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Abstract

In this study we evaluate the forecast performance of model averaged forecasts
based on the predictive likelihood carrying out a prior sensitivity analysis regarding
Zellner’s g prior. The main results are fourfold: First the predictive likelihood does
always better than the traditionally employed ’marginal’ likelihood in settings where
the true model is not part of the model space. Secondly, forecast accuracy as measured
by the root mean square error (rmse) is maximized for the median probability model.
On the other hand, model averaging excels in predicting direction of changes. Lastly,
g should be set according to Laud and Ibrahim (1995) with a hold-out sample size of
25% to minimize the rmse (median model) and 75% to optimize direction of change
forecasts (model averaging). We finally apply the aforementioned recommendations to
forecast the monthly industrial production output of six countries beating for almost
all countries the AR (1) benchmark model.
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———————————————

1 Introduction
In a pure forecasting setting the objective solely lies in minimizing the prediction error ab-
stracting from causality interpretations of relationships among the variables. The set of
predictors can be substantially enlarged by applying various transformation functions and
the lag operator to the data base of raw series. The resulting model space is tremendous
and poses an impediment for picking the ’best’ forecasting model rendering Bayesian model
averaging an attractive alternative to model selection. In the context of the latter approach
forecasts are treated as being competitive rather than potentially complementary and models
are chosen according to some pre-specified selection criteria (e.g. adjusted R2,AIC, BIC,
etc.). Hereby model selection ignores an important source of risk: model uncertainty. Es-
timated coefficients might differ with respect to magnitude and - even worse - sign across
forecasting models. Consequently confidence in regression results is overstated and the risk
stemming from the choice of regressors is neglected. The strength of Bayesian model averag-
ing is rooted in the statistically sound way model uncertainty is overcome. Basing inference
on a weighted average across sufficiently many models as opposed to picking a single best
model provides a robust modeling strategy with weights arising naturally as the posterior
model probabilities (PMPs). It has received a lot of attention in the statistical literature
(Raftery (1995)) and more recently became popular among econometricians (see Fernández
et al. (2001b) and Sala-i-Martin et al. (2004) for an application to growth regressions).
Although averaging over models can be best motivated from a Bayesian perspective it gained
substantial support from the classical strand of the literature. Dating back to Bates and
Granger (1969) forecast combination has demonstrated superior out-of-sample properties.
In a classical sense the data generating ’true’ model should always do better than an av-
erage of a range of ’misspecified’ models (Kapetanios et al. (2008)). However, economic
phenomena can hardly be fully described with the data at hand and the resulting models
can be best seen as good approximations. Wright (2003) relied in a classical setting on the
BMA paradigm forecasting foreign exchange rates. For most currency pairs BMA signif-
icantly improved out-of-sample forecasting statistics upon simple averaging and a random
walk benchmark forecast. In a BMA experiment Avramov (2002) predicted stock market
returns and concluded that the most influential risk dimension is not parameter but model
uncertainty. Cremers (2002) successfully forecast excess stock returns demonstrating the
superiority of Bayesian model averaging compared to individual forecasts based on highest
posterior model probabilities as well as the classical model selection methodology.
While the previous studies all have in common that the derived forecast weights are based
on in-sample measures we follow the approach put forward by Eklund and Karlsson (2007).
Based on the predictive likelihood individual forecast models are weighted according their
respective out-of-sample predictive abilities. It better protects against the risk of over-fitting
and prefers models that are stable over time. We take a fully Bayesian approach exploiting
the model space via a Markov Chain Monte Carlo algorithm. By the elicited prior structure
we considerably deviate from Eklund and Karlsson (2007) in two instances: First we put
a hierarchical binomial-beta prior on the model space (Ley and Steel (2009)) that allows
us to stay in a non-informative setting. Second we conduct a prior sensitivity analysis for

2



Zellner’s g hyper-parameter. The choice of g is crucial since it governs how posterior mass
is spread among models and it provides shrinkage correction for the estimated coefficients.
Furthermore its impact on forecasts under the predictive likelihood has not been investigated
so far. Thirdly we compare averaged forecasts to those of the model with highest posterior
model probability attached to as well as the median probability model proposed by Barbieri
and Berger (2003).
Results from a simulation study point to considerable improvements of averaged forecasts
in terms of direction of changes over individual models which is in line with findings of Cre-
spo Cuaresma (2007). However, forecasting accuracy as measured by the root mean square
error is maximized with the median model. This result is by large robust across different
simulation settings, as well as prior structures. We finally apply BMA and the median
model to forecast the monthly industrial production index of six Central Eastern and South
Eastern European (CESEE) economies. Our forecasts outperform a simple autoregressive
benchmark model in both, squared error loss as well as direction of changes for the majority
of the country set.
The remainder of this paper proceeds as follows: The next section briefly introduces Bayesian
model averaging and introduces the concept of the predictive likelihood. In Section 2 we
carry out a simulation study to investigate the sensitivity of forecasting results with respect to
Zellner’s g hyperparameter. In Section 3 we apply BMA to forecast the industrial production
index of six CESEE countries using the findings of the preceding section. Finally Section 4
concludes.

