Garicano, Luis; Lelarge, Claire; Van Reenen, John

Working Paper

Firm size distortions and the productivity distribution: Evidence from France

Discussion Paper Series, Forschungsinstitut zur Zukunft der Arbeit, No. 7241

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Garicano, Luis; Lelarge, Claire; Van Reenen, John (2013) : Firm size distortions and the productivity distribution: Evidence from France, Discussion Paper Series, Forschungsinstitut zur Zukunft der Arbeit, No. 7241, Institute for the Study of Labor (IZA), Bonn

This Version is available at:
http://hdl.handle.net/10419/71683

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
IZA DP No. 7241

Firm Size Distortions and the Productivity Distribution: Evidence from France

Luis Garicano
Claire Lelarge
John Van Reenen

February 2013
Firm Size Distortions and the Productivity Distribution: Evidence from France

Luis Garicano
London School of Economics, CEP
and CEPR

Claire Lelarge
Insee, CREST

John Van Reenen
London School of Economics, CEP, CEPR, NBER and IZA

Discussion Paper No. 7241
February 2013

IZA
P.O. Box 7240
53072 Bonn
Germany

Phone: +49-228-3894-0
Fax: +49-228-3894-180
E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.
ABSTRACT

Firm Size Distortions and the Productivity Distribution: Evidence from France*

We show how size-contingent laws can be used to identify the equilibrium and welfare effects of labor regulation. Our framework incorporates such regulations into the Lucas (1978) model and applies this to France where many labor laws start to bind on firms with exactly 50 or more employees. Using data on the population of firms between 2002 and 2007 period, we structurally estimate the key parameters of our model to construct counterfactual size, productivity and welfare distributions. With flexible wages, the deadweight loss of the regulation is below 1% of GDP, but when wages are downwardly rigid welfare losses exceed 5%. We also show, regardless of wage flexibility, that the main losers from the regulation are workers (and to a lesser extent large firms) and the main winners are small firms.

JEL Classification: L11, L51, J8, L25.6

Keywords: firm size, productivity, labor regulation, power law

Corresponding author:

John Van Reenen
London School of Economics
Houghton Street
London WC2A 2AE
United Kingdom
E-mail: j.vanreenen@lse.ac.uk

* The first draft of this paper was produced and presented at the MIT Organizational Economics seminar in May 2011. This is a revised version of CEP Discussion Paper No. 1128, (published online in March 2012 and reported in the Economist). We would like to thank Ufuk Akcigit, Joe Altonji, Steve Berry, Samuel Bentolila, Nick Bloom, Richard Blundell, Pierre Cahuc, Jesus Fernandez-Villaverde, Penny Goldberg, Chang-Tai Hsieh, Eddie Lazear, Costas Meghir, Esteban Rossi-Hansberg and participants of seminars in Chicago, Columbia GSB, CREI, CREST, Insead, Louvain, LSE, Nantes, NBER, Oxford, Penn, Princeton, Stanford GSB, UCL, USC and Yale. We particularly thank our formal discussants Panle Jia and Ariel Pakes. Finance for this project has been kindly provided by the Economic and Social Research Council for the Centre for Economic Performance, LSE International Growth Centre and the European Commission.
1 Introduction

A recent literature has documented empirically how distortions can affect aggregate productivity through misallocations of resources away from more productive firms and towards less productive firms. As Restuccia and Rogerson (2008) have argued these distortions mean that more efficient firms produce too little and employ too few workers. Hsieh and Klenow (2009) show that these misallocations account for a significant proportion of the difference in aggregate productivity between the US, China and India. An issue with these approaches is that the causes of the random distortions are a bit of a “black box”. In this paper, we focus on understanding the impact of one specific distortion on the French firm size distribution: regulations that increase labor costs when firms reach 50 workers. This is very relevant to many debates around the world. For example, under the US Affordable Care Act, firms with more than 50 employees will suffer penalties from not offering health care insurance to their employees whereas those with smaller firms will not suffer such penalties. Hence, critics of “Obamacare” have claimed that this will reduce the incentives for efficient firms to grow large whereas supporters are skeptical about the magnitude of any such effect.

The idea that misallocations of resources lie behind aggregate productivity gaps is attractive in understanding some differences in economic performance between the US and Europe. According to the European Commission (1996) the average production unit in the EU employed 23% less workers than in the US. Consistent with this, Figure 1 shows that there appear to be far fewer large French firms compared with the US firms. In particular there is a large bulge in the number of firms with employment just below 50 workers in France, but not in the US. This is also illustrated in Figure 2 which shows the exact number of French manufacturing firms by number of workers. There is a sharp fall in the number of firms who have exactly 50 employees (160 firms) compared to those who have 49 employees (416 firms).

The burden of French labor legislation substantially increases when firms employ 50 or more workers. As we explain in detail below, firms of 50 workers or more must create a works council (“comité d’entreprise”) with a minimum budget of 0.3% of total payroll, establish a health and safety committee, appoint a union representative and so on. What are the implications for firm size, firm productivity and aggregate productivity from those laws? Intuitively, some more productive firms that would have been larger without the regulation choose to remain below the legal threshold to avoid these costs. In this paper we show how these changes in the firm size distribution can be exploited to infer the

1See also Parente and Prescott (2000), Bloom and Van Reenen (2007) and Petrin and Sivadasan (2010).

2In development economics many scholars have pointed to the “missing middle”, i.e. a preponderance of very small firms in poorer countries compared to richer countries (see Banerjee and Duflo, 2005, or Jones, 2011). For example, in the late 1980s in India large firms were banned from producing about 800 product groups (Little et al, 1987). Many explanations have been put forward for the missing middle such as financial development, taxes, human capital, lack of competition in product markets, and social capital. Consistent with our approach, Besley and Burgess (2004) suggest that heavy labor regulation is a reason why the formal manufacturing sector is much smaller in some Indian states compared to others.

3To be precise, from 2013 there will be penalties for firms with more than 50 full-time employees who (i) do not offer health coverage and (ii) pay workers too little to buy coverage on their own without using federal subsidies. The penalty is $2,000 for each employee (except for the first 30 employees). If the firm has more than 50 full-time employees and offers some of them coverage but others have to apply for federal subsidies to buy coverage themselves, the firm must pay the lesser of $3,000 for each employee receiving insurance subsidies or $2,000 for each full-time employee (again excluding the first 30 employees). For more details see: http://www.washingtonpost.com/blogs/wonkblog/wp/2012/11/19/cheer-up-papa-johns-obamacare-gave-you-a-good-deal/

4Bartelsman, Halliwanger and Scarpetta (2013) examine misallocation using micro-data across eight OECD countries. They argue that consumption is more than 10% below US levels in some European nations because of misallocation. In particular, they find that the “Olley Pakes” (1996) covariance term between size and productivity is much smaller in France (0.24 in their Table 1) and other European countries compared to the US (0.51 in their Table 1). Bloom, Sadun and Van Reenen (2012) also report a more efficient allocation of employment to better managed firms in the US than in Europe and developing countries.
There has been extensive discussion of the importance of labor laws for unemployment and productivity (e.g. Layard and Nickell, 1999). The OECD, World Bank and other agencies have developed various indices of the importance of these regulations, based on examination of laws and (sometimes) surveys of managers. It is very hard, however, to see how these can be rigorously quantified as “adding up” the regulatory provisions has a large arbitrary component. A contribution of our paper is to offer a methodology for quantifying the tax equivalent of a regulation, albeit in the context of a specific model. Moreover, the calculation is extremely transparent, economically intuitive and can be applied in many other contexts.

There are different views on the underlying sources of heterogeneity in firm productivity. We follow Lucas (1978) in taking the stand that managerial talent is the primitive, and that the economy-wide observed resource distribution is, as Manne (1965) felicitously put it, “a solution to the problem: allocate productive factors over managers of different ability so as to maximize output.” Managers make decisions or solve problems (Garicano, 2000). Making better decisions, or solving problems that others cannot solve, raises everyone’s marginal product. This means that, in equilibrium, better managers must be allocated more resources. In fact, absent decreasing returns to managerial talent, the best manager must be allocated all resources. Given limits to managerial time or attention, the better managers are allocated more workers and more capital to manage. This results in a “scale-of-operations” effect whereby differences in talent are amplified by the resources allocated. Lucas (1978) first explored these effects in an equilibrium setting.

When managers are confronted with legislation that introduces a cost of acquiring a size that is beyond a certain threshold, they may choose to stay below the threshold and remain at an inefficiently small size. By studying the productivity of these marginal managers, we are able to estimate the cost of the legislation, the distortions in them, and thus the welfare cost of the legislation for the entire firm size distribution.

We start by setting up a simple model of the allocation of a single factor of production, labor, to firms in a world where there are decreasing returns to managerial talent. We use it to study the effect of a step change in labor costs after a particular size and show that there are four main effects:

1. Equilibrium wages fall as a result of the reduction in the demand for workers (i.e. some of the tax incidence of regulation falls on workers)
2. Firm size increases for all firms below the threshold as a result of the general equilibrium effect on wages
3. Firm size reduces to precisely the regulatory threshold for a set of firms that are not productive enough to justify

5 In a model of this kind, the source of decreasing returns are on the production size, and are linked to limits to managerial time. For our purposes here, as Hsieh and Klenow (2009) show, this source of decreasing returns is equivalent to having the decreasing returns come from the demand/utility side (as is more common in the recent literature following Melitz, 2003).
6 Such a scale of operations effects is at the heart of Rosen’s (1982) theory of hierarchies, where efficiency units of labor controlled (and not just number of bodies) matter, and also in Garicano and Rossi-Hansberg (2006) where there is limited quantity-quality substitutability so that matching between workers and managers takes place. Empirically, this technology has been used to explain a wide-range of phenomena, for example the impact of scale of operations effects on CEO wages (Gabaix and Landier, 2008).
7 Many empirical papers have shown that deregulation (e.g. Olley and Pakes, 1996), higher competition (e.g. Syverson, 2004) and trade liberalization (e.g. Pavcnik, 2002) have tended to improve reallocation by increasing the correlation between firm size and productivity.
4. Firm size reduces proportionally for all firms that are productive enough to incur the additional cost of regulation.

We use the model to guide our estimation of the impact of these costs. The theory tells us there is a deviation from the “correct” firm size distribution as a result of the regulation. That is, we expect to see a departure from the usual power law firm size distribution as firms bunch up below the threshold of 50 workers. Given factors such as measurement error, however, the observed empirical departure from the power law is not just at 49 workers but also affects firms of slightly smaller sizes causing a “bulge”. Similarly, there is not precisely zero mass to the right of the threshold, but rather a “valley” were there are significantly fewer firms than we would expect from an unbroken power law. Then, at some point the firm size distribution becomes again a power law, with a lower intercept (in log-log space). The break in the power law from the bulge and valley of firms around the threshold helps empirically identify the magnitude of the distortion.

One key finding is that it is not just the regulation, but the interaction between regulation and downwardly rigid real wages that causes large welfare losses. When wages are fully flexible, we find that these regulations operate mainly as a variable cost, and are equivalent to a 1.3 percentage point increase in labor costs. The aggregate welfare loss is small: under 1% of GDP. There are interesting distributional consequences: aggregate wages and the profits of large firms drop by about 1%, but profits of smaller firms rise by about 4% because they enjoy lower wages without suffering the regulatory burden. Large deadweight losses only take place when wages are downwardly rigid. In this case, the regulation reduces GDP by 4-5% mainly through increased unemployment.

Overall, the labor regulations that we study place a significant burden on the economy if wages are not downwardly flexible, by keeping firms below their optimal size and by reducing output. Too many employees work for smaller firms, and too few for large firms. In our French example, downward wage flexibility due to strong unions and minimum wages probably makes the welfare effects of regulation substantial whereas in the US, where wages are more flexible, the Obamacare firm-size provision is unlikely to have a such a substantial effect.

One closely related paper is Braguinsky, Branstetter and Regateiro (2011) who seek to explain changes in the support of the Portuguese firm size distribution in the context of the Lucas model with labor regulations. Their calibrations also show substantial effects of the regulations on aggregate productivity. Portuguese laws have multiple regulatory thresholds, however, and their data does not show a structural break like ours. Thus their approach cannot exploit a sharp discontinuity to identify the structural parameters of their model. Our paper is also related to the more general literature using tax “kinks” to identify behavioral parameters (e.g. Saez, 2010; Chetty et al, 2011; Kleven and Waseem, 2012).

8This means the probability density function of firm size in log-linear. For example, see Axtell (2001), Sutton (1997) and Gabaix, (2009). There is a large literature on the size and productivity distribution of firms in macro, trade, finance and IO. Appropriately, the first major study in this area was by Gibrat (1931) who studied French industrial firms, the main focus of the empirical part of our paper.

9On the quantitative theory side Guner, Ventura and Yi (2006, 2008) also consider a Lucas model with size-contingent regulation. They calibrate this to uncover sizeable welfare losses. Unlike our paper and Braguinsky et al (2011), however, there is no econometric application.

10Braguinsky et al (2011) attribute this to the sheer multitude of size-related regulations in Portugal which makes it hard to identify any sharp cut-off in the size distribution.
The structure of the paper is as follows. Section 2 describes our theory, Section 3 the empirical strategy, Section 4 the institutional setting and data and Section 5 the main results. First, we show that the main empirical predictions of the model in terms of the size and productivity distribution are consistent with the data. Second, we estimate the parameters of the structural model and use this to show that the welfare and distributional impact of the regulation. We present various extensions and robustness tests in Section 6, before drawing some conclusions in the final section.

2 Theory

We aim to estimate the distortions in the productivity distribution and the reallocation effect that results from an implicit tax on firm size that starts at a particular threshold. Our strategy relies on analyzing the choices of those firms that prefer to stay at a lower size in order to avoid the tax. Having done that, we will be able to estimate the general equilibrium effects of the tax through the changes in firm size.

We begin in the simplest possible version of the Lucas model where there is only one input in production, labor, and a single sector. The primitive of the model is the pdf \(\phi(\alpha) \) of “managerial ability” \(\alpha \), \(\phi : [\alpha, +\infty] \rightarrow \mathbb{R} \). Ability is defined and measured by how much an agent can raise a team’s output: a manager who has ability \(\alpha \) and is allocated \(n \) workers produces \(y = \alpha f(n) \). Larger teams produce more, \(f' > 0 \), but given limited managerial time, there are decreasing returns to the firm scale that a manager can manage, \(f'' < 0 \).

The key difference between our setting and the original Lucas model is that we allow for a regulatory tax on firm size, which imposes a wedge between the wage the worker receives and the cost to the firm. In our application this “labor tax” involves an extra marginal cost and also a fixed cost component. Moreover, this tax does not grow in a smooth way, but instead it is only borne by firms after they reach a given size \(N \). In what follows and for simplicity, we consider firm size to be continuous and that the regulation binds for firms having size \(n > N \) (\(N = 49 \) in the case of France).

2.1 Individual Optimization

Let \(\pi(\alpha) \) be the profits obtained by a manager with ability \(\alpha \) when he manages a firm at the optimal size. These profits are then given by:

\[
\pi(\alpha) = \max_n \alpha f(n) - w_\tau n - F, \quad \text{with} \quad \begin{cases} \tau = 1, k = 0 & \text{if } n \leq N \\ \tau = \tau, k = k & \text{if } n > N \end{cases} \tag{1}
\]

where \(w \) is the worker’s wage, \(n \) is the number of workers, \(k \) is the fixed cost that must be incurred above the threshold \(N \), and \(\tau \) is the tax, which also applies for firm over a minimum threshold of \(N \). Firm size at each side of the threshold is then determined by the first order condition:

\[
\alpha f'(n_{N,\tau,w}) - \tau w = 0, \quad \text{with} \quad \begin{cases} \tau = 1, k = 0 & \text{if } n \leq N \\ \tau = \tau, k = k & \text{if } n > N \end{cases} \tag{2}
\]

11 For size-contingent regulations in a multi-sector Lucas world see Garcia-Santana and Pijoan-Mas (2010) who apply it to Indian textiles.

12 Previous studies of this problem, such as particularly Kramarz and Michaud (2003) suggest that the fixed cost component are second order relative to the marginal cost component. Empirically, we also find this result.
so that $n^*_N,\tau,w(\alpha) = f^{-1}(\frac{w}{f(N)})$. Note that $\partial n^*_N,\tau,w/\partial \alpha > 0$, $\partial n^*_N,\tau,w/\partial \tau < 0$ and $\partial n^*_N,\tau,w/\partial w < 0$.

The size constraint is reached at size N and managerial ability α_c (sub-script “c” for “constrained”) at the threshold is given by:

$$
\alpha^*_c,\tau,w = \frac{w}{f(N)} \quad (3)
$$

Firms can legally avoid being hit by the regulation by choosing to remain small. The cost of this avoidance is increasing in the talent (α) of the individual. If managerial ability is sufficiently high then rather than staying at $\alpha = \alpha_c$, managers choose to leverage their talent by becoming larger and paying the tax. The ability level α^*_u,τ,w,κ of the marginal manager is defined by the indifference condition between remaining small or jumping to be a larger firm and paying the regulatory tax:

$$
\alpha^*_u,\tau,w,\kappa f(N) - wN = \alpha^*_u,\tau,w,\kappa f(n^*_N,\tau,w(\alpha^*_u,\tau,w,\kappa)) - w\tau n^*_N,\tau,w(\alpha^*_u,\tau,w,\kappa) - k \quad (4)
$$

where $n^*_N,\tau,w(\alpha^*_u,\tau,w,\kappa)$ is the optimal firm size for an agent of talent α^*_u,τ,w,κ when wages are set at w. Subscript u refers to firms that are “unconstrained” in the sense that they choose to be larger than the regulatory threshold (even though they still pay the regulatory tax and are somewhat smaller because of this).

2.2 Equilibrium

The most skilled individuals choose to be manager-entrepreneurs, since they benefit from their higher ability in two ways. First, for a given firm size n, they earn more profits. Second, the most skilled individuals hire a larger team, $n^*_N,\tau,w(\alpha)$. We denote the ability threshold between managers and workers as α_{\min}, individuals with ability below α_{\min} will be workers. A competitive equilibrium is defined as follows:

Definition 1 Given a distribution of managerial talent $\phi(\alpha)$ over $[\alpha_{\min},+\infty]$, a production function $y = \alpha f(n)$, a per worker implicit labor tax τ and a fixed cost k that binds all firms of size $n > N$, a competitive equilibrium consists of:

(i) a wage level w^*_N,τ,k paid to all workers

(ii) an allocation $n^*_N,\tau,k(\alpha)$ that assigns a firm of size n^*_N,τ,k to a particular manager of skill α

(iii) a triple of cutoffs $\{\alpha^*_{\min} = \alpha^*_{c},\tau,k \leq \alpha^*_u,\tau,k \leq \alpha^*_u,\tau,k \}$, such that $W = \{\alpha^*_u,\tau,k\}$ is the set of workers, $M_1 = [\alpha^*_c,\tau,k, \alpha^*_u,\tau,k]$ is the set of unconstrained, untaxed managers, $M_2 = [\alpha^*_c,\tau,k, \alpha^*_u,\tau,k]$ is the set of size constrained, at $n^*_N,\tau,k = N$, but untaxed managers, and $M_3 = [\alpha^*_u,\tau,k, \infty]$ is the set of taxed managers

such that:

(E1) No agent wishes to change occupation from manager to worker or to change from unconstrained to constrained.

(E2) The choice of $n^*_N,\tau,k(\alpha)$ for each manager α is optimal given their skills, taxes (τ,k) and wages w^*_N,τ,k.
(E3) Supply of labor equals demand for labor.

