td>0.090</td>
<td>-0.072</td>
<td>0.013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 2: Entry rate +1 Std. dev.</th>
<th>χ²-Stat.<sup>c</sup></th>
<th>χ²-Stat.<sup>c</sup></th>
<th>Counterfactual Changes in ∆ Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>0.014</td>
<td>-0.011</td>
<td>-0.002</td>
</tr>
<tr>
<td>Mid-young</td>
<td>0.014</td>
<td>-0.011</td>
<td>-0.002</td>
</tr>
<tr>
<td>Old</td>
<td>0.014</td>
<td>-0.012</td>
<td>-0.001</td>
</tr>
<tr>
<td>Total</td>
<td>0.014</td>
<td>-0.011</td>
<td>-0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 3: Market Growth +1 Std. dev.</th>
<th>χ²-Stat.<sup>c</sup></th>
<th>χ²-Stat.<sup>c</sup></th>
<th>Counterfactual Changes in ∆ Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>-0.014</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>Mid-young</td>
<td>-0.013</td>
<td>0.007</td>
<td>0.004</td>
</tr>
<tr>
<td>Old</td>
<td>-0.013</td>
<td>0.008</td>
<td>0.003</td>
</tr>
<tr>
<td>Total</td>
<td>-0.013</td>
<td>0.005</td>
<td>0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 4: Birth Size + 1 Employee</th>
<th>χ²-Stat.<sup>c</sup></th>
<th>χ²-Stat.<sup>c</sup></th>
<th>Counterfactual Changes in ∆ Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>-0.002</td>
<td>-0.039</td>
<td>0.019</td>
</tr>
<tr>
<td>Mid-young</td>
<td>-0.001</td>
<td>-0.021</td>
<td>0.016</td>
</tr>
<tr>
<td>Old</td>
<td>-0.017</td>
<td>0.000</td>
<td>0.011</td>
</tr>
<tr>
<td>Total</td>
<td>-0.006</td>
<td>-0.024</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Notes: ^aThe Prais mobility index is given by: \[M = \frac{4 \times P_{\text{survival}} - \sum_{k=1}^{4} P_{k|k}}{3} \], where \(P_{k|k} \) is the probability of staying in the size class (k) (see, e.g., Biewen 2005). ^bMedium-large refers to the 3rd and the 4th quartile while medium-small to the 2nd and the 1st quartile of the firm size distribution, respectively. ^cFollowing Anderson and Goodman (1957) the χ²-statistic (with 3 degrees of freedom) is calculated for a simple test for statistical significance of changes in transition probabilities.
inducing significant job destruction.

The last three columns of Table 4 allow to quantify the impact of the intra-distribution dynamics of the firm size distribution on overall job creation. Correspondingly, for the time period from 1999 to 2004, we separately report the estimated number of created or destroyed jobs for the groups of the initially smallest firms, the initially largest firms and the overall job creation across all firms (including medium sized firms). Unsurprisingly, we estimate an overall loss of 71,579 jobs in Austrian manufacturing firms during our observation period. Thereby, the group of ‘mid-old’ (i.e., the third quartile of the firm age distribution) firms are responsible for approximately 45% (i.e., 32,659) of all destroyed jobs. By contrast, our estimates indicate that in the group containing the youngest firms only 3,163 jobs are destroyed. In a similar vein, approximately three quarters of all destroyed jobs are lost in the group of the initially largest firms while the initially smallest firms only account for less than five percent of all destroyed jobs (i.e., 3,040).

In order to analyze the impacts of counterfactual scenarios, as discussed above, the lower parts of of Table 4 report the changes in the transition probabilities due to changes in firm age, entry rate, market growth and birth size in our system of equations. Additionally, we also report changes in the job creation estimates which are induced by our counterfactual scenarios.

