

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Martinho, Vítor João Pereira Domingues

Preprint

Tourism in the Portuguese Rural Areas

Suggested Citation: Martinho, Vítor João Pereira Domingues (2013): Tourism in the Portuguese Rural Areas, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und Hamburg

This Version is available at: https://hdl.handle.net/10419/71761

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Title: Tourism in the Portuguese Rural Areas

Author: Vítor João Pereira Domingues Martinho

Research Centre of the Polytechnic Institute of Viseu

Av. Cor. José Maria Vale de Andrade

Campus Politécnico

3504 - 510 Viseu

PORTUGAL

e-mail: vdmartinho@esav.ipv.pt

Tourism in the Portuguese Rural Areas

Abstract

The tourism in the rural areas is an important contribution to the local economies and an additional income for the traditional local activities as the agricultural sector. Some traditional rural activities, as the agriculture, sometimes and in some locations are not sufficient to provide an acceptable return to their promoters. So the different forms of tourism in rural zones, as the small industry and others sectors, are important contributions to the economic activity in the rural areas. This study pretends to analyze some information and statistical data about the several forms of tourism in the Portuguese rural areas, namely tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel. There were used data from 2004 to 2008 available in the Statistics of Portugal (INE) for the Portuguese NUTs II. These data were analyzed with econometric methods, namely, spatial econometrics and panel data analysis.

Keyword: Tourism, Portugal, Rural areas, Econometric analysis.

1. Introduction

The tourism, as well others activities, in the rural areas had an important contribution with the 1992 CAP (Common Agricultural Policy) reform. This reform, because several factors, pretended to solve environment, budget and overproduction problems in the European agricultural sector. This situation created in many zones some problems to the rural operators, namely the farmers. It was need to promote and incentive others activities to complement the income of the farmers. The tourism in rural areas was and is a crucial source of returns to the farmers and others operators in the rural regions. So, is not enough to research about these questions, to improve what already exists and find others forms to develop the rural regions.

The new technologies, namely those related with the information and communication are crucial to increase and strengthen the competitiveness of the tourism in rural zones (Mariani and Gehlen, 2008). Sometimes the tourism companies, in the rural areas, have weak skills about the web marketing techniques and are not well informed about their importance in the promotion of the economic activities (Duarte and Pais, 2010).

The tourism in rural areas, besides it contributions to the rural economy, has an important contribution to the rural sustainability and to the environment preservation. To find local and adapted forms of tourism is fundamental consider the local heritage and the operators must be innovative and must use the advanced techniques related with the entrepreneurship and the local marketing (Gronau and Kaufmann 2009).

Of course in all this activity the facilities and the appearance of the local environment are determinant to attract tourists to the rural zones. Some authors, as Huylenbroeck et al. (2006), found that the practices in the farms determine the attractiveness for the tourists and have implications in the prices practiced by the local operators. Permanent grassland have positive impact in the tourists and, consequently, in the prices. On the other hand, the intensive agriculture and animal production are not well appreciated for the tourism in the rural areas, namely for the agritourism. In the Flanders this kind of tourism represents more than 30 per cent of the farm return in the some farms, what is an important contribution.

The economic integration forms, as the European Union, contribute to increase the human movement and, as consequence, the tourism in all the different forms, namely the tourism in the rural areas. For example, the number of tourists in some countries, after the 2004 European Union enlargement, increase considerably. However, sometimes the returns from the tourism are not significantly, because in some kind of tourism the people do not spend much money (Druvaskalne and Slara, 2006).

The tourism in China became, in the last years, an important activity and lead the international destinations. The tourism in the rural has been, also, explored. In the East of China the farmers taken this opportunity and the agritourism represents 27%, in some cases, of the total farm income (Rodriguez et al., 2011).

In general, the impact of the tourism in the rural zones is weaker than in the urban areas. This is a question that must be taken into account and be found ways to improve this aspect, stimulating the tourists to spend more money (Zhang et al., 2007).