1.1 Econometric Specification: BMA and the Predictive Likelihood

We choose a linear forecasting model of the following form:

yt = α +Xt−hβ + ut (1)

with the aim at forecasting ŷt+h = α̂+Xtβ̂. Here ut = (u1, u2, . . . , ut) is assumed to be i.i.d.
normally distributed and X can comprise exogenous variables as well as the response itself.
Note that the model is flexible enough to handle dynamics by introducing further lags of
explanatory variables on the right hand side. For the prior on the regression coefficients we
choose Zellner’s popular g prior boiling down to the elicitation of one single hyperparameter
g:

β|σ2 ∼ N
(
0, σ2g[X ′X]−1

)
(2)

The next Chapter discusses in length the choice for g and its implications for posterior
inference. A uniform prior on the intercept and an inverse gamme distribution on the
variance complement the prior distributions for the regression model. Note that this normal-
conjugate framework coupled with Zellner’s g prior is pretty standard in the applied literature
employing BMA under the linear regression model.
From a Bayesian perspective model uncertainty and forecast combination can be handled
in a straightforward manner. Denote the set of (complementary) forecast models by M =
{M1,M2, . . . ,M2K}, where K stands for the number of explanatory variables.
Bayesian model averaging1 takes now the form of

1For an introduction see Koop (2003).
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p(yt+h|y) =
2K∑
j=1

p(yt+h|Mj, θj, y)p(Mj|y) (3)

with y denoting the data up until time point t and θj the coefficient vector under model
Mj. Hence inference on yt+h (i.e. the forecast) is based on single inferences under models
j = 1, . . . , 2K weighted by their respective posterior model probabilities (p(Mj|y)). These
(normalized) probabilities arise naturally in a Bayesian setting by updating the integrated
likelihood p(y|Mj) =

∫
p(y|Mj, θj)p(θj|Mj)dθj by the model prior p(Ml):

p(Mj|y) =
p(y|Mj)p(Mj)∑2K

l=1 p(y|Ml)p(Ml)
(4)

For the particular case of j = 2 the posterior odds of two competing models are simply given
by the product of the Bayes factor (p(y|M2)/p(y|M1)) with the prior odds (p(M2)/p(M1)).
Abstracting from model uncertainty, for a single model the marginal likelihood p(y|Mj) (or
equivalently integrated likelihood) is also termed the prior predictive distribution of y. It
indicates which values of y are possible outcomes before seeing the data under the entertained
model.
A quantity that is often of interest is the posterior inclusion probability of a covariate (PIP)
defined as PIP ≡

∑2K

M:mi=1 p(Mi|y) with mi = 1 indicating that variable i is included in the
model. That is the PIP of a variable can be thought of as the percentage it is included in
all models entertained and thus serves as a significance indicator.
Given our focus on forecasting, evaluating candidate models by measures of in-sample fit
raises the danger of over-fitting the data. Furthermore, parameter instability is often en-
countered in applied econometric forecasting. This holds true for in-sample model selection
as well as traditional Bayesian model averaging based on the marginal likelihoods. An ap-
pealing alternative to overcome the problems alluded to before is the concept of the predictive
likelihood. The idea is that a model should be as good as it’s out-of-sample prediction lead-
ing to weights that directly incorporate the model’s forecasting performance. This can be
done in several ways, as shown in the literature, ranging from out-of-sample information
criteria (Kapetanios et al. (2006)) to asymptotic approximations of Bayes factors by the
out-of-sample BIC (Crespo Cuaresma (2007)) to fully Bayesian approaches (Geweke and
Whiteman (2006), Eklund and Karlsson (2007)). By taking a purely Bayesian perspec-
tive the econometric framework this study pursues is closest to the latter one. In order to
calculate the predictive likelihood the data is split into a training and a hold-out sample
summarized below:

0

training sample (y∗N×1,X∗N×K)

N

hold-out sample (ỹl×1,X̃l×K)

T

forecast horizon

T + h

with T = N + l denoting the total number of observations available. Our aim is to forecast
ŷT+h, data that is not at hand when actually calculating the forecasts. The purpose of the
training sample is to obtain the parameter posterior distributions (p(θi|y∗,Mi)) while the
hold-out sample will serve to form the weights over the model space. The product of the
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predictive likelihood with the posterior distributions of the parameters yields the posterior
predictive density:

p(ỹ|y∗,Mi) =

∫
θi

p(ỹ|θi, y∗,Mi)p(θi|y∗,Mi)dθi (5)