To start with, we discuss the Prais mobility index (see, Table 3 for a formal definition) which is an overall measure of the intra-distribution dynamics in the firm size distribution from 1999 to 2004.\(^{17}\) This index is defined for values between 0 and \(\frac{4}{3}\), where higher values are associated with more mobility. Evidently, our counterfactual policies do not significantly change the overall level of intra-distribution dynamics of the firm size distribution. The Prais mobility index for the baseline estimation is given by 0.504, while an increase in the market growth rate or an increase in the firms’ birth size increases the mobility index only marginally to approximately 0.510, respectively. On the contrary, an increase in the industry-wide entry rate by one standard deviation slightly reduces the Prais mobility index to 0.494.

\(^{17}\)In our application we have a \((4 \times 5)\) transition matrix with exit as additional (absorbing) state in the final period. For this reason we are not able to calculate alternative mobility indices as discussed in e.g., Shorrocks (1978) and Geweke et al. (1986) because these measures commonly rely on symmetric transition matrices.
With regard to changes in transition probabilities more substantial results can be obtained. Focusing on experiment 1, a decrease in each firm’s age by one half of a standard deviation (which corresponds to approximately 4 years) increases the exit hazard for the youngest firms, irrespective of whether they are small or large in 1999. Moreover, staying probabilities are substantially reduced for both the largest and smallest youngest firms. The probability that one of the smallest firms transits to the third or fourth quarter in the firm size distribution also decreases by 3.3%. By contrast, conditional on survival the downsizing probabilities for the largest and youngest firms are substantially reduced. Table 4 indicates that these intra-distribution dynamics for the group of the youngest firms are statistically significantly different from zero as indicated by χ^2-test statistics following the multinomial test idea proposed by Anderson and Goodman (1957).

Qualitatively, similar results can be obtained for the cohort of the mid-young firms although in magnitude the corresponding effects are considerably smaller. Accordingly, for the initially smallest mid-young firms a counterfactual reduction in firm age exerts only a small impact on the probability to be fast growing. For the cohorts of mid-old and old firms, the intra-distribution dynamics triggered by our firm age experiment are not statistically significant. Put differently, their transition probabilities are not altered in any serious manner. Finally, focusing on the counterfactual change in job creation, a decrease in firm age by one half of a standard deviation would increase the overall number of jobs by 7,789. Thus, instead of 71,579 lost jobs this counterfactual situation would lead to an overall employment loss of only 63,790. A closer look at the counterfactual changes in job creation by firm age reveals that with regard to the former younger firms would create additional jobs while in mid-old and old firms even more jobs would be lost. On the contrary, both groups of the initially smallest and initially largest firms are estimated to create more jobs in the counterfactual situation of younger firm age. In terms of (net) job creation, the increased firm growth of surviving firms, thus, seems to outweigh the negative impact of the increased exit hazard.

In experiments 2 and 3 we increase the entry rate and the market growth rate by one standard deviation, respectively. In the former case this cor-
responds to an increase in market entry by approximately 6%-points while market growth is increased by 2%-points. Evidently, in quantitative terms both experiments only induce very small effects. This is also confirmed by non-significant test statistics for changes in the transition probabilities throughout. Consequently, from this counterfactual policy scenarios we can infer that neither an increase in market entry rates nor changes in the overall macroeconomic conditions significantly alter the intra-distribution dynamics of the firm size distribution. A closer inspection of the changes in transition probabilities due to these two counterfactual scenario reveals that both, the initially smallest and largest firms seems to be symmetrically affected by these experiments and thus intra-distribution dynamics are relatively small. To some extent this result contradicts earlier literature on firm survival which argued that market entry and macroeconomic conditions are especially crucial for the survival of the youngest firms (see, e.g., Caballero and Hammour 1994). On the contrary, our results also indicate that neither policies directed towards increasing market entry rates nor growth promoting policies are suitable to substantially increase the share of high growth firms.