2. Data analysis

The rural tourism is the most important forma of tourism in the rural areas in Portugal (figure 1). The village tourism has little expression in the Portuguese tourism in the rural spaces. Anyway this tourism in the rural regions increase from 2004 to 2007 and decrease lightly from 2007 to 2008.

Figure 1: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Portugal)

In Portugal Continental (figure 2) the evolution of the different forms of tourism was more or less the same observed for all Portugal.

Figure 2: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Portugal Continental)

The NUT II Norte of Portugal presents a significant relevance of the tourism accommodation in parallel with the rural tourism (figure 3).

Figure 3: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Norte)

The Centro of Portugal presents an evolution similar with that of the all Portugal showed in the figure 1 (figure 4).

Figure 4: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Centro)

Observing the figure 5 it can be seen that the Portuguese NUT II Lisboa has a significant importance in the tourism accommodation.

Figure 5: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Lisboa)

In the Alentejo (figure 6) the agritourism and the country house have a relevant importance relatively to the others forms of tourism in rural areas.

Figure 6: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Alentejo)

The Algarve is characterized by the importance of the rural tourism and the agritourism, but namely by the rural tourism (figure 7).

Figure 7: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Algarve)

From the figure 8 is possible to conclude that Açores presents a evolution similar with that of the all Portugal, with a relative importance of the rural tourism.

Figure 8: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Açores)

In the Madeira is the country house that shows a relative importance relatively to the others forms of tourism in rural zones (figure 9).

Figure 9: Number of nights in the different forms of tourism in rural areas, from 2004 to 2008 (Madeira)

Analyzing now the evolution of the different forms of tourism in rural zones, in the Portuguese NUTs II, for each year (figure 10 to figure 14) is possible to conclude that in 2004 the Norte and the Centro of Portugal were the Portuguese NUTs II where the tourism in rural spaces had more importance, namely with the tourism accommodation and with the rural tourism (figure 10).

Figure 10: Number of nights in the different forms of tourism in rural areas, 2004 and Portuguese NUTs II

In 2005 the situation is similar, however the Alentejo and Madeira show a relative greater importance, namely with the country houses.

Figure 11: Number of nights in the different forms of tourism in rural areas, 2005 and Portuguese NUTs II

In 2006 is proven the relative importance of the Alentejo and Madeia, namely the Alentejo (figure 12).

Figure 12: Number of nights in the different forms of tourism in rural areas, 2006 and Portuguese NUTs II

The figures 13 and 14, for 2007 and 2008, respectively, show the same referred before, namely for the Alentejo.

Figure 13: Number of nights in the different forms of tourism in rural areas, 2007 and Portuguese NUTs II

Figure 14: Number of nights in the different forms of tourism in rural areas, 2008 and Portuguese NUTs II

The figure 15 presents the nights growth rate average (2004-2008) for the different forms of tourism in each Portuguese NUTs II.

Biggest growth rates, for the total of nights in the tourism rural areas (y1), are verified in the Centro and Alentejo. The same is verified for the rural tourism (y3) and rural hotels (y7).

Figure 15: Nights growth rate average (2004-2008) for the different forms of tourism in rural areas (total, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel, respectively, y1, y2, y3, y4, y5, y6 and y7) in the Portuguese NUTs II.

The tourism accommodation (y2) presents great growth rates in the Alentejo and Algarve, the agritourism (y4) in the Centro and Algarve, the village tourism (y5) in the Norte and Alentejo and the country house (y6) in the Norte and Algarve.

The figure 16 shows the statistics of Moran's I for the global spatial autocorrelation, in the all Portuguese NUTs II, and in the nights growth rate average (2004-2008) for the different forms of tourism in rural areas. This analyzes shows us if the growth rates in each NUTs II have autocorrelation with the others of the NUTs II neighbors (considering the distances). A positive Moran's I mean positive autocorrelation and the inverse is also correct (negative Moran's I-negative autocorrelation).

Figure 16: Global spatial autocorrelation (Moran's I) between the Portuguese NUTs II nights growth rate average (2004-2008) for the different forms of tourism in rural areas (total, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel, respectively, y1, y2, y3, y4, y5, y6 and y7).