It indicates how likely it is that future observations ỹ have been generated under model
Mj given data y∗. After ỹ has been realized the posterior predictive density can be easily
evaluated. In this vein the hold-out sample is used to investigate the predictive power of the
individual models which in turn serve as weights given in equation (4): models that did fairly
well in predicting observations of the hold-out sample are assigned a higher weight than those
with poor forecast properties. Note that it is implicitely assumed that models with a good
prediction ’track’ over the hold-out sample will do extraordinarily well also over the forecast
horizon. The proportion of the training sample relative to the hold-out sample is thus a
crucial decision to be made by the researcher. Eklund and Karlsson (2007) recommend
to reserve 75% of the observations to the hold-out sample and only 25% for the training
sample. To finally forecast ŷT+h we first update the parameter posterior distributions by
re-estimating the individual models based on the whole data available (i.e. T observations).
Averaged forecasts are then formed by combining single models’ forecasts as in equation (3)
with the weights reflecting predictive performance over the hold-out sample.
To illustrate how in-sample and out-of sample fit are embedded we follow Eklund and Karls-
son (2007) and decompose the predictive likelihood:

p(ỹ|y∗, X∗) ∝

(S∗/N)−l/2
|M∗|1/2

|M∗ + X̃ ′X̃|1/2
×[

N +
1

S∗/N

(
ỹ − X̃ g

1 + g
β̂

)′ (
Il + X̃(M∗)−1X̃ ′

)−1
(
ỹ − X̃ g

1 + g
β̂

)]−(N+l)/2

(6)

with M∗ = 1+g
g
X∗′X∗, S∗ = g

1+g
(y∗ − X∗β̂∗)′(y∗ − X∗β̂∗) + 1

1+g
y∗′y∗. In-sample fit based

on the training sample is measured by (S∗/N)−(l/2) with the difference in fit of two models
(S∗j /S

∗
l )
−l/2 increasing with the size of the hold-out sample l. Thus if a large proportion of the

total sample is devoted to the hold-out sample small variations in fit of two competing models
will result in sizable differences of the Bayes factor. Finally, out-of-sample fit is measured by
the last term that is relative to the model’s forecast error variance. Thus models with good
in-sample fit - and corresponding small forecast error variance - but greater than expected
forecast error are penalized. Note also that the effect of these two components increase with
l the size of the hold-out sample.
As was pointed out in the introduction model averaging is applied to overcome the problem
of model uncertainty and thus constitutes our first choice how to calculate the forecasts.
However, in certain instances the researcher has to choose a single model. To contrast
model averaging with model selection we choose two further forecasting approaches where
our expectation is that averaged forecasts should excel. As second alternative we choose the
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model that achieves highest posterior support which we denote by the best model. Note that
this can be interpreted - under certain priors for g - as if one chooses among the models
according to an information criterion such as the BIC. Thirdly we follow the proposal made
by Barbieri and Berger (2003). They show that under very general conditions the median
probability model - the model that includes variables with PIP ≥ 50% - is optimal in a
predictive sense. This threshold is also a natural choice under the use of a non-informative
prior on the model space.

2 A Prior Sensitivity Analysis for g
To do Bayesian analysis we have to specify priors for the regression coefficients, for the
precision and over the models (M1,M2, . . . ,M2K ). Since we have at best little prior informa-
tion on model size a non-informative prior structure should be embedded into the analysis.
Typically researchers have used a uniform prior over the model space, that is each model
is assigned the same probability a priori. However, Ley and Steel (2009) show how to cal-
ibrate the prior over the models in terms of the expected model size.2 Following Ley and
Steel (2009) we put a binomial-beta prior on the inclusion probability. We anchor the prior
around the expected model size of K/2 regressors. Put differently, with this specific prior
choice each explanatory variable is assigned a 50% chance to be in or out the model a priori.3
A further severe prior choice has to be made with respect to g, the parameter that reflects
the researcher’s choice how much weight is attached to her prior beliefs relative to the
data. Bayesian model averaging employing Zellner’s g prior on the regression coefficients
is probably so popular in the applied literature since it leads to closed form solutions for
all necessary quantities and on top of that requires merely the choice of one single hyper-
parameter g.
Small values for g tighten the prior given in equation (2) whereas increasing g leads to a
more non-informative prior setting.4 That is, a small value for g corresponds to a strong
belief that the regression slopes are zero. Since the penalty for parsimony is embedded
in the Bayes factor, the model size in BMA is governed by the prior on models as well
as g. Consequently, large values for g incite posterior mass to be concentrated on a tiny
set of parsimonious models. Small values, in contrast, will distribute mass more evenly
(i.e. posterior model probabilities will not be solely concentrated on a few models). See
Feldkircher and Zeugner (2009) for a recent contribution regarding posterior mass ascription
and its implications for posterior inference. Furthermore, note that BMA belongs to the
class of shrinkage estimators. Under the normal conjugate prior the expected value of the βj
is given by E(βj|y,Mj) = g

1+g
β̂j, with β̂j denoting the OLS estimates and g

1+g
the shrinkage

factor. Thus g affects posterior inference and forecasting quality in three ways: First it
governs how posterior mass is spread among models (tight versus even distribution). Second
posterior estimates are premultiplied by the shrinkage factor and third g acts as a penalty for
model size. Note that the last point constitutes a drawback of Zellner’s g prior since model

2See Sala-i-Martin et al. (2004) for a different approach that is based on an informative prior on the
model space.