Finally, scenario 4 analyzes the effects of a counterfactual increase in the birth size of firms by one employee. To start with, the lowest panel of Table 4 indicates that the transition probabilities of only the smallest firms in 1999 are significantly affected by this experiment. In particular, the youngest two cohorts of initially small firms exhibit a significant increase in their probability to be high growth firms. Consequently, these firms become less likely to exit the market and to stay small. With this result at hand, one might conclude that policies directed towards increasing start-up firm size might successfully lead to more high growth firms. By contrast, this counterfactual scenario even further enhance the job destruction tendencies in Austrian manufacturing firms. This additional job loss is due to the indirect effects of an increase in the birth size of all firms. Initially larger firms exhibit lower post-start-up growth rates contributing to further (net) job destruction. From a job creating policy perspective, this result would imply that only the very smallest start-up firms should be supported in order to increase their birth size.
5 Conclusions

This paper formulates an econometric model which simultaneously examines initial firm size, firm survival and (average) firm growth to estimate firm-specific transition probabilities between size classes (such as the probability to be a high growth firm) and to explore the determinants of (net) job creation. This approach also allows to assess the impact of different (counterfactual) scenarios on the intra-distribution dynamics of the firm size distribution and to disentangle potentially countervailing effects of various policy measures. Some policies might, for example, increase the survival probability of some firms but on the other hand could lower overall firm growth. In such cases the overall effect of the policy measure at hand might be ambiguous. Moreover, this approach allows to compare the overall effects of alternative policy measures. Investigating the impact of small business and entrepreneurship policies, competition policy and growth oriented policies we indeed find that all of these policies have important structural implications.

In particular, a counterfactual scenario which decreases (average) firm age increase the exit hazards for both initially small and large firms and especially reduces the probability to be a high growth firm for the group of small and young firms. By contrast, an increase in the entry rate of new firms and increased market growth has virtually no impact the intra-distribution dynamics of the firm size distribution and thus is not able to successfully increase the frequency of high growth firms. Finally, a counterfactual increase in a firm’s birth size positively affects the smallest and youngest firms. Accordingly, they become more likely to be fast growing firms. From an overall job creation point of view this latter scenario, however, leads to further job destruction which is due to lower post-start-up job creation in initially larger firms.

From a policy perspective our results imply a number of trade-offs between important objectives of SME policy. For instance, policies that increase the founding size of firms introduce an inter-temporal trade-off where increased job creation today is likely to lower job growth in later periods. Our method allows us to quantify these trade-offs as well as to distinguish the structural effects of different policies on firms in different size and age cohorts.
Finally, due to the lack of information of the potential costs of these policies, it is not possible to assess their efficiency. Nonetheless, our results provide evidence for the likely contribution of alternative policy measures to various objectives of SME policy. For instance, policies that are directed at increasing entry rates are unlikely to increase the share of high growth firms in an economy. By contrast, policies aiming at increasing the birth size of the initially smallest firms are likely to increase the share of fast growers. Clearly, for policy makers which focus on net job creation it is important to understand these structural interactions when it comes to designing efficient SME policies.

Acknowledgements

We are grateful to seminar participants at the University of Innsbruck, participants of the workshop on high-growth firms, hosted by the Ratio Institute in Stockholm in May 2011 and participants of the Jornadas de Economía Industrial 2011 in Valencia and of the annual meeting of the Spanish Economic Association 2011 in Málaga for useful comments and valuable discussions. Financial support from the ‘Oesterreichische Nationalbank’ (OeNB, grant numbers 13370 and 12831) is gratefully acknowledged.

6 References

Amemiya, Takeshi (1974), Multivariate Regression and Simultaneous Equation Models when the Dependent Variables are Truncated Normal, Econometrica 42(6), pp. 999-1012.

Bartelsman, Eric, Stefano Scarpetta and Fabiano Schivardeli (2005), Comparative Analysis of Firm Demographics and Survival: Evidence from Micro-Level Sources in

Biewen, Martin (2005), The Covariance Structure of East and West German Incomes and its Implications for the Persistence of Poverty and Inequality, German Economic Review, 6(4), pp. 445-469.