In the figure 16 all the Moran's I are negative, so we have negative autocorrelation between the Portuguese NUTs II for the nights growth rate average in the rural areas tourism.

Figure 17: Local spatial autocorrelation between the Portuguese NUTs II nights growth rate average (2004-2008) for the different forms of tourism in rural areas (total, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel, respectively, y1, y2, y3, y4, y5, y6 and y7).

The figure 17 above, presents the same analyze for the autocorrelation, but in this case for the local autocorrelation in each NUTs II. The high-low and the low-high statistics values indicate no spatial autocorrelation between the NUTs II, for the variable considered. The high-high and the low-low values represent spatial autocorrelation, for the value high and low of the variable considered, respectively. So, only the village tourism (y5), the country house (y6) and the rural hotel (y7) show spatial autocorrelation in Lisboa (low-low), Centro (low-low) and Centro (high-high), respectively.

Figure 18: Global spatial autocorrelation (Moran's I) between the Portuguese NUTs II nights levels average (2004-2008) for the different forms of tourism in rural areas (total, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel, respectively, y1, y2, y3, y4, y5, y6 and y7).

Figure 18 presents the same global spatial autocorrelation but with the variable (nights in the different rural zones tourism) in levels. In this case there are some signs of positive global spatial autocorrelation in all rural areas tourism (y1), tourism accommodation (y2) and rural tourism (y3).

Figure 19: Local spatial autocorrelation between the Portuguese NUTs II nights levels average (2004-2008) for the different forms of tourism in rural areas (total, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel, respectively, y1, y2, y3, y4, y5, y6 and y7).

In the above figure 19 is presented an analyze of the local spatial autocorrelation, also for the nights in levels, and there some signs of autocorrelation in different NUTs II for some forms of rural spaces tourism, namely the Centro with high-high values and the Alentejo and Lisboa with low-low values.

In the analysis of the spatial autocorrelation the distances between the spatial unity considered, in this case the NUTs, are determinant, because the values of the variable in the spatial unities are weighted by the distances. So, for this weighing is needed to built a matrix of distances. All the spatial autocorrelation analysis, as well the preparation of the matrix of distances was made with the informatics program GeoDa. In elaboration of the matrix can be considered different limits to the distances, but after several simulations was considered the limit of about 250 Km as the most appropriated maximum. Considering that the distances between the spatial unities are important, in the analyze of the spatial autocorrelation was not considered the NUTs II Açores and Madeira (two Portuguese Islands).

3. Estimations results

There were realized several estimations, with panel data (seven NUTs II and 5 years), separately for the total of rural areas tourism, tourism accommodation, rural tourism, agritourism, village tourism, country house and rural hotel.

For these estimations was used the model of the absolute convergence, of Solow (1956), with panel data (Islam, 1995). In this model the variable dependent is the growth rate and the independent variable is the initial value.

This analyze of the convergence give us an idea about the regularity of the data and about the evolution of the context. Negative values for the coefficient of the estimation indicate signs of convergence.

The results obtained are those presented in the following table 1. These results must be complement in the future with others, considering namely more number of observations. Anyway, these results are a first approach to the analyze of these issues.

Observing the table 1, there is a problem with the number of observations for the last estimation, but for the others estimations all the coefficient are statistical significant and with negative values, signs of convergence in the nights growth rates.

Another interesting conclusion is the fact of the in the majority of the estimations the tests indicate a preference for the fixed effects and the constant coefficients presents statistical significance and high values, what can mean the lack of others variables.