3For more details see the appendix.
4Note that there are well understood paradoxes of the g-prior in the limit cases discussed in Liang et al.

(2008).
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size is governed by both, the prior on model size and the Bayes factor. Ideally, the penalty
for model size would be embedded in the model prior only leaving g to govern the tightness of
posterior mass concentration (and not whether to favor saturated or non-saturated models).
Fernández et al. (2001a)5 and Foster and George (1994) show that g can be calibrated such
that the ranking of the models implied by the posterior model probabilities matches that of
popular information criteria. In an influential paper Fernández et al. (2001a) have proposed
a way how to elicit g automatically based on theoretical properties and predictive abilities
of the prior settings. We briefly outline some of the prior settings used in Fernández et al.
(2001a) for the linear BMA case:

• Risk Inflation Criterion Prior (RIC): implies setting g = K2. This calibrates the pos-
terior model probability to asymptotically match the risk inflation criterion proposed
by Foster and George (1994).

• Unit Information Prior (UIP): corresponds to g = N . It draws on the notion that
the ’amount of information’ contained in the prior equals the amount of information
in one observation (Kass and Wasserman (1995)). By applying the unit information
prior the logarithm of the likelihood ratio mimics the Schwarz criterion. The Bayes
factor can thus be interpreted asymptotically as the difference of the BIC values for
the two corresponding models.

• Ibrahim-Laud Prior (IL): g =
(

1−δγ1/kj

δγ1/kj

)−1

. Laud and Ibrahim (1995) and Laud and
Ibrahim (1996) propose information criteria for model selection based on predictive
considerations allowing for prior knowledge input. In applications for the linear re-
gression model within the normal-conjugate framework they suggest setting δ < 1 and
γ such that 1/(1 + g) falls into the range of [0.10, 0.15]. As for the other priors we
do not allow for dependence of the prior on the number of regressors employed and
set 1/(1 + g) = 0.125 such that the recommendation by Laud and Ibrahim is taken
account for.

• Hannan-Quinn Prior (HQ): g = ln(N)3 so as to mimic the Hannan-Quinn criterion.

• (modified) Schwarz Prior (SQ): g =
√
N which is close to the Schwarz criterion with

smaller penalty for model size imposed.

The benchmark prior recommendation of Fernández et al. (2001a) amounts to setting g =
max(N,K2) and bridges between the unit information prior and the RIC information cri-
terion. Other approaches include mixtures of g-priors (hyper-g prior) and variants of the
Zellner-Siow prior (Liang et al. (2008)).6 Note that all the aforementioned calibrations solely

5The following discussion assumes the use of the integrated likelihood as opposed to the predictive like-
lihood.

6Although appealing from a theoretical perspective the computational burden calculating the predictive
likelihood under the hyper-g prior is essential.
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apply to the Bayes factor based on the integrated likelihood and the consequences (and op-
timal choices) for the predictive likelihood are by far less clear. This is the purpose of the
next section investigating the predictive merits of BMA under different choices for g.

2.1 Simulation Study

For the simulation study we design two different settings: Setup ’A’ follows closely Fernández
et al. (2001a) in drawing first 10 potential explanatory variables (x1, . . . , x10) using N =120
draws from a standard normal distribution for the covariates. From these draws the last 20
observations are retained for forecast evaluation. Additional 5 variables are generated by
multiplying the first five regressors by [0.3, 0.5, 0.7, 0.9, 1.1] inducing a correlation structure
among the covariates. Thus in total we have K = 15 regressors amounting to a complete
model space of 215 = 32, 768 models. Akin to Eklund and Karlsson (2007) we drop x1 and x7

from the model space before carrying out the simulations. This setting is called the ’M-Open
Perspective’ and is further defined below:

• M-Open Perspective (Setup A): y = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε.

Hence the data generating model is not among the candidate models (the M-Open perspec-
tive) and model averaging should yield the best approximation to the ’correct’ model. True
model simulation studies render model selection procedures to dominate model averaging
since no approximation can do better than the model that has generated the data. Setup ’B’
is in the vein of the structural breaks literature. Following Eklund and Karlsson (2007) we
generate N = 250 observations, again with the last 20 reserved for forecast evaluation. In
setting ’B’ the coefficient on x7 changes from 1.5 to −1.5 in the middle of the sample period
(observation 125):

• Structural Break Perspective (Setup B): first 125 observations belong to y1, remaining
observations generated according to y2.

y =

{
y1 = 4 + 2x1 − x5 + 1.5x7 + x11 + 0.5x13 + σε
y2 = 4 + 2x1 − x5 − 1.5x7 + x11 + 0.5x13 + σε