Cameron, A. Colin and Pravin K. Trivedi (2005), Microeconometrics: Methods and applications, Cambridge University Press.

Coad, Alex (2009), The Growth of Firms: A Survey of Theories and Empirical Evidence, Edward Elgar.

Gibrat, Robert (1931), Les Inequalities Economiques, Sirey.

OECD (2009), Measuring Entrepreneurship: A Collection of Indicators, OECD.

Slater, Martin (1980), The Managerial Limitation to the Growth of Firms, Economic Journal 90(359), pp. 520-528.

A Estimation of the Three Equation System

For the formal description of the estimated system of equations, we define the set of explanatory variables in each equation as $x_{iT} = [x_i, x_{iTT}]$, $x_{i1} = [x_i, x_{i11}]$ and $x_{id} = [x_i, x_{iT1}, x_{i11}, x_{id}]$ so that the econometric model can be rewritten as

\begin{align}
y_{iT}^* &= \lambda y_{i1} + x_{iT}' \beta_T + x_{iTT}' \beta_{TT} + u_i \quad (4) \\
y_{i1} &= x_{i1}' \beta_1 + x_{i11}' \beta_{11} + v_i \quad (5) \\
d_i^* &= x_{i}' \beta_d + x_{iT1}' \beta_{dT} + x_{i1}' \beta_{d1} + x_{id}' \beta_{dd} + w_i \quad (6) \\
d_i &= 1 \quad \text{if } d_i^* > 0 \\
y_{iT} &= y_{iT}^* \quad \text{if } d_i = 1.
\end{align}

Note y_{i1} is always observed, while y_{iT} is only observed if firms survive up to period T so that $d_i^* > 0$. For each firm i the error terms are assumed to follow a trivariate normal distribution given by

\[
\begin{bmatrix}
u_i \\
w_i
\end{bmatrix} \sim iid \mathcal{N}\left(0, \begin{bmatrix}
\sigma_u^2 & \rho_{uw} \sigma_u & 0 \\
\rho_{uw} \sigma_u & \sigma_v^2 & \rho_{vw} \sigma_v \\
0 & \rho_{vw} \sigma_v & 1
\end{bmatrix}\right). \quad (7)
\]

The parameters ρ_{uw} and ρ_{vw} are correlations obeying the condition $\rho_{uw}^2 + \rho_{vw}^2 < 1$, which guarantees a positive variance of d_i^*. The log likelihood of the trivariate sample selection model can be based on the conditional distributions of $d_i^* | y_{iT}^*, y_{i1}$ and $d_i^* | y_{i1}$, which are given by (see Greene, 2003, p. 76 and Appendix 1 for details):

\begin{align}
d_i^* | y_{iT}^*, y_{i1} &\sim N(x_{iT}' \beta_d + \frac{\rho_{uw}}{\sigma_u} (u_i + \lambda v_i) + \frac{\rho_{uv}}{\sigma_v} v_i, 1 - \rho_{uw}^2 - \rho_{vw}^2). \quad (8) \\
d_i^* | y_{i1} &\sim N(x_{i1}' \beta_d + \frac{\rho_{uw}}{\sigma_v} v_i, 1 - \rho_{vw}^2).
\end{align}
With this result at hand, the log likelihood can be written as

\[
\ln L = \sum_{\{d_i=0\}} \left(\ln \Phi \left(-\frac{\mu_{id} + \frac{\rho_{uw} \nu_i}{\sigma_u}}{\sqrt{1-\rho_{uw}^2}} \right) + \sum_{\{d_i=1\}} \ln f(y_{i1}) \right) + \sum_{\{d_i=1\}} \left(\ln \Phi \left(\frac{\mu_{id} + \frac{\rho_{uw} (\nu_i + \lambda v_i) + \rho_{vw} \nu_i}{\sigma_u}}{\sqrt{1-\rho_{uw}^2 - \rho_{vw}^2}} \right) + \ln f(y^*_{iT}; y_{i1}) \right)
\]