Start with condition (E1): an agent prefers to be a worker if \(w_{N,\tau, k}^* > \alpha f \left(n_{N,\tau, k}^*(\alpha) \right) - w_{N,\tau, k}^* n_{N,\tau, k}^*(\alpha) \), or a manager if \(w_{N,\tau, k}^* < \alpha f \left(n_{N,\tau, k}^*(\alpha) \right) - w_{N,\tau, k}^* n_{N,\tau, k}^*(\alpha) \), and thus we have: \(\alpha_{\text{min}}^{N,\tau,k} f \left(n_{N,\tau, k}^*(\alpha_{\text{min}}^{N,\tau,k}) \right) - w_{N,\tau, k}^* n_{N,\tau, k}^*(\alpha_{\text{min}}^{N,\tau,k}) = w_{N,\tau, k}^* \) \((5) \)

Equilibrium condition (E2), from the first order condition (2) implies that firm sizes are given by:

\[
\begin{align*}
n_{N,\tau, k}^*(\alpha) &= 0 \quad \text{if } \alpha < \alpha_{\text{min}}^{N,\tau,k} \quad \text{(6)} \\
n_{N,\tau, k}^*(\alpha) &= f^{\tau-1} \left(\frac{w_{N,\tau, k}^*}{\alpha} \right) \quad \text{if } \alpha_{\text{min}}^{N,\tau,k} \leq \alpha \leq \alpha_c^{N,\tau,k} \quad \text{(7)} \\
n_{N,\tau, k}^*(\alpha) &= N \quad \text{if } \alpha_c^{N,\tau,k} \leq \alpha < \alpha_u^{N,\tau,k} \quad \text{(8)} \\
n_{N,\tau, k}^*(\alpha) &= f^{\tau-1} \left(\frac{\tau w_{N,\tau, k}^*}{\alpha} \right) \quad \text{if } \alpha \geq \alpha_u^{N,\tau,k} \quad \text{(9)}
\end{align*}
\]

In the range of managerial ability \([\alpha_{\text{min}}^{N,\tau,k}, \alpha_c^{N,\tau,k}]\) we find firms that are not directly affected by the distortion. The only impact of the regulation comes through the general equilibrium effect of lower wages \(w_{N,\tau, k}^* \). Lower wages induces some low-ability individuals to become small firms rather than remain as workers. In the range \([\alpha_c^{N,\tau,k}, \alpha_u^{N,\tau,k}]\) we find the constrained firms who stay at \(N \) because it is more attractive for them to pay \(w_{N,\tau, k}^* \) and stay small than pay the higher regulatory cost \((\tau - 1)w_{N,\tau, k}^* n + k\) and become large. Last, once managerial higher ability exceeds \(\alpha_u \), firms are sufficiently productive that they pay the tax in order to produce at a higher level.

Thus, as the following figure shows, we have four categories of agents:

\[\text{Equilibrium partition of individuals into workers and firm types by managerial ability, } \alpha\]

Notes: This figure shows the definitions of different regimes in our model. Individuals with managerial ability below \(\alpha_{\text{min}}^{N,\tau,k} \) choose to be workers rather than managers. Individuals with ability between \(\alpha_{\text{min}}^{N,\tau,k} \) and \(\alpha_c^{N,\tau,k} \) are “small firms” who (conditional on the equilibrium wage, which is lower under regulation) do not change their optimal size. Between \(\alpha_c^{N,\tau,k} \) and \(\alpha_u^{N,\tau,k} \) are individuals who are affected by the regulatory constraint and choose their firm size to be smaller than they otherwise would have been. We call these individuals/firms who are in a “distorted” regime. Individuals with ability above \(\alpha_u^{N,\tau,k} \) are choosing to pay the implicit tax rather than keep themselves small.

\[\text{Note that we have } n_{N,\tau, k}^*(\alpha) = n_{N,\tau, u}^*(\alpha), \text{ where } n_{N,\tau, u}^* \text{ has been defined in section 2.1.}\]

\[\text{In other words the regulatory distortion creates “too many” entrepreneurial small firms. This seems to be a feature of many Southern European countries which have a large number of small low productivity firms.}\]
Finally, from condition (E3) in Definition 1, equilibrium requires that markets clear—that is the supply and demand of workers must be equalized. The supply of workers is
\[R_{\min} \mapsto \min \frac{d \alpha}{d \tau} \], and the demand of workers by all available managers is
\[R_{\infty} \mapsto \min \frac{d \alpha}{d \tau} \], where \(n_{N,\tau,k}^*(\alpha) \) is the continuous and piecewise differentiable function given as above. Thus:
\[\int_{\alpha_{\min}}^{\alpha_{\max}} \phi(\alpha) d\alpha = \int_{\alpha_{\min}}^{\alpha_{\max}} n_{N,\tau,k}^*(\alpha) \phi(\alpha) d\alpha \] (10)

Solving the model involves finding four parameters: the cutoff levels \(\alpha_{\min}^N, \alpha_c^N, \alpha_u^N, \) and the equilibrium wage \(w_{N,\tau,k}^* \). For this we use the four equations (3), (4), (5) and (10). The equilibrium is unique and we can prove our main proposition over the comparative statics in the equilibrium:

Proposition 1 The introduction of a tax/variable cost \(\tau \) of hiring workers starting at firm size \(N \) has the following effects:

1. Reduces equilibrium wages as a result of the reduction in the demand for workers
2. Increases firm size for all firms between the thresholds, \([\alpha_{\min}^N, \alpha_c^N, \alpha_u^N] \), as a result of the general equilibrium effect that reduces wages
3. Reduces firm size to the threshold \(N \) for all firms that are constrained, that is those in \([\alpha_c^N, \alpha_u^N] \]
4. Reduces firm size for all firms that are taxed \([\alpha_u^N, +\infty] \)

Proposition 1 looks at the comparative statics for \(\tau \geq 1 \) keeping \(k = 0 \). As empirically we estimate \(k = 0 \), we relegate the proofs and propositions around \(k > 0 \) to Appendix A.

Example. Consider a power law, \(\phi(\alpha) = \frac{0.06}{\alpha^{0.9}} \) and returns to scale parameter of \(\theta = 0.9 \). Figure 3 shows the firm size distribution for a firm size cut-off at 50 employees, and an employment tax of \(\tau - 1 = 0.01 \) (1%) and \(k = 0 \). As in the distribution in the data, there is a spike at 49 employees that breaks the power law. Figure 4 reports the productivity \(\alpha \) as a function of firm size \(n \). It shows that we should expect a spike in the productivity distribution at the point in which the regulation starts to bind. We will find strong empirical support for both of these predictions in the data.

2.3 Empirical Implications

Our econometric work uses the theory as a guide to estimate the welfare losses that result from this regulation. As is well known, the firm size distribution generally follows a power law.\(^{15}\) Lucas (1978) shows that Gibrat’s law implies that the returns to scale function must be \(f(n) = n^\theta \), and that for it to be consistent with a power law, the managerial ability or productivity distribution must also be power, \(\phi(\alpha) = c_\alpha \alpha^{-\beta_\alpha}, \alpha \in [\alpha_c; +\infty] \) with the constants \(c_\alpha > 0 \) and

\(^{15}\) There is a literature in EconoPhysics that has focused on this. See Axtell (2001) for the US, Ramsden and Kiss-Haypal (2000) for OECD countries and Hernández-Pérez, Angulo-Brown and Tun (2006) for developing countries.
\[\beta > 0.16 \] In this case, from the first order conditions in equations (6) to (9), firm sizes for the equilibrium wage \(w_{N,\tau}^{*} \) are given by:

\[
n_{N,\tau,k}(\alpha) = \begin{cases}
0 & \text{if } \alpha < \alpha_{\min}^{N,\tau,k} \\
\left(\frac{\theta}{\nu_{N,\tau,k}} \right)^{1/(1-\theta)} \alpha^{1/(1-\theta)} & \text{if } \alpha_{\min}^{N,\tau,k} \leq \alpha \leq \alpha_{c}^{N,\tau,k} \\
\left(\frac{\theta}{\nu_{c}^{N,\tau,k}} \right)^{1/(1-\theta)} \tau^{-1/(1-\theta)} \alpha^{1/(1-\theta)} & \text{if } \alpha_{c}^{N,\tau,k} \leq \alpha < \alpha_{u}^{N,\tau,k} \\
\left(\frac{\theta}{\nu_{u}^{N,\tau,k}} \right)^{1/(1-\theta)} \tau^{-1/(1-\theta)} \alpha^{1/(1-\theta)} & \text{if } \alpha_{u}^{N,\tau,k} \leq \alpha < \infty
\end{cases}
\] (11)

Given our assumption that the distribution of \(\phi(\alpha) \) follows a power law, the distribution of firm sizes \(\chi(n) \) is also power (apart from the threshold), since by the change of variable formula, \(\chi(n) = \phi(\alpha(n)) \ast n^{-\theta} w^{(1-\theta)} \) (omitting the threshold). The "broken" power law on firm size \(n^* \) is then given by:

\[
\chi^*(n) = \begin{cases}
c_{\alpha}(1-\theta) \left(\frac{\theta}{\nu_{N,\tau,k}} \right)^{\beta-1} n^{-\beta} & \text{if } n_{N,\tau,k}^{*}(\alpha_{\min}^{N,\tau,k}) = n_{\min}^{N,\tau,k} \leq n < N = n_{N,\tau,k}^{*}(\alpha_{c}^{N,\tau,k}) \\
c_{\alpha}(1-\theta) \left(\frac{\theta}{\nu_{u}^{N,\tau,k}} \right)^{\beta-1} \tau^{-\frac{1}{\theta-1}} n^{-\beta} & \text{if } n_{N,\tau,k}^{*}(\alpha_{u}^{N,\tau,k}) = n_{u}^{N,\tau,k} \leq n
\end{cases}
\] (12)

where \(\beta = \beta_{\alpha}(1 - \theta) + \theta \) and \(\delta \) is the mass of firms whose size is distorted - these are firms that choose to stay below the firm size threshold, rather than growing and paying the additional labor costs, \(\tau \) and \(k \). Furthermore, \(n_{\min}^{N,\tau,k} \) denotes the optimal firm size for the entrepreneur with lowest ability (which is therefore the minimum firm size), and \(n_{u}^{N,\tau,k} \) denotes the optimal firm size for the first entrepreneur choosing to pay the tax.

The adding up constraints on \(\delta \) can be written more conveniently in the size \((n) \) space rather than the ability space. After some straightforward manipulation, relegated to Appendix A, we show that \(n_{\min}^{N,\tau,k} = n_{N,\tau,k}^{*}(\alpha_{\min}^{N,\tau,k}) = \theta/(1-\theta) \) as long as \(N > \theta/(1-\theta) \) and we can rewrite the pdf of \(n^* \) as:

\[
\chi^*(n) = \begin{cases}
\left(\frac{1-\theta}{\theta} \right)^{1-\beta} (\beta - 1)n^{-\beta} & \text{if } \theta/(1-\theta) \leq n < N \\
\left(\frac{1-\theta}{\theta} \right)^{1-\beta} (N^{1-\beta} - Tn^{1-\beta}) & \text{if } n = N \\
0 & \text{if } N < n \leq n_{u}^{N,\tau,k} \\
\left(\frac{1-\theta}{\theta} \right)^{1-\beta} (\beta - 1)Tn^{-\beta} & \text{if } n_{u}^{N,\tau,k} \leq n
\end{cases}
\] (13)

where \(T = \tau^{\frac{\beta-1}{1-\theta}} \). The upper employment threshold, \(n_{u}^{N,\tau,k} \), is unknown and must be estimated alongside \(\beta \), the power law term, \(\theta \) and \(T \). Note that the shape parameter \(\beta \) in the power law is unaffected by the regulation; instead, in log-log space, the labor regulations generate a parallel shift in the firm size distribution measured by \(T \) (see Figure 5). Thus the key empirical implication is that the tax can be recovered from the jump \(T \) in the power law.

In Section 3, we propose an empirical model in which we introduce an error term in our measure of employment so that we can take it to the data. Such empirical model must account for two departures in the data of Figure 2 from the predictions in the theory. First, the departure from the power law does not start precisely at the regulatory threshold \(N \), but slightly earlier: there is a “bump” in the firm size distribution beginning at around 46 workers.

\[\text{Helpman, Melitz, and Yeaple (2004) also treat the underlying heterogeneity in productivity as Pareto. A Pareto distribution of efficiencies can arise naturally from a dynamic process that is a history of independent shocks, as shown by Simon (1955) and Luttmer (2007).} \]
Second, the region immediately to the right of N does not have zero density, but rather there are some firms with positive employment levels just to the right of the regulatory threshold, N.

The model we propose to account for these departures features a measurement error in employment. This seems reasonable for at least two reasons. First, no dataset will perfectly measure the underlying theoretical concept - measurement error is a fact of empirical life. Second, several different regulations start at size 50, and as explained in greater detail in section 4.1 and Appendix D, they rely on slightly different concepts of employment size, defined respectively in the Code du Travail (labor laws), Code du Commerce (commercial law), Code de la Sécurité Social (social security) and in the Code Général des Impôts (fiscal law). The measurement of firm size that we use\(^{17}\) corresponds to the fiscal definition because it is a mandatory item that is reported in the firm’s fiscal accounts - the arithmetic mean of the number of workers measured at the end of each of the four quarters of the fiscal year - and this measure of size is therefore available with accuracy for a larger number of firms. However, it does not exactly correspond to the concept of size that is relevant for all of the regulations, since no (single) index of size having this property exists. We discuss alternatives to our the measurement error approach at the end of Section 6 where we examine adjustment costs, optimization errors and Leontief production functions.

2.4 Welfare calculations

Total output of a manager with talent μ and firm size $n_{N,\tau,k}^*(\alpha)$ is:

$$y(\alpha, N, \tau, k) = \alpha f(n_{N,\tau,k}^*(\alpha))$$

and total output in this economy is found by integrating over all agents of different managerial ability who run firms:

$$Y(N, \tau, k) = \int_{\alpha_{N,\tau,k}^\min}^{\alpha_{N,\tau,k}^\max} \alpha f(n_{N,\tau,k}^*(\alpha)) \phi(\alpha) d\alpha + \int_{\alpha_{N,\tau,k}^\max}^{\alpha_{N,\tau,k}^\max} \alpha f(N) \phi(\alpha) d\alpha + \int_{\alpha_{N,\tau,k}^\max}^{\infty} \alpha f(n_{N,\tau,k}^*(\alpha)) \phi(\alpha) d\alpha$$

It follows that the welfare change between the regulated and unregulated economy is then given by:

$$\Delta Y = Y(N, \tau, k) - Y(N, 1, 0)$$

$$= \int_{\alpha_{N,\tau,k}^\min}^{\alpha_{N,\tau,k}^\max} \alpha \left[f(n_{N,\tau,k}^*(\alpha)) \phi(\alpha) d\alpha + \int_{\alpha_{N,\tau,k}^\max}^{\alpha_{N,\tau,k}^\max} \alpha \left[f(n_{N,\tau,k}^*(\alpha)) - f(n_{N,1,0}^*(\alpha)) \right] \phi(\alpha) d\alpha \right. + \int_{\alpha_{N,\tau,k}^\max}^{\infty} \alpha \left\{ f(n_{N,\tau,k}^*(\alpha)) - f(n_{N,1,0}^*(\alpha)) \right\} \phi(\alpha) d\alpha$$

where $n_{N,1,0}^*$ is the firm size\(^{18}\) and $\alpha_{\min}^{N,1,0}$ is the cutoff between workers and managers in the unregulated economy. The welfare losses are then the result of adding up three effects:

1. The top row of equation (14) captures two positive effects on total output from the fall in the equilibrium wage arising from the regulation. First, there are some additional firms since marginal workers are drawn into

\(^{17}\)Fiscal definition, Article 208-III-3 du Code Général des Impôts.

\(^{18}\)Note that the parameter N is useless when there is no tax ($\tau = 1$ and $k = 0$).
becoming entrepreneurs by cheaper labor. Second, the firms who are below the regulatory threshold (and not paying the tax) will be able to hire more workers as their wages are lower.

(2) There is a first “local” output loss, that is the result of the firms that would have been larger but instead are constrained at \(N \) workers. This is the second row of equation (14).

(3) Finally, there is the loss from the larger firms in the economy, which incur higher labor costs due to the implicit tax (even after netting off the lower equilibrium wage), and have a size that is too small.

2.5 Wage Rigidity

We also provide a welfare analysis under the assumption that real wages are rigid and do not adjust downwards after the regulation as implied by the basic model. Frictions in downward wage setting are common, especially in France where the minimum wages is high and unions are strong (about 90% of all workers in France are covered by a collective bargain\(^{19} \)). More generally, there is likely to be a reservation wage below which individuals will not work, particular in nations like France with generous welfare benefits. Incorporating rigid wages requires a small extension of the model.

We define the equilibrium with rigid wages in the following way:

Definition 2 Given a distribution of managerial talent \(\phi(\alpha) \) over \([\alpha; +\infty]\), a per worker labor tax \(\tau \) and a fixed cost \(k \) that binds all firms of size \(n > N \), and a production function \(\alpha f(n) \), a competitive equilibrium with rigid wages consists of:

(i) a wage level \(w^{\text{RIGID}}_{N,\tau,k} \) paid to all employed workers which is computed as the equilibrium wage \(w^*_{N,1,0} \) in the undistorted economy (baseline Lucas model and undistorted case of definition 1)

(ii) an allocation \(n^{\text{RIGID}}_{N,\tau,k}(\alpha) \) that assigns a firm of size \(n^{\text{RIGID}}_{N,\tau,k} \) to a particular manager of skill \(\alpha \)

(iii) a triple of cutoffs\(^{20} \) \([\alpha^{\text{RIGID}}_{\text{min}}, \alpha^{\text{RIGID}}_{\text{c}}] \), such that \(W = [\alpha^{\text{RIGID}}_{\text{min}}, \alpha^{\text{RIGID}}_{\text{c}}] \) is the set of potential workers, \(M_1 = [\alpha^{\text{RIGID}}_{\text{min}}, \alpha^{\text{RIGID}}_{\text{c}}] \) is the set of unconstrained, untaxed managers, \(M_2 = [\alpha^{\text{RIGID}}_{\text{c}}, \alpha^{\text{RIGID}}_{\text{max}}] \) is the set of size constrained, at \(n^{\text{RIGID}}_{N,\tau,k} = N \), but untaxed managers, and \(M_3 = [\alpha^{\text{RIGID}}_{\text{max}}, \infty] \) is the set of taxed managers

(iv) an unemployment rate \(u^{\text{RIGID}}_{N,\tau,k} \) defined as the number of unemployed workers as a share of the total number of potential workers

such that:

Definition 3 No agent wishes to change occupation from manager to worker or to change from unconstrained to constrained.

\(E 2^{\text{RIGID}} \) The choice of \(n^{\text{RIGID}}_{N,\tau,k}(\alpha) \) for each manager \(\alpha \) is optimal given their skills, taxes \(\tau \) and wages \(w \);

\(E 3^{\text{RIGID}} \) Supply of labor is equal to the sum of demand for labor and unemployment.

\(^{19} \) http://www.eurofound.europa.eu/eiro/country/france.pdf

\(^{20} \) These cutoffs are also parameterized by \(N, \tau \) and \(k \), but we remove these superscripts to improve readability.
The model with rigid wages is solved in the same way as before; the main differences relate to condition \((E1^{RIG})\) and to the labor market equation. Condition \((E1^{RIG})\) now compares the profit a “small” (untaxed) potential entrepreneur with the expected wage of a worker, who earns \(w^*_{N,t,k}\) when it is employed, but 0 if she is unemployed:

\[
\alpha_{\min} \int \left(n^*_{N,t,k}(\alpha_{\min}) \right) \alpha_{\min} d\alpha = \frac{w^*_{N,t,k}}{n^*_{N,t,k} (\alpha_{\min})} = (1 - u^*_{N,t,k}) w^*_{N,t,k}
\]

The labor market equation is also modified, since now the regulation generates unemployment:

\[
(1 - u^*_{N,t,k}) \int_{\alpha_{\min}}^{\infty} \phi(\alpha) d\alpha = \int_{\alpha_{\min}}^{\infty} n^*_{N,t,k} (\alpha) \phi(\alpha) d\alpha
\]

The remainder of the welfare analysis is otherwise unaltered.

3 Empirical Strategy

We now explain how we apply our theoretical framework to the data. First, we allow for some measurement error which is necessary to fit the employment data. Second, we discuss identification and inference. Third, we show how we can make empirical welfare calculations.