For both setups we choose σ = 2.5. Note, however, that since the number of observations
differ, we implicitly use different signal-to-noise ratios for the simulation exercises. Besides
the prevalent time series interpretation of structural breaks or regime switching models (see
e.g. Hamilton (2008)) the simulation model can also be viewed from a cross sectional angle
with the regimes denoting two different groups or categories of individuals. Note that we
again exclude the true model from the model space by construction. For both setups the
values for g lie in the range of 7 (IL) and 255 (RIC) with the benchmark prior proposing
g = 255 (RIC). This implies that the distribution of posterior mass will be very tight
with the best model being assigned an extraordinary high posterior model probability. Note
further that in the case with the best model’s PMP exceeding 1/2 it will coincide with the
median model.
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To evaluate the out-of-sample performance of predictive model averaging under the different
prior structures we conduct a rolling BMA experiment with an enlarging estimation window.
We calculate two prominent statistics, the root mean square error (rmse) and the hitrate.
The rmse serves as a measure of forecast accuracy, whereas the hitrate gives the average
number of correctly forecast direction of changes. These two statistics are calculated for
the three forecasting approaches outlined on page 5 (BMA, best model and median model).
Secondly, we are interested in the relative performance of predictive averaging versus ’tradi-
tional’ likelihood averaging. This might depend crucially on the size of the hold-out sample.
Structural instability of parameters and models might play an important role for the under-
lying data rendering the choice of the size of the hold-out-sample a first order determinant
of the merits of the predictive likelihood averaging approach. Consequently we compare the
forecasts based on the likelihood to that of the predictive likelihood leaving 25%, 50% and
75% of the data for the hold-out-sample. Averaged forecasts are based on the 500 models
with largest posterior support (in terms of posterior model probabilities). All statistics are
averaged over 30 Monte Carlo steps.
Table 3 and Figure 1 summarize results for setup A. The top panel of Figure 1 illustrates
the forecasting accuracy in terms of the rmse statistic. The picture reveals that the highest
posterior probability model (best model) shows largest variation with respect to the choice of
the g-prior and the size of the hold-out sample. On the other end of the rmse statistic is the
median model: here the rmse is minimized for the IL prior with a hold-out size of 25% of the
total sample. Note also that the variation for the median model is relatively small except the
forecasts based on the marginal likelihood (medlik). Model averaged forecasts fall somewhat
between the best model forecasts and the ones of the median model. In general the ranking
of prior structures is quite stable across both hold-out sample sizes and forecast approaches
with the IL prior dominating the other priors for g. Results differ when looking at the
direction of change statistic. Here the median model always underperforms model averaged
and best model forecasts. Also the prior choice for g seems to be of minor importance in
comparison to the choice of the hold-out sample. The best results are obtained retaining
75% of the available observations, a recommendation made by Eklund and Karlsson (2007).
Under setting ’B’ a structural break (or regime switch) occurs at the middle of the sample
period (observation 125). Results are summarized in Table 4 and Figure 1. Turning first to
forecast accuracy the bottom panel of picture 1 shows that again the median model does best
in minimizing the rmse statistic. However, this time there is considerably more variation
of the rmse. Likelihood averaged forecasts, especially, are performing by far worse as the
ones based on the predictive likelihood. This result is not surprising since one merit of the
predictive likelihood is its ’robustness’ against the occurrence of structural breaks (Eklund
and Karlsson (2007)). Results for the best model are more concentrated with the rmse lying
above the median model. On average, averaged forecasts do better than the ones based on
the highest posterior model but again worse than the median model forecasts. Regarding
the prior structures for g, as in the previous setting ’A’, the IL prior yields the best forecasts
followed by the SQ prior. Concerning direction of changes all priors and forecast approaches
perform very similarly with only the likelihood based forecasts falling well off the others.
Concluding the simulation results indicate that forecast accuracy measured by the rmse
is highest for the median probability model dominating both, averaged and best model
forecasts. Direction of changes are better captured by averaged forecasts where the hold-
out sample size should be around 75% of the total sample. On the other hand, the rmse
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statistic is minimized retaining 25% of the total available observations. Concerning the prior
structures for g, the IL prior dominates the other settings, followed by the SQ prior. This
suggests that the benchmark prior put forward by Fernández et al. (2001a) is not optimal in
a predictive sense when the underlying likelihood is the predictive instead of the marginal.

3 Empirical Application: Forecasting Industrial Produc-
tion

Bayesian model averaging is applied to data on industrial output for six CESEE economies:
the Czech Republic, Hungary, Poland, and Bulgaria, Romania and Slovenia. These countries
represent the largest economies in terms of economic activity and population in the region.
For the six countries the series is published with a time lag of 1-2 months. Consequently
we focus on the 1 step ahead forecasting horizon in order to compensate for the publication
lag. Note that we use univariate (country specific) models as opposed to modeling industrial
production in a country-wide system - for example by means of vector autoregressive models
(VAR). Marcellino et al. (2003) compare several forecasting models for euro area forecasts of
the industrial production index and conclude that (aggregated) univariate forecasts perform
better than in a multivariate setting. Also, a short forecast horizon - as is the case in
this application - plays in favor of univariate models. The data we use comprises up to 15
potential explanatory variables and is described in more detail in the appendix (see also
Table 2).
As outlined in Section 1.1 we choose a linear forecasting model following Marchetti and
Parigi (2000) and Zizza (2002). In particular the forecasting model for country i is of the
form:

yt = α +
2∑
j=1

X(t−j)β + I(i)
3∑

k=1

energy(t−k)γ + seasonalsθ + ut (7)

with α denoting a constant and u the iid error term. By seasonals we denote monthly
dummy variables in order to account for the cyclical pattern of the data. The variable
energy denotes energy consumption and is separated from the remaining variables that are
captured by the design matrix X. The reason for this is the varying degree of timeliness
with respect to availability of the time series. For most of the countries publication of the
energy series occurs with a lag of two months. Only for Hungary the data is right available
with the industrial production index itself. The indicator function I(i) is therefore country
specific governing the order of lags of the energy variable. All remaining variables are lagged
for one and two time periods (including the dependent variable that is contained in X).
Out-of-sample statistics are calculated over a 30-period horizon and are based on rolling
regressions with an enlarging estimation window. Based on the simulation study carried out
in Section 2.1 we elicit the IL prior for g.7 We decide to choose a hold-out sample size of 50%
that lies in between the 25% and 75% recommendations. Since the first rolling regressions are
based on 60 (Czech Republic, Hungary and Poland) and 70 (Bulgaria, Romania and Slovenia)
observations, 50% of the data seems to be the maximum one can retain for model comparison.

7The model size prior is the same as in the simulation study, that is binomial-beta anchored on a prior
expected model size of K/2 regressors.
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The results are summarized in Table 4, in the appendix where we have normalized the
statistics relative to an AR (1) benchmark model. Consequently values above 1 for the
hitrate statistic and values below 1 for the rmse indicate that the benchmark model is
outperformed by the respective forecasting alternative. Note that we have included the
seasonal dummy variables in the AR (1) baseline model as additional exogenous regressors
in order to allow for a fair comparison.
Model averaging excels in forecasting the industrial production in terms of direction of
changes: the hitrate ranges from 80% to 96% pointing to an extraordinarily high degree of
correctly forecast directions of the underlying time series. This suggest that the sideward
movements in the data can almost exclusively be traced back to the cyclical patterns and
consequently be properly modeled by inclusion of the seasonal dummy variables. The AR
(1) benchmark model can only beat model averaged forecasts for the cases of Bulgaria and
Poland. Note that there is in general a great deal of variation regarding which and how
many variables serve as good predictors.8 While in the Czech Republic and Hungary the
median model is typically very saturated with the mean number of regressors around 20 (not
including the seasonals), in Poland and Bulgaria the posterior mass is very concentrated on
2-3 regressors only. Regarding the precision of the forecasts, the median model turns out
to be the forecast approach that minimizes the forecasting error as measured by the rmse.
With the exception of Poland this finding holds true for all countries covered in the data
set. Furthermore, the median model clearly outperforms the AR (1) benchmark model for
all six countries. Hence, although the size of the median model varies strongly across the
countries with some sharing on average a very large number of explanatory variables, it still
dominates the other approaches in terms of forecast accuracy.

4 Conclusions
In this paper we investigated the predictive performance of various forecasting approaches.
We first compared forecasts based on the marginal likelihood traditionally employed in BMA
to that based on the predictive likelihood - a measure that accounts for the model’s forecast
quality. We further looked at three alternative ways how to compute forecasts. Based on a
simulation study our results imply that direction of changes are best forecast using averaged
forecasts, a result that is in line with Crespo Cuaresma (2007). On the other hand, forecast
accuracy as measured by the root mean square error is largest under the so-called median
model proposed by Barbieri and Berger (2003). With respect to prior choice our results show
that the best forecast results are obtained when drawing on the IL prior (Laud and Ibrahim
(1995)), a prior that implies a considerably smaller value for g than under the prominent
’benchmark prior’ put forward by Fernández et al. (2001a). In particular best results in
terms of forecast accuracy are obtained under the IL prior with a hold-out sample size of
25% of the total data, whereas averaged forecasts excel in forecasting the direction of changes
with a considerably larger hold-out size of 75% of the data. In the empirical application we

8A common finding is that for all countries the lagged dependent variable (industOut1) appears among the
most important regressors. Moreover, energy consumption carries valuable information about the industrial
production throughout all countries. This finding appears robust in the data despite the fact that in most
countries the variable is included with a time lag of order 3 due to the availability problems of the time series.
In an experiment not reported in this paper including first lags of the energy variable for all countries, the
variable appeared as the most important predictor for the industrial production index.
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forecast the industrial production index for six CESEE countries with a forecast horizon of 1
step ahead. The analysis shows that the industrial production index based on the proposed
forecast strategies and prior choices can be forecast to a satisfactory degree outperforming
the simple AR (1) benchmark model in most of the cases. Finally, model averaging reveals
a range of important variables serving as good leading indicators. Among them industrial
and economic sentiment indicators as well as energy consumption carry valuable information
about the future development of industrial output.
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Appendix
MCMC sampler