Table 1. Estimation of the convergence coefficient with panel data (7 NUTs II and 5 years), considering nights growth rates

Total FE ¹¹ 9.8 (5.1 RE ¹² 0.9 (1.1 OLS DPD ¹³ 14.3 Tourism accon FE ¹¹ 10.4 (4.1 RE ¹² 1.0 OLS DPD ¹³ (2.1 OLS SE ¹¹ (1.4 CLS OLS OLS SE ¹¹ 1.6 (1.7 OLS CLS DPD ¹³ 16. (3.1 Agritourism FE ¹¹ 8.3 (3.1 RE ¹² 1.4 (1.4 OLS DPD ¹³ 7.8 (3.1 CLS -	.432* .720) .061 .110) .089* .140) .705* .420) .435 .400) .731* .570) .278	-1.117* (-4.750) -0.118 (-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	30.800* 0.940 22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	5.340* 5.340* 3.780* 6.320* 2.600*	-0.9290.935 -0.9350.939	0.000 0.000 0.000 0.000 0.000 0.000	34.360* 22.140* 31.500*	0.606 0.606 0.530 0.530 0.530 0.594 0.594	28 28 28 28 28 28 28 28 28 28 28 28 28 2	5 5 5
FE ¹¹ 9.8 (5.1 RE ¹² 0.9 (1.1 OLS DPD ¹³ 14. (3.3 Tourism accon FE ¹¹ 10.4 (4.1 RE ¹² 1.0 (1.2 OLS (1.2 OLS (1.3 OLS OLS OLS DPD ¹³ 16. (3.1 Agritourism FE ¹¹ 8.3 (3.1 RE ¹² 1.2 (1.1 OLS	.580) .923 .040) .757* .860) .757* .860) .061 .110) .089* .140) .705* .420) .435 .400) .731* .570) .731* .770) .278	(-5.550) -0.078 (-0.970)1.331* (-3.810) ion -1.117* (-4.750) -0.118 (-1.160)2.363* (-4.140) -0.147 (-1.400)1.715* (-3.580) -0.918* (-3.770)	0.940 22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780*	-0.935 	0.000	34.360* 22.140* 31.500*	0.530 0.530 0.530 0.594 0.594	28	5
S.S. RE S.S.	.580) .923 .040) .757* .860) .757* .860) .061 .110) .089* .140) .705* .420) .435 .400) .731* .570) .731* .770) .278	(-5.550) -0.078 (-0.970)1.331* (-3.810) ion -1.117* (-4.750) -0.118 (-1.160)2.363* (-4.140) -0.147 (-1.400)1.715* (-3.580) -0.918* (-3.770)	0.940 22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780*	-0.935 	0.000	34.360* 22.140* 31.500*	0.530 0.530 0.530 0.594 0.594	28	5
RE ¹² 0.9	.923 .040)	-0.078 (-0.970) (-1.331* (-3.810) ion -1.117* (-4.750)0.118 (-1.160) (-4.140) -0.147 (-1.400) -0.147 (-1.400) (-1.715* (-3.580) -0.918* (-3.770)	22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780* 6.320*	-0.935	0.000	22.140*	0.530 0.530 0.530 0.594 0.594	28 28 28 14 28 28	5
OLS	.040)	(-0.970)1.331* (-3.810) ion -1.117* (-4.750) -0.118 (-1.160)2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780* 6.320*	-0.935	0.000	22.140*	0.530 0.530 0.530 0.594 0.594	28 28 28 14 28 28	5
OLS DPD ¹³ 14. (3.4 Tourism accon FE ¹¹ 10. (4. RE ¹² 1.0 OLS OLS DPD ¹³ 22.0 (1.4 CLS DPD ¹³ 16. Agritourism FE ¹¹ 8.3 (3. RE ¹² 1.4 (1.4 OLS DPD ¹³ 7.8 OLS Uls OLS OLS OLS OLS Uls OLS	757* .860) mmodati .432* .720) .061 .110) .705* .420) .435 .400) .731* .570) .731* .770) .278		22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780* 6.320*	-0.935	0.000	22.140*	0.530 0.530 0.594 0.594	28 28	5