3.1 Empirical Model

Recall that our starting point is the pdf of \(n^*\) as given by equation (13). Employment is measured with error so we assume that rather than observing \(n^*_{N,t,k}(\alpha)\) we observe:

\[
n_{N,t,k}(\alpha, \varepsilon) = n^*_{N,t,k}(\alpha)e^\varepsilon
\]

where the measurement error \(\varepsilon\) is unobservable. In the data we observe the distribution of \(n\), and thus obtaining the likelihood function requires that we obtain the density function of \(n\). The law of \(n|\varepsilon\) has support on \([e^\varepsilon; +\infty]\). The conditional cumulative distribution function is given by (see Appendix A):

\[
P(x < n|\varepsilon) = \begin{cases}
0 & \text{if } \ln(n) - \ln \left(\frac{\theta}{1 - \theta} \right) < \varepsilon \\
1 - \left(\frac{\theta}{1 - \theta} \right)^{-1-\beta} (n e^{-\varepsilon})^{-1-\beta} & \text{if } \ln(n) - \ln(N) < \varepsilon \leq \ln(n) - \ln \left(\frac{\theta}{1 - \theta} \right) \\
1 - \left(\frac{\theta}{1 - \theta} \right)^{-1-\beta} \left(n_{u}^{N,t,k} \right)^{-1-\beta} & \text{if } \ln(n) - \ln(n_{u}^{N,t,k}) < \varepsilon \leq \ln(n) - \ln(N) \\
1 - \left(\frac{\theta}{1 - \theta} \right)^{-1-\beta} (n e^{-\varepsilon})^{-1-\beta} & \text{if } \varepsilon \leq \ln(n) - \ln(n_{u}^{N,t,k})
\end{cases}
\]

Let \(\varepsilon\) be normally distributed\(^2\) with mean 0 and variance \(\sigma\). Integrating over \(\varepsilon\) we can compute the unconditional CDF (convolution of the broken power law and Gaussian distributions) simply as:

\[
\forall n > 0, \quad P(x < n) = \int_{\mathbb{R}} P(x < n|\varepsilon) \frac{1}{\sigma} \phi \left(\frac{\varepsilon}{\sigma} \right) d\varepsilon.
\]

In Appendix A we show that no further constraints on the parameters are required for this object to be a CDF:

\(^2\)In Appendix A.4, we examine the sensitivity of our estimates to this Gaussian assumption and show that the variable cost of the regulation \(r\) is more robustly estimated than the fixed cost \(K\).
Lemma 1 Let ε be normally distributed with mean 0 and variance σ so that the measurement error is log normal. Then the function $P(x < n)$ is a cumulative distribution function, that is strictly increasing in n, with $\lim_{n \to 0} P = 0$ and $\lim_{n \to \infty} P = 1$ for all feasible values of all parameters, σ, θ, T, β, and $n_u^{N,\tau,k}$.

Thus taking the derivative of P formulated in this way we can obtain the density of the observed n. Given such a density, it is straightforward to estimate the parameters of the model by maximum likelihood. Specifically, the maximum likelihood estimation yields estimates of the parameters: $\hat{\sigma}$, \hat{T}, $\hat{\beta}$, \hat{n}_u and \hat{k}.

Figure 5 shows the difference between the pure model where employment was measured without error and the true model where there is measurement error. The solid (blue) line shows the firm size distribution under the pure model of Section 2 (same as Figure 3) whereas the hatched line shows the firm size distribution when we allow for measurement error. The smoothness of the bulge around 50 will depend on the degree of measurement error - Figure 5 shows that if we increase the measurement error to $\sigma = 0.5$ instead of $\sigma = 0.15$ it is almost impossible to visually identify the effects of the regulation.

3.2 Identification and Inference

ML estimation over the size distribution allows us to obtain most of the parameters of interest. Intuitively, the slope of the line in Figure 5 (which is the same before and after the cut-off) identifies β, the power law parameter. The composite parameter $T = \tau \rightarrow^{-1}$ which is a function of our key object of interest the implicit tax, τ, is identified from three related features of the data. First, the downward shift of the power law slope around 50 employees (the “intercept”). Second, the “bulge” of firms just before the regulatory threshold at 50 employees and third the width of the “valley” in the size distribution between 49 employees and where the power law recovers at n_u. The larger is the implicit tax, the greater will be the downward shift, the bulge of firms at the regulatory threshold and the depth of the valley in the firm size distribution. The fixed costs k/w, are identified from the indifference equation (4) of the marginal manager around the regulatory threshold. This will also generate a bulge and valley, but will not generate a downward shift in the power law as the marginal cost of labor remains at w. Hence the existence of a large downward shift in the slope of the firm size distribution after the regulatory threshold is powerful evidence of a variable cost component of the regulation. The measurement error, σ, is identified from the size of the random deviations of size from the broken power law.

Given the estimates of T and β, we still need an estimate of returns to scale τ in order to identify the key tax parameter, τ. There are several ways to obtain θ. In principle, it can be recovered from the size distribution itself jointly with the other parameters (see Appendix A2). This method relies on rather strong assumptions over the identity of the smallest firm from the indifference condition between being a worker and a manager in equation (5).

As discussed in Appendix A2, empirically the data is not rich enough to estimate θ from the size distribution alone (although we can reject very large values of the parameter), so we consider several alternatives in order to examine

22 In a previous version of the paper we generated OLS estimators of these parameters. However, Bauke (2007) and Howell (2002), both within the physics literature, have shown that least square methods may be unreliable. Gabaix and Ibragimov (2011) make the same point and propose a simple rank-based method with the robust approximations for for standard errors. This methodology is adequate for the analysis of the upper tail of a power law distribution, but not for the medium part as in our case. In Appendix B we show how to obtain OLS estimates of the parameters of interest developing a new methodology borrowed from the time series literature on structural breaks. These results suggest a larger implicit tax of the regulation.
the empirical robustness of our estimates of τ. Our first approach is to calibrate θ from existing estimates. Since this is well recognized to be an important parameter in the macro reallocation literature there are a number of papers to draw on. Basu and Fernald (1997) show a number of estimates based on US data and suggest a value of 0.8 is reasonable. Most calibrations seem to take a value of around 0.8 (e.g. Guner et al. 2006, use a $\theta = 0.802$ for Japan). Atkeson and Kehoe (2005) using a version of the Lucas model with organizational capital suggest a value of 0.85. We also consider more extreme values of $\theta = 0.5$ (used by Hsieh and Klenow, 2009) and $\theta = 0.9$ in the results section. A second approach is to use information from the production function. Since we have rich data on firms we can estimate production functions and from the sum of the coefficients on the factor inputs estimate returns to scale. Appendix C.2 details how we do this using a variety of methods such as Levinsohn and Petrin (2003), Olley and Pakes (1996) and the more standard Solow residual approach. A third method is to use the relationship between size and TFP from equation (11) to back out an estimate of the returns to scale.

We implement all these alternative methods to estimate θ to show the robustness of our conclusions. Given an estimate of θ (hats denoting estimated parameters), we have an estimate of the implicit variable tax of regulation as:

$$\hat{\tau} = \hat{T}^{-\frac{1-\hat{\theta}}{\hat{\theta}}}$$

We obtain standard errors for the estimates of the tax using block-bootstraping at the industry four-digit level, with 100 replications.

4 Institutional Setting and Data

4.1 Institutions: The French Labor market and Employment Costs

France is renowned for having a highly regulated labor market (see Abowd and Kramarz, 2003; Kramarz and Michaud, 2010). What is less well known is that most of these laws only bind on a firm when it reaches a particular employment size threshold. Although there are some regulations that bind when a firm (or less often, a plant) reaches a lower threshold such as 10 or 25 employees, 50 is generally agreed by labour lawyers and business people to be the critical threshold when costs rise significantly.23

In particular, when firms get to the 50 employee threshold they need to undertake the following duties (see Appendix D for a comprehensive overview):

- They must set up a “works council” (“comité d’entreprise”) with minimum budget of 0.3% of total payroll.
- They must establish a committee on health, safety and working conditions (CHSCT)
- A union representative (i.e. not simply a local representative of the firm’s workers) must be appointed if wanted by workers
- They must establish a profit sharing plan
- They incur higher liability in case of a workplace accident

23 For example, see http://www.businessweek.com/articles/2012-05-03/why-france-has-so-many-49-employee-companies
• They must report monthly and in detail all of the labor contracts to the government.

• Firing costs increase substantially in the case of collective dismissals of 10 or more workers. This increase is an implicit tax on firm size (e.g. Bentolila and Bertola, 1990) which makes firms reluctant to hire.

• They must undertake to do a formal “Professional assessment” for each worker older than 45.

How important are such provisions for firms? Except in the case of the minimum regulatory budget that is to be allocated to firm councils, which provide an order of magnitude for a lower bound, it is extremely hard to get a handle on this. For example, what is the opportunity cost of managerial time involved in dealing with works councils, union representatives, health and safety committees, etc.? Our framework is designed to recover the costs of such regulations.

4.2 Data

Our main dataset is FICUS and is constructed from administrative (fiscal) data covering the universe of French firms between 2002 and 2007. These are based on the mandatory reporting of firms’ income statements to tax authorities for all French tax schemes - the BRN24, RSI and BNC. The BRN is the standard tax regime; the RSI is a simplified regime that small firms can opt into for a cost and the BNC covers “non commercial” professions such as legal and accounting firms. Although the BRN has been more commonly used by researchers it misses out on large numbers of small firms. For example, less than 20% of single employee firms are in the BRN and even for firms with 10 employees the BRN only covers 80% of FICUS firms. Hence, for looking at the firm size distribution one needs to use the whole FICUS data.

All firms have to report tax returns even if they owe no tax in the fiscal year and there are about 2.2m firms per year. Our baseline results are on the approximately 200,000 firms active in the manufacturing sector (NACE2 industry classes 15 to 35) as productivity is easier to measure in these industries. But we also present results estimating the model on all the other non-manufacturing sectors and show the robustness of our results. The laws mainly apply to the administrative unit in FICUS, namely the firm (“entreprise”), so this dataset is ideally suited to our purpose.

The employment measure in the FICUS relates to a headcount of the number of workers in the firm averaged over the four quarters of the fiscal year. A headcount of employees is taken on the last day of the fiscal year (usually December 31st) and on the last day at the end of each of the previous three quarters. Employment is then the simple arithmetic average over these four days. This is close to the concept used for most of the regulations (see Appendix D), but certainly not all of them and this is one of the motivations for allowing employment to be measured with error with respect to the regulation.25 In addition FICUS contains balance sheet information on capital, investment, wage bills, materials, four digit industry affiliation, etc. that are important in estimating productivity. We also use the DADS (Déclarations Annuelles de Données Sociales) dataset in some of the robustness tests which contains

24See Di Giovanni, Levchenko and Ranciere (2011) and Caliendo, Monte and Rossi-Hansberg (2012) for other work on these BRN data.
25We attempted to use the differences in the exact regulatory definition of “50 employees” to tease out the impact of different regulations (e.g. regulations using headcounts on a single precise date vs. those averaging over a longer period). Unfortunately, the data are not sufficiently precise to enable us to uncover such subtle distinctions. This could be an area for future work in other countries where more precise data exists.
worker-level information on hours, occupation, gender, age, etc. Details of the TFP estimation procedure, which in the baseline specification uses the Levinsohn and Petrin (2003) version of the Olley and Pakes (1996) method26, are reported in Appendix C.2.

5 Results

5.1 Qualitative analysis of the data

Before moving to the econometric results we first examine some qualitative features of the data to see whether they are consistent with our model. Many commentators have expressed skepticism about the quantitative importance of employment regulations as it is sometimes hard to observe any clear change in the size distribution around important legal thresholds27, so we first focus on this issue. Figure 6 presents the empirical distribution of firm size around the cut-off of 50 employees for two datasets. The dataset we use (FICUS), the fiscal files of the French tax administration, is the population dataset of the universe of French firms that forms the basis of our econometric work. Panel A in Figure 6 is the same as Figure 2. As previously discussed, there is a sharp discontinuity in size precisely at 50 employees which is strong evidence for the importance of the regulation. There are 416 firms with exactly 49 employees and then only 160 with 50 employees. Importantly, the distribution declines over the range before flattening out after about 44 employees, just before the stacking up at 49 employees then dropping off a sharp cliff. The top right hand side of Figure 6 shows this in log-log space clearly indicating the evidence of a “broken power law”.

Panel B of Figure 6 compares FICUS with another dataset, DADS, that is also frequently typically used by labor economists. We aggregate employment up to the appropriate level for each FICUS firm using employment dated on 31st December. The discrete jump at 50 shows up here, but not quite as clearly as the FICUS data. Panel C of Figure 6 uses Full-Time Equivalents (over one calendar year) which shows less of a jump than the straight count of employees in the previous panels, probably because most regulations relate to headcounts rather than Full-Time Equivalents.

Figure 6 illustrates the importance of good data - one of the reasons that other studies have not identified such a clear discontinuity around the regulatory threshold is that they may have been using data with greater measurement error than our own. Recall that Figure 5 illustrated the problem of how measurement error can disguise the effect of the regulation.

Figure 7 shows the firm size distribution over a larger range between 1 and 1,000 employees. Overall, firm size seems to approximate a power law in the employment size distribution prior to the bulge around 50. After 50, there is a sharp fall in the number of firms and the line more flat than expected before resuming what looks like another power law. Broadly, outside a “distorted” region around 50 employees, one could describe this pattern a “broken power law” with the break at 50.28 The finding of the power-law for firm size in France is similar to that for many other countries

26We use a control function approach to deal with unobserved productivity shocks and selection when estimating production functions. Because we have a panel of firms we can implement this and estimate the production function coefficients. There are several issues with this approach (e.g. Ackerberg et al, 2007) to estimating production functions so we also estimate TFP using a variety of other methods (see Appendix C.2 for details).

27For example, Schivardi and Torrini (2008) and Boeri and Jimeno (2005) on Italian data, Braguinsky et al (2011) on Portuguese data or Abidoye et al (2010) on Sri Lankan data. The authors find that there is slower growth just under the threshold consistent with the regulation slowing growth (as we also show below), but they find relatively little effect on the cross-sectional distribution. This may be because of the multitude of regulations, variable enforcement or measurement error in the employment data (see sub-section 2.3).

28See Howell (2002) for examples of how to estimate these types of distributions. More generally, see Bauke (2007) for ways of consistently estimating power laws.
and has been noted by other authors (e.g. Di Giovanni and Levchenko, 2010), but the finding of the break in the law precisely around the main labor market regulation is we believe new to the academic literature (the only exceptions are Ceci-Renaud and Chevalier, 2011). As is well known the power law fits rather less well for the very small firms. There does appear to be some break in the power law at firm size 10. This corresponds to the size thresholds from other pieces of labor and accounting regulations (see Appendix D). In order to avoid conflating these issues we focus our analysis on firms with 10 or more employees, and therefore on the additional costs generated by regulations at threshold 50 relative to average labor cost for firms having 10 to 49 employees. In principle however, the methods used here could be generalized to other breaks in the power law.

Our basic model, following Lucas, has the implication that more talented managers leverage their ability over a greater number of workers (Figure 4). Figure 8 tests this idea by plotting mean TFP levels by firm size. Panel A does this for firms between 5 and 100 employees whereas Panel B extends the threshold out to firms with up to 1,000 employees. In both panels productivity appears to rise monotonically with size, although there is more heteroskedacity for the larger firms as we would expect because there are fewer firms in each bin. The relationship between TFP and size is broadly log-linear. What is particularly interesting for our purposes, however, is the bulge in productivity just before the 50 employee threshold. We mark these points in light shading (red). This looks consistent with our model where some of the more productive firms who would have been just over 50 employees in the counterfactual world, choose to be below 50 employees to avoid the cost of the regulation. Firms just below the cut-off are a mixture of firms who would have had a similar employment level without the implicit tax and those firms whose size is distorted by the size-related regulation.

5.2 Econometric Implementation

The key parameters are estimated from the size distribution of firms using the ML procedure described above. Table 1 shows a set of baseline results using calibrated values of \(\theta \) for the entire sample of French manufacturing firms 2002-2007.\(^{29}\) We begin by using a calibrated value of \(\theta = 0.8 \) from Basu and Fernald (1997) and Guner et al (2006, 2008) in column (1). The slope of the power law, \(\beta \), is about 1.8 and highly significant. The upper employment threshold, \(n_u \), is estimated to be an employment level of 58 and we obtain a standard deviation of the measurement error of just over 0.10. Turning to the estimates of the tax equivalent costs of the regulation, we obtain \(T = 0.948 \) which is determined in part by the implicit variable labor tax which we estimate to be \(\tau = 1.013 \) and highly significant. This implies that the regulation increases variable costs by 1.3 percentage points which is a moderately large effect. By contrast the fixed cost component of the regulation is insignificant at the 5% level, negatively signed and small in magnitude.\(^{30}\) A possible rationalization of this negative is the presence of a cost of avoiding the regulation, such as legal fees (see Appendix E). Given that fixed costs are small and insignificant, however, we focus on variable costs in the rest of the paper and set \(k = 0 \) in our main counterfactual simulations.

Figure 9 shows the data and the fit of the model using the estimated parameters. Although not perfect, we seem to do a reasonable job at mimicking the size distribution even around the regulatory threshold.

\(^{29}\) We use a sample of firms with between 10 and 1,000 employees correcting our estimates for censoring at the lower and upper known thresholds. We do this because there are other regulations that bite at 10 employees.

\(^{30}\) The average labor cost is 35,583 Euros, so given an estimated \(k \approx -0.5 \) this implies a fixed cost of -17,649 Euros or only 0.5% of total labor costs for a 100 employee firm.
Column (2) of Table 1 considers an alternative calibration of \(\theta = 0.85 \) from Atkeson and Kehoe (2005). The results are very stable, although as expected the estimate of the marginal tax falls from 1.3% to 1%. This is because the importance of the distortions of the tax depend on returns to scale. When returns to scale are close to unity the most efficient firms have a very large share of output, so it only takes a small distortionary tax to have a large effect on the size distribution. As decreasing returns set in it takes a much larger estimate of \(\tau \) to rationalize any given distorted distribution (the “downward shift”, “bulge” and “valley” in firm size). Column (3) considers \(\theta = 0.50 \) (Hsieh and Klenow, 2009) and column (4) a \(\theta = 0.90 \). The first case is formally equivalent to a minimum firm size of one employee which is empirically consistent with the data and implies a large tax of 3.3 percentage points. The second case reduces the implicit tax to 0.4 percentage points, but this specification appears to be rejected by the data since the log-likelihood drops substantially.

Table 2 uses the returns to scale parameter directly estimated from a production function (see Table A1 and Appendix C). The first column just reproduces our baseline results from column (1) of Table 1. Column (2) contains the results using the estimations from the production function giving a value of \(\theta = 0.855 \) that is highly significant. Other parameter estimates remain stable and we obtain an estimate of \(\tau = 1.010 \) only slightly lower than the baseline case of \(\tau = 1.013 \). Column (3) uses the TFP estimates from the production function to estimate the TFP-size relationship as in Figure 8. We recover an estimate of \(\theta \) from the slope of this relationship which is \(\theta = 0.799 \) and re-estimate all the parameters. This generates a generally stable values with an estimate of \(\tau = 1.013 \), again very close to the baseline results.

5.3 Changes in the level and distribution of welfare

Our model allows us to fully calculate the impact of the regulation on the firm size distribution, output and welfare. As shown in Section 2, the slope of the power law does not change as a result of the implicit tax. The impact of the tax is a parallel move upwards of the firm size distribution at sizes \(n < 49 \), a spike at \(n = 49 \), and a parallel move down for \(n > 58 \). The counterfactual firm size is a power law with the exponent \(\beta \) we calculated in our analysis, and \(\tau = 1 \).

The position of the intercept is pinned down by the labor market condition, which requires that the total number of agents in the economy is constant, and by the minimum firm size which in our specification is pinned down by the returns to scale parameter and also stays constant.\(^{31}\)

We need to choose an upper bound for firm size to make these calculations as formally the power law will give positive mass to firms of near infinite size which is obviously not a feature of real world data. Like the returns to scale parameter \(\theta \) (see Section 3.2), this upper bound is in principle obtained from the firm size distribution, but in practice, since we focus on data over the range 10 to 1,000 employees and use a conditional specification of the likelihood, we do not have enough information on this upper bound precisely estimate it. Our baseline calculations use a “calibrated” firm of size 10,000 as the maximum although we also provide estimates (see Appendix Table A2) where we vary the upper bound with very little qualitative effect on the results, for reasons we shall explain. Maximum productivity is normalized to 1 without loss of generality.