This section briefly discusses the MCMC sampler used throughout the paper. Exploring
the model space can be done via a range of search algorithms, here Markov Chain Monte
Carlo methods are used, which have been shown to have good properties in the framework
of BMA. The Markov chain is designed to wander efficiently through the model space, where
it draws attention solely to models with non-negligible posterior mass.
The sampler uses a birth/deathMC3 (Madigan and York, 1995) search algorithm to explore
the model space. In each iteration step a candidate regressor is drawn from kc ∼ U(1, K).
A (birth step) is adding the candidate regressor to the current model Mj if that model did
not already include kc. On the other hand, the candidate regressor is dropped if it is already
contained in Mj (death step). This is in the vein of Madigan and York (1995) with the new
model always being drawn from a neighborhood of the current one differing only by a single
regressor. To compare the sampled candidate model Mi to the current one, the posterior
odds ratio is calculated implying the following acceptance probability,

p̃ij = min

[
1,
p(Mi)p(Y|Mi)

p(Mj)p(Y|Mj)

]
. (8)

Model Space Prior

A typical way of prior specification is to discriminate among models according to the number
of regressors they include. Assuming that each covariate enters the regression with proba-
bility ϑ the prior mass for model j amounts to p(Mj) = ϑkj (1 − ϑ)K−kj . In most empirical
studies ϑ is now fixed to 1/2 which results into equal model probabilities of 2−K for all mod-
els. Consequently the posterior odds ratio resembles solely the Bayes factor and comparison
of models is governed by their relative likelihoods. However, this prior structure is not as
non-informative as it sounds at first sight. Ley and Steel (2009) show that fixing ϑ = 1/2
puts most mass on models with K/2 regressors since they are dominant in number. Their
recommendation is thus to treat ϑ as random and placing a prior on it. In particular the
expected model size follows a binomial-beta distribution:

P (k = kj) =
Γ(1 + b)

Γ(1) + Γ(b) + Γ(1 + b+K)

(
K

kj

)
Γ(1 + kj)Γ(b+K − kj) kj = 0, . . . , K (9)

The parameter to be elicited is µ the prior expected model size.9 By applying the binomial-
beta hyperprior we considerably deviate from previous studies that have employed BMA for
forecasting purposes. Ley and Steel (2009) demonstrate the risk and the influence a poorly
specified prior exerts on posterior results when ϑ is fixed. The relative merits of BMA tend
to be less pronounced and its predictive power deteriorates. In contrast, with the hyperprior
the choice of µ has no influential impact on posterior inference and the prior over models is
purely non-informative.

9Note that b is implicitly defined through b = (K − µ)/µ.
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Data Description

The data we use is briefly described in Table 2 and is available on a monthly basis from
Eurostat. It comprises the time span from January 2001 to September 2009 for Bulgaria,
Slovenia and Romania. For the Czech Republic, Hungary and Poland the data period is
about one year shorter (January 2002 to September 2009). As explanatory variables poten-
tially leading the industrial production series we choose the construction output, industrial
sales, the unemployment rate, retail trade, manufacturing orders and various sentiment in-
dicators. These sentiment indicators are conducted via surveys and quantified in balances
of positive and negative replies. Note that there exist several ways of transforming these
raw series by either taking lags or spreads of the data. This further enlarges the model
space thereby raising the potential for (model) uncertainty. All variables have been tested
for a unit root by the augmented Dickey Fuller test.10 After linearly detrending the data
all variables in question - including the dependent one - pass the test for stationarity. The
highly cyclical nature of the data was already noted in Bodo et al. (2000) who analyzed the
monthly industrial production index for the euro area. In particular, in Table 1 the vari-
ation explained by seasonal dummy variables and a constant ranges from 75% (Bulgaria)
to 95% (Czech Republic). Note also the difference in the summary statistics: the index is
most volatile in the Czech Republic, whereas the other countries show a similar degree of
variation.

Czech Republic Hungary Poland Bulgaria Romania Slovenia
Mean -0.0390 -0.0506 -0.0189 -0.0542 0.0964 0.0904
Standard Deviation 12.1878 7.2747 4.7674 5.6717 6.4285 7.0561
Adjusted R2 0.9512 0.8618 0.7842 0.7510 0.7895 0.8312

Table 1: Summary Statistics of the detrended industrial production index over the whole sample period.
The adjusted R2 refers to the variation of the data explained by only seasonal components and an intercept
term.