(9)

\[
\ln f(y^*_{iT}, y_{i1}) = -\frac{1}{2} \ln(2\pi) - \ln(\sigma_u\sigma_v) - \frac{1}{2} \left(\frac{y_{iT} - \lambda y_{i1} - \mu_{iT}}{\sigma_u} \right)^2 - \frac{1}{2} \left(\frac{y_{i1} - \mu_{i1}}{\sigma_v} \right)^2
\]

\[
\ln f(y^*_{i1}) = -\frac{1}{2} \ln(2\pi) - \ln(\sigma_v) - \frac{1}{2} \left(\frac{y_{i1} - \mu_{i1}}{\sigma_v} \right)^2
\]

where we denote \(\mu_{id} = x_i' \beta_d + x_i'_{iT} \beta_{dT} + x_i'_{id} \beta_{dd} \), \(\mu_{i1} = x_i' \beta_1 + x_i'_{i11} \beta_{11} \) and \(\mu_{iT} = x_i' \beta_T + x_i'_{iT} \beta_{TT} \). Using this structural form representation we can write the system (1)-(3) in matrix form as

\[
Y \Gamma + RB = q
\]

with

\[
Y = \begin{bmatrix}
 y^*_{iT} & y_{i1} & d_1 \\
 \vdots & \vdots & \vdots \\
 y^*_{NT} & y_{N1} & d_N
\end{bmatrix}
\]

\[
R = -\begin{bmatrix}
r'_1 \\
\vdots \\
r'_N
\end{bmatrix}
\]

\[
r'_i = [x'_i \ x'_{iT} \ x'_{i11} \ x'_id]
\]

\[
\Gamma = \begin{bmatrix}
1 & 0 & 0 \\
-\lambda & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
\beta_T & \beta_1 & \beta_d \\
\beta_{TT} & 0 & \beta_{dT} \\
0 & \beta_{11} & \beta_{d1} \\
0 & 0 & \beta_{dd}
\end{bmatrix}
\]

\[
q'_i = [u_i \ v_i \ w_i]
\]

The reduced form of the system is given by

\[
Y = -R \Gamma^{-1} + q \Gamma^{-1}
\]
with
\[
-\mathbf{B} \Gamma^{-1} = - \begin{bmatrix}
\beta_T & \beta_1 & \beta_d \\
\beta_{TT} & 0 & \beta_{dT} \\
0 & \beta_{11} & \beta_{d1} \\
0 & 0 & \beta_{dd}
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
\lambda & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = - \begin{bmatrix}
\beta_T + \beta_1 \lambda & \beta_1 & \beta_d \\
\beta_{TT} & 0 & \beta_{dT} \\
\beta_{11} \lambda & \beta_{11} & \beta_{d1} \\
0 & 0 & \beta_{dd}
\end{bmatrix}
\]

\[
q \Gamma^{-1} = \begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\
\lambda & 1 & 0 \\
0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u + \lambda v & v & w \end{bmatrix}
\]

Therefore, the joint distribution of the reduced form model is a trivariate normal distribution:
\[
\begin{bmatrix} y_{iT} \\
y_{i1} \\
d_i
\end{bmatrix} \sim N\left(\begin{bmatrix} \theta_{iT} \\
\theta_{i1} \\
\theta_{id}
\end{bmatrix}, \begin{bmatrix}
\lambda^2 \sigma_v^2 + \sigma_u^2 & \lambda \sigma_v^2 & \rho_u \sigma_u + \lambda \rho_v \sigma_v \\
\lambda \sigma_v^2 & \sigma_v^2 & \rho_v \sigma_v \\
\rho_u \sigma_u + \lambda \rho_v \sigma_v & \rho_v \sigma_v & 1
\end{bmatrix}\right),
\]

where \(\theta_{iT} = x_i' (\beta_T + \beta_1 \lambda) + x_{iT}' \beta_{TT} + x_{i1}' \beta_{11} \lambda, \theta_{i1} = x_i' \beta_1 + x_{i1}' \beta_{11} \) and \(\theta_{id} = x_i' \beta_d + x_{iT}' \beta_{dT} + x_{i1}' \beta_{d1} + x_{id}' \beta_{dd} \).