\(^{31}\)Note that this is not the case when the regulation binds for firms of all sizes (i.e. \(N = 0 \) and \(\tau > 1 \)), or when wages are rigid. See Section 2 and Appendix A for the details of the derivation.
regulation (dashed line) using the estimated parameters from our model. As the theory led us to expect, in the counterfactual unregulated economy there are fewer firms under 49 employees. This is because in the regulated economy (i) there is a spike at 49 employees for those firms who are optimally avoiding the regulation and (ii) since equilibrium wages have fallen there is an expansion in the number of small firms. Compared to the unregulated economy, the regulated world has fewer large firms since there is an additional implicit tax to pay. This downward shift in the size distribution is less dramatic because these large firms also benefit from the lower equilibrium wages caused by the regulation which offsets some (but not all) of the regulatory burden.

Figure 11 examines the distribution of output across entrepreneurs of different ability in the regulated and unregulated economies again using our estimated parameters. Without loss of generality we normalize the maximum ability to unity. Empirically, individuals with managerial ability of 0.341 employ exactly 49 employees in the unregulated economy. Entrepreneurs of this ability or below produce more in the regulated economy because they benefit from lower labor costs. We estimate that individuals with ability levels between 0.341 and 0.369 will choose to employ exactly 49 workers to avoid the regulation. For entrepreneurs in this interval, although their output continues to rise with ability as in the unregulated economy, it rises at a slower rate because their firms are not increasing their number of employees as their ability increases. The entrepreneurs with high ability who choose to pay the implicit tax and will grow at the same rate (with respect to ability) as in the unregulated world. However, since labor costs are higher for these firms (lower equilibrium wages only partially offset the higher implicit tax), their output is a bit below that of the unregulated world.

Panel A of Figure 12 examines the income changes for individuals of different ability in the regulated and unregulated economies. The difference between the bold and horizontal dashed lines indicates the distributional effects of the regulation. It can be immediately seen that there are two groups of losers and one group of winners from the regulation. Low ability individuals (below 0.21) are the biggest losers: these are workers who suffer from approximately a 1% fall in their wages. At the other end of the spectrum are large firms who also lose profits, although slightly less than 1%. The winners are the “petit bourgeois” comprised of the small firms who enjoy lower labor costs and a group of workers who are induced to become entrepreneurs by the lower equilibrium wages due to the regulation (those with ability in the range 0.21 to 0.34). As in Figure 11, individuals with ability between 0.34 and 0.37 are those firms who choose to avoid the regulation. Most of them are better off under regulation because of lower wages, but a few of the more able are actually worse off as they could be larger firms without the implicit tax.

The exact numbers underlying the welfare calculations in Figures 11 and 12 are in Table 3. Column (1) labelled “flexible wages” has a full employment equilibrium (row 1). 3.6% of firms (row 2) are on the spike at 49 employees and 9% of firms choose to pay the implicit tax. Equilibrium wages falls by over \(\ln (w^*_{N,1,0}) - \ln (w^*_{N,r,0}) \approx 1\% \) (rows 4 and 10.a). Labor costs rise by 0.2% for large firms and they are 1.2% smaller. Small firms’ costs fall by 1% and these firms are 5.4% larger (row 3).

The pure deadweight output loss is quite small with flexible wages (0.02% of GDP in row 9b), but the overall welfare loss depends on how one regards the implicit tax revenues which are 0.8% of GDP in row 9a. The pure administrative (e.g. reporting) cost element of this can be regarded as deadweight loss, but much of the implicit tax are wage payments to the union officials, lawyers and human resource staff and could be regarded as transfers.
Of course, these groups may also absorb considerable managerial time and cause disruption and therefore output reductions which would need to be netted out. The loss may also be smaller or larger to the extent that the workers value the amenities provided by the labor regulation.

How much do workers value these amenities? We examine this empirically by looking at wages around the threshold (see Figure 13). If workers prefer to work at firms that have these tough regulations we would expect wages to be through a compensating differential effect after the threshold of 50 employees. As expected the wage is upward sloping in size, but there does not appear to be a significant fall in wages after the regulatory threshold which suggests that workers do not place much benefit on the extra bureaucracy. However one regards the implicit tax, however, the total welfare loss from the regulation is not large - under 1% of GDP (row 9c).32

In terms of the distributional consequences Row 10 details the winners and losers. As suggested by Figure 12 workers and large firms lose about 1% (rows 9a and 9c) whereas the smaller firms all gain (rows 9b-9d).

The second column of Table 4 considers the case of downwardly rigid real wages (e.g. minimum wages). In this case an unemployment rate of 5.2% emerges in the regulated economy as wages do not fall for those who are employed (note that the unemployment rate in France was between 8% and 9% in our sample period). The welfare loss rises to 5.1% of GDP if implicit taxes are included (row 9a) or 4.3% if they are excluded (row 9b). The large welfare loss arises from the 5.4% aggregate income loss of those in the labor force (many of whom now do not have jobs) and a 6.5% fall in the profits of large firms as they now have to accept the full burden of the regulation and cannot offset this against lower equilibrium wages. Similarly, small firms gain nothing as labor costs are no lower. Panel B of Figure 12 shows that the distributional consequences have a similar flavor as Panel A, but all groups lose out from the regulation and the magnitude of the losses are larger. The “working class” lose out from the regulation because they have less jobs rather than lower wages.33 Highly able individuals lose out substantially in terms of much lower profits if wages are rigid, but less if wages are flexible. In terms of political economy, this may be why large firms lobby hard against increases in the minimum wage.

Although the empirical maximum firm size is 86,587 in the data, we choose an upper bound34 of 10,000 since there are on average only 5 firms per year having a size greater than 10,000 (out of an average of 170,000 firms with positive employment in manufacturing industries). Table A2 shows that our quantitative estimates of welfare are not much changed when we vary our assumption about the upper bound of firm size (using alternative values of 500, 1,000 and 5,000 employees). As we drop more of the larger firms unsurprisingly, welfare costs are slightly lower as the largest firms lose more from paying higher labor costs. But these differences are not dramatic. For example, the output loss in the case of rigid wages when we take the maximum firm size to be 500 is 3.9% of GDP compared to 4.3% in our baseline case. Consequently, although we may be understating the welfare losses by using an upper bound of 10,000 instead of 86,587, the effect is likely to be small.

In summary, we have two main quantitative results. First, aggregate welfare losses from the regulation are less

32 The modest magnitude of the welfare cost is perhaps unsurprising as the regulation does not cause the rank order of firm size to change with the ability distribution. Hopenhayn (2012) shows in a general context that first order welfare losses from misallocation require some rank reversals between ability and size.

33 In the basic model workers are homogenous so they make an ex ante decision to enter based on their expected wage (relative to their expected profits from being an entrepreneur) and there is a random draw ex post to determine who will be unemployed. In our risk neutral set up low ability individuals lose out to a similar degree regardless of the degree of wage inflexibility. We consider heterogeneous production skill among employees in one of the extensions below.

34 As explained in what follows, choosing a higher value for the upper bound would increase welfare costs.
than 1% of GDP when wages are flexible, but are around 5% of GDP if wages are downwardly rigid. Second, the regulation redistributes income away from workers and larger firms and towards small firms (i.e. those with mediocre managerial ability). The first result is well known in the literature (the incidence of a labor tax will partly fall on workers), but quantifying its magnitude in an equilibrium setting using micro-data is original. Furthermore, we believe the second result on distributional consequences of regulation is, we believe novel and unexpected, especially when quantified from a structural econometric model.

6 Extensions and Robustness

In this section we consider several extensions to our framework and robustness tests of the results.

6.1 Industry Heterogeneity

Holding the parameters constant across industries is an attempt to focus on the macro-economic consequences of the regulation. But there is nothing in our approach that requires we do this and consequently we have investigated various ways of allowing the coefficients to vary across industries. We begin with simply splitting the manufacturing industries into “high tech” and “low tech” following OECD definitions (these are based on R&D intensity). The estimates of parameters are given in columns (4) and (5) of Table 2 and the analogous production function estimates are in the last two columns of Table A1. There does appear to be significant heterogeneity with the estimated implicit tax insignificantly different from zero in the high-tech sectors and bearing more heavily in low-tech sectors (1.3%), probably because labor is a larger share of total costs in the low tech sectors.

Next, in Table 4, we examine the other main sectors outside manufacturing. We use calibrated values of $\theta = 0.80$ and $\theta = 0.85$. The first two columns repeat the baseline estimates using these values. We estimate the models for Transport (columns (3) and (4)), Construction (columns (5) and (6)), Wholesale and Distribution Trade (columns (7) and (8)) and Business Services (columns (9) and (10)). The implicit tax seems to be more important in both Transport (2.5%) and Construction (2.0%) than it was in manufacturing (1.3%). In business services, by contrast, the regulation seems to be estimated to be insignificantly different from zero.

Finally, we estimated the production functions separately by three digit sectors and used the full ML technique with estimated production functions as in column (2) of Table 2. This allows the scale (θ) and all other parameters to be freely estimated. Some of the industries have insufficient number of firms to perform this estimation but we are still able to do this for a large number. The results are in Figure A1 which again demonstrates a substantial degree of heterogeneity with some sectors with estimates of the implied tax from near zero to over 50%. The heterogeneity of the implicit taxes is related to industry characteristics in an intuitive way. For example, when labor costs are a smaller share of total value added, the estimated τ's tend to be bigger and when the capital-labor ratio of the sector is high they tend to be smaller. The distortion associated with the regulation is less damaging in sectors when labor is a less important factor (Marshall’s “importance of being unimportant”).
6.2 Changing the organizational structure of corporations

An obvious way in which a business group could respond to the regulation is simply by misreporting employment size. The authorities and unions are well aware of this incentive and threaten hefty fines and prison sentences for employers who lie to the fiscal or social security authorities. In some countries there is certainly evidence of this from tax returns (e.g. Almunia and Lopez-Rodriguez, 2012), although generally researchers are surprised at how low these rates of cheating are given the incentives (e.g. Kleven, Kreiner and Saez, 2009). There is, of course, a cost to these evasion strategies in the form of legal fines and possible criminal charges (see Appendix E) and we doubt this can be a major factor behind our results. First, we have shown that there is adjustment on a number of margins that is consistent with a real effect of the regulation such as productivity and hours of work. There is no incentive for the firm to report these other items in a systematically misleading way. Second, hiding taxable revenues is much easier than hiding workers who have a very physical presence with a legal contract, health and pension rights. Third, in 2009 alone the French state employed 2,190 “agents de controle” to monitor firms compliance. That is about one agent per 100 firms with ten or more employees, a rather high degree of observation. Fourth, hidden workers could be considered an unmodelled additional factor of production \(\theta \) as above. As we below our model performs reasonably well in predicting output even abstracting away from such considerations.

A more subtle way of dealing with the regulation is by splitting a company into smaller subsidiaries. For example, a firm which wished to grow to 50 employees could split itself into two 25 employee firms controlled by the group CEO. There are costs to such a strategy - the firm will have to file separate fiscal and legal accounts, demonstrate that the affiliates are operating autonomously and suffer from greater problems of loss of control.

One way to check for this issue is to split the sample into those firms that are standalone businesses and those that are subsidiaries/affiliates of larger groups. Panel A of Figure 14 compares the power law for these two types of firms. For both standalone firms and affiliates we can observe the broken power law at 50. The fact that the discontinuity exists for standalone firms (which cover the majority of workers for the firms in Figure 14) implies that our results are not being driven solely by corporate restructuring. Panel B repeats the distribution for the standalones, but now considers affiliates aggregated up to the group level. Although the power law is still broken at 50 it is less pronounced than at the subsidiary level in Panel A which could indicate some degree of corporate restructuring in response to the regulation.

6.3 Other margins of adjustment to the regulation

The simplest version of the model focuses on the decision over firm size based on employment. However, there are many other possible margins of adjustments that firms could use to avoid the regulation. This can be allowed for in the model by re-writing output as \(y = \alpha [h(n,x)]^\theta \) instead of \(y = \alpha n^\theta \) where \(x \) are the other factors of production such as hours per worker or human capital. If there was perfect substitutability between labor and these other factors

\[35\text{http://www.insee.fr/fr/ifc/ipweb/ip1399/ip1399.pdf}\]

\[36\text{A more extreme reaction of the firm would be to engage in franchising. This has some further costs as the CEO no longer has claims over the residual profits of the franchisee and loses much control. In any case, franchising is rare in manufacturing.}\]

\[37\text{One might ask why there should be any discontinuity at 50 employees at the group level when aggregating across multiple subsidiaries? The reason is that a small number of regulations do bind at the group level, mainly through case law (see Appendix D).}\]
then the firm could avoid the size-distortion we have discussed. More realistically when there is imperfect substitution the firm can mitigate some of the costs of the regulation through substitution. Of course, having to sub-optimally substitute into other factors of production generates some welfare loss by itself.

The most obvious way the firm could adjust is by increasing the amount of hours per worker (e.g. through longer overtime) rather than expand the number of employees. We find clear evidence that firms respond in this way in Figure 15 as the number of annual hours increases just before the threshold of 50 employees. This is reassuring as it suggests that firm size is not just being misreported to avoid the regulation - firms are genuinely changing their activities in a theoretically expected direction.

There are many other possible margins of adjustment such as using more skilled workers, increased capital intensity and a greater use of outsourced workers. There is evidence for adjustment along all these margins in order to mitigate the costs of the regulation.38

6.4 Overall Performance of the Model

As we would expect, firms appear to be adjusting to the regulation around the threshold, in particular by increasing hours. If firms are able to substitute easily away from labor then the regulation has a smaller welfare effect than we predict; indeed in the limit if firms could perfectly substitute there would be no output loss. To address the magnitude of this problem we analyze the implications of our model for predicting the distribution of output. Recall that we are using the distribution of firm size and employment to estimate the parameters of our economic model. We do not use information on output (except indirectly in the experiments that look at TFP, such as column (2) of Table 2 and Figure 8). If alternative margins of adjustment were important, then the observed distribution of output would be very different (and total output larger) than what is predicted by our model. In particular, we would expect to under-estimate the share of output produced by large firms, and to over-estimate the share of output produced by small firms. As explained in the previous sub-section, large firms can reduce their regulatory cost by using existing workers more intensively (e.g. hours), increasing workforce quality through upgrading skill composition, using greater capital, etc. All these will cause them to produce more output than we would predict in our basic model.

Table 5 contains the results of this exercise. Panels A and B compare the actual and predicted distributions of firms and employment. Unsurprisingly we match these moments closely as this is the data that we are using to fit our parameters. Panel C is the greater challenge as we do an “out of sample” prediction– the output estimation. The proportion around the bulge of 49-57 workers is nearly spot on at 3%. As expected, we under-estimate the output for larger firms, but not by too much. Our parameters suggest that 69% of output should be in firms with over 58 employees whereas the number is 72.8% in the data. Symmetrically, we overestimate the output share of the small firms (24.2% vs. 27.5%). These mis-predictions are exactly as basic economics suggests as we do not account for other adjustment margins. Nevertheless, as shown by the standard errors our estimates are within the 95% confidence intervals which is an impressive performance for such a simple model.

38Note that since we observe all these margins we are able to take account of them in our estimation of the production function so they should not bias our estimates of TFP. The estimated equation incorporates capital as a factor of productions, and labour is measured in terms of hours.
6.5 Alternative reasons for the existence of firms in the “valley”

The fact that there are any firms to the right of the regulatory threshold at 50 employees (the “valley”) is a theoretical puzzle that we account for by allowing for measurement error in employment. Empirically, our measurement error hypothesis does quite well (Figure 9) if anything, over-predicting the number of firms. However, there are a number of alternative hypothesis worth considering involving adjustment costs, employment shocks, the shape of the production function and bounded rationality.

Adjustment Costs. A first alternative hypothesis that could instead explain firms choosing the “dominated” firm sizes on the range immediately above 50 employees would be the existence of adjustment costs. Suppose for concreteness that firms receive shocks to their target employment numbers (e.g. via \(\alpha \) shocks). In a world with quadratic adjustment costs, firms would want to get to new target employment, but would converge slowly. This planned employment dynamic might take a firm through the valley of 50-58 employees as jumping over it to a new optimal employment might simply be too costly in terms of adjustment costs. This implies that firms are “passing through” the valley and will be disproportionately likely to move out of this area.

To investigate this we examine adjustment dynamics. Figure 16 plots the proportion of firms making significant adjustments in employment at different points of the firm size distribution. The left hand panels examine the proportion of firms increasing employment by more than 12%, 10%, 8%, 6% and 4% respectively and the right hand panels do the same for employment decreases. There is a general tendency for firms to make smaller proportionate increases in employment the larger they are, but the most striking feature is how the pattern alters around the regulatory threshold. Firms to the right of the threshold are much more likely to either grow or shrink than those who are further away from the regulatory threshold. This indicates that the valley is an uncomfortable place to be: firms are swiftly moving either in or our of it. Similarly, firms to the left of the threshold are much less likely to grow as this would mean they would have to start paying the extra implicit tax. We obtain similar results if we use value added as our measure of firm growth instead of employment.

Although these patterns are all consistent with an adjustment cost explanation\(^{39}\), our measurement error hypothesis can also explain both facts. We would expect mean reversion – firms’ measured employment in the valley is actually smaller or larger than their true data. So long as the measurement error is i.i.d. we would expect greater absolute measured changed in employment in subsequent periods. Thus the dynamics in Figure 16 are consistent with both the measurement error and adjustment costs hypothesis.

In terms of the static data however, the adjustment costs hypothesis does not account as well for the presence of a bulge that spreads on several firm sizes just below 49 employees. Absent measurement error, firms that do not want to grow beyond 50 would stop growing at precisely 49, not at 46. Thus we believe that the adjustment cost hypothesis cannot satisfactorily for the precise deviation from the power law we observe in the data. This is not to say adjustment costs are unimportant, but rather they are not the dominant reason for firms in the valley.

Employment shocks. Consider the possibility there are unexpected shocks to employment. Suppose firms face an exogenous quit rate, and that they set a hiring rule to achieve a target employment level. In this case, negative

\(^{39}\)Gourio and Roys’s (2012) preliminary draft investigates this dimension although in their specification static (fixed) costs have exactly the same distortive effect on the firm size distribution as dynamic (adjustment, sunk) costs and are assumed to be negligible.
shocks to quits could mean the firm ends up with too many workers. For example, suppose a firm wants 49 workers, can only make hiring decisions at the beginning of the year (like the junior job market in economics) and expects 5 people to leave every year. Hence the firm hires 5 people every year. If there is a negative shock to quits one year when no one leaves, the firm will end up with 54 workers and have to bear the costs of regulation. Being aware of this risk, however, implies that firms will not target a steady state of 49, but something below this level to avoid getting into the dominated area. This hypothesis therefore predicts that the bulge would be at a firm size below 49 workers. Since the main bulge is at 49 workers (see Figure 2) this hypothesis is not compelling.

Bounded rationality. We can imagine a wide range of bounded rationality models, and although some are clearly inconsistent with the evidence, others could potentially account for the patterns we observe in the data. We consider two behavioral models. First, assume that there exists a proportion of managers (\(\gamma\)) who ignore the regulation and set their employment levels as if there were no implicit tax. The remaining (1-\(\gamma\)) of managers have full information and behave as in our baseline model. This is a generalization of our model and we estimate a mixture model to examine whether \(\gamma = 0.1\). We also consider a second type of optimization error where all firms set their employment as if they are fully aware of the tax (unlike the first case). However, there are a \(\gamma\) proportion of managers who ignore the incentive to optimally avoid the regulation by setting their employment levels just below the level of the threshold, \(N\).