Tables and Figures

10The test specification included a constant and a trend. Results are available from the author upon
request.
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BMA Best Model Median Model
Hitrate Rmse Hitrate Rmse Hitrate Rmse

HQ25% 0.7158 4.3641 0.7251 4.4100 0.7211 4.3468
IL25% 0.7158 4.3252 0.7211 4.3587 0.7158 4.3073
RIC25% 0.7158 4.3644 0.7279 4.4100 0.7211 4.3471
SQ25% 0.7158 4.3412 0.7227 4.3732 0.7132 4.3253
UIP25% 0.7158 4.3649 0.7307 4.4095 0.7211 4.3475
HQ50% 0.7184 4.3361 0.7171 4.3659 0.7184 4.3240
IL50% 0.7211 4.3564 0.7237 4.3550 0.7184 4.3240
RIC50% 0.7184 4.3361 0.7227 4.3665 0.7184 4.3240
SQ50% 0.7184 4.3493 0.7254 4.3565 0.7184 4.3240
UIP50% 0.7184 4.3360 0.7199 4.3628 0.7184 4.3240
HQ75% 0.7316 4.3734 0.7251 4.4270 0.7184 4.3309
IL75% 0.7237 4.3631 0.7316 4.4338 0.7184 4.3307
RIC75% 0.7316 4.3689 0.7333 4.4267 0.7184 4.3320
SQ75% 0.7289 4.3772 0.7279 4.4153 0.7184 4.3307
UIP75% 0.7289 4.3856 0.7306 4.4258 0.7184 4.3307
HQlik 0.7211 4.3309 0.7184 4.3240 0.7184 4.3230
ILlik 0.7158 4.3206 0.7132 4.3265 0.7211 4.3612
RIClik 0.7211 4.3305 0.7184 4.3240 0.7184 4.3239
SQlik 0.7105 4.3327 0.7184 4.3203 0.7079 4.3308
UIPlik 0.7211 4.3299 0.7184 4.3240 0.7184 4.3236

Table 3: M-Open Setting. Top panel is based on a hold-out sample of 25%, second panel on 50%, third
panel on 75% and bottom panel on likelihood averaging.

BMA Best Model Median Model
Hitrate Rmse Hitrate Rmse Hitrate Rmse

HQ25% 0.7125 4.7861 0.7125 4.7808 0.7117 4.7092
IL25% 0.7125 4.6953 0.7125 4.7024 0.7117 4.6469
RIC25% 0.7125 4.7879 0.7117 4.7810 0.7125 4.7164
SQ25% 0.7125 4.7368 0.7143 4.7344 0.7117 4.6798
UIP25% 0.7125 4.7877 0.7125 4.7823 0.7117 4.7130
HQ50% 0.7125 4.8066 0.7125 4.7839 0.7117 4.7381
IL50% 0.7125 4.7349 0.7125 4.7655 0.7117 4.7111
RIC50% 0.7125 4.8080 0.7117 4.7825 0.7125 4.7434
SQ50% 0.7125 4.7757 0.7143 4.7683 0.7117 4.7275
UIP50% 0.7125 4.8078 0.7125 4.7843 0.7117 4.7402
HQ75% 0.7125 4.8289 0.7125 4.7980 0.7117 4.7024
IL75% 0.7125 4.8237 0.7125 4.7951 0.7117 4.7117
RIC75% 0.7125 4.8239 0.7117 4.7894 0.7125 4.7043
SQ75% 0.7125 4.8249 0.7143 4.8046 0.7117 4.7088
UIP75% 0.7125 4.8349 0.7125 4.8054 0.7117 4.7097
HQlik 0.7026 4.7776 0.6974 4.7824 0.6974 4.7824
ILlik 0.7026 4.7031 0.6974 4.7879 0.6921 4.8107
RIClik 0.7026 4.7787 0.6974 4.7824 0.6974 4.7824
SQlik 0.7053 4.7410 0.6974 4.7878 0.6974 4.7979
UIPlik 0.7026 4.7786 0.6974 4.7824 0.6974 4.7824

Table 4: Structural Break Setting (125). Top panel is based on a hold-out sample of 25%, second panel on
50%, third panel on 75% and bottom panel on likelihood averaging.
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Figure 1: Forecast performance calculated over 20 out-of-sample forecasts averaged over 30 Monte Carlo
steps. Top panel belongs to setting ’A’ whereas bottom panel is based on setting ’B’.
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BMA Best Model Median Model
Bulgaria Hitrate 0.9600 0.8800 1.0800

rmse 0.8005 0.9574 0.7607
Romania Hitrate 1.0357 1.0000 0.9643

rmse 1.0110 1.0791 0.9612
Slovenia Hitrate 1.1250 1.0833 1.0833

rmse 0.8447 0.8624 0.8331
Czech Republic Hitrate 1.0385 1.0385 0.9615

rmse 0.9484 0.9666 0.8621
Hungary Hitrate 1.0000 1.0000 1.0000

rmse 0.8986 0.9120 0.8983
Poland Hitrate 0.9565 1.0000 0.9565

rmse 0.9025 0.8828 0.9248

Table 5: Forecast results compared to AR (1) benchmark model. Values above (below) 1 for the hitrate
(rmse) indicate better predictive performance than the benchmark model.
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