The expectation of \(y_{iT} \) conditional on \(y_{i1} \) and on the survival of firm \(i \) illustrates the nature of the selection process formally. Using the results of Amemiya (1974, p. 1002) and Tallis (1961, p.225) this conditional exception can be written as
\[
E[y_{iT} \mid y_{i1}, d_i = 1] = (x_i' \beta_1 + x_{i11}' \beta_{11}) \lambda + x_i' \beta_T + x_{iT}' \beta_{T1} + \rho_{uv} (1 - \rho_{vu}) \sigma_u \lambda (\theta_{id}),
\]

B The Calculating of Transition Probabilities

In order to estimate the probability that a firm changes its position in the firm size distribution, we consider the quartiles of the initial and final firm size distribution. Specifically, for periods 1 and \(T \), the quartiles are defined by the bounds \(y_{1,l} \), with \(l = 1, \ldots, 4 \) and \(y_{T,k} \) with \(k = 1, \ldots, 4 \), respectively. By definition the bounds for \(k = l = 4 \) are infinity. In the final period \(T \) there is the additional group of exiting firms. Overall, this gives a 4 by 5 matrix of
transition probabilities that can be derived from the estimated parameters of the system specified above using the reduced form specification. In particular, we estimate firm specific probabilities

\[\hat{q}_{i,k,l} = P(\hat{y}_{iT} + u_i \leq y_{T,k}, \hat{y}_{1l} + v_i \leq y_{1,l}, w_i \leq \hat{d}_i^*) \] (10)

where a ‘hat’ over a variable indicates an estimate and \(\hat{\Sigma}_i \) denotes the estimated variance covariance of the system’s disturbances. We concentrate on firms in the first and fourth quartile of the 1999 size distribution \((l = 1, 4) \) which we refer to as initially small and initially large firms, respectively. From the estimated \(\hat{q}_{i,k,l} \) and \(\hat{q}_{i,l,e} \), the transition probabilities are calculated recursively as

\[\hat{p}_{i,1e} = \hat{q}_{i,1,e} \]
\[\hat{p}_{i,le} = \hat{q}_{i,l,e} - \hat{q}_{i,l-1,e}, \quad l = 2, 3, 4 \]
\[\hat{p}_{i,e} = \sum_{l=1}^{4} \hat{p}_{i,l,e} \]
\[\hat{p}_{i,11} = \hat{q}_{i,1,1} \]
\[\hat{p}_{i,1k} = \hat{q}_{i,1,k} - \hat{q}_{i,1,k-1} \]
\[\hat{p}_{i,k,1} = \hat{q}_{i,k,1} - \hat{q}_{i,k-1,1} \]
\[\hat{p}_{i,k,l} = \hat{q}_{i,k,l} - \hat{q}_{i,k-1,l} - \hat{q}_{i,k,l-1} + \hat{q}_{i,k-1,l-1}, \quad k, l = 2, 3, 4. \]

Note, \(\sum_{k=1}^{4} \sum_{l=1}^{4} \hat{p}_{i,k,l} + \sum_{l=1}^{4} \hat{p}_{i,l,e} = 1. \) The estimation of the transition probabilities requires the integration of the trivariate normal distribution for each firm in the sample. For this we use the Geweke-Hajivassiliou-Keane (GHK) simulator (see Train, 2003 for a detailed description). To avoid an excessive computational burden, we make the simplifying assumption that \(\lambda_i = \lambda_0 + \lambda_1 \ln \text{Age}_k \), where \(\ln \text{Age}_k \) is the mean of \(\ln \text{Age}_i \) within each of the quartiles. Therefore, we treat the variance covariance matrix of the disturbances of the reduced form of the system (derived in the Appendix) as
constant across firms within each quartile.