We describe and implement both of these models and describe the results in Appendix E. In both cases we reject the hypothesis that these bounded rationality models out perform our simple baseline model. This is not surprising. Since most of the firm regulations that start at size 50 have been in place for many decades in France and are well known in the media, our baseline model is more plausible than it would be for a newly introduced policy. A more “non-parametric” test of the bounded rationality model follows from considering that if firms did use such behavioral rules then firms just above the 50 size cut-off would have particularly low profits. Kleven and Waseem (2012) show that looking at the profits of such firms allows us to learn something about the cost of the regulation.\(^{41}\) Following this idea we examine the profitability of firms around the threshold in Figure A2. We do not find a sharp discontinuity in profitability around the regulatory threshold which casts further doubt on adequacy of the bounded rationality model.

Leontief Production Functions. Similarly hard to square with the patterns we observe in the data is the hypothesis that production is in fixed proportions (Leontief), and firms with sizes in the \{50,58\} range are at their optimal employment level given their capital needs, location needs etc. This would imply, again counterfactually, that there would be no particularly strong tendency by these firms to grow or shrink in that firm size range relative to any other range. Again, we can rule out this hypothesis, given what we have already observed about the dynamic patterns in the data in Figure 16.

Sunk cost of regulation. An alternative reason for the valley after 50 employees is that responding to the regulation requires making a large sunk investments. Specifically, to the extent that the main cost of complying with the regulation is learning and setting up new mechanisms, firms would be reluctant to pass the 50 worker threshold, but once they do, they would be indifferent between being (say) 51 or 49. In our view, it does not seem a priori reasonable to assume the regulation involves mostly a one time sunk cost. For example, the regulation requires a Staff

\(^{40}\)Note that we need to fully re-solve for the general equilibrium in this model because the presence of \(\gamma\) “ignorant” non-compliers changes the equilibrium wage and therefore also the behavior of the fully informed 1-\(\gamma\) agents.

\(^{41}\)Their paper, like ours, has a strictly dominated region like ours where the average tax rate is higher for some individuals. Nevertheless, there is positive mass in the valley to the right of this tax knotch
Council meeting with a (recurrent) budget of at least 0.3% of total payroll, a shop steward, a profit sharing scheme, etc.42

Summary. Although there could be other reasons for the density of firms in the valley to the right of the regulatory boundary at 50 employees, none of the obvious ones seems obviously better than our simple model.

6.6 A Comparison with the Hsieh-Klenow (2009) approach

In a pioneering and influential paper, Hsieh and Klenow (2009) take a related approach to examining regulatory distortions by examining the distributions of size and revenue-based productivity measures in the US, India and China. Like us, they found that such distortions could have substantial macro-economic effects. Their approach, however, focuses on the variation in marginal revenue productivity (MRP) as an indicator for distortions because, when factor prices are the same MRP\(\text{s}\) should be equalized across\(\text{s}\) even when underlying managerial ability is heterogeneous. In our context, we follow Hsieh and Klenow (2009) and estimate the distortion \(\tau\) from the change in the MRP of labor. The relation can be seen in Appendix Figure A2. Naively using data around the threshold to look at the change in MRP would be incorrect, however, as this local distortion in the MRP is due to the decision of firms in the 50-58 range to optimally choose to be at 49. The treatment effect in the Regression Discontinuity Design would reflect the local distortion and not the global distortion and would lead to misleading estimates of the implicit tax. Instead, our approach would suggest comparing the MRP of labor for firms away from the threshold.

We implement this idea using the Hsieh Klenow method of value added per worker (relative to the industry average) as an index of the MRP of labor and obtain an estimate of \(\tau - 1 = 0.046\) (Appendix Figure A3).43 Another approach is to use our own estimates of the MRP of labor from the model \((a\theta(n^\ast)^{\theta-1})\). When doing this we obtain a value of the implicit tax of \(\tau - 1 = 0.032\) (Appendix Figure A4). Although we prefer our more structural approach, we note that these estimates are similar to those in Table 1 column (3) where we use the Hsieh and Klenow’s (2009) preferred measures of the returns to scale, \(\theta\) to obtain a \(\tau - 1 = 0.033\). Our preferred estimates use a higher \(\theta\) and so generate a lower estimate of the implicit tax.

6.7 Heterogeneous Workers

For simplicity we have assumed that workers are homogenous. Extending the Lucas model to the case of heterogeneous but perfectly substitutable workers along the lines of Rosen (1982) is straightforward, but not very interesting as in this case employers could avoid the cost of the regulation by simply substituting quantity for quality, i.e. by employing more high quality workers at precisely 49 employees. The more realistic case is when workers are imperfect substitutes as this will generate positive matching between the more talented managers and the more skilled workers. This will also mean that the effects of minimum wages on unemployment are felt more strongly on unskilled workers which is

42 In a follow-up paper to ours, circulated in December 2012 (the first full draft our paper was circulated draft in 2011 when it was presented at MIT), Gourio and Roys (2012) implement such a sunk cost model and compare it to a variable cost model (a restricted version of our variable and fixed cost model). They do not estimate both variable and sunk cost parameters together “since identification is delicate.” They find that “They are both able to fit the moments well, and in particular the jump in the bins distribution between 45-49 and 50-54. (...) Both models reproduce the discontinuity at 50 and the change in the constant of the power law distribution observed in the data.” Consequently, one needs to make an \textit{a priori} determination of which model is more reasonable. The existence of a recurrent, variable cost seems far more plausible.

43 This is using the average for firms between 20 to 42 workers compared to firms with 57 to 200 workers. Reasonable changes of the exact thresholds make little difference.
more likely than our standard model with rigid wages where all workers are equally likely to suffer unemployment as a result of the regulation.

Although it is beyond the scope of this paper, one can extend our baseline model to allow for heterogeneous workers in the framework of Garicano and Rossi-Hansberg (2006). In this model managers’ ability allows them to solve those problems that workers could not solve. More skilled production workers endogenously match with more talented managers, because managers can leverage their ability over a larger mass of output in this case (as in our basic model, span of control costs are in the number of workers managed, not the skill of these workers). In this set-up the regulation introduces an additional matching friction which reduces aggregate output. As before, aggregate real wages will fall, and if there is a minimum wage unskilled workers will tend to become unemployed.

The qualitative implications of this extension and therefore the same as our baseline model. Structurally estimating this model is several orders of magnitude more difficult however due to the matching model of skill we have now introduced. We leave consideration of such a model for future work (see Lise, Meghir and Robin, 2012, for an attempt to structurally model heterogeneous firms and workers in a matching model).

7 Conclusions

The costliness of labor market regulation is a long-debated subject in policy circles and economics. We have tried to shed light on this issue by introducing a structural methodology that uses a simple theoretical general equilibrium approach based on the Lucas (1978) model of the firm size and productivity distribution. We introduce size-specific regulations into this model, exploiting the fact that in most countries labor regulation only bites when firms cross specific size thresholds. We show how such a model generates predictions over the equilibrium size and productivity distribution and moreover, can be used to generate an estimate of the implicit tax of the regulation. Intuitively, firms will optimally choose to remain small to avoid the regulation, so the size distribution becomes distorted with “too many” firms just below the size threshold and “too few” firms just above it. Furthermore, the distribution of productivity is also distorted: some of those firms just below the cut-off are “too productive” as they have been prevented from growing to their optimal size by the regulation. We show how the regulation creates welfare losses by (i) allocating too little employment to more productive firms who choose to be just below the regulatory threshold, (ii) allocating too little employment to more productive firms who bear the implicit labor tax (whereas small firms do not) and (iii) through reducing equilibrium wages (due to some tax incidence falling on workers) encourages too many agents with low managerial ability to become small entrepreneurs rather than working as employees for more productive entrepreneurs.

We implement this model on the universe of firms in the French private economy. France has onerous labor laws which bite when a firm has 50 employees, so is ideally suited to our framework. We find that the qualitative predictions of the model fit very well. First, there is a sharp fall off in the firm size distribution precisely at 50 employees resembling a “broken power law” and second, there is a bulge in productivity just to the left of the size threshold.

We then estimate the key parameters of the theoretical model from the firm size distribution. Our approach delivers quite a stable and robust cost of the employment regulation which seems to place an additional cost on labor of about 1% of the wage. We show that we expect this cost to translate into relatively small output losses when wages
are flexible (under 1% of GDP) but large losses (over 5% of GDP) when wages are downwardly rigid. Furthermore,
there are large distributional effects regardless of wage flexibility with workers losing substantively and small firms
benefiting from the regulation. This is unlikely to be an intended consequence of the laws.

This is just the start of our research program of opening up the “black box” of firm distortions used in many macro
models. Size-contingent regulations are ubiquitous and our methodology can be used for other regulations, other parts
of the size distribution, other industries\(^{44}\) and other countries. One drawback of our approach is that it is static. We
have abstracted away, for example, how firm TFP may evolve over time as firms invest to improve their technology
or managerial ability (e.g. Bloom and Van Reenen, 2007). Such investments enable small firms to grow and since
size-contingent regulations “tax” this growth over the threshold, they may well discourage investment and therefore
inhibit the dynamics of growth in the economy. We have also not delved deeply into dynamics of employment or wage
setting (e.g. Robin, 2011)

Despite these caveats, we believe that our approach is a simple, powerful and potentially fruitful way to tackle the
vexed problem of the impact of regulation on modern economies.

References

Outcomes” Handbook of Econometrics 6A, 63, 4172-4276, Amsterdam: Elsevier.

\[4\] Almunia, Miguel and David Lopez-Rodriguez (2012) “Staying under the Radar: Firm responses to Tax enforcement strate-
gies in Spain”, mimeo, Berkeley

\[5\] Atkeson, Andrew and Patrick Kehoe (2005) “Modeling and Measuring Organizational Capital” Journal of Political Eco-
nomics, 113, 1026-1053

metrica, 66(1): 47-78.

Perspectives, 15, 151-172

\[10\] Banerjee, Abhijit and Esther Duflo (2005) “Growth Theory through the lens of development” Chapter 7 474-544 in Philippe
Aghion and Steven Durlauf (eds) Handbook of Economic Growth, Amsterdam: Elsevier

\[11\] Bartelsman, Erik, John Haltiwanger and Stefano Scarpetta (2013) “Cross Country Differences in Productivity: The Role
of Allocation and Selection” mimeo, University of Maryland, forthcoming American Economic Review

\[12\] Basu, Susanto and John Fernadez (1997) “Returns to Scale in US production: Estimate and Implications” Journal of Po-
litical Economy, 105 (2) 249-283

Peitrts Centre for Theoretical Physics, Oxford and European Physical Journal B, 58(2), 167-173

of Economic Studies, 57(3): 381-402.

French Retail Industry” Quarterly Journal of Economics, 117(4), 1309-1413

\(^{44}\) For example, the retail sector has a large number of size-contingent regulations with “big boxes” being actively discouraged in many
countries and US cities (e.g. Bertrand and Kramarz, 2002, or Baily and Solow, 2001).
Web Appendices: Not Intended for publication unless requested

A Omitted Proofs

A.1 Comparative Statics in the variable cost and fix costs of regulation

In the main text, Proposition 1 focused on comparative statics when we have no fixed cost of the regulation \((k = 0)\) as this is what we obtain empirically. We can also examine what happens when we hold the implicit tax fixed at unity \((\tau = 1)\), but consider only the fixed cost component. In the unique equilibrium:

Proposition 2 The introduction of a tax/fix cost \(k\) of hiring workers starting at firm size \(N\) has the following effects:

1. Reduces equilibrium wages as a result of the reduction in the demand for workers
2. Increases firm size for all firms below the threshold, \([\alpha_{\text{min}}^{N,k}, \alpha_{c}^{N,k}]\), as a result of the general equilibrium effect that reduces wages
3. Reduces firm size to the threshold \(N\) for all firms that are constrained, that is those in \([\alpha_{c}^{N,k}, \alpha_{u}^{N,k}]\)
4. Increases firm size for all firms that are taxed \([\alpha_{u}^{N,k}, +\infty]\) as a result of the general equilibrium effect that reduces wages

Most of the comparative statics are the same as Proposition 1, but there is an important difference in terms of the firms who pay the regulatory tax (point 4). These firms are larger rather than smaller because there is no increase in the variable cost of labor which remains at \(w\) (recall it is \(w\tau\) and we have assumed that \(\tau = 1\)). In terms of Figure 5 there is a bulge and valley around the threshold, but no downward shift in the intercept of the firm size distribution.

A.2 Adding up constraint on \(\delta\), mass of constrained firms

In this sub-section of the Appendix, we remove subscripts (or superscripts) \(N, \tau, k\) to improve readability.

We first show that \(n_{\text{min}} = \theta/(1 - \theta)\). This first follows from equation (5). Using the power law assumption and the TFP/size relation in equation (11), this relation can be re-written as:

\[
n_{\text{min}} = \alpha_{\text{min}}^{1/(1-\theta)} \left(\frac{\theta}{w_{N,\tau,k}} \right)^{1/(1-\theta)} = \frac{\theta}{1 - \theta}
\]

It is also useful to define functions \(n_1\) and \(n_2\) respectively as:

\[
n_1(\alpha) = \left(\frac{\theta}{w_{N,\tau,k}} \right)^{1/(1-\theta)} \alpha^{1/(1-\theta)}
\]

\[
n_2(\alpha) = \left(\frac{\theta}{w_{N,\tau,k}} \right)^{1/(1-\theta)} \tau^{-1/(1-\theta)} \alpha^{1/(1-\theta)}
\]

Note that equation (11) implies that \(n_{N,\tau,k}(\alpha) = n_1(\alpha)\) if \(\alpha_{\text{min}} \leq \alpha < \alpha_c\) and \(n_{N,\tau,k}(\alpha) = n_2(\alpha)\) if \(\alpha_c < \alpha \leq \alpha_u\).

Armed with this tools, how do we derive equation (13) from equation (12)? The firm size distribution is given by the broken power law in equation (12):

\[
\chi^*(n) = \begin{cases}
\frac{c_{\alpha}(1-\theta)(\theta/w_{N,\tau,k})^{\beta/(1-\theta)}}{\int_{\alpha_{\text{min}}}^{\alpha_c} \phi(\alpha)d\alpha = \delta} n^{-\beta} & \text{if } \theta/(1-\theta) = n_{\text{min}} \leq n < N = n_{N,\tau,k}(\alpha_c) \\
c_{\alpha}(1-\theta)(\theta/w_{N,\tau,k})^{\beta/(1-\theta)} \tau^{-1/(1-\theta)} \alpha^{1/(1-\theta)} n^{-\beta} & \text{if } n = N = n_{N,\tau,k}(\alpha_c) \\
\frac{c_{\alpha}(1-\theta)(\theta/w_{N,\tau,k})^{\beta/(1-\theta)}}{\int_{\alpha_c}^{\alpha_u} \phi(\alpha)d\alpha = \delta} n^{-\beta} & \text{if } N < n < n_u = n_{N,\tau,k}(\alpha_u) \\
c_{\alpha}(1-\theta)(\theta/w_{N,\tau,k})^{\beta/(1-\theta)} \tau^{-1/(1-\theta)} \alpha^{1/(1-\theta)} n^{-\beta} & \text{if } n_{N,\tau,k}(\alpha_u) = n_u \leq n
\end{cases}
\]
We work on two restrictions on this pdf:

- The constraint on δ can be re-written more conveniently in terms of firm size rather than productivity. We can express δ equivalently in terms of “regimes” n_1 or n_2 (the two are equivalent up to a variable change):

\[
\delta = \int_{n_c}^n \phi(\alpha) d\alpha
\]

\[
= \int_{n_1(\alpha_c)}^{n_1(\alpha_u)} c_{\alpha}(1-\theta) \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} n^{-\beta} dn
+ \int_{n_2(\alpha_u)}^{n_2(\alpha_c)} c_{\alpha}(1-\theta) \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} n^{-\beta} dn
\]

\[
= \int_{n_2(\alpha_u)}^{n_2(\alpha_c)} c_{\alpha}(1-\theta) \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} n^{-\beta} dn
\]

\[
= c_{\alpha} \frac{1-\theta}{\beta-1} \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} \left(N^{1-\beta} - \frac{\theta}{1-\theta} \right)
\]

- Equation (12) is a pdf, so this adds up to 1 (with support on $[\theta/(1-\theta); +\infty]$):

\[
\delta = 1 - c_{\alpha}(1-\theta) \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} \frac{N^{1-\beta} - \left(\frac{\theta}{1-\theta} \right)^{1-\beta}}{1-\beta} - c_{\alpha}(1-\theta) \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} \frac{n^{-\beta}}{1-\beta}
\]

\[
= 1 - c_{\alpha} \frac{1-\theta}{\beta-1} \left(\frac{\theta}{w_{N,r,k}} \right) \frac{\beta-1}{\tau} \left(\frac{\theta}{1-\theta} \right)^{1-\beta} - N^{1-\beta} + \frac{\theta}{1-\theta} n^{-\beta}
\]

Taken together, these relations imply:

\[
\delta = C \left(N^{1-\beta} - T_n n_1^{-\beta} \right) = 1 - C \left[\left(\frac{\theta}{1-\theta} \right)^{1-\beta} - \left(N^{1-\beta} - T_n n_1^{-\beta} \right) \right]
\]

Therefore:

\[
C = \left(\frac{1-\theta}{\theta} \right)^{1-\beta} \geq 1
\]

and:

\[
\chi^*(n) = \begin{cases}
\left(\frac{\theta}{1-\theta} \right)^{1-\beta} (\beta-1)n^{-\beta} & \text{if } \theta/(1-\theta) \leq n < N \\
\left(\frac{\theta}{1-\theta} \right)^{1-\beta} (N^{1-\beta} - T_n n_1^{-\beta}) & \text{if } n = N \\
0 & \text{if } N < n < n_u \\
\left(\frac{\theta}{1-\theta} \right)^{1-\beta} (\beta-1)T_n n^{-\beta} & \text{if } n_u \leq n
\end{cases}
\]

This is equation (13) in the main text.