DPD ¹³ 14. 3.3 Tourism accon FE ¹¹ 10. (4. RE ¹² 1.0 (1. OLS — DPD ¹³ 22.0 (4. Rural tourism FE ¹¹ 9.7 (5.4 RE ¹² 1.6 (1. OLS — DPD ¹³ 16. (3. Agritourism FE ¹¹ 8.3 (3. RE ¹² 1. (1.0 OLS — DPD ¹³ 7.8 OLS — CUIS —	.757* .860) mmodati .432* .720) .061 .110) .705* .420) .435 .400) .731* .570) .317* .770) .278	-1.331* (-3.810) ion -1.117* (-4.750) -0.118 (-1.160)2.363* (-4.140) -0.147 (-1.400)1.715* (-3.580) -0.918* (-3.770)	22.960* 22.520* 1.350 37.960* 29.300* 1.960 13.870*	3.780* 6.320*	-0.935	0.000	22.140*	0.530 0.530 0.594 0.594	28 28	5
(3.4 Tourism accord) (4.5 FE ¹¹ 10.4 (4.5 FE ¹² 1.0 (4.5 FE ¹³ 1.0 (4.5 FE ¹⁴ 1.0 (4.5 FE ¹⁵ 1.1 (4.5 FE ¹⁵	.860) mmodati .432* .720) .061 .110) .705* .420) .435 .420) .435 .400) .731* .570) .278	(-3.810) ion -1.117* (-4.750) -0.118 (-1.160)2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400)1.715* (-3.580) -0.918* (-3.770)	22.520* 1.350 37.960* 29.300* 1.960 1.3870*	6.320*	-0.935 -0.939	0.000	22.140*	0.530 0.530 0.594 0.594	28 2814 28 28 28	5
Tourism accon FE ¹¹ 10.4 (4.1 RE ¹² 1.6 (1.1 OLS DPD ¹³ 22.6 (4.1 Rural tourism FE ¹¹ 9.7 (5.4 RE ¹² 1.6 (3.1 Agritourism FE ¹¹ 8.3 RE ¹² 1.7 (1.0 OLS OLS OLS OLS Village Tourism FE ¹¹ (4.6	mmodati .432* .720) .061 .110) .089* .140) .705* .420) .435 .400) .731* .570) .278	-0.117* (-4.750) -0.118 (-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.350 37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.000	22.140*	0.530 0.594 0.594	28	5
Tell	.432* .720) .061 .110) .089* .140) .705* .420) .435 .400) .731* .570) .278	-1.117* (-4.750) -0.118 (-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.350 37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.000	22.140*	0.530 0.594 0.594	28	5
(4: RE ¹² 1.6 (1.: Color	.720) .061 .110) .089* .140) .705* .420) .435 .400)731* .570) .278	(-4.750) -0.118 (-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.350 37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.000	22.140*	0.530 0.594 0.594	28	5
RE ¹²	.061 .110)	-0.118 (-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.080	31.500*	0.594	14 28 28	5
(1 OLS	.110)	(-1.160) -2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.080	31.500*	0.594	14 28 28	5
OLS			37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.080	31.500*	0.594	28 28	
DPD ¹³ 22.0 (4:) Rural tourism FE ¹¹ 9.7 (5.) RE ¹² 1.4 OLS DPD ¹³ 16.: (3:) Agritourism FE ¹¹ 8.3 (3:) RE ¹² 1.4 (1.0 OLS DPD ¹³ 7.8 OLS DPD ¹³ 7.8 Village Tourism FE ¹¹ 11.: (4.4)	.140)	-2.363* (-4.140) -0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	37.960* 29.300* 1.960 13.870*	6.320*	-0.939	0.080	31.500*	0.594	28 28	
(4: Rural tourism FE ¹¹ 9.7 (5.6 RE ¹² 1.4 OLS	.140)	-0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	29.300* 1.960 13.870*	6.320*	-0.939	0.080	31.500*	0.594	28 28	