To obtain a prediction of the job creation rates both in the baseline and in the counterfactual scenario, we calculate the predictions of the unconditional expectation, transform them to levels and aggregate them into groups. In particular, at known parameters it follows that (see, Cameron and Trivedi 2005)

\[
\begin{align*}
\mu_{iT} &= E[y_{iT}] = E_{d_i^∗}[E[y_{iT}|\mathbf{x}_{iT}, d_i^∗]] \\
&= \Phi(\mathbf{x}_{id}^{′}\beta_{d})(\lambda_i y_{i1} + \mathbf{x}_{iT}^{′}\beta_{T}) + \rho_{uw}\sigma_u\phi(\mathbf{x}_{id}^{′}\beta_{d}) \\
\mu_{i1} &= \mathbf{x}_{i1}^{′}\beta_{1}.
\end{align*}
\]
2012-05 **Peter Huber, Harald Oberhofer, and Michael Pfaffermayr.** Job Creation and the Intra-distribution Dynamics of the Firm Size Distribution.

2012-04 **Jörg Paetzold.** The Convergence of Welfare State Indicators in Europe: Evidence from Panel Data.

2012-03 **Sebastian Rathner.** The Performance of Socially Responsible Investment Funds: A Meta-Analysis.

2012-02 **Jesus Crespo Cuaresma and Matthias Stöckl.** The Effect of Marketing Spending on Sales in the Premium Car Segment: New Evidence from Germany.

2011-06 **Peter Huber.** The self-selection of Commuters.

2011-03 **Harald Oberhofer and Michael Pfaffermayr.** FDI versus Exports: Multiple Host Countries and Empirical Evidence. Published in *The World Economy*.

2011-01 **Harald Oberhofer and Michael Pfaffermayr.** Testing the One-Part Fractional Response Model against an Alternative Two-Part Model.

2010-16 **Harald Oberhofer, Tassilo Philippovich and Hannes Winner.** Firm Survival in Professional Football: Evidence from the German Football League.

2010-15 **Engelbert Theurl and Hannes Winner.** The Male-Female Gap in Physician Earnings: Evidence from a Public Health Insurance System. Published in *Health Economics*.

2010-14 **Martin Feldkircher.** Forecast Combination and Bayesian Model Averaging - A Prior Sensitivity Analysis. Forthcoming in *Journal of Forecasting*.

2010-06 Sven P. Jost, Michael Pfaffermayr and Hannes Winner. Transfer Pricing as a Tax Compliance Risk.

2010-05 Christian Reiner. Selling the Ivory Tower and Regional Development: Technology Transfer Offices as Mediators of University-Industry Linkages. Published as University policy and regional development: Technology transfer offices as facilitators and generators of university-industry linkages in Berichte zur Deutschen Landeskunde.

2010-03 Jesús Crespo Cuaresma, Harald Oberhofer and Paul A. Raschky. Oil and the Duration of Dictatorships. Published in Public Choice.

2010-01 Andrea M. Leiter, Andrea M. Parolini and Hannes Winner. Environmental Regulation and Investment: Evidence from European Country-Industry Data. Published in Ecological Economics

2009-05 **Hannes Winner.** Der Kampf gegen internationale Steuerhinterziehung: Die OECD Initiativen gegen “Steueroasen”. Published in *Steuer und Wirtschaft.*

2009-04 **Michael Pfaffermayr, Matthias Stöckl and Hannes Winner.** Capital Structure, Corporate Taxation and Firm Age.

2009-03 **Simon Loretz and Padraig J. Moore.** Corporate Tax Competition Between Firms.

2009-02 **Ronald W. McQuaid and Walter Scherrer.** Changing Reasons for Public Private Partnerships. Published in *Public Money and Management.*

2009-01 **Harald Oberhofer, Tassilo Philippovich and Hannes Winner.** Distance Matters in Away Games: Evidence from the German Football League. Published in *Journal of Economic Psychology.*