A.3 Proof of Lemma 1

When employment is measured with error, we can only observe the following quantity:

\[
n(\alpha, \varepsilon) = n^*(\alpha).e^\varepsilon
\]

We can then write the conditional CDF of this variable denoted by x below:
\[
P(x < n|\varepsilon) = \begin{cases}
0 & \text{if } n.e^{-\varepsilon} \leq \frac{\theta}{\tau} \\
\left(\frac{1-\theta}{\tau}\right)^{1-\beta} (\beta-1) \int_{\infty}^{n.e^{-\varepsilon}} x^{-\beta} dx & \text{if } \frac{\theta}{\tau} \leq n.e^{-\varepsilon} < N \\
\left(\frac{1-\theta}{\tau}\right)^{1-\beta} (\beta-1) \int_{0}^{N} x^{-\beta} dx + \left(\frac{1-\theta}{\tau}\right)^{1-\beta} \left(N^{1-\beta} - T.n_{u}^{1-\beta}\right) & \text{if } N \leq n.e^{-\varepsilon} \leq n_{u} \\
\left(\frac{1-\theta}{\tau}\right)^{1-\beta} \left(\frac{\theta}{\tau}\right)^{1-\beta} - T.n_{u}^{1-\beta} + \left(\frac{1-\theta}{\tau}\right)^{1-\beta} (\beta-1) T. \int_{n.e^{-\varepsilon}}^{\infty} x^{-\beta} dx & \text{if } n_{u} \leq n.e^{-\varepsilon}
\end{cases}
\]

Assuming that \(\varepsilon \) is a Gaussian noise with mean 0 and variance \(\sigma \), and denoting by \(\varphi \) the Gaussian pdf and by \(\Phi \) the Gaussian cdf, we can compute the unconditional probability as:

\[
\forall n > 0, \quad P(x < n) = \int_{\mathbb{R}} P(x < n|\varepsilon) \frac{1}{\sigma} \varphi \left(\frac{\varepsilon}{\sigma}\right) d\varepsilon
\]

\[
= \int_{\ln(n) - \ln(N)}^{\ln(n) - \ln(n_{u})} \left[1 - C.n^{1-\beta} e^{\varepsilon.(\beta-1)}\right] \frac{1}{\sigma} \varphi \left(\frac{\varepsilon}{\sigma}\right) d\varepsilon + \int_{\ln(n) - \ln(n_{u})}^{\ln(n) - \ln(n_{u})} \left[1 - C.T.n_{u}^{1-\beta}\right] \frac{1}{\sigma} \varphi \left(\frac{\varepsilon}{\sigma}\right) d\varepsilon
\]

\[
= \Phi \left(\frac{\ln(n) - \ln(C)}{\sigma}\right) - C.T.n_{u}^{1-\beta} \left[\Phi \left(\frac{\ln(n) - \ln(C)}{\sigma}\right) - \Phi \left(\frac{\ln(n) - \ln(n_{u})}{\sigma}\right)\right] - C.n^{1-\beta} e^{\frac{\varepsilon^2}{2}(\beta-1)^2} \left[\Phi \left(\frac{\ln(n) - \ln(C)}{\sigma} - \sigma.(\beta-1)\right) - \Phi \left(\frac{\ln(n) - \ln(N)}{\sigma} - \sigma.(\beta-1)\right)\right]
\]

In fact there is no additional constraint in the parameters, because we can show that this function is strictly increasing (straightforward from the way we constructed it), with limits 0 in 0 and 1 in \(+\infty \):

\[
A(n) \xrightarrow{n \to +\infty} 1 \quad A(n) \xrightarrow{n \to 0} 0 \\
B(n) \xrightarrow{n \to +\infty} Cst \times (1 - 1) = 0 \quad B(n) \xrightarrow{n \to 0} Cst \times (0 - 0) = 0 \\
C(n) \xrightarrow{n \to +\infty} 0 \times (1 - 1) = 0 \quad C(n) \xrightarrow{x \to +\infty} +\infty \times (0 - 0) = 0 (*) \\
D(n) \xrightarrow{n \to +\infty} 0 \times 1 = 0 \quad D(n) \xrightarrow{n \to 0} +\infty \times 0 = 0 (*)
\]

To solve the two problematic cases, marked with (*), let us consider \(F(n) \) defined for \(F \in \mathbb{R} \) as:
F(n) = n^{1-\beta} \Phi \left(\frac{\ln(n)}{\sigma} + F \right) = \frac{\Phi \left(\frac{\ln(n)}{\sigma} + F \right)}{n^{\beta-1}}

(L'Hôpital's rule)

\sim_{n \to \infty} \frac{1}{n^{\beta-1}} \frac{\ln(n) + F}{\beta - 1}

\sim_{n \to \infty} \frac{1}{\sigma \sqrt{2\pi}(\beta - 1)} e^{-\frac{1}{2} \frac{(\ln(n))^2}{\sigma^2}} e^{-\frac{1}{\beta - 1} \frac{\ln(n)}{\sigma}} \Phi \left(\frac{\ln(n)}{\sigma} \right)

\to_{n \to \infty} 0

Last, the density that corresponds to the CDF is given by:

\chi(n) = \frac{1}{\sigma n} \left(\frac{\ln(n) - \ln(C)}{\sigma} \right) - \frac{1}{\sigma n} CT \Phi \left[\frac{\ln(n) - \ln(N)}{\sigma} \right] - \frac{1}{\sigma n} \Phi \left(\ln(n) - \ln(n_u) \right)

- C_n^{-\beta} \frac{2}{\sigma^2} (\beta - 1)^2 \left(1 - \beta \right) \Phi \left(\ln(n) - \ln(C) - \ln(\sigma (\beta - 1)) \right)

- C_n^{-\beta} \frac{2}{\sigma^2} (\beta - 1)^2 \frac{1}{\sigma} \left(\Phi \left(\ln(n) - \ln(C) - \ln(\sigma (\beta - 1)) \right) \right)

- C_n^{-\beta} \frac{2}{\sigma^2} (\beta - 1)^2 \left(1 - \beta \right) \Phi \left(\ln(n) - \ln(n_u) - \ln(\sigma (\beta - 1)) \right) + \frac{1}{\sigma} \Phi \left(\ln(n) - \ln(n_u) - \ln(\sigma (\beta - 1)) \right) \]

We use standard ML techniques to estimate the parameters in equation (19).

Note that we obtain an estimate of C from this procedure from which we can, in principle recover an estimate of the coefficient \(\theta \) from equation (18). This is unlikely to be a powerful way of identifying the scale parameter, however. We found empirically that the likelihood was very flat when trying to estimate \(\theta \) in this way, suggesting it was not well identified: this is in particular due to the fact that we only estimate the conditional size distribution for firms having 10 to 1,000 employees (while we expect \(\theta \) to be identified form the curvature of the distribution “on the left”, for the smallest firms). Note that column 4 in table 1 shows however that very large values of \(\theta \) are rejected by the data, because the obtained \(\ln \)-likelihood drops. Instead, as discussed in the main text we generate estimates of \(\theta \) from three alternative routes (i) calibration, (ii) estimates from the production function and (iii) using the TFP-size relationship. We use this when estimating equation (19) together with equation (18). For example, a calibrated \(\theta = 0.5 \) implies that \(C = 1 \). When we use methods (ii) and (iii) and estimate \(\theta \) using the productivity distribution, we take into account the variance around the estimation of \(\theta \) in calculating the correct variance-covariance matrix by block-bootstrap.

A.4 Sensitivity of estimates to the Gaussian specification for measurement errors

How sensitive are our estimates to the Gaussian specification of the measurement error component? To investigate this issue, let us assume that the error term is distributed according to an unspecified pdf \(f \), and cdf \(F \). We only impose that \(f \) is sufficiently thin tailed, such that the expectation of \(e^\varepsilon \) is finite:

\[\int_{\mathbb{R}} e^{(\beta - 1) f(\varepsilon)} d\varepsilon = M < \infty \]

and that

\[1 - F(\ln(n)) = o \left(n^{1-\beta} \right) \text{ when } n \to +\infty \]

The unconditional cdf of \(n \) can be rewritten as\(^{45}\):

\[\forall n > 0, \quad P(x < n) = F \left(\ln(n) - \ln \left(\frac{\theta}{1 - \theta} \right) - CT n^{1-\beta} \left[F(\ln(n) - \ln(N)) - F(\ln(n) - \ln(n_u)) \right] \right) \]

\[C n^{1-\beta} \left[\int_{\ln(n) - \ln(n_u)}^{\ln(n) - \ln(N)} e^{(\beta - 1) f(\varepsilon)} d\varepsilon + T \int_{-\infty}^{\ln(n) - \ln(n_u)} e^{(\beta - 1) f(\varepsilon)} d\varepsilon \right] \]

\(^{45}\)The derivations below can alternatively be established in terms of the pdf.
Therefore, if \(\phi \) have added \(\delta \) of \(\varepsilon \) upper (small re-scaling of the \(\omega \) \(\varepsilon \) we will do obtain a upper bound for breaks in time series models. In our context, their result implies that for each partition known \(\mu \) proceed as follows:

We discuss here an alternative to our ML approach. Taking as our starting point the power law for least squares estimation of the broken Power Law

\[
\ln \chi(n) = \ln k - \beta \ln n + \delta(D_{n>nu}) + \sum_{i=n_c}^{n_u} d_i \tag{20}
\]

where \(D_{n>nu} \) is a dummy variable that turns on to 1 for firms above the threshold \(nu \) and is zero otherwise, but we have added \(d_i \) dummies that pick up the average number of firms in the distorted size categories, i.e. between the upper \((nu) \) and lower \((n_c) \) employment thresholds. Equation (20) is estimated subject to the constraint \(\sum_{i=n_c}^{n_u} d_i = 0 \).

Following Axtell (2001), we can estimate equation (20) through OLS\(^{47} \), conditional on the 'structural breaks' at \(nu \) and \(n_c \). To find these structural break points, we follow Bai (1997) and Bai and Perron (1998) in their study of structural breaks in time series models. In our context, their result implies that for each partition \(\{1,...,n_c\}, \{n_c,...,n_u\}, \{n_u,...\} \), one obtains the OLS estimators of \(\{k, \beta, \delta_1, \delta_2\} \) subject to constraint \(\sum_{i=n_c}^{n_u} d_i = 0 \).\(^{48} \) Letting the sum of squared errors generated by each of these partitions be \(SSE(nu, n_c) \), our estimates of the 'break points', \(nu \) and \(n_c \) are:

\[
(nu, n_c) = \arg \min_{nu, n_c} SSE(nu, n_c) \tag{21}
\]

Bai and Perron (1998) show that, for a wide range of error specifications (including heteroskedastic like in our case) the break points are consistently estimated, and converge at rate \(\hat{N} \), where \(\hat{N} \) is the maximum firm size as long as \(nu - n_c > \varepsilon \hat{N} \), and \(n_c < nu \), (the break points are asymptotically distinct) which is true in our framework since we know \(n_c < \hat{N} < nu \).

Armed with these parameter estimates we can the proceed to estimate \(\tau \) using the results above. One intuitive way of seeing the procedure is as follows. Fix the lower employment threshold (say 43) and estimate the power law (conservatively) only on the part of the employment distribution below this and on the upper part of the size distribution that is undistorted (say under 43 and over 100).\(^{49} \) This procedure generates a mass of firms (entrepreneurs)

\(^{46} \)This is because for distribution uniformly distributed over \([-\varepsilon, x]\) (where \(x > 0 \)), we have:

\[
\int_{-\varepsilon}^{x} e^{(\beta - 1)}d\varepsilon = \frac{e^{\beta(\beta - 1)} - e^{-\varepsilon(\beta - 1)}}{2\varepsilon(\beta - 1)} > 1
\]

Therefore, if \(f \) is centered on 0 and symmetric, then it can be approximated by below by a bound that is arbitrarily close to 1.

\(^{47} \)See Gabaix and Ibragimov (2008) for improvements in the OLS procedure using ranks, which is preferred for small samples and for the upper part of the distribution (not the middle, our focus).

\(^{48} \)Perron and Qu (2006) show that the framework can accommodate linear restrictions on the parameter; and that the consistency and rate of convergence results hold and the limiting distribution is unaffected. However, our constraint is non-linear and no results exist on whether the results hold.

\(^{49} \)We could in principle use all firms as small as one employee and up the largest firm in the economy. In practice the Power Law tends to be violated at these extremes of the distribution in all countries (e.g. Axtell (2001), so we follow that standard approach of trimming the upper and lower tails. We show that nothing is sensitive to these exact maximum and minimum employment thresholds as can be seen from the various figures.

35
displaced to the “bulge” in the distribution between \(n_u \) and \(N \) (i.e. 43 and 50) as shown in Figure 9. These firms are drawn from between \(N \) and \(n_u \), and since we know the counterfactual slope of the power law over this region, we can reallocate these firms so as to minimize the deviation from this counterfactual power law. \(n_u \) is estimated as the maximum employment bin which is attained in this procedure.

Rather than fixing \(n_c \), the Bai and Perron (1998) procedure estimates this efficiently by minimizing a sum of squares criterion along with the other parameters in the model as in equation (21).

This procedure gives us all the parameters necessary to estimate the implicit cost of the regulation which we calculate is equivalent to a labor tax of around 26\% (\(\tau = 1.26 \)).

C Using information from the productivity distribution

In this Appendix, we remove subscripts (or superscripts) \(N, \tau, k \) to improve readability.

C.1 Incorporating TFP into the estimation method

We can do much better if we have direct information on the TFP Distribution. Estimation is a challenge here (see next sub-section), but let us initially assume we have reliable on TFP. First, recall from equation (11) the relationship between firm size and TFP:

\[
\begin{align*}
N, k, \tau, w &
\end{align*}
\]

The empirical model adds a stochastic error term to this to obtain:

\[
\begin{align*}
N, k, \tau, w, \varepsilon &
\end{align*}
\]

Or

\[
\begin{align*}
\ln n_1 &= \frac{1}{1-\theta} \ln \alpha + \frac{1}{1-\theta} \ln \left(\frac{\theta}{w_{N,\tau,k}} \right) + \varepsilon \\
\ln n_2 &= \ln(N) + \varepsilon \\
\ln n_3 &= \frac{1}{1-\theta} \ln \alpha + \frac{1}{1-\theta} \ln \tau + \frac{1}{1-\theta} \ln \left(\frac{\theta}{w_{N,\tau,k}} \right) + \varepsilon
\end{align*}
\]

Combining these together:

\[
\ln n = \ln n_1 I_{\{\alpha_{\min} \leq \alpha < \alpha_c\}} + \ln n_2 I_{\{\alpha_c \leq \alpha < \alpha_u\}} + \ln n_3 I_{\{\alpha_u \leq \alpha\}}
\]

C.2 Estimation of TFP

There is no one settled way of best estimating TFP on firm level data and there are many approaches suggested in the literature. Fortunately, at least at the micro-level, different methods tend to produce results where the correlation of TFP estimated by different methods is usually high (see Syverson, 2011).\footnote{Results are all available on request.}

50 Results are all available on request.
In the baseline result we follow the method of Levinsohn and Petrin (2003) who propose extending the Olley and Pakes (1996) control function method to allow for endogeneity and selection. Olley and Pakes proposed inverting the investment rule to control for the unobserved productivity shock (observed to firm but unobserved to econometrician) that affects the firm’s decision over hiring (and whether to stay in business). Because of the problem of zero investment regimes (common especially among smaller firms that we use in our dataset) Levinsohn and Petrin (2003) recommended using materials as an alternative proxy variable that (almost) always takes an observed positive value.

We use this estimator to estimate firm-level production functions on French panel data 2002-2007 (using the unbalanced panel) by each of the four-digit manufacturing industries in our dataset. We also did the same for the retail sector and the business services sector. The production functions take the form (in each industry):

$$\ln y_{it} = \beta_n \ln n_{it} + \beta_k \ln k_{it} + \omega_{it} + \tau_t + \eta_{it}$$ \hspace{1cm} (23)

where y = output (value added), n = labour, k = capital, ω is the unobserved productivity shock, τ_t is a set of time dummies and η is the idiosyncratic error of firm i in year t. From estimating the parameters of the production function we can then recover our estimate of the persistent component of TFP.

There are of course many problems with these estimation techniques. For example, Ackerberg et al (2006) focus on the problem of exact multicollinearity of the variable factors conditional on the quasi-fixed factors given the assumption that input prices are assumed to be common across firms. Ackerberg et al (2007) suggest various solutions to this issue.

We consider alternative ways to estimate TFP including the more standard Solow approach. Here we assume that we can estimate the factor coefficients in equation (23) by using the observed factor shares in revenues. We do this assuming constant returns to scale, so $\beta_n = \frac{\omega}{n}$ and $\beta_k = 1 - \frac{\omega}{n}$. We used the four digit industry factor shares averaged over our sample period for the baseline but also experimented with some firm-specific (time invariant) factor shares. As usual these alternative measures led to similar results.

A problem with both of these methods is that we do not observe firm-specific prices so the estimates of TFP as we only control for four digit industry prices. Consequently, the results we obtain could be regarded as only revenue-based TFPQ instead of quantity-based TFPQ (see Hsieh and Klenow, 2009). TFPQ is closer to what we want to theoretically control for four digit industry prices. Consequently, the results we obtain could be regarded as only revenue-based in the year as a whole 20 workers have been employed by the firm level, which is where we have the FICUS data. Some case law has built up, however, which means that a few of them are also applied to the group level.

From 200 employees:

- Obligation to appoint nurses (Code du Travail, article R.4623-51)

D More Details of some Size-Related Regulations in France

The size-related regulations are defined in four groups of laws. The Code du Travail (labor laws), Code du Commerce (commercial law), Code de la Sécurité Social (social security) and in the Code Général des Impôts (fiscal law). The main bite of the labor (and some accounting) regulations comes when the firm reaches 50 employees. But there are also some other size-related thresholds at other levels. The main other ones comes at 10-11 employees. For this reason we generally trim the analysis below 10 employees to mitigate any bias induced in estimation from these other thresholds.

For more details on French regulation see inter alia Abowd and Kramarz (2003) and Kramarz and Michaud (2010), or, more administratively and exhaustively, Lamy (2010).

D.1 Main Labor Regulations

The unified and official way of counting employees has been defined since 200451 in the Code du Travail52, articles L.1111-2 and 3. Exceptions to the 2004 definition are noted in parentheses in our detailed descriptions of all the regulations below. Employment is taken over a reference period which from 2004 was the calendar year (January 1st to December 31st). There are precise rules over how to fractionally count part-year workers, part-time workers, trainees, workers on sick leave, etc. (LAMY, 2010). For example, say a firm employs 10 full-time workers every day but in the middle of the year all 10 workers quit and are immediately replaced by a different 10 workers. Although in the year as a whole 20 workers have been employed by the firm the standard regulations would mean the firm was counted as 10 employee firm. In this case this would be identical to the concept used in our main data FICUS.

Recall that the employment measure in the FICUS data is average headcount number of employees taken on the last day of each quarter in the fiscal year (usually but not always ending on December 31st). All of these regulations strictly apply to the firm level, which is where we have the FICUS data. Some case law has built up, however, which means that a few of them are also applied to the group level.

From 200 employees:

- Obligation to appoint nurses (Code du Travail, article R.4623-51)

51 Before that date, the concept of firm size was different across labor regulations.

52 The text is available at: http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006072050&dateTexte=20120822
• Provision of a place to meet for union representatives (Code du Travail, article R.2142-8)

From 50 employees:

• Monthly reporting of the detail of all labor contracts to the administration (Code du Travail, article D.1221-28)
• Obligation to establish a staff committee (“comité d’entreprise”) with business meeting at least every two months and with minimum budget = 0.3% of total payroll (Code du Travail, article L.2322-1-28, threshold exceeded for 12 months during the last three years)
• Obligation to establish a committee on health, safety and working conditions (CHSC) (Code du Travail, article L.4611-1, threshold exceeded for 12 months during the last three years)
• Appointing a shop steward if demanded by workers (Code du Travail, article L.2143-3, threshold exceeded for 12 consecutive months during the last three years)
• Obligation to establish a profit sharing scheme (Code du Travail, article L.3322-2, threshold exceeded for six months during the accounting year within one year after the year end to reach an agreement)
• Obligation to do a formal “Professional assessment” for each worker older than 45 (Code du Travail, article L.6321-1)
• Higher duties in case of an accident occurring in the workplace (Code de la sécurité sociale and Code du Travail, article L.1226-10)
• Obligation to use a complex redundancy plan with oversight, approval and monitoring from Ministry of Labor in case of a collective redundancy for 9 or more employees (Code du Travail, articles L.1235-10 to L.1235-12; threshold based on total employment at the date of the redundancy)

From 25 employees:

• Duty to supply a refectory if requested by at least 25 employees (Code du Travail, article L.4228-22)
• Electoral colleges for electing representatives. Increased number of delegates from 25 employees (Code du Travail, article L.2314-9, L.2324-11)

From 20 employees:

• Formal house rules (Code du Travail, articles L.1311-2)
• Contribution to the National Fund for Housing Assistance;
• Increase in the contribution rate for continuing vocational training of 1.05% to 1.60% (Code du Travail, articles L.6331-2 and L.6331-9)
• Compensatory rest of 50% for mandatory overtime beyond 41 hours per week

From 11 employees:

• Obligation to conduct the election of staff representatives(threshold exceeded for 12 consecutive months over the last three years) (Code du Travail, articles L.2312-1)

From 10 employees:

• Monthly payment of social security contributions, instead of a quarterly payment (according to the actual last day of previous quarter);
• Obligation for payment of transport subsidies (Article R.2531-7 and 8 of the General Code local authorities, Code général des collectivités territoriales);
• Increase the contribution rate for continuing vocational training of 0.55% to 1.05% (threshold exceeded on average 12 months).

Note that, in additions to these regulations, some of the payroll taxes are related to the number of employees in the firm.
D.2 Accounting rules

The additional requirements depending on the number of employees of entreprises, but also limits on turnover and total assets are as follows (commercial laws, Code du Commerce, articles L.223-35 and fiscal regulations, Code général des Impôts, article 208-III-3):

From 50 employees:
- Loss of the possibility of a simplified presentation of Schedule 2 to the accounts (also if the balance sheet total exceeds 2 million or if the CA exceeds 4 million);
- Requirement for LLCs, the CNS, limited partnerships and legal persons of private law to designate an auditor (also if the balance sheet total exceeds 1.55 million euros or if the CA is more than 3.1 million euros, applicable rules of the current year).