Rural tourism FE¹¹ 9.7 (5.4 1.4 CLS DPD¹³ 16. (3.3 Agritourism FE¹¹ 8.3 (3.5 RE¹² CLS DPD¹³ 7.8 OLS DPD¹³ 7.8 Village Tourisr FE¹¹ Village Tourisr FE¹¹ (4.4 (4.4	705* .420) .435 .400) .731* .570) 317* .770) .278	-0.998* (-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.960 13.870*			0.080	31.500*	0.594	28	
FE ¹¹ 9.7 (5.4 FE ¹² 1.4 (1.4 FE ¹³ 16.1 (3.2 FE ¹³ 16.1 (3.3 FE ¹³ 1.4 (1.4 FE ¹³ 1.5 (1.4 FE ¹³ 1.5 (1.4 FE ¹³ 1.5 (2.3 FE ¹³ 1.5 (3.4 FE ¹³ 1.5 (4.4 FE ¹³ 1.5 (4.4 FE ¹³ 1.5 (4.4 FE ¹³ 1.5 (5.5 FE ¹³ 1.5 (5.5 FE ¹³ 1.5 (4.4 FE ¹³ 1.5 (5.5 FE ¹³ 1.5 (5.	705* .420) .435 .400)731* .570) 317* .770)	(-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.960 13.870*			0.080	31.500*	0.594	28	
(5.4	.420)	(-5.410) -0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	1.960 13.870*			0.080	31.500*	0.594	28	
RE ¹²	.435 .400) .731* .570) .770) .278	-0.147 (-1.400) -1.715* (-3.580) -0.918* (-3.770)	13.870*							
(1.4 OLS	.400) .731* .570) 317* .770)	(-1.400) -1.715* (-3.580) -0.918* (-3.770)	13.870*							
(1.4 OLS	.731* .570) 317* .770)	 -1.715* (-3.580) -0.918* (-3.770)	13.870*					1	14	
DPD ¹³ 16. (3.3 Agritourism FE ¹¹ 8.3 (3.3 RE ¹² 1.3 (1.4 OLS DPD ¹³ 7.8 (2.3 Village Tourism FE ¹¹ 11.3 (4.4)	.731* .570) 317* .770)	-1.715* (-3.580) -0.918* (-3.770)	13.870*					1	14	
(3.1) Agritourism	.570) 317* .770) .278	(-3.580) -0.918* (-3.770)							14	5
(3.1) Agritourism	317* .770) .278	-0.918* (-3.770)	14.190*	2.600*	-0.878					
FE ¹¹ 8.3 (3: RE ¹² 1 (1.0 OLS	.770) .278	(-3.770)	14.190*	2.600*	-0.878			•		
FE ¹¹ 8.3 (3: RE ¹² 1 (1.0 OLS	.770) .278	(-3.770)	14.190*	2.600*	-0.878					
(3.) RE ¹²	.770) .278	(-3.770)						0.503	22	
RE ¹² 1 (1.0 OLS DPD ¹³ 7.8 (2 Village Tourisr FE ¹¹ 11 (4.0	.278			İ						İ
OLS 7.8 DPD ¹³ 7.8 (2.3 Village Tourisr FE ¹¹ 11.3 (4.4)		-0.140	1.160			0.000	14.280*		22	
OLS 7.8 DPD ¹³ 7.8 (2.3 Village Tourisr FE ¹¹ 11.3 (4.4)	.070)	(-1.080)								ĺ
DPD ¹³ 7.8 (2.2 Village Tourisr FE ¹¹ 11.3 (4.0										
Village Tourisr FE ¹¹ 11.3 (4.0	880*	-0.865*	92.170*						9	5
Village Tourism	.210)	(-2.230)								-
FE ¹¹ 11.3		(,		ı		I	I	1		
(4.0	.369*	-1.402*	20.610*	3.060	-0.656			0.805	10	
	.610)	(-4.540)	20.010	3.000	0.030			0.003	10	İ
RE ¹² 6.604* (2.740)		-0.804*	7.090*			0.000	85.210*	0.805	10	
		(-2.660)	7.050			0.000	03.210	0.003	10	ĺ
OLS 6.604*		-0.803*	7.090*					0.404	10	
	.740)	(-2.660)						3. 10-1		ĺ
Country house				1	1	L	l .	L	.1	<u> </u>
		-0.689*	15.070*	2 110	_n ono			0.405	24	
FE ¹¹ 6.586* (3.970)		(-3.880)	13.0/0	2.110	-0.893			0.485	24	
RE ¹² 1.898* (2.320) OLS 1.898*		-0.187*	4.600*			0.000	10.540*	0.485	24	
		(-2.140)	4.000			0.000	10.340	0.403	24	
		-0.187*	4.600*					0.135	24	
(2.320)		(-2.140)	4.000					0.133		ĺ
DPD ¹³ 10.792* (7.590)		-1.134*	61.810*						12	5
		(-7.470)	01.010							1
Rural hotel		, ,		1		ı	1	1	1	-
11		I								
									 	