From 10 employees:
- Loss of the possibility of a simplified balance sheet and income statement (also if the CA exceeds 534 000 euro or if the balance sheet total exceeds 267 000 euro, applicable rule in case of exceeding the threshold for two consecutive years).

E Bounded Rationality Models

As discussed in sub-section 6.5, an alternative explanation for the “valley” to the right of the regulatory threshold is that this reflects a more behavioral model where some firms are poorly informed/inattentive about the regulation or the optimal response to it. We consider two models which we label “ignorance” and “no avoidance”. In both models a proportion $1-\gamma$ of firms are fully informed, rational agents as in our basic model but proportion γ act according to a more behavioral rule. We then estimate these alternative structural models which are generalizations of our baseline model (which implicitly assumes $\gamma=1$).

E.1 Ignorance of regulation

We first suppose that there is a share γ of “inattentive” or “unresponsive” (U) managers, having the following behavior (note that the equilibrium changes substantially, but we use the same notation as previously). The remaining $1-\gamma$ are attentive (R) managers.

$$n_{N,\tau,k}^U(\alpha) = \begin{cases} 0 & \text{if } \alpha < \alpha_{\min}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} \alpha^{1/(1-\theta)} & \text{if } \alpha_{\min}^{N,\tau,k} \leq \alpha \leq \alpha_{\max}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} a_{\tau,k}^{1/(1-\theta)} & \text{if } \alpha_{\max}^{N,\tau,k} < \alpha \leq \alpha_{c}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} \left(N^\beta - Tn_{k}^{1-\beta}\right) & \text{if } \alpha_{c}^{N,\tau,k} < \alpha \leq \alpha_{u}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} (\beta - 1)n^{-\beta} & \text{if } \alpha < \alpha_{\min}^{N,\tau,k} \end{cases}$$

Their size is therefore distributed as a “pure” power law:

$$\chi_{U}^*(n) = \left(\frac{1-\theta}{\theta}\right)^{1-\beta} (\beta - 1)n^{-\beta} \text{ if } a_{\min}^{N,\tau,k} = \frac{\theta}{1-\theta} \leq n$$

For the remainder $(1-\gamma)$ entrepreneurs, we have:

$$n_{N,\tau,k}^R(\alpha) = \begin{cases} 0 & \text{if } \alpha < \alpha_{\min}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} \alpha^{1/(1-\theta)} & \text{if } \alpha_{\min}^{N,\tau,k} \leq \alpha \leq \alpha_{c}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} a_{\tau,k}^{1/(1-\theta)} & \text{if } \alpha_{c}^{N,\tau,k} < \alpha \leq \alpha_{u}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} (\beta - 1)n^{-\beta} & \text{if } \alpha < \alpha_{\min}^{N,\tau,k} \end{cases}$$

$$\chi_{R}^*(n) = \begin{cases} 0 & \text{if } \theta/(1-\theta) \leq n \leq N \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} (\beta - 1)n^{-\beta} & \text{if } n = N \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} (\beta - 1)Tn_{k}^{1-\beta} & \text{if } N < n < n_{u}^{N,\tau,k} \\ \left(\frac{\theta}{a_{N,\tau,k}}\right)^{1/(1-\theta)} (\beta - 1)Tn_{k}^{1-\beta} & \text{if } n_{u}^{N,\tau,k} \leq n \end{cases}$$
The resulting distribution of the mixture of the two sub-populations is simply:

\[
\chi_T(n) = \begin{cases}
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } \theta/(1-\theta) \leq n \leq N \\
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } n = N \\
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } N < n < n^N, \tau, k \\
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } n^N, \tau, k \leq n
\end{cases}
\]

(28)

The resulting distribution has no “hole”, but this mixture model cannot generate a bulge above \(N \). We can re-incorporate an (orthogonal) measurement error and re-estimate this model. The log-likelihood becomes continuous (and differentiable) with respect to all parameters:

\[
\chi(n) = \gamma \times \left(-C, n^{-\beta}, \theta \beta (1-n)^{-1} \cdot (1-\beta) \Phi \left(\frac{\ln(n) - \ln(0)}{\sigma} - \sigma (\beta - 1) \right) \right)
\]

(29)

The log likelihood is maximized at \(\gamma = 0 \) (see below) suggesting that this mixture model does not improve the fit in the “valley”. Therefore, we statistically our baseline model.

<table>
<thead>
<tr>
<th>Table E1: ML Estimation of Model with inattentive managers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>.01</td>
</tr>
<tr>
<td>.02</td>
</tr>
</tbody>
</table>

Notes: Results from estimating the model by Maximum Likelihood with alternative assumptions over the proportion of “inattentive” managers \(\gamma \)

E.2 No Avoidance

An alternative (less extreme) behavioral model is one where all firms who are above the regulatory threshold set employment in full knowledge of the implicit tax \(\tau \) that they face. However, there are a proportion of managers (again denoted \(\gamma \)) in the population who do not realize that their optimal strategy is to avoid the regulation by choosing to remain just below the regulatory threshold. We call these the “no-avoiders” (denoted superscript “C” for “compliers”) and we have:

\[
\alpha_{N, \tau, k}^C(\alpha) = \begin{cases}
0 & \text{if } \alpha < \alpha_{min}^{N, \tau, k} \\
\begin{cases}
\frac{\theta}{\gamma} & \text{if } \tau\gamma = \alpha^{1/(1-\theta)} \\
\frac{\theta}{\gamma} & \text{otherwise}
\end{cases} & \text{if } \alpha_{min}^{N, \tau, k} \leq \alpha \leq \alpha_{max}^{N, \tau, k} \\
\frac{\theta}{\gamma} & \text{if } \alpha_{max}^{N, \tau, k} \leq \alpha \leq \tau \alpha_{max}^{N, \tau, k} \\
\frac{\theta}{\gamma} & \text{if } \tau \alpha_{max}^{N, \tau, k} \leq \alpha \leq \infty
\end{cases}
\]

(30)

Note that for a few “no avoiding” managers whose ability would put them just above 50 employees in the unregulated economy, they would now choose strictly below 50 when they realize that they face the tax. For these managers we assume firms are at \(N \) where the optimal size with taxes is lower than the optimal size without taxes.

\[
\chi_C(n) = \begin{cases}
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } \theta/(1-\theta) \leq n \leq N \\
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } N < n < n^N, \tau, k \\
\frac{1}{\theta} (1-n) \beta (1-n) \gamma & \text{if } n^N, \tau, k \leq n
\end{cases}
\]

(31)
The behavior element model does not improve the fit of the model. Again, the optimization criterion is not continuous with respect to n_u; note also that it will be flat empirically between any two integer values for n_u. Adding an orthogonal Gaussian noise, the associated log-likelihood is:

$$
\chi(n) = \gamma \sum \left[\begin{array}{c}
-C.n^{-\beta} \alpha (\beta-1)^2 (1-\beta) \left(\Phi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) \right)

-C.n^{-\beta} \alpha T \frac{2}{\sigma^2} (\beta-1)^2 \left(\left(1-\beta\right) \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) + \frac{1}{\sigma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) \right)

+n_u^{-\beta} \left[\frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) - \varphi \left(\frac{\ln(n)-\ln(n_u)}{\sigma} \right) \right]

-C.n^{-\beta} \alpha (\beta-1)^2 (1-\beta) \left(\Phi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) \right)

-C.n^{-\beta} \alpha T \frac{2}{\sigma^2} (\beta-1)^2 \left(\left(1-\beta\right) \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) + \frac{1}{\sigma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) \right)

-C.n^{-\beta} \alpha (\beta-1)^2 (1-\beta) \left(\Phi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) \right)

-n_u^{-\beta} \left[\frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) - \varphi \left(\frac{\ln(n)-\ln(n_u)}{\sigma} \right) \right]

\end{array} \right] \right] + (1-\gamma) \sum \left[\begin{array}{c}
-C.n^{-\beta} \alpha (\beta-1)^2 (1-\beta) \left(\Phi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) \right)

-C.n^{-\beta} \alpha T \frac{2}{\sigma^2} (\beta-1)^2 \left(\left(1-\beta\right) \Phi \left(\frac{\ln(n)-\ln(N)}{\sigma} - \sigma.(\beta-1) \right) + \frac{1}{\sigma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) \right)

-n_u^{-\beta} \left[\frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(C)}{\sigma} \right) - \frac{1}{\gamma} \varphi \left(\frac{\ln(n)-\ln(N)}{\sigma} \right) - \varphi \left(\frac{\ln(n)-\ln(n_u)}{\sigma} \right) \right]

\end{array} \right]
$$

Again, the log likelihood is optimized when we do not have the mixture distribution, at $\gamma = 0$, and again this behavioral element model does not improve the fit of the model.

Table E2: ML Estimation of Model with no-compliers

<table>
<thead>
<tr>
<th>γ</th>
<th>log likelihood</th>
<th>β</th>
<th>n_u</th>
<th>σ</th>
<th>θ</th>
<th>τ</th>
<th>k/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1065936.3</td>
<td>1.8216666</td>
<td>57.897679</td>
<td>.10368454</td>
<td>.8</td>
<td>1.0131462</td>
<td>.49631632</td>
</tr>
<tr>
<td>.01</td>
<td>-1065938.2</td>
<td>1.8216838</td>
<td>57.93329</td>
<td>.10366964</td>
<td>.8</td>
<td>1.0131377</td>
<td>.4947657</td>
</tr>
<tr>
<td>.02</td>
<td>-1065940</td>
<td>1.8217004</td>
<td>57.969269</td>
<td>.10353404</td>
<td>.8</td>
<td>1.0131302</td>
<td>.49325898</td>
</tr>
</tbody>
</table>

Notes: Results from estimating the model by Maximum Likelihood with alternative assumptions over the proportion of "no-avoidance" managers (γ)
Table 1: Parameter estimates: calibrating returns to scale, θ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>θ, scale parameter</td>
<td>0.8</td>
<td>0.85</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>β, power law</td>
<td>1.822 (0.059)</td>
<td>1.822 (0.059)</td>
<td>1.822 (0.059)</td>
<td>1.829 (0.057)</td>
</tr>
<tr>
<td>$T = \frac{1-\beta}{\theta^{1-\beta}}$</td>
<td>0.948 (0.018)</td>
<td>0.948 (0.018)</td>
<td>0.948 (0.018)</td>
<td>0.965 (0.015)</td>
</tr>
<tr>
<td>n_u, upper employment threshold</td>
<td>57.898 (0.024)</td>
<td>57.898 (0.024)</td>
<td>57.898 (0.024)</td>
<td>52.562 (0.002)</td>
</tr>
<tr>
<td>σ, variance of measurement error</td>
<td>0.104 (0.025)</td>
<td>0.104 (0.025)</td>
<td>0.104 (0.025)</td>
<td>0.036 (0.008)</td>
</tr>
<tr>
<td>τ, implicit tax, variable cost</td>
<td>1.013 (0.005)</td>
<td>1.010 (0.004)</td>
<td>1.033 (0.013)</td>
<td>1.004 (0.002)</td>
</tr>
<tr>
<td>k/w, implicit tax, fixed cost</td>
<td>-0.496 (0.257)</td>
<td>-0.372 (0.192)</td>
<td>-1.243 (0.653)</td>
<td>-0.201 (0.099)</td>
</tr>
<tr>
<td>Mean (Median) # of employees</td>
<td>55.7 (23)</td>
<td>55.7 (23)</td>
<td>55.7 (23)</td>
<td>55.7 (23)</td>
</tr>
<tr>
<td>Observations</td>
<td>238,701</td>
<td>238,701</td>
<td>238,701</td>
<td>238,701</td>
</tr>
<tr>
<td>Firms</td>
<td>57,008</td>
<td>57,008</td>
<td>57,008</td>
<td>57,008</td>
</tr>
<tr>
<td>Ln Likelihood</td>
<td>-1,065,936</td>
<td>-1,065,936</td>
<td>-1,065,936</td>
<td>-1,066,165</td>
</tr>
</tbody>
</table>

Notes: Parameters estimated by ML with standard errors below in parentheses (clustered at the four digit level). Estimation is on unbalanced panel 2002-2007 of population of French manufacturing firms with 10 to 1,000 employees. These estimates of the implicit tax are based on different estimates of θ; the methods are indicated in the different columns.

Table 2: Parameter estimates: exploiting information from the Production Function to estimate returns to scale, θ

<table>
<thead>
<tr>
<th>Method</th>
<th>(1) Baseline col. (1) of Tab. 1</th>
<th>(2) TFP/Size relationship</th>
<th>(3) Using Production Function estimates Full sample</th>
<th>(4) Using Production Function estimates High-Tech Sectors</th>
<th>(5) Using Production Function estimates Low-Tech Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ, scale parameter</td>
<td>0.8 (0.025)</td>
<td>0.799 (0.025)</td>
<td>0.855 (0.013)</td>
<td>0.882 (0.012)</td>
<td>0.848 (0.016)</td>
</tr>
<tr>
<td>β, power law</td>
<td>1.822 (0.059)</td>
<td>1.822 (0.055)</td>
<td>1.822 (0.052)</td>
<td>1.625 (0.063)</td>
<td>1.864 (0.063)</td>
</tr>
<tr>
<td>$T = \frac{1-\beta}{\theta^{1-\beta}}$</td>
<td>0.948 (0.018)</td>
<td>0.948 (0.023)</td>
<td>0.948 (0.020)</td>
<td>0.997 (0.012)</td>
<td>0.929 (0.032)</td>
</tr>
<tr>
<td>n_u, upper employment threshold</td>
<td>57.898 (0.024)</td>
<td>57.898 (1.342)</td>
<td>57.899 (1.133)</td>
<td>50.000 (2.474)</td>
<td>58.328 (1.603)</td>
</tr>
<tr>
<td>σ, variance of measurement error</td>
<td>0.104 (0.025)</td>
<td>0.104 (1.342)</td>
<td>0.104 (0.020)</td>
<td>0.000 (0.029)</td>
<td>0.114 (0.034)</td>
</tr>
<tr>
<td>τ, implicit tax, variable cost</td>
<td>1.013 (0.005)</td>
<td>1.013 (0.005)</td>
<td>1.010 (0.004)</td>
<td>1.001 (0.003)</td>
<td>1.013 (0.007)</td>
</tr>
<tr>
<td>k/w, implicit tax, fixed cost</td>
<td>-0.496 (0.257)</td>
<td>-0.498 (0.219)</td>
<td>-0.359 (0.177)</td>
<td>-0.026 (0.129)</td>
<td>-0.514 (0.304)</td>
</tr>
<tr>
<td>Mean (Median) # of employees</td>
<td>55.7 (23)</td>
<td>55.7 (23)</td>
<td>55.7 (23)</td>
<td>78.3 (29)</td>
<td>51.3 (23)</td>
</tr>
<tr>
<td>Observations</td>
<td>238,701</td>
<td>238,701</td>
<td>238,701</td>
<td>38,713</td>
<td>199,988</td>
</tr>
<tr>
<td>Firms</td>
<td>57,008</td>
<td>57,008</td>
<td>57,008</td>
<td>9,099</td>
<td>48,139</td>
</tr>
<tr>
<td>Ln Likelihood</td>
<td>-1,065,936</td>
<td>-1,065,936</td>
<td>-1,065,936</td>
<td>-1,065,936</td>
<td>-1,066,165</td>
</tr>
</tbody>
</table>

Notes: Parameters estimated by ML with standard errors below in parentheses (clustered at the four digit level). Estimation is on unbalanced panel 2002-2007 of population of French manufacturing firms with 10 to 1,000 employees. These estimates of the implicit tax are based on different estimates of θ; the methods are indicated in the different columns. Standard errors are calculated using bootstrap in columns (2) to (5). “Using TFP-Size relationship” calculates $\vartheta = 1 - \frac{\ln(n_u)}{\ln(T)}$, where $\ln(n_u)$ is calculated from the coefficient of a regression of $\ln(TFP)$ on $\ln(employment)$ on firms with 10 to 45 workers. “Using the production function” calculates ϑ as the sum of the coefficients on the factor inputs obtained from TFP estimation (see Table A1). “High tech” sectors are based on R&D intensity as defined by the OECD.
Table 3: Welfare and Distributional Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>FLEXIBLE WAGES</th>
<th>RIGID WAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unemployment rate</td>
<td>0%</td>
<td>5.217%</td>
</tr>
<tr>
<td>2. Percentage of firms avoiding the regulation, δ</td>
<td>3.593%</td>
<td>3.438%</td>
</tr>
<tr>
<td>3. Percentage of firms paying tax (compliers)</td>
<td>9.036%</td>
<td>8.646%</td>
</tr>
<tr>
<td>4. Change in labor costs (wage reduction) for small firms (below 49)</td>
<td>-1.074%</td>
<td>0</td>
</tr>
<tr>
<td>5. Change in labor costs (wage reduction but tax increase), Large firms (above 49)</td>
<td>0.232%</td>
<td>1.306%</td>
</tr>
<tr>
<td>6. Excess entry by small firms (percent increase in number of firms)</td>
<td>4.419%</td>
<td>4.409%</td>
</tr>
<tr>
<td>7. Increase in size of small firms</td>
<td>5.370%</td>
<td>0</td>
</tr>
<tr>
<td>8. Increase in size of large firms</td>
<td>-1.160%</td>
<td>-6.530%</td>
</tr>
<tr>
<td>9. Annual welfare loss (as a percentage of GDP):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Implicit Tax</td>
<td>0.804%</td>
<td>0.801%</td>
</tr>
<tr>
<td>b. Output loss</td>
<td>0.016%</td>
<td>4.302%</td>
</tr>
<tr>
<td>c. Total (Implicit Tax + Output loss)</td>
<td>0.820%</td>
<td>5.103%</td>
</tr>
<tr>
<td>10. Winners and losers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Change in expected wage for those who remain in labor force</td>
<td>-1.074%</td>
<td>-5.358%</td>
</tr>
<tr>
<td>b. Average gain by entering entrepreneurs of small firms</td>
<td>1.603%</td>
<td>-2.687%</td>
</tr>
<tr>
<td>c. Average profit gain by small unconstrained firms</td>
<td>4.296%</td>
<td>0</td>
</tr>
<tr>
<td>d. Average profit gain by firms constrained at 49</td>
<td>2.447%</td>
<td>-1.849%</td>
</tr>
<tr>
<td>e. Change in profit for large firms</td>
<td>-0.928%</td>
<td>-5.224%</td>
</tr>
</tbody>
</table>

Notes: This is based on the baseline of Table 1 column (1), under the additional assumption that maximum firm size is 10,000. We set (insignificant) fixed cost of the regulation to zero, i.e. $k = 0$ and $r - 1 = 1.3\%$ In column (1), model solved assuming wages fully adjust (section 2.4). In column (2), model solved assuming that wages are rigid (section 2.5). “Percentage of firms avoiding the regulation” (Row 2) corresponds to δ in main text. “Percentage of firms paying tax” (Row 3) corresponds to mass of agents with productivity greater than α_{\min} relative to agents with productivity greater than α_{\min}. “Change in labor costs for small firms” (Row 4) corresponds to the general equilibrium wage effect. “Change in labor costs for large firms” (Row 5) corresponds to Row 4 + the estimated implicit tax ($r - 1 = 1.3\%$). “Excess entry” (Row 6) corresponds to the difference in the ln(mass of agents having productivity greater than $\alpha_{\min}^{N,1,0}$) minus ln(mass of agents having productivity greater than $\alpha_{\min}^{N,1,0}$). “Increase in size of small firms” (Row 7) corresponds to $\ln(n_{\min}^{N,1,0}) - \ln(n_{\min}^{N,1,0})$ for firms having productivity smaller than $\alpha_{\min}^{N,1,0}$; “increase in size of large firms” (Row 8) corresponds to $n_{\alpha_{\max}}^{N,1,0} n_{\alpha_{\min}}^{N,1,0}$ for firms having productivity greater than $\alpha_{\min}^{N,1,0}$. “Implicit Tax” (Row 9a) corresponds to the total amount of implicit tax $\left(\int_{\alpha_{\min}}^{\alpha_{\max}} (r - 1).w_{\alpha_{\min}}^{N,1,0} n_{\alpha_{\max}}^{N,1,0}(\alpha)(\sigma) d\alpha\right)$ as a share of total output $Y_{N,1,0}$. “Output loss” (Row 9b) corresponds to $\ln(Y_{N,1,0}) - \ln(Y_{N,1,0})$. For “winners and losers” (Row 10), we compute the average (percentage point) changes in expected wages or profits for agents in each of the following bins: 9a. labor force $[\alpha_{\min}^{N,1,0}; \alpha_{\max}^{N,1,0}]$; 9b. new entrepreneurs $[\alpha_{\min}^{N,1,0}; \alpha_{\max}^{N,1,0}]$; 9c. small firms $[\alpha_{\min}^{N,1,0}; \alpha_{\max}^{N,1,0}]$; 9d. constrained firms $[\alpha_{\min}^{N,1,0}; \alpha_{\max}^{N,1,0}]$; 9d. large firms $[\alpha_{\min}^{N,1,0}; \alpha_{\max}^{N,1,0}]$. In the “rigid wages” case in column (2), expected wages are computed as $(1 - U_{n_{\alpha_{\min}}^{N,1,0}}).w_{\alpha_{\min}}^{N,1,0}$ where u is the unemployment rate.
Table 4: Variation in estimates across different sectors