RE ¹²										
	.391	0.035	0.040					0.012	5	
(0.3	.230)	(0.190)							<u> </u>	
DPD ¹³										

Note: 1, Constant; 2, Coefficient; 3, Test F for fixed effects model and test Wald for random effects and dynamic panel data models; 4, Test F for fixed effects or OLS (Ho is OLS); 5, Correlation between errors and regressors in fixed effects; 6, Test F for random effects or OLS (Ho is OLS); 7, Hausman test (Ho is GLS); 8, R square; 9, Number of observations; 10, Number of instruments;, 11, Fixed effects model; 12, Random effects model; 13, Dynamic panel data model; *, Statically significant at 5%.

4. Conclusions

In the rural zones tourism the rural tourism has a significant importance. However the relative importance of the several forms of rural areas tourism is different in each Portuguese NUTs II. The Norte and the Centro are the two, Portuguese NUTs II, with more contribution for this tourism, but the Alentejo appear with an aggressive position in the last years.

So, there are in Portugal, yet, forms of tourism in rural regions that can be explored, namely the village tourism and there are regions where is possible explore some forms of tourism.

Considering the values of the statistics for the global and local autocorrelation analysis, there are some signs of spatial autocorrelation, namely when the variable dependent (nights) is considered in levels.

The coefficients of estimations show signs of convergence. Because, the values of the constant coefficients and the preference for the fixed effects, maybe will be important, in the future, find more data (namely with more years) and try consider more independent variables in the model and test the conditional convergence (associated with the theory of the endogenous growth, where the variable do not converge for the same steady sate, but for different steady sates, depending of same conditions).

References

Druvaskalne, I.D. and Slara, A. (2006). Tourism Challenges in the Baltic States Since EU Enlargement. ERSA conference papers from European Regional Science Association.

Duarte, P.A.O. and Pais, A.R. (2010). Use and Perception of the Internet as a Marketing Tool to Promote Rural Tourism. Working Papers de Gestão, Economia e Marketing (Management, Economics and Marketing Working Papers) from Universidade da Beira Interior, Departamento de Gestão e Economia (Portugal).

Gronau, W. and Kaufmann, R. (2009). Tourism as a Stimulus for Sustainable Development in Rural Areas: A Cypriot Perspective. TOURISMOS: An International Multidisciplinary Journal of Tourism, Vol. 4, No. 1, pp. 83-95.

Huylenbroeck, G.V.; Vanslembrouck, I.; Calus, M.; and Van de Velde, L. (2006). Synergies between Farming and Rural Tourism: Evidence from Flanders. EuroChoices Volume 5, Issue 1, pp. 14–21.

Islam, N. (1995). *Growth Empirics: A Panel Data Approach.* Quarterly Journal of Economics, 110, 1127-1170.

Mariani, M.P. and Gehlen, M.A. (2008). Comunicação para o Turismo no Espaço Rural. Sociedade Brasileira de Economia, Administração e Sociologia Rural (SOBER), 46th Congress, July 20-23, Rio Branco, Acre, Brasil.

Rodriguez, L.G.; Perez, M.R.; Yang, X.; and Geriletu (2011). From Farm to Rural Hostel: New Opportunities and Challenges Associated with Tourism Expansion in Daxi, a Village in Anji County, Zhejiang, China. Sustainability, 3, pp. 306-321.

Solow, R. (1956). A Contribution to the Theory of Economic Growth. Quarterly Journal of Economics.

Zhang, J.; Madsen, B.; and Jensen-Butler, C. (2007). Regional Economic Impacts of Tourism: The Case of Denmark. Regional Studies, vol. 41, issue 6, pp. 839-854.