<table>
<thead>
<tr>
<th>Industry</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
</tr>
<tr>
<td>β, power law</td>
<td>1.822</td>
<td>1.822</td>
<td>1.878</td>
<td>1.878</td>
<td>2.372</td>
<td>2.372</td>
<td>2.128</td>
<td>2.128</td>
<td>2.001</td>
<td>2.001</td>
</tr>
<tr>
<td>$\hat{\theta}$</td>
<td>0.948</td>
<td>0.948</td>
<td>0.898</td>
<td>0.898</td>
<td>0.871</td>
<td>0.872</td>
<td>0.885</td>
<td>0.885</td>
<td>0.984</td>
<td>0.984</td>
</tr>
<tr>
<td>$T = \frac{1}{\hat{\theta}}$</td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.029)</td>
<td>(0.029)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.020)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>n_τ, upper emp. threshold</td>
<td>57.898</td>
<td>57.898</td>
<td>55.312</td>
<td>55.312</td>
<td>57.874</td>
<td>57.874</td>
<td>57.151</td>
<td>57.151</td>
<td>58.254</td>
<td>58.254</td>
</tr>
<tr>
<td>σ, measurement error</td>
<td>0.104</td>
<td>0.104</td>
<td>0.060</td>
<td>0.060</td>
<td>0.089</td>
<td>0.089</td>
<td>0.084</td>
<td>0.084</td>
<td>0.106</td>
<td>0.106</td>
</tr>
<tr>
<td>τ, implicit tax variable tax</td>
<td>1.013</td>
<td>1.010</td>
<td>1.025</td>
<td>1.019</td>
<td>1.020</td>
<td>1.015</td>
<td>1.022</td>
<td>1.016</td>
<td>1.003</td>
<td>1.003</td>
</tr>
<tr>
<td>k/w, implicit tax, fixed cost</td>
<td>-0.496</td>
<td>-0.372</td>
<td>-1.137</td>
<td>-0.850</td>
<td>-0.842</td>
<td>-0.631</td>
<td>-0.951</td>
<td>-0.711</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>Mean (Median) # of employees</td>
<td>55.7</td>
<td>55.7</td>
<td>48.2</td>
<td>48.2</td>
<td>29.3</td>
<td>29.3</td>
<td>36.8</td>
<td>36.8</td>
<td>45.3</td>
<td>45.3</td>
</tr>
<tr>
<td>Observations</td>
<td>238,701</td>
<td>70,479</td>
<td>159,440</td>
<td>255,812</td>
<td>205,835</td>
<td>57,008</td>
<td>14,487</td>
<td>41,768</td>
<td>66,848</td>
<td>61,906</td>
</tr>
</tbody>
</table>

Notes: Parameters estimated by ML with standard errors below in parentheses (clustered at the four digit level). Estimation is on unbalanced panel 2002-2007 of firms with 10 to 1,000 employees. These estimates of the implicit tax are based on different (calibrated) values of θ that are indicated in the different columns.

Table 5: Comparison estimated results with of actual data

<table>
<thead>
<tr>
<th>(Actual data)</th>
<th>(1) Firms having 10 to 48 workers</th>
<th>(2) Firms having 49 to 57 workers</th>
<th>(3) Firms having 58 to 10,000 Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Firm Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution of firms (actual)</td>
<td>0.762</td>
<td>0.035</td>
<td>0.204</td>
</tr>
<tr>
<td>Distribution of firms (predicted)</td>
<td>0.760</td>
<td>0.039</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.007)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Panel B: Employment distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution of employment (actual)</td>
<td>0.295</td>
<td>0.032</td>
<td>0.672</td>
</tr>
<tr>
<td>Distribution of employment (predicted)</td>
<td>0.277</td>
<td>0.035</td>
<td>0.688</td>
</tr>
<tr>
<td>$n = n*\alpha</td>
<td>e^\sigma_e = 0.104$</td>
<td>(0.024)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Panel C: Output Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution of output (actual)</td>
<td>0.242</td>
<td>0.029</td>
<td>0.728</td>
</tr>
<tr>
<td>Distribution of output (predicted)</td>
<td>0.275</td>
<td>0.034</td>
<td>0.691</td>
</tr>
<tr>
<td>$y = a.n = \alpha * (n*\alpha</td>
<td>e^\sigma_e = 0.104$</td>
<td>[0.219;0.331]</td>
<td>[0.020;0.048]</td>
</tr>
</tbody>
</table>

Notes: The “actual” distribution is computed over our data used for estimation between 2002-2007: the population of French manufacturing firms with 10 to 1,000 employees (see tables 1, 2 and 4). The “predicted” distribution is computed using our empirical model described in Section 3 (incorporating a measurement error term ϵ) and our baseline estimate reported in Table 1 column (1).
Figure 1: Firm size distribution in the US and France

Notes: This is the distribution of firms (not plants). Authors' calculations

Figure 2: Number of Firms by employment size in France

Source: FICUS, 2002
Notes: This is the population of manufacturing firms in France with between 31 and 69 employees. This plots the number of firms in each exact size category (i.e. raw data, no binning). There is a clear drop when regulations begin for firms with 50 or more employees.
Figure 3: Theoretical Firm size distribution with regulatory constraint

Notes: This figure shows the theoretical firm size distribution with exponentially increasing bins. The tallest bar represents the point at which the size constraint binds. Parameters: $\beta = 1.6$, $\tau = 1.01$, $\eta = 60$, $\theta = 0.9$, $\beta = 1.06$.

Figure 4: Theoretical Relationship between TFP (managerial talent) and firm size

Notes: This figure shows the theoretical relationship between TFP and firm size. There is a mass of firms at employment size=50 where the regulatory constraint binds. Parameters: $\beta = 1.6$, $\tau = 1.01$, $\eta = 60$, $\theta = 0.9$, $\beta = 1.06$.
Figure 5: Theoretical firm size distribution when employment is measured with error

Note: The solid (blue) line shows the theoretical firm size distribution (broken power law), \(n^* \). The dashed line shows the new firm size distribution when we extend the model, to allow employment size to be measured with error with \(\sigma = 0.15 \). The solid dark line increases the measurement error to \(\sigma = 0.5 \).

Figure 7: Share of Firms by employment size, 2002

Source: FICUS, 2002

Notes: This is the population of manufacturing firms in France with between 1 and 1000 employees. This plots the number of firms in each exact size category (i.e., raw data, no binning). As in figure 2, there is a clear drop at 50, but also at 10 employees. These thresholds correspond to various size based regulations.
Figure 6: The effect on the measured firm size distribution using Alternative Datasets and definitions of employment

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic average of quarterly head counts</td>
<td>"Declared" workers on Dec. 31st: cross-sectional count, taking part of part-timers</td>
</tr>
</tbody>
</table>

| Panel C: DADS 2002: Payroll tax reporting to social administration | |
| "Full-time equivalent" (FTE), computed by the French statistical institute |

Note: Data sources are indicated in the headers of the table. All datasets relate to the year 2002.
Figure 8: TFP Distribution around the regulatory threshold of 50 employees

Panel A: Short Employment span

Panel B: Longer Employment span

Notes: This figures plots the mean level of TFP by firm employment size using an upper support of 100 (Panel A) or 500 (Panel B). A fourth order polynomial is displayed in both panels using only data from the "undistorted" points (potentially "distorted" points are shown in red).

Figure 9: Firm Size Distribution and Broken Power Law: Data and Fit of Model

Notes: This shows the difference between the fit of the model (dashed red line) which allows for measurement error with the actual data. Estimates correspond to the baseline specification reported in Tables 1 column (1). We also include the "pure" theoretical predictions (in dark blue solid line).
Figure 10: Firm Size Distribution with and without regulation

Notes: This figure compares the firm size distribution in the regulated economy (bold line) from a world without regulation (dashed line) based on the estimated parameters from our model (baseline specification reported in Table 1, column (1)).

Figure 11: Output Across Entrepreneurs

Notes: This graph compares the relation between ability (productivity) and output for individuals of different managerial ability in the regulated economy (bold line) and the unregulation economy (dashed line) based on the estimated parameters from our model. Maximum ability has been normalized to 1. An ability level of 0.341 corresponds to a firm size of 49 and an ability level of 0.369 corresponds to a firm size of 58. The underlying estimates correspond to the baseline specification reported in Table 1 column (1).
Figure 12: Distributional Effects of the Regulation

Panel A: Flexible Wages

Panel B: Rigid Wages

Notes: This graph compares the change in ln(income) for individuals of different managerial ability in the regulated economy relative to the unregulated economy based on the estimated parameters from our model. The dark blue line is our baseline. Maximum ability has been normalized to 1. Individuals with an ability level below 0.21 are workers in the regulated economy. An ability level of 0.34 corresponds to a firm size of 49 and an ability level of 0.37 corresponds to a firm size of 58. The underlying estimates correspond to the baseline specification reported in Table 1 column (1). Panel A is the case with flexible wages and Panel B is the case of downwardly rigid wages.

Figure 13: Workers do not appear to be accepting significantly lower wages in return for “insurance” of employment protection

Notes: Wages is the nominal wage (net of payroll tax) by employer size. 95% confidence intervals shown.
Figure 14: Corporate Restructuring in Response to the Regulation?
Independent Firms vs. Corporate groups

Panel A: Standalone firms vs. affiliates of larger groups

Panel B: Standalone firms vs. groups (i.e. all affiliates aggregated at the group level)

Notes: “Standalone” are independent firms that are not subsidiaries or affiliates of larger groups (blue dots). In Panel A we compare these to affiliates of larger groups with size measured at the affiliate level. A broken power law is visible in both distributions. In Panel B we repeat the standalone distribution but now compare this to affiliates aggregated to the group level (in France, we do not count overseas employees). Although there is a break in the power law for both type of firms it is stronger for the standalone firms as we would expect. The subsidiaries are not driving the results.

Figure 15: Adjustment in the hours margin around the threshold
(annual hours per worker)

Notes: Annual average hours per worker - combined FICUS and DADs data for 2002. 95% confidence intervals shown.
Figure 16: Firms just above the regulatory threshold are much more likely to either contract or grow than we would expect. Firms just below the threshold are much less likely to contract or grow.

<table>
<thead>
<tr>
<th>Probability of INCREASE in EMPLOYMENT</th>
<th>Probability of DECREASE in EMPLOYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>By more than 10%</td>
<td>By more than 10%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>By more than 8%</td>
<td>By more than 8%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>By more than 6%</td>
<td>By more than 6%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>By more than 4%</td>
<td>By more than 4%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: These graphs examine the proportion of firms whose employment grew (left hand panel) or shrank (right hand panel) by more than 12%, 10%, 8%, 6% and 4%. We take firms whose size falls into the relevant band at \(t \) and then examine subsequent growth between \(t \) and \(t+1 \). We do this for all firms and for all years separately between 2002 and 2007. 95% confidence intervals shown. Firms who are just above the regulatory threshold are more likely to grow or shrink than we would expect from a polynomial trend. Similarly firms just below the threshold are much less likely to grow or shrink.
Table A1: Production Function Estimation

<table>
<thead>
<tr>
<th></th>
<th>(1) Baseline</th>
<th>(2) High Tech Sectors</th>
<th>(3) Low Tech Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>0.739</td>
<td>0.756</td>
<td>0.735</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.011)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Capital</td>
<td>0.116</td>
<td>0.126</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.012)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>219,938</td>
<td>35,233</td>
<td>184,705</td>
</tr>
<tr>
<td>Firms</td>
<td>53,127</td>
<td>8,410</td>
<td>44,931</td>
</tr>
</tbody>
</table>

Notes: Parameters estimated by Levinsohn-Petrin (2003) method. Estimation on unbalanced panel 2002-2007 of population of French manufacturing firms with 10 to 1,000 employees (with retrospective information for 2001) for FICUS. “High tech” sectors are based on R&D intensity as defined by the OECD.
Table A2: Welfare Analysis under alternative assumptions for the upper bound of firm size

<table>
<thead>
<tr>
<th>(Regulated Economy - Unregulated Economy)</th>
<th>Upper bound = 500</th>
<th>Upper bound = 1,000</th>
<th>Upper bound = 5,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Wages</td>
<td>Rigid Wages</td>
<td>Flexible Wages</td>
<td>Rigid Wages</td>
</tr>
<tr>
<td>1. Unemployment rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Percentage of firms avoiding the regulation</td>
<td>3.652%</td>
<td>3.528%</td>
<td>3.624%</td>
</tr>
<tr>
<td>3. Percentage of firms paying tax (compliers)</td>
<td>7.516%</td>
<td>7.259%</td>
<td>8.244%</td>
</tr>
<tr>
<td>4. Change in labor costs (wage reduction), Small firms (below 49)</td>
<td>-0.833%</td>
<td>0%</td>
<td>-0.910%</td>
</tr>
<tr>
<td>5. Change in labor costs (wage reduction + implicit tax), Large firms (above 49)</td>
<td>0.473%</td>
<td>1.306%</td>
<td>0.390%</td>
</tr>
<tr>
<td>6. Excess entry by small firms (percent increase in number of firms)</td>
<td>3.487%</td>
<td>3.472%</td>
<td>3.778%</td>
</tr>
<tr>
<td>7. Increase in size of small firms</td>
<td>4.167%</td>
<td>0%</td>
<td>4.549%</td>
</tr>
<tr>
<td>8. Increase in size of large firms</td>
<td>-2.634%</td>
<td>-6.530%</td>
<td>-1.981%</td>
</tr>
<tr>
<td>9. Annual welfare loss:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Implicit Tax (as a share of GDP)</td>
<td>0.525%</td>
<td>0.522%</td>
<td>0.618%</td>
</tr>
<tr>
<td>b. Output loss</td>
<td>0.033%</td>
<td>3.353%</td>
<td>0.028%</td>
</tr>
<tr>
<td>c. Implicit Tax + Output loss</td>
<td>0.558%</td>
<td>3.875%</td>
<td>0.646%</td>
</tr>
<tr>
<td>10. Winners and losers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Change in expected wage for those who remain in labor force</td>
<td>-0.833%</td>
<td>-4.151%</td>
<td>-0.910%</td>
</tr>
<tr>
<td>b. Average gain by entering entrepreneurs</td>
<td>1.245%</td>
<td>-2.080%</td>
<td>1.359%</td>
</tr>
<tr>
<td>c. Average profit gain by small unconstrained firms</td>
<td>3.333%</td>
<td>0%</td>
<td>3.639%</td>
</tr>
<tr>
<td>d. Average profit gain by firms constrained at 49</td>
<td>1.484%</td>
<td>-1.849%</td>
<td>1.790%</td>
</tr>
<tr>
<td>e. Change in profit for large firms</td>
<td>-1.891%</td>
<td>-5.224%</td>
<td>-1.585%</td>
</tr>
</tbody>
</table>

Notes: This is the same analysis as in Table 3 except we allow the assumption over the largest firm size to vary between 500, 1000 and 5000 (compared to 10,000 in the baseline case). We set (insignificant) fixed cost of the regulation to zero, i.e. \(k = 0 \) and \(r - 1 = 1.3\% \). In column (1), model solved assuming wages fully adjust (section 2.4). In column (2), model solved assuming that wages are rigid (section 2.5). “Percentage of firms avoiding the regulation” (Row 2) corresponds to \(\delta \) in main text. “Percentage of firms paying tax” (Row 3) corresponds to \(\alpha \) relative to agents with productivity greater than \(\alpha_{min} \). “Change in labor costs for small firms” (Row 4) corresponds to the general equilibrium wage effect. “Change in labor costs for large firms” (Row 5) corresponds to Row 4 + the estimated implicit tax (\(r - 1 = 1.3\% \)). “Excess entry” (Row 6) corresponds to the difference in \(\ln(\text{mass of agents having productivity greater than } \alpha_{min}) \) minus \(\ln(\text{mass of agents having productivity greater than } \alpha_{min}) \). “Increase in size of small firms” (Row 7) corresponds to \(\ln(n_{s,t}^*) - \ln(n_{s,t}^*) \) for firms having productivity smaller than \(a_{min}^* \). “Increase in size of large firms” (Row 8) corresponds to \(n_{s,t}^* n_{s,t}^* \) for firms having productivity greater than \(a_{min}^* \). “Implicit Tax” (Row 9a) corresponds to the total amount of implicit tax (\(\int_{a_{min}}^{a_{min}^*} (r - 1) \cdot w_{s,t}^* \cdot n_{s,t}^* (a) \cdot f(a) \cdot d(\alpha) \) as a share of total output \(Y_{s,t}^* \). “Output loss” (Row 9b) corresponds to \(\ln(Y_{s,t}^*) - \ln(Y_{s,t}^*) \). For “winners and losers” (Row 10), we compute the average (percentage point) changes in expected wages or profits for agents in each of the following bins: 9a. labor force \([a_{min}^*, a_{min}] \); 9b. new entrepreneurs \([a_{min}^*, a_{min}] \); 9c. small firms \([a_{min}^*, a_{min}^*] \); 9d. constrained firms \([a_{min}^*, a_{min}^*] \); 9e. large firms \([a_{min}^*, a_{min}] \). In the “rigid wages” case in column (2), expected wages are computed as \((1 - w_{s,t}^*) \cdot w_{s,t}^* \) where \(u \) is the unemployment rate.
Figure A1: Heterogeneity of Results by three digit sector

Notes: These are the results from industry-specific estimation on the same lines as column (2) of Table 2

Figure A2: Profitability of firms around the regulatory threshold

Notes: Profitability is measured by gross profits divided by value added.
Figure A3: MRPL and marginal revenue productivity of labor in our model

Notes: This figure shows the relation (correspondence) between productivity (α, left axis) or marginal product of labor ($\alpha \cdot \theta \cdot (n^*(\alpha))^\theta-1$, right axis) and size. The relations are defined as $\alpha \cdot \theta \cdot (n^*(\alpha))^\theta-1 = w$ for $n < N$ and $\alpha \cdot \theta \cdot (n^*(\alpha))^\theta-1 = \tau \cdot w$ for $n > n_u$

Figure A4: Marginal Revenue Productivity and Firm Size (value added per worker relative to industry average)

Notes: This plots a measure of the MRPL, marginal revenue productivity of labor, as measured by value added per worker (relative to the four digit industry average) by firm size. The “Hsieh-Klenow” estimate of the implicit tax distortion is the difference between average productivity for firms between 20 and 42 employees (0.948) and average productivity for firms between 57 and 200 employees (0.993). This implies a log difference of 0.0464 or 4.64%.
Figure A5: Marginal Revenue Productivity and Firm Size
(value added per worker relative to industry average)

Notes: This plots a measure of the MRPL, marginal revenue productivity of labor, as measured by $\alpha \cdot \theta \cdot (\alpha^*(\alpha))^{\theta-1}$ by firm size. The “Hsieh-Klenow” estimate of the implicit tax distortion is the difference between average productivity for firms between 20 and 42 employees (24.675) and average productivity for firms between 57 and 200 employees (25.584). This implies a log difference of 0.0315 or 3.15%.